qemu/include/exec/cpu-all.h
<<
>>
Prefs
   1/*
   2 * defines common to all virtual CPUs
   3 *
   4 *  Copyright (c) 2003 Fabrice Bellard
   5 *
   6 * This library is free software; you can redistribute it and/or
   7 * modify it under the terms of the GNU Lesser General Public
   8 * License as published by the Free Software Foundation; either
   9 * version 2.1 of the License, or (at your option) any later version.
  10 *
  11 * This library is distributed in the hope that it will be useful,
  12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  14 * Lesser General Public License for more details.
  15 *
  16 * You should have received a copy of the GNU Lesser General Public
  17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
  18 */
  19#ifndef CPU_ALL_H
  20#define CPU_ALL_H
  21
  22#include "exec/cpu-common.h"
  23#include "exec/memory.h"
  24#include "qemu/thread.h"
  25#include "hw/core/cpu.h"
  26#include "qemu/rcu.h"
  27
  28#define EXCP_INTERRUPT  0x10000 /* async interruption */
  29#define EXCP_HLT        0x10001 /* hlt instruction reached */
  30#define EXCP_DEBUG      0x10002 /* cpu stopped after a breakpoint or singlestep */
  31#define EXCP_HALTED     0x10003 /* cpu is halted (waiting for external event) */
  32#define EXCP_YIELD      0x10004 /* cpu wants to yield timeslice to another */
  33#define EXCP_ATOMIC     0x10005 /* stop-the-world and emulate atomic */
  34
  35/* some important defines:
  36 *
  37 * HOST_WORDS_BIGENDIAN : if defined, the host cpu is big endian and
  38 * otherwise little endian.
  39 *
  40 * TARGET_WORDS_BIGENDIAN : same for target cpu
  41 */
  42
  43#if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN)
  44#define BSWAP_NEEDED
  45#endif
  46
  47#ifdef BSWAP_NEEDED
  48
  49static inline uint16_t tswap16(uint16_t s)
  50{
  51    return bswap16(s);
  52}
  53
  54static inline uint32_t tswap32(uint32_t s)
  55{
  56    return bswap32(s);
  57}
  58
  59static inline uint64_t tswap64(uint64_t s)
  60{
  61    return bswap64(s);
  62}
  63
  64static inline void tswap16s(uint16_t *s)
  65{
  66    *s = bswap16(*s);
  67}
  68
  69static inline void tswap32s(uint32_t *s)
  70{
  71    *s = bswap32(*s);
  72}
  73
  74static inline void tswap64s(uint64_t *s)
  75{
  76    *s = bswap64(*s);
  77}
  78
  79#else
  80
  81static inline uint16_t tswap16(uint16_t s)
  82{
  83    return s;
  84}
  85
  86static inline uint32_t tswap32(uint32_t s)
  87{
  88    return s;
  89}
  90
  91static inline uint64_t tswap64(uint64_t s)
  92{
  93    return s;
  94}
  95
  96static inline void tswap16s(uint16_t *s)
  97{
  98}
  99
 100static inline void tswap32s(uint32_t *s)
 101{
 102}
 103
 104static inline void tswap64s(uint64_t *s)
 105{
 106}
 107
 108#endif
 109
 110#if TARGET_LONG_SIZE == 4
 111#define tswapl(s) tswap32(s)
 112#define tswapls(s) tswap32s((uint32_t *)(s))
 113#define bswaptls(s) bswap32s(s)
 114#else
 115#define tswapl(s) tswap64(s)
 116#define tswapls(s) tswap64s((uint64_t *)(s))
 117#define bswaptls(s) bswap64s(s)
 118#endif
 119
 120/* Target-endianness CPU memory access functions. These fit into the
 121 * {ld,st}{type}{sign}{size}{endian}_p naming scheme described in bswap.h.
 122 */
 123#if defined(TARGET_WORDS_BIGENDIAN)
 124#define lduw_p(p) lduw_be_p(p)
 125#define ldsw_p(p) ldsw_be_p(p)
 126#define ldl_p(p) ldl_be_p(p)
 127#define ldq_p(p) ldq_be_p(p)
 128#define stw_p(p, v) stw_be_p(p, v)
 129#define stl_p(p, v) stl_be_p(p, v)
 130#define stq_p(p, v) stq_be_p(p, v)
 131#define ldn_p(p, sz) ldn_be_p(p, sz)
 132#define stn_p(p, sz, v) stn_be_p(p, sz, v)
 133#else
 134#define lduw_p(p) lduw_le_p(p)
 135#define ldsw_p(p) ldsw_le_p(p)
 136#define ldl_p(p) ldl_le_p(p)
 137#define ldq_p(p) ldq_le_p(p)
 138#define stw_p(p, v) stw_le_p(p, v)
 139#define stl_p(p, v) stl_le_p(p, v)
 140#define stq_p(p, v) stq_le_p(p, v)
 141#define ldn_p(p, sz) ldn_le_p(p, sz)
 142#define stn_p(p, sz, v) stn_le_p(p, sz, v)
 143#endif
 144
 145/* MMU memory access macros */
 146
 147#if defined(CONFIG_USER_ONLY)
 148#include "exec/user/abitypes.h"
 149
 150/* On some host systems the guest address space is reserved on the host.
 151 * This allows the guest address space to be offset to a convenient location.
 152 */
 153extern uintptr_t guest_base;
 154extern bool have_guest_base;
 155extern unsigned long reserved_va;
 156
 157/*
 158 * Limit the guest addresses as best we can.
 159 *
 160 * When not using -R reserved_va, we cannot really limit the guest
 161 * to less address space than the host.  For 32-bit guests, this
 162 * acts as a sanity check that we're not giving the guest an address
 163 * that it cannot even represent.  For 64-bit guests... the address
 164 * might not be what the real kernel would give, but it is at least
 165 * representable in the guest.
 166 *
 167 * TODO: Improve address allocation to avoid this problem, and to
 168 * avoid setting bits at the top of guest addresses that might need
 169 * to be used for tags.
 170 */
 171#define GUEST_ADDR_MAX_                                                 \
 172    ((MIN_CONST(TARGET_VIRT_ADDR_SPACE_BITS, TARGET_ABI_BITS) <= 32) ?  \
 173     UINT32_MAX : ~0ul)
 174#define GUEST_ADDR_MAX    (reserved_va ? reserved_va - 1 : GUEST_ADDR_MAX_)
 175
 176#else
 177
 178#include "exec/hwaddr.h"
 179
 180#define SUFFIX
 181#define ARG1         as
 182#define ARG1_DECL    AddressSpace *as
 183#define TARGET_ENDIANNESS
 184#include "exec/memory_ldst.h.inc"
 185
 186#define SUFFIX       _cached_slow
 187#define ARG1         cache
 188#define ARG1_DECL    MemoryRegionCache *cache
 189#define TARGET_ENDIANNESS
 190#include "exec/memory_ldst.h.inc"
 191
 192static inline void stl_phys_notdirty(AddressSpace *as, hwaddr addr, uint32_t val)
 193{
 194    address_space_stl_notdirty(as, addr, val,
 195                               MEMTXATTRS_UNSPECIFIED, NULL);
 196}
 197
 198#define SUFFIX
 199#define ARG1         as
 200#define ARG1_DECL    AddressSpace *as
 201#define TARGET_ENDIANNESS
 202#include "exec/memory_ldst_phys.h.inc"
 203
 204/* Inline fast path for direct RAM access.  */
 205#define ENDIANNESS
 206#include "exec/memory_ldst_cached.h.inc"
 207
 208#define SUFFIX       _cached
 209#define ARG1         cache
 210#define ARG1_DECL    MemoryRegionCache *cache
 211#define TARGET_ENDIANNESS
 212#include "exec/memory_ldst_phys.h.inc"
 213#endif
 214
 215/* page related stuff */
 216
 217#ifdef TARGET_PAGE_BITS_VARY
 218# include "exec/page-vary.h"
 219extern const TargetPageBits target_page;
 220#ifdef CONFIG_DEBUG_TCG
 221#define TARGET_PAGE_BITS   ({ assert(target_page.decided); target_page.bits; })
 222#define TARGET_PAGE_MASK   ({ assert(target_page.decided); \
 223                              (target_long)target_page.mask; })
 224#else
 225#define TARGET_PAGE_BITS   target_page.bits
 226#define TARGET_PAGE_MASK   ((target_long)target_page.mask)
 227#endif
 228#define TARGET_PAGE_SIZE   (-(int)TARGET_PAGE_MASK)
 229#else
 230#define TARGET_PAGE_BITS_MIN TARGET_PAGE_BITS
 231#define TARGET_PAGE_SIZE   (1 << TARGET_PAGE_BITS)
 232#define TARGET_PAGE_MASK   ((target_long)-1 << TARGET_PAGE_BITS)
 233#endif
 234
 235#define TARGET_PAGE_ALIGN(addr) ROUND_UP((addr), TARGET_PAGE_SIZE)
 236
 237/* Using intptr_t ensures that qemu_*_page_mask is sign-extended even
 238 * when intptr_t is 32-bit and we are aligning a long long.
 239 */
 240extern uintptr_t qemu_host_page_size;
 241extern intptr_t qemu_host_page_mask;
 242
 243#define HOST_PAGE_ALIGN(addr) ROUND_UP((addr), qemu_host_page_size)
 244#define REAL_HOST_PAGE_ALIGN(addr) ROUND_UP((addr), qemu_real_host_page_size)
 245
 246/* same as PROT_xxx */
 247#define PAGE_READ      0x0001
 248#define PAGE_WRITE     0x0002
 249#define PAGE_EXEC      0x0004
 250#define PAGE_BITS      (PAGE_READ | PAGE_WRITE | PAGE_EXEC)
 251#define PAGE_VALID     0x0008
 252/*
 253 * Original state of the write flag (used when tracking self-modifying code)
 254 */
 255#define PAGE_WRITE_ORG 0x0010
 256/*
 257 * Invalidate the TLB entry immediately, helpful for s390x
 258 * Low-Address-Protection. Used with PAGE_WRITE in tlb_set_page_with_attrs()
 259 */
 260#define PAGE_WRITE_INV 0x0020
 261/* For use with page_set_flags: page is being replaced; target_data cleared. */
 262#define PAGE_RESET     0x0040
 263/* For linux-user, indicates that the page is MAP_ANON. */
 264#define PAGE_ANON      0x0080
 265
 266#if defined(CONFIG_BSD) && defined(CONFIG_USER_ONLY)
 267/* FIXME: Code that sets/uses this is broken and needs to go away.  */
 268#define PAGE_RESERVED  0x0100
 269#endif
 270/* Target-specific bits that will be used via page_get_flags().  */
 271#define PAGE_TARGET_1  0x0200
 272#define PAGE_TARGET_2  0x0400
 273
 274#if defined(CONFIG_USER_ONLY)
 275void page_dump(FILE *f);
 276
 277typedef int (*walk_memory_regions_fn)(void *, target_ulong,
 278                                      target_ulong, unsigned long);
 279int walk_memory_regions(void *, walk_memory_regions_fn);
 280
 281int page_get_flags(target_ulong address);
 282void page_set_flags(target_ulong start, target_ulong end, int flags);
 283int page_check_range(target_ulong start, target_ulong len, int flags);
 284
 285/**
 286 * page_alloc_target_data(address, size)
 287 * @address: guest virtual address
 288 * @size: size of data to allocate
 289 *
 290 * Allocate @size bytes of out-of-band data to associate with the
 291 * guest page at @address.  If the page is not mapped, NULL will
 292 * be returned.  If there is existing data associated with @address,
 293 * no new memory will be allocated.
 294 *
 295 * The memory will be freed when the guest page is deallocated,
 296 * e.g. with the munmap system call.
 297 */
 298void *page_alloc_target_data(target_ulong address, size_t size);
 299
 300/**
 301 * page_get_target_data(address)
 302 * @address: guest virtual address
 303 *
 304 * Return any out-of-bound memory assocated with the guest page
 305 * at @address, as per page_alloc_target_data.
 306 */
 307void *page_get_target_data(target_ulong address);
 308#endif
 309
 310CPUArchState *cpu_copy(CPUArchState *env);
 311
 312/* Flags for use in ENV->INTERRUPT_PENDING.
 313
 314   The numbers assigned here are non-sequential in order to preserve
 315   binary compatibility with the vmstate dump.  Bit 0 (0x0001) was
 316   previously used for CPU_INTERRUPT_EXIT, and is cleared when loading
 317   the vmstate dump.  */
 318
 319/* External hardware interrupt pending.  This is typically used for
 320   interrupts from devices.  */
 321#define CPU_INTERRUPT_HARD        0x0002
 322
 323/* Exit the current TB.  This is typically used when some system-level device
 324   makes some change to the memory mapping.  E.g. the a20 line change.  */
 325#define CPU_INTERRUPT_EXITTB      0x0004
 326
 327/* Halt the CPU.  */
 328#define CPU_INTERRUPT_HALT        0x0020
 329
 330/* Debug event pending.  */
 331#define CPU_INTERRUPT_DEBUG       0x0080
 332
 333/* Reset signal.  */
 334#define CPU_INTERRUPT_RESET       0x0400
 335
 336/* Several target-specific external hardware interrupts.  Each target/cpu.h
 337   should define proper names based on these defines.  */
 338#define CPU_INTERRUPT_TGT_EXT_0   0x0008
 339#define CPU_INTERRUPT_TGT_EXT_1   0x0010
 340#define CPU_INTERRUPT_TGT_EXT_2   0x0040
 341#define CPU_INTERRUPT_TGT_EXT_3   0x0200
 342#define CPU_INTERRUPT_TGT_EXT_4   0x1000
 343
 344/* Several target-specific internal interrupts.  These differ from the
 345   preceding target-specific interrupts in that they are intended to
 346   originate from within the cpu itself, typically in response to some
 347   instruction being executed.  These, therefore, are not masked while
 348   single-stepping within the debugger.  */
 349#define CPU_INTERRUPT_TGT_INT_0   0x0100
 350#define CPU_INTERRUPT_TGT_INT_1   0x0800
 351#define CPU_INTERRUPT_TGT_INT_2   0x2000
 352
 353/* First unused bit: 0x4000.  */
 354
 355/* The set of all bits that should be masked when single-stepping.  */
 356#define CPU_INTERRUPT_SSTEP_MASK \
 357    (CPU_INTERRUPT_HARD          \
 358     | CPU_INTERRUPT_TGT_EXT_0   \
 359     | CPU_INTERRUPT_TGT_EXT_1   \
 360     | CPU_INTERRUPT_TGT_EXT_2   \
 361     | CPU_INTERRUPT_TGT_EXT_3   \
 362     | CPU_INTERRUPT_TGT_EXT_4)
 363
 364#ifdef CONFIG_USER_ONLY
 365
 366/*
 367 * Allow some level of source compatibility with softmmu.  We do not
 368 * support any of the more exotic features, so only invalid pages may
 369 * be signaled by probe_access_flags().
 370 */
 371#define TLB_INVALID_MASK    (1 << (TARGET_PAGE_BITS_MIN - 1))
 372#define TLB_MMIO            0
 373#define TLB_WATCHPOINT      0
 374
 375#else
 376
 377/*
 378 * Flags stored in the low bits of the TLB virtual address.
 379 * These are defined so that fast path ram access is all zeros.
 380 * The flags all must be between TARGET_PAGE_BITS and
 381 * maximum address alignment bit.
 382 *
 383 * Use TARGET_PAGE_BITS_MIN so that these bits are constant
 384 * when TARGET_PAGE_BITS_VARY is in effect.
 385 */
 386/* Zero if TLB entry is valid.  */
 387#define TLB_INVALID_MASK    (1 << (TARGET_PAGE_BITS_MIN - 1))
 388/* Set if TLB entry references a clean RAM page.  The iotlb entry will
 389   contain the page physical address.  */
 390#define TLB_NOTDIRTY        (1 << (TARGET_PAGE_BITS_MIN - 2))
 391/* Set if TLB entry is an IO callback.  */
 392#define TLB_MMIO            (1 << (TARGET_PAGE_BITS_MIN - 3))
 393/* Set if TLB entry contains a watchpoint.  */
 394#define TLB_WATCHPOINT      (1 << (TARGET_PAGE_BITS_MIN - 4))
 395/* Set if TLB entry requires byte swap.  */
 396#define TLB_BSWAP           (1 << (TARGET_PAGE_BITS_MIN - 5))
 397/* Set if TLB entry writes ignored.  */
 398#define TLB_DISCARD_WRITE   (1 << (TARGET_PAGE_BITS_MIN - 6))
 399
 400/* Use this mask to check interception with an alignment mask
 401 * in a TCG backend.
 402 */
 403#define TLB_FLAGS_MASK \
 404    (TLB_INVALID_MASK | TLB_NOTDIRTY | TLB_MMIO \
 405    | TLB_WATCHPOINT | TLB_BSWAP | TLB_DISCARD_WRITE)
 406
 407/**
 408 * tlb_hit_page: return true if page aligned @addr is a hit against the
 409 * TLB entry @tlb_addr
 410 *
 411 * @addr: virtual address to test (must be page aligned)
 412 * @tlb_addr: TLB entry address (a CPUTLBEntry addr_read/write/code value)
 413 */
 414static inline bool tlb_hit_page(target_ulong tlb_addr, target_ulong addr)
 415{
 416    return addr == (tlb_addr & (TARGET_PAGE_MASK | TLB_INVALID_MASK));
 417}
 418
 419/**
 420 * tlb_hit: return true if @addr is a hit against the TLB entry @tlb_addr
 421 *
 422 * @addr: virtual address to test (need not be page aligned)
 423 * @tlb_addr: TLB entry address (a CPUTLBEntry addr_read/write/code value)
 424 */
 425static inline bool tlb_hit(target_ulong tlb_addr, target_ulong addr)
 426{
 427    return tlb_hit_page(tlb_addr, addr & TARGET_PAGE_MASK);
 428}
 429
 430#ifdef CONFIG_TCG
 431/* accel/tcg/cpu-exec.c */
 432void dump_drift_info(GString *buf);
 433/* accel/tcg/translate-all.c */
 434void dump_exec_info(GString *buf);
 435void dump_opcount_info(GString *buf);
 436#endif /* CONFIG_TCG */
 437
 438#endif /* !CONFIG_USER_ONLY */
 439
 440#ifdef CONFIG_TCG
 441/* accel/tcg/cpu-exec.c */
 442int cpu_exec(CPUState *cpu);
 443void tcg_exec_realizefn(CPUState *cpu, Error **errp);
 444void tcg_exec_unrealizefn(CPUState *cpu);
 445#endif /* CONFIG_TCG */
 446
 447/* Returns: 0 on success, -1 on error */
 448int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
 449                        void *ptr, target_ulong len, bool is_write);
 450
 451/**
 452 * cpu_set_cpustate_pointers(cpu)
 453 * @cpu: The cpu object
 454 *
 455 * Set the generic pointers in CPUState into the outer object.
 456 */
 457static inline void cpu_set_cpustate_pointers(ArchCPU *cpu)
 458{
 459    cpu->parent_obj.env_ptr = &cpu->env;
 460    cpu->parent_obj.icount_decr_ptr = &cpu->neg.icount_decr;
 461}
 462
 463/**
 464 * env_archcpu(env)
 465 * @env: The architecture environment
 466 *
 467 * Return the ArchCPU associated with the environment.
 468 */
 469static inline ArchCPU *env_archcpu(CPUArchState *env)
 470{
 471    return container_of(env, ArchCPU, env);
 472}
 473
 474/**
 475 * env_cpu(env)
 476 * @env: The architecture environment
 477 *
 478 * Return the CPUState associated with the environment.
 479 */
 480static inline CPUState *env_cpu(CPUArchState *env)
 481{
 482    return &env_archcpu(env)->parent_obj;
 483}
 484
 485/**
 486 * env_neg(env)
 487 * @env: The architecture environment
 488 *
 489 * Return the CPUNegativeOffsetState associated with the environment.
 490 */
 491static inline CPUNegativeOffsetState *env_neg(CPUArchState *env)
 492{
 493    ArchCPU *arch_cpu = container_of(env, ArchCPU, env);
 494    return &arch_cpu->neg;
 495}
 496
 497/**
 498 * cpu_neg(cpu)
 499 * @cpu: The generic CPUState
 500 *
 501 * Return the CPUNegativeOffsetState associated with the cpu.
 502 */
 503static inline CPUNegativeOffsetState *cpu_neg(CPUState *cpu)
 504{
 505    ArchCPU *arch_cpu = container_of(cpu, ArchCPU, parent_obj);
 506    return &arch_cpu->neg;
 507}
 508
 509/**
 510 * env_tlb(env)
 511 * @env: The architecture environment
 512 *
 513 * Return the CPUTLB state associated with the environment.
 514 */
 515static inline CPUTLB *env_tlb(CPUArchState *env)
 516{
 517    return &env_neg(env)->tlb;
 518}
 519
 520#endif /* CPU_ALL_H */
 521