qemu/include/exec/memory.h
<<
>>
Prefs
   1/*
   2 * Physical memory management API
   3 *
   4 * Copyright 2011 Red Hat, Inc. and/or its affiliates
   5 *
   6 * Authors:
   7 *  Avi Kivity <avi@redhat.com>
   8 *
   9 * This work is licensed under the terms of the GNU GPL, version 2.  See
  10 * the COPYING file in the top-level directory.
  11 *
  12 */
  13
  14#ifndef MEMORY_H
  15#define MEMORY_H
  16
  17#ifndef CONFIG_USER_ONLY
  18
  19#include "exec/cpu-common.h"
  20#include "exec/hwaddr.h"
  21#include "exec/memattrs.h"
  22#include "exec/memop.h"
  23#include "exec/ramlist.h"
  24#include "qemu/bswap.h"
  25#include "qemu/queue.h"
  26#include "qemu/int128.h"
  27#include "qemu/notify.h"
  28#include "qom/object.h"
  29#include "qemu/rcu.h"
  30
  31#define RAM_ADDR_INVALID (~(ram_addr_t)0)
  32
  33#define MAX_PHYS_ADDR_SPACE_BITS 62
  34#define MAX_PHYS_ADDR            (((hwaddr)1 << MAX_PHYS_ADDR_SPACE_BITS) - 1)
  35
  36#define TYPE_MEMORY_REGION "memory-region"
  37DECLARE_INSTANCE_CHECKER(MemoryRegion, MEMORY_REGION,
  38                         TYPE_MEMORY_REGION)
  39
  40#define TYPE_IOMMU_MEMORY_REGION "iommu-memory-region"
  41typedef struct IOMMUMemoryRegionClass IOMMUMemoryRegionClass;
  42DECLARE_OBJ_CHECKERS(IOMMUMemoryRegion, IOMMUMemoryRegionClass,
  43                     IOMMU_MEMORY_REGION, TYPE_IOMMU_MEMORY_REGION)
  44
  45#define TYPE_RAM_DISCARD_MANAGER "qemu:ram-discard-manager"
  46typedef struct RamDiscardManagerClass RamDiscardManagerClass;
  47typedef struct RamDiscardManager RamDiscardManager;
  48DECLARE_OBJ_CHECKERS(RamDiscardManager, RamDiscardManagerClass,
  49                     RAM_DISCARD_MANAGER, TYPE_RAM_DISCARD_MANAGER);
  50
  51#ifdef CONFIG_FUZZ
  52void fuzz_dma_read_cb(size_t addr,
  53                      size_t len,
  54                      MemoryRegion *mr);
  55#else
  56static inline void fuzz_dma_read_cb(size_t addr,
  57                                    size_t len,
  58                                    MemoryRegion *mr)
  59{
  60    /* Do Nothing */
  61}
  62#endif
  63
  64/* Possible bits for global_dirty_log_{start|stop} */
  65
  66/* Dirty tracking enabled because migration is running */
  67#define GLOBAL_DIRTY_MIGRATION  (1U << 0)
  68
  69/* Dirty tracking enabled because measuring dirty rate */
  70#define GLOBAL_DIRTY_DIRTY_RATE (1U << 1)
  71
  72#define GLOBAL_DIRTY_MASK  (0x3)
  73
  74extern unsigned int global_dirty_tracking;
  75
  76typedef struct MemoryRegionOps MemoryRegionOps;
  77
  78struct ReservedRegion {
  79    hwaddr low;
  80    hwaddr high;
  81    unsigned type;
  82};
  83
  84/**
  85 * struct MemoryRegionSection: describes a fragment of a #MemoryRegion
  86 *
  87 * @mr: the region, or %NULL if empty
  88 * @fv: the flat view of the address space the region is mapped in
  89 * @offset_within_region: the beginning of the section, relative to @mr's start
  90 * @size: the size of the section; will not exceed @mr's boundaries
  91 * @offset_within_address_space: the address of the first byte of the section
  92 *     relative to the region's address space
  93 * @readonly: writes to this section are ignored
  94 * @nonvolatile: this section is non-volatile
  95 */
  96struct MemoryRegionSection {
  97    Int128 size;
  98    MemoryRegion *mr;
  99    FlatView *fv;
 100    hwaddr offset_within_region;
 101    hwaddr offset_within_address_space;
 102    bool readonly;
 103    bool nonvolatile;
 104};
 105
 106typedef struct IOMMUTLBEntry IOMMUTLBEntry;
 107
 108/* See address_space_translate: bit 0 is read, bit 1 is write.  */
 109typedef enum {
 110    IOMMU_NONE = 0,
 111    IOMMU_RO   = 1,
 112    IOMMU_WO   = 2,
 113    IOMMU_RW   = 3,
 114} IOMMUAccessFlags;
 115
 116#define IOMMU_ACCESS_FLAG(r, w) (((r) ? IOMMU_RO : 0) | ((w) ? IOMMU_WO : 0))
 117
 118struct IOMMUTLBEntry {
 119    AddressSpace    *target_as;
 120    hwaddr           iova;
 121    hwaddr           translated_addr;
 122    hwaddr           addr_mask;  /* 0xfff = 4k translation */
 123    IOMMUAccessFlags perm;
 124};
 125
 126/*
 127 * Bitmap for different IOMMUNotifier capabilities. Each notifier can
 128 * register with one or multiple IOMMU Notifier capability bit(s).
 129 */
 130typedef enum {
 131    IOMMU_NOTIFIER_NONE = 0,
 132    /* Notify cache invalidations */
 133    IOMMU_NOTIFIER_UNMAP = 0x1,
 134    /* Notify entry changes (newly created entries) */
 135    IOMMU_NOTIFIER_MAP = 0x2,
 136    /* Notify changes on device IOTLB entries */
 137    IOMMU_NOTIFIER_DEVIOTLB_UNMAP = 0x04,
 138} IOMMUNotifierFlag;
 139
 140#define IOMMU_NOTIFIER_IOTLB_EVENTS (IOMMU_NOTIFIER_MAP | IOMMU_NOTIFIER_UNMAP)
 141#define IOMMU_NOTIFIER_DEVIOTLB_EVENTS IOMMU_NOTIFIER_DEVIOTLB_UNMAP
 142#define IOMMU_NOTIFIER_ALL (IOMMU_NOTIFIER_IOTLB_EVENTS | \
 143                            IOMMU_NOTIFIER_DEVIOTLB_EVENTS)
 144
 145struct IOMMUNotifier;
 146typedef void (*IOMMUNotify)(struct IOMMUNotifier *notifier,
 147                            IOMMUTLBEntry *data);
 148
 149struct IOMMUNotifier {
 150    IOMMUNotify notify;
 151    IOMMUNotifierFlag notifier_flags;
 152    /* Notify for address space range start <= addr <= end */
 153    hwaddr start;
 154    hwaddr end;
 155    int iommu_idx;
 156    QLIST_ENTRY(IOMMUNotifier) node;
 157};
 158typedef struct IOMMUNotifier IOMMUNotifier;
 159
 160typedef struct IOMMUTLBEvent {
 161    IOMMUNotifierFlag type;
 162    IOMMUTLBEntry entry;
 163} IOMMUTLBEvent;
 164
 165/* RAM is pre-allocated and passed into qemu_ram_alloc_from_ptr */
 166#define RAM_PREALLOC   (1 << 0)
 167
 168/* RAM is mmap-ed with MAP_SHARED */
 169#define RAM_SHARED     (1 << 1)
 170
 171/* Only a portion of RAM (used_length) is actually used, and migrated.
 172 * Resizing RAM while migrating can result in the migration being canceled.
 173 */
 174#define RAM_RESIZEABLE (1 << 2)
 175
 176/* UFFDIO_ZEROPAGE is available on this RAMBlock to atomically
 177 * zero the page and wake waiting processes.
 178 * (Set during postcopy)
 179 */
 180#define RAM_UF_ZEROPAGE (1 << 3)
 181
 182/* RAM can be migrated */
 183#define RAM_MIGRATABLE (1 << 4)
 184
 185/* RAM is a persistent kind memory */
 186#define RAM_PMEM (1 << 5)
 187
 188
 189/*
 190 * UFFDIO_WRITEPROTECT is used on this RAMBlock to
 191 * support 'write-tracking' migration type.
 192 * Implies ram_state->ram_wt_enabled.
 193 */
 194#define RAM_UF_WRITEPROTECT (1 << 6)
 195
 196/*
 197 * RAM is mmap-ed with MAP_NORESERVE. When set, reserving swap space (or huge
 198 * pages if applicable) is skipped: will bail out if not supported. When not
 199 * set, the OS will do the reservation, if supported for the memory type.
 200 */
 201#define RAM_NORESERVE (1 << 7)
 202
 203/* RAM that isn't accessible through normal means. */
 204#define RAM_PROTECTED (1 << 8)
 205
 206static inline void iommu_notifier_init(IOMMUNotifier *n, IOMMUNotify fn,
 207                                       IOMMUNotifierFlag flags,
 208                                       hwaddr start, hwaddr end,
 209                                       int iommu_idx)
 210{
 211    n->notify = fn;
 212    n->notifier_flags = flags;
 213    n->start = start;
 214    n->end = end;
 215    n->iommu_idx = iommu_idx;
 216}
 217
 218/*
 219 * Memory region callbacks
 220 */
 221struct MemoryRegionOps {
 222    /* Read from the memory region. @addr is relative to @mr; @size is
 223     * in bytes. */
 224    uint64_t (*read)(void *opaque,
 225                     hwaddr addr,
 226                     unsigned size);
 227    /* Write to the memory region. @addr is relative to @mr; @size is
 228     * in bytes. */
 229    void (*write)(void *opaque,
 230                  hwaddr addr,
 231                  uint64_t data,
 232                  unsigned size);
 233
 234    MemTxResult (*read_with_attrs)(void *opaque,
 235                                   hwaddr addr,
 236                                   uint64_t *data,
 237                                   unsigned size,
 238                                   MemTxAttrs attrs);
 239    MemTxResult (*write_with_attrs)(void *opaque,
 240                                    hwaddr addr,
 241                                    uint64_t data,
 242                                    unsigned size,
 243                                    MemTxAttrs attrs);
 244
 245    enum device_endian endianness;
 246    /* Guest-visible constraints: */
 247    struct {
 248        /* If nonzero, specify bounds on access sizes beyond which a machine
 249         * check is thrown.
 250         */
 251        unsigned min_access_size;
 252        unsigned max_access_size;
 253        /* If true, unaligned accesses are supported.  Otherwise unaligned
 254         * accesses throw machine checks.
 255         */
 256         bool unaligned;
 257        /*
 258         * If present, and returns #false, the transaction is not accepted
 259         * by the device (and results in machine dependent behaviour such
 260         * as a machine check exception).
 261         */
 262        bool (*accepts)(void *opaque, hwaddr addr,
 263                        unsigned size, bool is_write,
 264                        MemTxAttrs attrs);
 265    } valid;
 266    /* Internal implementation constraints: */
 267    struct {
 268        /* If nonzero, specifies the minimum size implemented.  Smaller sizes
 269         * will be rounded upwards and a partial result will be returned.
 270         */
 271        unsigned min_access_size;
 272        /* If nonzero, specifies the maximum size implemented.  Larger sizes
 273         * will be done as a series of accesses with smaller sizes.
 274         */
 275        unsigned max_access_size;
 276        /* If true, unaligned accesses are supported.  Otherwise all accesses
 277         * are converted to (possibly multiple) naturally aligned accesses.
 278         */
 279        bool unaligned;
 280    } impl;
 281};
 282
 283typedef struct MemoryRegionClass {
 284    /* private */
 285    ObjectClass parent_class;
 286} MemoryRegionClass;
 287
 288
 289enum IOMMUMemoryRegionAttr {
 290    IOMMU_ATTR_SPAPR_TCE_FD
 291};
 292
 293/*
 294 * IOMMUMemoryRegionClass:
 295 *
 296 * All IOMMU implementations need to subclass TYPE_IOMMU_MEMORY_REGION
 297 * and provide an implementation of at least the @translate method here
 298 * to handle requests to the memory region. Other methods are optional.
 299 *
 300 * The IOMMU implementation must use the IOMMU notifier infrastructure
 301 * to report whenever mappings are changed, by calling
 302 * memory_region_notify_iommu() (or, if necessary, by calling
 303 * memory_region_notify_iommu_one() for each registered notifier).
 304 *
 305 * Conceptually an IOMMU provides a mapping from input address
 306 * to an output TLB entry. If the IOMMU is aware of memory transaction
 307 * attributes and the output TLB entry depends on the transaction
 308 * attributes, we represent this using IOMMU indexes. Each index
 309 * selects a particular translation table that the IOMMU has:
 310 *
 311 *   @attrs_to_index returns the IOMMU index for a set of transaction attributes
 312 *
 313 *   @translate takes an input address and an IOMMU index
 314 *
 315 * and the mapping returned can only depend on the input address and the
 316 * IOMMU index.
 317 *
 318 * Most IOMMUs don't care about the transaction attributes and support
 319 * only a single IOMMU index. A more complex IOMMU might have one index
 320 * for secure transactions and one for non-secure transactions.
 321 */
 322struct IOMMUMemoryRegionClass {
 323    /* private: */
 324    MemoryRegionClass parent_class;
 325
 326    /* public: */
 327    /**
 328     * @translate:
 329     *
 330     * Return a TLB entry that contains a given address.
 331     *
 332     * The IOMMUAccessFlags indicated via @flag are optional and may
 333     * be specified as IOMMU_NONE to indicate that the caller needs
 334     * the full translation information for both reads and writes. If
 335     * the access flags are specified then the IOMMU implementation
 336     * may use this as an optimization, to stop doing a page table
 337     * walk as soon as it knows that the requested permissions are not
 338     * allowed. If IOMMU_NONE is passed then the IOMMU must do the
 339     * full page table walk and report the permissions in the returned
 340     * IOMMUTLBEntry. (Note that this implies that an IOMMU may not
 341     * return different mappings for reads and writes.)
 342     *
 343     * The returned information remains valid while the caller is
 344     * holding the big QEMU lock or is inside an RCU critical section;
 345     * if the caller wishes to cache the mapping beyond that it must
 346     * register an IOMMU notifier so it can invalidate its cached
 347     * information when the IOMMU mapping changes.
 348     *
 349     * @iommu: the IOMMUMemoryRegion
 350     *
 351     * @hwaddr: address to be translated within the memory region
 352     *
 353     * @flag: requested access permission
 354     *
 355     * @iommu_idx: IOMMU index for the translation
 356     */
 357    IOMMUTLBEntry (*translate)(IOMMUMemoryRegion *iommu, hwaddr addr,
 358                               IOMMUAccessFlags flag, int iommu_idx);
 359    /**
 360     * @get_min_page_size:
 361     *
 362     * Returns minimum supported page size in bytes.
 363     *
 364     * If this method is not provided then the minimum is assumed to
 365     * be TARGET_PAGE_SIZE.
 366     *
 367     * @iommu: the IOMMUMemoryRegion
 368     */
 369    uint64_t (*get_min_page_size)(IOMMUMemoryRegion *iommu);
 370    /**
 371     * @notify_flag_changed:
 372     *
 373     * Called when IOMMU Notifier flag changes (ie when the set of
 374     * events which IOMMU users are requesting notification for changes).
 375     * Optional method -- need not be provided if the IOMMU does not
 376     * need to know exactly which events must be notified.
 377     *
 378     * @iommu: the IOMMUMemoryRegion
 379     *
 380     * @old_flags: events which previously needed to be notified
 381     *
 382     * @new_flags: events which now need to be notified
 383     *
 384     * Returns 0 on success, or a negative errno; in particular
 385     * returns -EINVAL if the new flag bitmap is not supported by the
 386     * IOMMU memory region. In case of failure, the error object
 387     * must be created
 388     */
 389    int (*notify_flag_changed)(IOMMUMemoryRegion *iommu,
 390                               IOMMUNotifierFlag old_flags,
 391                               IOMMUNotifierFlag new_flags,
 392                               Error **errp);
 393    /**
 394     * @replay:
 395     *
 396     * Called to handle memory_region_iommu_replay().
 397     *
 398     * The default implementation of memory_region_iommu_replay() is to
 399     * call the IOMMU translate method for every page in the address space
 400     * with flag == IOMMU_NONE and then call the notifier if translate
 401     * returns a valid mapping. If this method is implemented then it
 402     * overrides the default behaviour, and must provide the full semantics
 403     * of memory_region_iommu_replay(), by calling @notifier for every
 404     * translation present in the IOMMU.
 405     *
 406     * Optional method -- an IOMMU only needs to provide this method
 407     * if the default is inefficient or produces undesirable side effects.
 408     *
 409     * Note: this is not related to record-and-replay functionality.
 410     */
 411    void (*replay)(IOMMUMemoryRegion *iommu, IOMMUNotifier *notifier);
 412
 413    /**
 414     * @get_attr:
 415     *
 416     * Get IOMMU misc attributes. This is an optional method that
 417     * can be used to allow users of the IOMMU to get implementation-specific
 418     * information. The IOMMU implements this method to handle calls
 419     * by IOMMU users to memory_region_iommu_get_attr() by filling in
 420     * the arbitrary data pointer for any IOMMUMemoryRegionAttr values that
 421     * the IOMMU supports. If the method is unimplemented then
 422     * memory_region_iommu_get_attr() will always return -EINVAL.
 423     *
 424     * @iommu: the IOMMUMemoryRegion
 425     *
 426     * @attr: attribute being queried
 427     *
 428     * @data: memory to fill in with the attribute data
 429     *
 430     * Returns 0 on success, or a negative errno; in particular
 431     * returns -EINVAL for unrecognized or unimplemented attribute types.
 432     */
 433    int (*get_attr)(IOMMUMemoryRegion *iommu, enum IOMMUMemoryRegionAttr attr,
 434                    void *data);
 435
 436    /**
 437     * @attrs_to_index:
 438     *
 439     * Return the IOMMU index to use for a given set of transaction attributes.
 440     *
 441     * Optional method: if an IOMMU only supports a single IOMMU index then
 442     * the default implementation of memory_region_iommu_attrs_to_index()
 443     * will return 0.
 444     *
 445     * The indexes supported by an IOMMU must be contiguous, starting at 0.
 446     *
 447     * @iommu: the IOMMUMemoryRegion
 448     * @attrs: memory transaction attributes
 449     */
 450    int (*attrs_to_index)(IOMMUMemoryRegion *iommu, MemTxAttrs attrs);
 451
 452    /**
 453     * @num_indexes:
 454     *
 455     * Return the number of IOMMU indexes this IOMMU supports.
 456     *
 457     * Optional method: if this method is not provided, then
 458     * memory_region_iommu_num_indexes() will return 1, indicating that
 459     * only a single IOMMU index is supported.
 460     *
 461     * @iommu: the IOMMUMemoryRegion
 462     */
 463    int (*num_indexes)(IOMMUMemoryRegion *iommu);
 464
 465    /**
 466     * @iommu_set_page_size_mask:
 467     *
 468     * Restrict the page size mask that can be supported with a given IOMMU
 469     * memory region. Used for example to propagate host physical IOMMU page
 470     * size mask limitations to the virtual IOMMU.
 471     *
 472     * Optional method: if this method is not provided, then the default global
 473     * page mask is used.
 474     *
 475     * @iommu: the IOMMUMemoryRegion
 476     *
 477     * @page_size_mask: a bitmask of supported page sizes. At least one bit,
 478     * representing the smallest page size, must be set. Additional set bits
 479     * represent supported block sizes. For example a host physical IOMMU that
 480     * uses page tables with a page size of 4kB, and supports 2MB and 4GB
 481     * blocks, will set mask 0x40201000. A granule of 4kB with indiscriminate
 482     * block sizes is specified with mask 0xfffffffffffff000.
 483     *
 484     * Returns 0 on success, or a negative error. In case of failure, the error
 485     * object must be created.
 486     */
 487     int (*iommu_set_page_size_mask)(IOMMUMemoryRegion *iommu,
 488                                     uint64_t page_size_mask,
 489                                     Error **errp);
 490};
 491
 492typedef struct RamDiscardListener RamDiscardListener;
 493typedef int (*NotifyRamPopulate)(RamDiscardListener *rdl,
 494                                 MemoryRegionSection *section);
 495typedef void (*NotifyRamDiscard)(RamDiscardListener *rdl,
 496                                 MemoryRegionSection *section);
 497
 498struct RamDiscardListener {
 499    /*
 500     * @notify_populate:
 501     *
 502     * Notification that previously discarded memory is about to get populated.
 503     * Listeners are able to object. If any listener objects, already
 504     * successfully notified listeners are notified about a discard again.
 505     *
 506     * @rdl: the #RamDiscardListener getting notified
 507     * @section: the #MemoryRegionSection to get populated. The section
 508     *           is aligned within the memory region to the minimum granularity
 509     *           unless it would exceed the registered section.
 510     *
 511     * Returns 0 on success. If the notification is rejected by the listener,
 512     * an error is returned.
 513     */
 514    NotifyRamPopulate notify_populate;
 515
 516    /*
 517     * @notify_discard:
 518     *
 519     * Notification that previously populated memory was discarded successfully
 520     * and listeners should drop all references to such memory and prevent
 521     * new population (e.g., unmap).
 522     *
 523     * @rdl: the #RamDiscardListener getting notified
 524     * @section: the #MemoryRegionSection to get populated. The section
 525     *           is aligned within the memory region to the minimum granularity
 526     *           unless it would exceed the registered section.
 527     */
 528    NotifyRamDiscard notify_discard;
 529
 530    /*
 531     * @double_discard_supported:
 532     *
 533     * The listener suppors getting @notify_discard notifications that span
 534     * already discarded parts.
 535     */
 536    bool double_discard_supported;
 537
 538    MemoryRegionSection *section;
 539    QLIST_ENTRY(RamDiscardListener) next;
 540};
 541
 542static inline void ram_discard_listener_init(RamDiscardListener *rdl,
 543                                             NotifyRamPopulate populate_fn,
 544                                             NotifyRamDiscard discard_fn,
 545                                             bool double_discard_supported)
 546{
 547    rdl->notify_populate = populate_fn;
 548    rdl->notify_discard = discard_fn;
 549    rdl->double_discard_supported = double_discard_supported;
 550}
 551
 552typedef int (*ReplayRamPopulate)(MemoryRegionSection *section, void *opaque);
 553typedef void (*ReplayRamDiscard)(MemoryRegionSection *section, void *opaque);
 554
 555/*
 556 * RamDiscardManagerClass:
 557 *
 558 * A #RamDiscardManager coordinates which parts of specific RAM #MemoryRegion
 559 * regions are currently populated to be used/accessed by the VM, notifying
 560 * after parts were discarded (freeing up memory) and before parts will be
 561 * populated (consuming memory), to be used/acessed by the VM.
 562 *
 563 * A #RamDiscardManager can only be set for a RAM #MemoryRegion while the
 564 * #MemoryRegion isn't mapped yet; it cannot change while the #MemoryRegion is
 565 * mapped.
 566 *
 567 * The #RamDiscardManager is intended to be used by technologies that are
 568 * incompatible with discarding of RAM (e.g., VFIO, which may pin all
 569 * memory inside a #MemoryRegion), and require proper coordination to only
 570 * map the currently populated parts, to hinder parts that are expected to
 571 * remain discarded from silently getting populated and consuming memory.
 572 * Technologies that support discarding of RAM don't have to bother and can
 573 * simply map the whole #MemoryRegion.
 574 *
 575 * An example #RamDiscardManager is virtio-mem, which logically (un)plugs
 576 * memory within an assigned RAM #MemoryRegion, coordinated with the VM.
 577 * Logically unplugging memory consists of discarding RAM. The VM agreed to not
 578 * access unplugged (discarded) memory - especially via DMA. virtio-mem will
 579 * properly coordinate with listeners before memory is plugged (populated),
 580 * and after memory is unplugged (discarded).
 581 *
 582 * Listeners are called in multiples of the minimum granularity (unless it
 583 * would exceed the registered range) and changes are aligned to the minimum
 584 * granularity within the #MemoryRegion. Listeners have to prepare for memory
 585 * becomming discarded in a different granularity than it was populated and the
 586 * other way around.
 587 */
 588struct RamDiscardManagerClass {
 589    /* private */
 590    InterfaceClass parent_class;
 591
 592    /* public */
 593
 594    /**
 595     * @get_min_granularity:
 596     *
 597     * Get the minimum granularity in which listeners will get notified
 598     * about changes within the #MemoryRegion via the #RamDiscardManager.
 599     *
 600     * @rdm: the #RamDiscardManager
 601     * @mr: the #MemoryRegion
 602     *
 603     * Returns the minimum granularity.
 604     */
 605    uint64_t (*get_min_granularity)(const RamDiscardManager *rdm,
 606                                    const MemoryRegion *mr);
 607
 608    /**
 609     * @is_populated:
 610     *
 611     * Check whether the given #MemoryRegionSection is completely populated
 612     * (i.e., no parts are currently discarded) via the #RamDiscardManager.
 613     * There are no alignment requirements.
 614     *
 615     * @rdm: the #RamDiscardManager
 616     * @section: the #MemoryRegionSection
 617     *
 618     * Returns whether the given range is completely populated.
 619     */
 620    bool (*is_populated)(const RamDiscardManager *rdm,
 621                         const MemoryRegionSection *section);
 622
 623    /**
 624     * @replay_populated:
 625     *
 626     * Call the #ReplayRamPopulate callback for all populated parts within the
 627     * #MemoryRegionSection via the #RamDiscardManager.
 628     *
 629     * In case any call fails, no further calls are made.
 630     *
 631     * @rdm: the #RamDiscardManager
 632     * @section: the #MemoryRegionSection
 633     * @replay_fn: the #ReplayRamPopulate callback
 634     * @opaque: pointer to forward to the callback
 635     *
 636     * Returns 0 on success, or a negative error if any notification failed.
 637     */
 638    int (*replay_populated)(const RamDiscardManager *rdm,
 639                            MemoryRegionSection *section,
 640                            ReplayRamPopulate replay_fn, void *opaque);
 641
 642    /**
 643     * @replay_discarded:
 644     *
 645     * Call the #ReplayRamDiscard callback for all discarded parts within the
 646     * #MemoryRegionSection via the #RamDiscardManager.
 647     *
 648     * @rdm: the #RamDiscardManager
 649     * @section: the #MemoryRegionSection
 650     * @replay_fn: the #ReplayRamDiscard callback
 651     * @opaque: pointer to forward to the callback
 652     */
 653    void (*replay_discarded)(const RamDiscardManager *rdm,
 654                             MemoryRegionSection *section,
 655                             ReplayRamDiscard replay_fn, void *opaque);
 656
 657    /**
 658     * @register_listener:
 659     *
 660     * Register a #RamDiscardListener for the given #MemoryRegionSection and
 661     * immediately notify the #RamDiscardListener about all populated parts
 662     * within the #MemoryRegionSection via the #RamDiscardManager.
 663     *
 664     * In case any notification fails, no further notifications are triggered
 665     * and an error is logged.
 666     *
 667     * @rdm: the #RamDiscardManager
 668     * @rdl: the #RamDiscardListener
 669     * @section: the #MemoryRegionSection
 670     */
 671    void (*register_listener)(RamDiscardManager *rdm,
 672                              RamDiscardListener *rdl,
 673                              MemoryRegionSection *section);
 674
 675    /**
 676     * @unregister_listener:
 677     *
 678     * Unregister a previously registered #RamDiscardListener via the
 679     * #RamDiscardManager after notifying the #RamDiscardListener about all
 680     * populated parts becoming unpopulated within the registered
 681     * #MemoryRegionSection.
 682     *
 683     * @rdm: the #RamDiscardManager
 684     * @rdl: the #RamDiscardListener
 685     */
 686    void (*unregister_listener)(RamDiscardManager *rdm,
 687                                RamDiscardListener *rdl);
 688};
 689
 690uint64_t ram_discard_manager_get_min_granularity(const RamDiscardManager *rdm,
 691                                                 const MemoryRegion *mr);
 692
 693bool ram_discard_manager_is_populated(const RamDiscardManager *rdm,
 694                                      const MemoryRegionSection *section);
 695
 696int ram_discard_manager_replay_populated(const RamDiscardManager *rdm,
 697                                         MemoryRegionSection *section,
 698                                         ReplayRamPopulate replay_fn,
 699                                         void *opaque);
 700
 701void ram_discard_manager_replay_discarded(const RamDiscardManager *rdm,
 702                                          MemoryRegionSection *section,
 703                                          ReplayRamDiscard replay_fn,
 704                                          void *opaque);
 705
 706void ram_discard_manager_register_listener(RamDiscardManager *rdm,
 707                                           RamDiscardListener *rdl,
 708                                           MemoryRegionSection *section);
 709
 710void ram_discard_manager_unregister_listener(RamDiscardManager *rdm,
 711                                             RamDiscardListener *rdl);
 712
 713typedef struct CoalescedMemoryRange CoalescedMemoryRange;
 714typedef struct MemoryRegionIoeventfd MemoryRegionIoeventfd;
 715
 716/** MemoryRegion:
 717 *
 718 * A struct representing a memory region.
 719 */
 720struct MemoryRegion {
 721    Object parent_obj;
 722
 723    /* private: */
 724
 725    /* The following fields should fit in a cache line */
 726    bool romd_mode;
 727    bool ram;
 728    bool subpage;
 729    bool readonly; /* For RAM regions */
 730    bool nonvolatile;
 731    bool rom_device;
 732    bool flush_coalesced_mmio;
 733    uint8_t dirty_log_mask;
 734    bool is_iommu;
 735    RAMBlock *ram_block;
 736    Object *owner;
 737
 738    const MemoryRegionOps *ops;
 739    void *opaque;
 740    MemoryRegion *container;
 741    Int128 size;
 742    hwaddr addr;
 743    void (*destructor)(MemoryRegion *mr);
 744    uint64_t align;
 745    bool terminates;
 746    bool ram_device;
 747    bool enabled;
 748    bool warning_printed; /* For reservations */
 749    uint8_t vga_logging_count;
 750    MemoryRegion *alias;
 751    hwaddr alias_offset;
 752    int32_t priority;
 753    QTAILQ_HEAD(, MemoryRegion) subregions;
 754    QTAILQ_ENTRY(MemoryRegion) subregions_link;
 755    QTAILQ_HEAD(, CoalescedMemoryRange) coalesced;
 756    const char *name;
 757    unsigned ioeventfd_nb;
 758    MemoryRegionIoeventfd *ioeventfds;
 759    RamDiscardManager *rdm; /* Only for RAM */
 760};
 761
 762struct IOMMUMemoryRegion {
 763    MemoryRegion parent_obj;
 764
 765    QLIST_HEAD(, IOMMUNotifier) iommu_notify;
 766    IOMMUNotifierFlag iommu_notify_flags;
 767};
 768
 769#define IOMMU_NOTIFIER_FOREACH(n, mr) \
 770    QLIST_FOREACH((n), &(mr)->iommu_notify, node)
 771
 772/**
 773 * struct MemoryListener: callbacks structure for updates to the physical memory map
 774 *
 775 * Allows a component to adjust to changes in the guest-visible memory map.
 776 * Use with memory_listener_register() and memory_listener_unregister().
 777 */
 778struct MemoryListener {
 779    /**
 780     * @begin:
 781     *
 782     * Called at the beginning of an address space update transaction.
 783     * Followed by calls to #MemoryListener.region_add(),
 784     * #MemoryListener.region_del(), #MemoryListener.region_nop(),
 785     * #MemoryListener.log_start() and #MemoryListener.log_stop() in
 786     * increasing address order.
 787     *
 788     * @listener: The #MemoryListener.
 789     */
 790    void (*begin)(MemoryListener *listener);
 791
 792    /**
 793     * @commit:
 794     *
 795     * Called at the end of an address space update transaction,
 796     * after the last call to #MemoryListener.region_add(),
 797     * #MemoryListener.region_del() or #MemoryListener.region_nop(),
 798     * #MemoryListener.log_start() and #MemoryListener.log_stop().
 799     *
 800     * @listener: The #MemoryListener.
 801     */
 802    void (*commit)(MemoryListener *listener);
 803
 804    /**
 805     * @region_add:
 806     *
 807     * Called during an address space update transaction,
 808     * for a section of the address space that is new in this address space
 809     * space since the last transaction.
 810     *
 811     * @listener: The #MemoryListener.
 812     * @section: The new #MemoryRegionSection.
 813     */
 814    void (*region_add)(MemoryListener *listener, MemoryRegionSection *section);
 815
 816    /**
 817     * @region_del:
 818     *
 819     * Called during an address space update transaction,
 820     * for a section of the address space that has disappeared in the address
 821     * space since the last transaction.
 822     *
 823     * @listener: The #MemoryListener.
 824     * @section: The old #MemoryRegionSection.
 825     */
 826    void (*region_del)(MemoryListener *listener, MemoryRegionSection *section);
 827
 828    /**
 829     * @region_nop:
 830     *
 831     * Called during an address space update transaction,
 832     * for a section of the address space that is in the same place in the address
 833     * space as in the last transaction.
 834     *
 835     * @listener: The #MemoryListener.
 836     * @section: The #MemoryRegionSection.
 837     */
 838    void (*region_nop)(MemoryListener *listener, MemoryRegionSection *section);
 839
 840    /**
 841     * @log_start:
 842     *
 843     * Called during an address space update transaction, after
 844     * one of #MemoryListener.region_add(), #MemoryListener.region_del() or
 845     * #MemoryListener.region_nop(), if dirty memory logging clients have
 846     * become active since the last transaction.
 847     *
 848     * @listener: The #MemoryListener.
 849     * @section: The #MemoryRegionSection.
 850     * @old: A bitmap of dirty memory logging clients that were active in
 851     * the previous transaction.
 852     * @new: A bitmap of dirty memory logging clients that are active in
 853     * the current transaction.
 854     */
 855    void (*log_start)(MemoryListener *listener, MemoryRegionSection *section,
 856                      int old, int new);
 857
 858    /**
 859     * @log_stop:
 860     *
 861     * Called during an address space update transaction, after
 862     * one of #MemoryListener.region_add(), #MemoryListener.region_del() or
 863     * #MemoryListener.region_nop() and possibly after
 864     * #MemoryListener.log_start(), if dirty memory logging clients have
 865     * become inactive since the last transaction.
 866     *
 867     * @listener: The #MemoryListener.
 868     * @section: The #MemoryRegionSection.
 869     * @old: A bitmap of dirty memory logging clients that were active in
 870     * the previous transaction.
 871     * @new: A bitmap of dirty memory logging clients that are active in
 872     * the current transaction.
 873     */
 874    void (*log_stop)(MemoryListener *listener, MemoryRegionSection *section,
 875                     int old, int new);
 876
 877    /**
 878     * @log_sync:
 879     *
 880     * Called by memory_region_snapshot_and_clear_dirty() and
 881     * memory_global_dirty_log_sync(), before accessing QEMU's "official"
 882     * copy of the dirty memory bitmap for a #MemoryRegionSection.
 883     *
 884     * @listener: The #MemoryListener.
 885     * @section: The #MemoryRegionSection.
 886     */
 887    void (*log_sync)(MemoryListener *listener, MemoryRegionSection *section);
 888
 889    /**
 890     * @log_sync_global:
 891     *
 892     * This is the global version of @log_sync when the listener does
 893     * not have a way to synchronize the log with finer granularity.
 894     * When the listener registers with @log_sync_global defined, then
 895     * its @log_sync must be NULL.  Vice versa.
 896     *
 897     * @listener: The #MemoryListener.
 898     */
 899    void (*log_sync_global)(MemoryListener *listener);
 900
 901    /**
 902     * @log_clear:
 903     *
 904     * Called before reading the dirty memory bitmap for a
 905     * #MemoryRegionSection.
 906     *
 907     * @listener: The #MemoryListener.
 908     * @section: The #MemoryRegionSection.
 909     */
 910    void (*log_clear)(MemoryListener *listener, MemoryRegionSection *section);
 911
 912    /**
 913     * @log_global_start:
 914     *
 915     * Called by memory_global_dirty_log_start(), which
 916     * enables the %DIRTY_LOG_MIGRATION client on all memory regions in
 917     * the address space.  #MemoryListener.log_global_start() is also
 918     * called when a #MemoryListener is added, if global dirty logging is
 919     * active at that time.
 920     *
 921     * @listener: The #MemoryListener.
 922     */
 923    void (*log_global_start)(MemoryListener *listener);
 924
 925    /**
 926     * @log_global_stop:
 927     *
 928     * Called by memory_global_dirty_log_stop(), which
 929     * disables the %DIRTY_LOG_MIGRATION client on all memory regions in
 930     * the address space.
 931     *
 932     * @listener: The #MemoryListener.
 933     */
 934    void (*log_global_stop)(MemoryListener *listener);
 935
 936    /**
 937     * @log_global_after_sync:
 938     *
 939     * Called after reading the dirty memory bitmap
 940     * for any #MemoryRegionSection.
 941     *
 942     * @listener: The #MemoryListener.
 943     */
 944    void (*log_global_after_sync)(MemoryListener *listener);
 945
 946    /**
 947     * @eventfd_add:
 948     *
 949     * Called during an address space update transaction,
 950     * for a section of the address space that has had a new ioeventfd
 951     * registration since the last transaction.
 952     *
 953     * @listener: The #MemoryListener.
 954     * @section: The new #MemoryRegionSection.
 955     * @match_data: The @match_data parameter for the new ioeventfd.
 956     * @data: The @data parameter for the new ioeventfd.
 957     * @e: The #EventNotifier parameter for the new ioeventfd.
 958     */
 959    void (*eventfd_add)(MemoryListener *listener, MemoryRegionSection *section,
 960                        bool match_data, uint64_t data, EventNotifier *e);
 961
 962    /**
 963     * @eventfd_del:
 964     *
 965     * Called during an address space update transaction,
 966     * for a section of the address space that has dropped an ioeventfd
 967     * registration since the last transaction.
 968     *
 969     * @listener: The #MemoryListener.
 970     * @section: The new #MemoryRegionSection.
 971     * @match_data: The @match_data parameter for the dropped ioeventfd.
 972     * @data: The @data parameter for the dropped ioeventfd.
 973     * @e: The #EventNotifier parameter for the dropped ioeventfd.
 974     */
 975    void (*eventfd_del)(MemoryListener *listener, MemoryRegionSection *section,
 976                        bool match_data, uint64_t data, EventNotifier *e);
 977
 978    /**
 979     * @coalesced_io_add:
 980     *
 981     * Called during an address space update transaction,
 982     * for a section of the address space that has had a new coalesced
 983     * MMIO range registration since the last transaction.
 984     *
 985     * @listener: The #MemoryListener.
 986     * @section: The new #MemoryRegionSection.
 987     * @addr: The starting address for the coalesced MMIO range.
 988     * @len: The length of the coalesced MMIO range.
 989     */
 990    void (*coalesced_io_add)(MemoryListener *listener, MemoryRegionSection *section,
 991                               hwaddr addr, hwaddr len);
 992
 993    /**
 994     * @coalesced_io_del:
 995     *
 996     * Called during an address space update transaction,
 997     * for a section of the address space that has dropped a coalesced
 998     * MMIO range since the last transaction.
 999     *
1000     * @listener: The #MemoryListener.
1001     * @section: The new #MemoryRegionSection.
1002     * @addr: The starting address for the coalesced MMIO range.
1003     * @len: The length of the coalesced MMIO range.
1004     */
1005    void (*coalesced_io_del)(MemoryListener *listener, MemoryRegionSection *section,
1006                               hwaddr addr, hwaddr len);
1007    /**
1008     * @priority:
1009     *
1010     * Govern the order in which memory listeners are invoked. Lower priorities
1011     * are invoked earlier for "add" or "start" callbacks, and later for "delete"
1012     * or "stop" callbacks.
1013     */
1014    unsigned priority;
1015
1016    /**
1017     * @name:
1018     *
1019     * Name of the listener.  It can be used in contexts where we'd like to
1020     * identify one memory listener with the rest.
1021     */
1022    const char *name;
1023
1024    /* private: */
1025    AddressSpace *address_space;
1026    QTAILQ_ENTRY(MemoryListener) link;
1027    QTAILQ_ENTRY(MemoryListener) link_as;
1028};
1029
1030/**
1031 * struct AddressSpace: describes a mapping of addresses to #MemoryRegion objects
1032 */
1033struct AddressSpace {
1034    /* private: */
1035    struct rcu_head rcu;
1036    char *name;
1037    MemoryRegion *root;
1038
1039    /* Accessed via RCU.  */
1040    struct FlatView *current_map;
1041
1042    int ioeventfd_nb;
1043    struct MemoryRegionIoeventfd *ioeventfds;
1044    QTAILQ_HEAD(, MemoryListener) listeners;
1045    QTAILQ_ENTRY(AddressSpace) address_spaces_link;
1046};
1047
1048typedef struct AddressSpaceDispatch AddressSpaceDispatch;
1049typedef struct FlatRange FlatRange;
1050
1051/* Flattened global view of current active memory hierarchy.  Kept in sorted
1052 * order.
1053 */
1054struct FlatView {
1055    struct rcu_head rcu;
1056    unsigned ref;
1057    FlatRange *ranges;
1058    unsigned nr;
1059    unsigned nr_allocated;
1060    struct AddressSpaceDispatch *dispatch;
1061    MemoryRegion *root;
1062};
1063
1064static inline FlatView *address_space_to_flatview(AddressSpace *as)
1065{
1066    return qatomic_rcu_read(&as->current_map);
1067}
1068
1069/**
1070 * typedef flatview_cb: callback for flatview_for_each_range()
1071 *
1072 * @start: start address of the range within the FlatView
1073 * @len: length of the range in bytes
1074 * @mr: MemoryRegion covering this range
1075 * @offset_in_region: offset of the first byte of the range within @mr
1076 * @opaque: data pointer passed to flatview_for_each_range()
1077 *
1078 * Returns: true to stop the iteration, false to keep going.
1079 */
1080typedef bool (*flatview_cb)(Int128 start,
1081                            Int128 len,
1082                            const MemoryRegion *mr,
1083                            hwaddr offset_in_region,
1084                            void *opaque);
1085
1086/**
1087 * flatview_for_each_range: Iterate through a FlatView
1088 * @fv: the FlatView to iterate through
1089 * @cb: function to call for each range
1090 * @opaque: opaque data pointer to pass to @cb
1091 *
1092 * A FlatView is made up of a list of non-overlapping ranges, each of
1093 * which is a slice of a MemoryRegion. This function iterates through
1094 * each range in @fv, calling @cb. The callback function can terminate
1095 * iteration early by returning 'true'.
1096 */
1097void flatview_for_each_range(FlatView *fv, flatview_cb cb, void *opaque);
1098
1099static inline bool MemoryRegionSection_eq(MemoryRegionSection *a,
1100                                          MemoryRegionSection *b)
1101{
1102    return a->mr == b->mr &&
1103           a->fv == b->fv &&
1104           a->offset_within_region == b->offset_within_region &&
1105           a->offset_within_address_space == b->offset_within_address_space &&
1106           int128_eq(a->size, b->size) &&
1107           a->readonly == b->readonly &&
1108           a->nonvolatile == b->nonvolatile;
1109}
1110
1111/**
1112 * memory_region_section_new_copy: Copy a memory region section
1113 *
1114 * Allocate memory for a new copy, copy the memory region section, and
1115 * properly take a reference on all relevant members.
1116 *
1117 * @s: the #MemoryRegionSection to copy
1118 */
1119MemoryRegionSection *memory_region_section_new_copy(MemoryRegionSection *s);
1120
1121/**
1122 * memory_region_section_new_copy: Free a copied memory region section
1123 *
1124 * Free a copy of a memory section created via memory_region_section_new_copy().
1125 * properly dropping references on all relevant members.
1126 *
1127 * @s: the #MemoryRegionSection to copy
1128 */
1129void memory_region_section_free_copy(MemoryRegionSection *s);
1130
1131/**
1132 * memory_region_init: Initialize a memory region
1133 *
1134 * The region typically acts as a container for other memory regions.  Use
1135 * memory_region_add_subregion() to add subregions.
1136 *
1137 * @mr: the #MemoryRegion to be initialized
1138 * @owner: the object that tracks the region's reference count
1139 * @name: used for debugging; not visible to the user or ABI
1140 * @size: size of the region; any subregions beyond this size will be clipped
1141 */
1142void memory_region_init(MemoryRegion *mr,
1143                        Object *owner,
1144                        const char *name,
1145                        uint64_t size);
1146
1147/**
1148 * memory_region_ref: Add 1 to a memory region's reference count
1149 *
1150 * Whenever memory regions are accessed outside the BQL, they need to be
1151 * preserved against hot-unplug.  MemoryRegions actually do not have their
1152 * own reference count; they piggyback on a QOM object, their "owner".
1153 * This function adds a reference to the owner.
1154 *
1155 * All MemoryRegions must have an owner if they can disappear, even if the
1156 * device they belong to operates exclusively under the BQL.  This is because
1157 * the region could be returned at any time by memory_region_find, and this
1158 * is usually under guest control.
1159 *
1160 * @mr: the #MemoryRegion
1161 */
1162void memory_region_ref(MemoryRegion *mr);
1163
1164/**
1165 * memory_region_unref: Remove 1 to a memory region's reference count
1166 *
1167 * Whenever memory regions are accessed outside the BQL, they need to be
1168 * preserved against hot-unplug.  MemoryRegions actually do not have their
1169 * own reference count; they piggyback on a QOM object, their "owner".
1170 * This function removes a reference to the owner and possibly destroys it.
1171 *
1172 * @mr: the #MemoryRegion
1173 */
1174void memory_region_unref(MemoryRegion *mr);
1175
1176/**
1177 * memory_region_init_io: Initialize an I/O memory region.
1178 *
1179 * Accesses into the region will cause the callbacks in @ops to be called.
1180 * if @size is nonzero, subregions will be clipped to @size.
1181 *
1182 * @mr: the #MemoryRegion to be initialized.
1183 * @owner: the object that tracks the region's reference count
1184 * @ops: a structure containing read and write callbacks to be used when
1185 *       I/O is performed on the region.
1186 * @opaque: passed to the read and write callbacks of the @ops structure.
1187 * @name: used for debugging; not visible to the user or ABI
1188 * @size: size of the region.
1189 */
1190void memory_region_init_io(MemoryRegion *mr,
1191                           Object *owner,
1192                           const MemoryRegionOps *ops,
1193                           void *opaque,
1194                           const char *name,
1195                           uint64_t size);
1196
1197/**
1198 * memory_region_init_ram_nomigrate:  Initialize RAM memory region.  Accesses
1199 *                                    into the region will modify memory
1200 *                                    directly.
1201 *
1202 * @mr: the #MemoryRegion to be initialized.
1203 * @owner: the object that tracks the region's reference count
1204 * @name: Region name, becomes part of RAMBlock name used in migration stream
1205 *        must be unique within any device
1206 * @size: size of the region.
1207 * @errp: pointer to Error*, to store an error if it happens.
1208 *
1209 * Note that this function does not do anything to cause the data in the
1210 * RAM memory region to be migrated; that is the responsibility of the caller.
1211 */
1212void memory_region_init_ram_nomigrate(MemoryRegion *mr,
1213                                      Object *owner,
1214                                      const char *name,
1215                                      uint64_t size,
1216                                      Error **errp);
1217
1218/**
1219 * memory_region_init_ram_flags_nomigrate:  Initialize RAM memory region.
1220 *                                          Accesses into the region will
1221 *                                          modify memory directly.
1222 *
1223 * @mr: the #MemoryRegion to be initialized.
1224 * @owner: the object that tracks the region's reference count
1225 * @name: Region name, becomes part of RAMBlock name used in migration stream
1226 *        must be unique within any device
1227 * @size: size of the region.
1228 * @ram_flags: RamBlock flags. Supported flags: RAM_SHARED, RAM_NORESERVE.
1229 * @errp: pointer to Error*, to store an error if it happens.
1230 *
1231 * Note that this function does not do anything to cause the data in the
1232 * RAM memory region to be migrated; that is the responsibility of the caller.
1233 */
1234void memory_region_init_ram_flags_nomigrate(MemoryRegion *mr,
1235                                            Object *owner,
1236                                            const char *name,
1237                                            uint64_t size,
1238                                            uint32_t ram_flags,
1239                                            Error **errp);
1240
1241/**
1242 * memory_region_init_resizeable_ram:  Initialize memory region with resizeable
1243 *                                     RAM.  Accesses into the region will
1244 *                                     modify memory directly.  Only an initial
1245 *                                     portion of this RAM is actually used.
1246 *                                     Changing the size while migrating
1247 *                                     can result in the migration being
1248 *                                     canceled.
1249 *
1250 * @mr: the #MemoryRegion to be initialized.
1251 * @owner: the object that tracks the region's reference count
1252 * @name: Region name, becomes part of RAMBlock name used in migration stream
1253 *        must be unique within any device
1254 * @size: used size of the region.
1255 * @max_size: max size of the region.
1256 * @resized: callback to notify owner about used size change.
1257 * @errp: pointer to Error*, to store an error if it happens.
1258 *
1259 * Note that this function does not do anything to cause the data in the
1260 * RAM memory region to be migrated; that is the responsibility of the caller.
1261 */
1262void memory_region_init_resizeable_ram(MemoryRegion *mr,
1263                                       Object *owner,
1264                                       const char *name,
1265                                       uint64_t size,
1266                                       uint64_t max_size,
1267                                       void (*resized)(const char*,
1268                                                       uint64_t length,
1269                                                       void *host),
1270                                       Error **errp);
1271#ifdef CONFIG_POSIX
1272
1273/**
1274 * memory_region_init_ram_from_file:  Initialize RAM memory region with a
1275 *                                    mmap-ed backend.
1276 *
1277 * @mr: the #MemoryRegion to be initialized.
1278 * @owner: the object that tracks the region's reference count
1279 * @name: Region name, becomes part of RAMBlock name used in migration stream
1280 *        must be unique within any device
1281 * @size: size of the region.
1282 * @align: alignment of the region base address; if 0, the default alignment
1283 *         (getpagesize()) will be used.
1284 * @ram_flags: RamBlock flags. Supported flags: RAM_SHARED, RAM_PMEM,
1285 *             RAM_NORESERVE,
1286 * @path: the path in which to allocate the RAM.
1287 * @readonly: true to open @path for reading, false for read/write.
1288 * @errp: pointer to Error*, to store an error if it happens.
1289 *
1290 * Note that this function does not do anything to cause the data in the
1291 * RAM memory region to be migrated; that is the responsibility of the caller.
1292 */
1293void memory_region_init_ram_from_file(MemoryRegion *mr,
1294                                      Object *owner,
1295                                      const char *name,
1296                                      uint64_t size,
1297                                      uint64_t align,
1298                                      uint32_t ram_flags,
1299                                      const char *path,
1300                                      bool readonly,
1301                                      Error **errp);
1302
1303/**
1304 * memory_region_init_ram_from_fd:  Initialize RAM memory region with a
1305 *                                  mmap-ed backend.
1306 *
1307 * @mr: the #MemoryRegion to be initialized.
1308 * @owner: the object that tracks the region's reference count
1309 * @name: the name of the region.
1310 * @size: size of the region.
1311 * @ram_flags: RamBlock flags. Supported flags: RAM_SHARED, RAM_PMEM,
1312 *             RAM_NORESERVE, RAM_PROTECTED.
1313 * @fd: the fd to mmap.
1314 * @offset: offset within the file referenced by fd
1315 * @errp: pointer to Error*, to store an error if it happens.
1316 *
1317 * Note that this function does not do anything to cause the data in the
1318 * RAM memory region to be migrated; that is the responsibility of the caller.
1319 */
1320void memory_region_init_ram_from_fd(MemoryRegion *mr,
1321                                    Object *owner,
1322                                    const char *name,
1323                                    uint64_t size,
1324                                    uint32_t ram_flags,
1325                                    int fd,
1326                                    ram_addr_t offset,
1327                                    Error **errp);
1328#endif
1329
1330/**
1331 * memory_region_init_ram_ptr:  Initialize RAM memory region from a
1332 *                              user-provided pointer.  Accesses into the
1333 *                              region will modify memory directly.
1334 *
1335 * @mr: the #MemoryRegion to be initialized.
1336 * @owner: the object that tracks the region's reference count
1337 * @name: Region name, becomes part of RAMBlock name used in migration stream
1338 *        must be unique within any device
1339 * @size: size of the region.
1340 * @ptr: memory to be mapped; must contain at least @size bytes.
1341 *
1342 * Note that this function does not do anything to cause the data in the
1343 * RAM memory region to be migrated; that is the responsibility of the caller.
1344 */
1345void memory_region_init_ram_ptr(MemoryRegion *mr,
1346                                Object *owner,
1347                                const char *name,
1348                                uint64_t size,
1349                                void *ptr);
1350
1351/**
1352 * memory_region_init_ram_device_ptr:  Initialize RAM device memory region from
1353 *                                     a user-provided pointer.
1354 *
1355 * A RAM device represents a mapping to a physical device, such as to a PCI
1356 * MMIO BAR of an vfio-pci assigned device.  The memory region may be mapped
1357 * into the VM address space and access to the region will modify memory
1358 * directly.  However, the memory region should not be included in a memory
1359 * dump (device may not be enabled/mapped at the time of the dump), and
1360 * operations incompatible with manipulating MMIO should be avoided.  Replaces
1361 * skip_dump flag.
1362 *
1363 * @mr: the #MemoryRegion to be initialized.
1364 * @owner: the object that tracks the region's reference count
1365 * @name: the name of the region.
1366 * @size: size of the region.
1367 * @ptr: memory to be mapped; must contain at least @size bytes.
1368 *
1369 * Note that this function does not do anything to cause the data in the
1370 * RAM memory region to be migrated; that is the responsibility of the caller.
1371 * (For RAM device memory regions, migrating the contents rarely makes sense.)
1372 */
1373void memory_region_init_ram_device_ptr(MemoryRegion *mr,
1374                                       Object *owner,
1375                                       const char *name,
1376                                       uint64_t size,
1377                                       void *ptr);
1378
1379/**
1380 * memory_region_init_alias: Initialize a memory region that aliases all or a
1381 *                           part of another memory region.
1382 *
1383 * @mr: the #MemoryRegion to be initialized.
1384 * @owner: the object that tracks the region's reference count
1385 * @name: used for debugging; not visible to the user or ABI
1386 * @orig: the region to be referenced; @mr will be equivalent to
1387 *        @orig between @offset and @offset + @size - 1.
1388 * @offset: start of the section in @orig to be referenced.
1389 * @size: size of the region.
1390 */
1391void memory_region_init_alias(MemoryRegion *mr,
1392                              Object *owner,
1393                              const char *name,
1394                              MemoryRegion *orig,
1395                              hwaddr offset,
1396                              uint64_t size);
1397
1398/**
1399 * memory_region_init_rom_nomigrate: Initialize a ROM memory region.
1400 *
1401 * This has the same effect as calling memory_region_init_ram_nomigrate()
1402 * and then marking the resulting region read-only with
1403 * memory_region_set_readonly().
1404 *
1405 * Note that this function does not do anything to cause the data in the
1406 * RAM side of the memory region to be migrated; that is the responsibility
1407 * of the caller.
1408 *
1409 * @mr: the #MemoryRegion to be initialized.
1410 * @owner: the object that tracks the region's reference count
1411 * @name: Region name, becomes part of RAMBlock name used in migration stream
1412 *        must be unique within any device
1413 * @size: size of the region.
1414 * @errp: pointer to Error*, to store an error if it happens.
1415 */
1416void memory_region_init_rom_nomigrate(MemoryRegion *mr,
1417                                      Object *owner,
1418                                      const char *name,
1419                                      uint64_t size,
1420                                      Error **errp);
1421
1422/**
1423 * memory_region_init_rom_device_nomigrate:  Initialize a ROM memory region.
1424 *                                 Writes are handled via callbacks.
1425 *
1426 * Note that this function does not do anything to cause the data in the
1427 * RAM side of the memory region to be migrated; that is the responsibility
1428 * of the caller.
1429 *
1430 * @mr: the #MemoryRegion to be initialized.
1431 * @owner: the object that tracks the region's reference count
1432 * @ops: callbacks for write access handling (must not be NULL).
1433 * @opaque: passed to the read and write callbacks of the @ops structure.
1434 * @name: Region name, becomes part of RAMBlock name used in migration stream
1435 *        must be unique within any device
1436 * @size: size of the region.
1437 * @errp: pointer to Error*, to store an error if it happens.
1438 */
1439void memory_region_init_rom_device_nomigrate(MemoryRegion *mr,
1440                                             Object *owner,
1441                                             const MemoryRegionOps *ops,
1442                                             void *opaque,
1443                                             const char *name,
1444                                             uint64_t size,
1445                                             Error **errp);
1446
1447/**
1448 * memory_region_init_iommu: Initialize a memory region of a custom type
1449 * that translates addresses
1450 *
1451 * An IOMMU region translates addresses and forwards accesses to a target
1452 * memory region.
1453 *
1454 * The IOMMU implementation must define a subclass of TYPE_IOMMU_MEMORY_REGION.
1455 * @_iommu_mr should be a pointer to enough memory for an instance of
1456 * that subclass, @instance_size is the size of that subclass, and
1457 * @mrtypename is its name. This function will initialize @_iommu_mr as an
1458 * instance of the subclass, and its methods will then be called to handle
1459 * accesses to the memory region. See the documentation of
1460 * #IOMMUMemoryRegionClass for further details.
1461 *
1462 * @_iommu_mr: the #IOMMUMemoryRegion to be initialized
1463 * @instance_size: the IOMMUMemoryRegion subclass instance size
1464 * @mrtypename: the type name of the #IOMMUMemoryRegion
1465 * @owner: the object that tracks the region's reference count
1466 * @name: used for debugging; not visible to the user or ABI
1467 * @size: size of the region.
1468 */
1469void memory_region_init_iommu(void *_iommu_mr,
1470                              size_t instance_size,
1471                              const char *mrtypename,
1472                              Object *owner,
1473                              const char *name,
1474                              uint64_t size);
1475
1476/**
1477 * memory_region_init_ram - Initialize RAM memory region.  Accesses into the
1478 *                          region will modify memory directly.
1479 *
1480 * @mr: the #MemoryRegion to be initialized
1481 * @owner: the object that tracks the region's reference count (must be
1482 *         TYPE_DEVICE or a subclass of TYPE_DEVICE, or NULL)
1483 * @name: name of the memory region
1484 * @size: size of the region in bytes
1485 * @errp: pointer to Error*, to store an error if it happens.
1486 *
1487 * This function allocates RAM for a board model or device, and
1488 * arranges for it to be migrated (by calling vmstate_register_ram()
1489 * if @owner is a DeviceState, or vmstate_register_ram_global() if
1490 * @owner is NULL).
1491 *
1492 * TODO: Currently we restrict @owner to being either NULL (for
1493 * global RAM regions with no owner) or devices, so that we can
1494 * give the RAM block a unique name for migration purposes.
1495 * We should lift this restriction and allow arbitrary Objects.
1496 * If you pass a non-NULL non-device @owner then we will assert.
1497 */
1498void memory_region_init_ram(MemoryRegion *mr,
1499                            Object *owner,
1500                            const char *name,
1501                            uint64_t size,
1502                            Error **errp);
1503
1504/**
1505 * memory_region_init_rom: Initialize a ROM memory region.
1506 *
1507 * This has the same effect as calling memory_region_init_ram()
1508 * and then marking the resulting region read-only with
1509 * memory_region_set_readonly(). This includes arranging for the
1510 * contents to be migrated.
1511 *
1512 * TODO: Currently we restrict @owner to being either NULL (for
1513 * global RAM regions with no owner) or devices, so that we can
1514 * give the RAM block a unique name for migration purposes.
1515 * We should lift this restriction and allow arbitrary Objects.
1516 * If you pass a non-NULL non-device @owner then we will assert.
1517 *
1518 * @mr: the #MemoryRegion to be initialized.
1519 * @owner: the object that tracks the region's reference count
1520 * @name: Region name, becomes part of RAMBlock name used in migration stream
1521 *        must be unique within any device
1522 * @size: size of the region.
1523 * @errp: pointer to Error*, to store an error if it happens.
1524 */
1525void memory_region_init_rom(MemoryRegion *mr,
1526                            Object *owner,
1527                            const char *name,
1528                            uint64_t size,
1529                            Error **errp);
1530
1531/**
1532 * memory_region_init_rom_device:  Initialize a ROM memory region.
1533 *                                 Writes are handled via callbacks.
1534 *
1535 * This function initializes a memory region backed by RAM for reads
1536 * and callbacks for writes, and arranges for the RAM backing to
1537 * be migrated (by calling vmstate_register_ram()
1538 * if @owner is a DeviceState, or vmstate_register_ram_global() if
1539 * @owner is NULL).
1540 *
1541 * TODO: Currently we restrict @owner to being either NULL (for
1542 * global RAM regions with no owner) or devices, so that we can
1543 * give the RAM block a unique name for migration purposes.
1544 * We should lift this restriction and allow arbitrary Objects.
1545 * If you pass a non-NULL non-device @owner then we will assert.
1546 *
1547 * @mr: the #MemoryRegion to be initialized.
1548 * @owner: the object that tracks the region's reference count
1549 * @ops: callbacks for write access handling (must not be NULL).
1550 * @opaque: passed to the read and write callbacks of the @ops structure.
1551 * @name: Region name, becomes part of RAMBlock name used in migration stream
1552 *        must be unique within any device
1553 * @size: size of the region.
1554 * @errp: pointer to Error*, to store an error if it happens.
1555 */
1556void memory_region_init_rom_device(MemoryRegion *mr,
1557                                   Object *owner,
1558                                   const MemoryRegionOps *ops,
1559                                   void *opaque,
1560                                   const char *name,
1561                                   uint64_t size,
1562                                   Error **errp);
1563
1564
1565/**
1566 * memory_region_owner: get a memory region's owner.
1567 *
1568 * @mr: the memory region being queried.
1569 */
1570Object *memory_region_owner(MemoryRegion *mr);
1571
1572/**
1573 * memory_region_size: get a memory region's size.
1574 *
1575 * @mr: the memory region being queried.
1576 */
1577uint64_t memory_region_size(MemoryRegion *mr);
1578
1579/**
1580 * memory_region_is_ram: check whether a memory region is random access
1581 *
1582 * Returns %true if a memory region is random access.
1583 *
1584 * @mr: the memory region being queried
1585 */
1586static inline bool memory_region_is_ram(MemoryRegion *mr)
1587{
1588    return mr->ram;
1589}
1590
1591/**
1592 * memory_region_is_ram_device: check whether a memory region is a ram device
1593 *
1594 * Returns %true if a memory region is a device backed ram region
1595 *
1596 * @mr: the memory region being queried
1597 */
1598bool memory_region_is_ram_device(MemoryRegion *mr);
1599
1600/**
1601 * memory_region_is_romd: check whether a memory region is in ROMD mode
1602 *
1603 * Returns %true if a memory region is a ROM device and currently set to allow
1604 * direct reads.
1605 *
1606 * @mr: the memory region being queried
1607 */
1608static inline bool memory_region_is_romd(MemoryRegion *mr)
1609{
1610    return mr->rom_device && mr->romd_mode;
1611}
1612
1613/**
1614 * memory_region_is_protected: check whether a memory region is protected
1615 *
1616 * Returns %true if a memory region is protected RAM and cannot be accessed
1617 * via standard mechanisms, e.g. DMA.
1618 *
1619 * @mr: the memory region being queried
1620 */
1621bool memory_region_is_protected(MemoryRegion *mr);
1622
1623/**
1624 * memory_region_get_iommu: check whether a memory region is an iommu
1625 *
1626 * Returns pointer to IOMMUMemoryRegion if a memory region is an iommu,
1627 * otherwise NULL.
1628 *
1629 * @mr: the memory region being queried
1630 */
1631static inline IOMMUMemoryRegion *memory_region_get_iommu(MemoryRegion *mr)
1632{
1633    if (mr->alias) {
1634        return memory_region_get_iommu(mr->alias);
1635    }
1636    if (mr->is_iommu) {
1637        return (IOMMUMemoryRegion *) mr;
1638    }
1639    return NULL;
1640}
1641
1642/**
1643 * memory_region_get_iommu_class_nocheck: returns iommu memory region class
1644 *   if an iommu or NULL if not
1645 *
1646 * Returns pointer to IOMMUMemoryRegionClass if a memory region is an iommu,
1647 * otherwise NULL. This is fast path avoiding QOM checking, use with caution.
1648 *
1649 * @iommu_mr: the memory region being queried
1650 */
1651static inline IOMMUMemoryRegionClass *memory_region_get_iommu_class_nocheck(
1652        IOMMUMemoryRegion *iommu_mr)
1653{
1654    return (IOMMUMemoryRegionClass *) (((Object *)iommu_mr)->class);
1655}
1656
1657#define memory_region_is_iommu(mr) (memory_region_get_iommu(mr) != NULL)
1658
1659/**
1660 * memory_region_iommu_get_min_page_size: get minimum supported page size
1661 * for an iommu
1662 *
1663 * Returns minimum supported page size for an iommu.
1664 *
1665 * @iommu_mr: the memory region being queried
1666 */
1667uint64_t memory_region_iommu_get_min_page_size(IOMMUMemoryRegion *iommu_mr);
1668
1669/**
1670 * memory_region_notify_iommu: notify a change in an IOMMU translation entry.
1671 *
1672 * Note: for any IOMMU implementation, an in-place mapping change
1673 * should be notified with an UNMAP followed by a MAP.
1674 *
1675 * @iommu_mr: the memory region that was changed
1676 * @iommu_idx: the IOMMU index for the translation table which has changed
1677 * @event: TLB event with the new entry in the IOMMU translation table.
1678 *         The entry replaces all old entries for the same virtual I/O address
1679 *         range.
1680 */
1681void memory_region_notify_iommu(IOMMUMemoryRegion *iommu_mr,
1682                                int iommu_idx,
1683                                IOMMUTLBEvent event);
1684
1685/**
1686 * memory_region_notify_iommu_one: notify a change in an IOMMU translation
1687 *                           entry to a single notifier
1688 *
1689 * This works just like memory_region_notify_iommu(), but it only
1690 * notifies a specific notifier, not all of them.
1691 *
1692 * @notifier: the notifier to be notified
1693 * @event: TLB event with the new entry in the IOMMU translation table.
1694 *         The entry replaces all old entries for the same virtual I/O address
1695 *         range.
1696 */
1697void memory_region_notify_iommu_one(IOMMUNotifier *notifier,
1698                                    IOMMUTLBEvent *event);
1699
1700/**
1701 * memory_region_register_iommu_notifier: register a notifier for changes to
1702 * IOMMU translation entries.
1703 *
1704 * Returns 0 on success, or a negative errno otherwise. In particular,
1705 * -EINVAL indicates that at least one of the attributes of the notifier
1706 * is not supported (flag/range) by the IOMMU memory region. In case of error
1707 * the error object must be created.
1708 *
1709 * @mr: the memory region to observe
1710 * @n: the IOMMUNotifier to be added; the notify callback receives a
1711 *     pointer to an #IOMMUTLBEntry as the opaque value; the pointer
1712 *     ceases to be valid on exit from the notifier.
1713 * @errp: pointer to Error*, to store an error if it happens.
1714 */
1715int memory_region_register_iommu_notifier(MemoryRegion *mr,
1716                                          IOMMUNotifier *n, Error **errp);
1717
1718/**
1719 * memory_region_iommu_replay: replay existing IOMMU translations to
1720 * a notifier with the minimum page granularity returned by
1721 * mr->iommu_ops->get_page_size().
1722 *
1723 * Note: this is not related to record-and-replay functionality.
1724 *
1725 * @iommu_mr: the memory region to observe
1726 * @n: the notifier to which to replay iommu mappings
1727 */
1728void memory_region_iommu_replay(IOMMUMemoryRegion *iommu_mr, IOMMUNotifier *n);
1729
1730/**
1731 * memory_region_unregister_iommu_notifier: unregister a notifier for
1732 * changes to IOMMU translation entries.
1733 *
1734 * @mr: the memory region which was observed and for which notity_stopped()
1735 *      needs to be called
1736 * @n: the notifier to be removed.
1737 */
1738void memory_region_unregister_iommu_notifier(MemoryRegion *mr,
1739                                             IOMMUNotifier *n);
1740
1741/**
1742 * memory_region_iommu_get_attr: return an IOMMU attr if get_attr() is
1743 * defined on the IOMMU.
1744 *
1745 * Returns 0 on success, or a negative errno otherwise. In particular,
1746 * -EINVAL indicates that the IOMMU does not support the requested
1747 * attribute.
1748 *
1749 * @iommu_mr: the memory region
1750 * @attr: the requested attribute
1751 * @data: a pointer to the requested attribute data
1752 */
1753int memory_region_iommu_get_attr(IOMMUMemoryRegion *iommu_mr,
1754                                 enum IOMMUMemoryRegionAttr attr,
1755                                 void *data);
1756
1757/**
1758 * memory_region_iommu_attrs_to_index: return the IOMMU index to
1759 * use for translations with the given memory transaction attributes.
1760 *
1761 * @iommu_mr: the memory region
1762 * @attrs: the memory transaction attributes
1763 */
1764int memory_region_iommu_attrs_to_index(IOMMUMemoryRegion *iommu_mr,
1765                                       MemTxAttrs attrs);
1766
1767/**
1768 * memory_region_iommu_num_indexes: return the total number of IOMMU
1769 * indexes that this IOMMU supports.
1770 *
1771 * @iommu_mr: the memory region
1772 */
1773int memory_region_iommu_num_indexes(IOMMUMemoryRegion *iommu_mr);
1774
1775/**
1776 * memory_region_iommu_set_page_size_mask: set the supported page
1777 * sizes for a given IOMMU memory region
1778 *
1779 * @iommu_mr: IOMMU memory region
1780 * @page_size_mask: supported page size mask
1781 * @errp: pointer to Error*, to store an error if it happens.
1782 */
1783int memory_region_iommu_set_page_size_mask(IOMMUMemoryRegion *iommu_mr,
1784                                           uint64_t page_size_mask,
1785                                           Error **errp);
1786
1787/**
1788 * memory_region_name: get a memory region's name
1789 *
1790 * Returns the string that was used to initialize the memory region.
1791 *
1792 * @mr: the memory region being queried
1793 */
1794const char *memory_region_name(const MemoryRegion *mr);
1795
1796/**
1797 * memory_region_is_logging: return whether a memory region is logging writes
1798 *
1799 * Returns %true if the memory region is logging writes for the given client
1800 *
1801 * @mr: the memory region being queried
1802 * @client: the client being queried
1803 */
1804bool memory_region_is_logging(MemoryRegion *mr, uint8_t client);
1805
1806/**
1807 * memory_region_get_dirty_log_mask: return the clients for which a
1808 * memory region is logging writes.
1809 *
1810 * Returns a bitmap of clients, in which the DIRTY_MEMORY_* constants
1811 * are the bit indices.
1812 *
1813 * @mr: the memory region being queried
1814 */
1815uint8_t memory_region_get_dirty_log_mask(MemoryRegion *mr);
1816
1817/**
1818 * memory_region_is_rom: check whether a memory region is ROM
1819 *
1820 * Returns %true if a memory region is read-only memory.
1821 *
1822 * @mr: the memory region being queried
1823 */
1824static inline bool memory_region_is_rom(MemoryRegion *mr)
1825{
1826    return mr->ram && mr->readonly;
1827}
1828
1829/**
1830 * memory_region_is_nonvolatile: check whether a memory region is non-volatile
1831 *
1832 * Returns %true is a memory region is non-volatile memory.
1833 *
1834 * @mr: the memory region being queried
1835 */
1836static inline bool memory_region_is_nonvolatile(MemoryRegion *mr)
1837{
1838    return mr->nonvolatile;
1839}
1840
1841/**
1842 * memory_region_get_fd: Get a file descriptor backing a RAM memory region.
1843 *
1844 * Returns a file descriptor backing a file-based RAM memory region,
1845 * or -1 if the region is not a file-based RAM memory region.
1846 *
1847 * @mr: the RAM or alias memory region being queried.
1848 */
1849int memory_region_get_fd(MemoryRegion *mr);
1850
1851/**
1852 * memory_region_from_host: Convert a pointer into a RAM memory region
1853 * and an offset within it.
1854 *
1855 * Given a host pointer inside a RAM memory region (created with
1856 * memory_region_init_ram() or memory_region_init_ram_ptr()), return
1857 * the MemoryRegion and the offset within it.
1858 *
1859 * Use with care; by the time this function returns, the returned pointer is
1860 * not protected by RCU anymore.  If the caller is not within an RCU critical
1861 * section and does not hold the iothread lock, it must have other means of
1862 * protecting the pointer, such as a reference to the region that includes
1863 * the incoming ram_addr_t.
1864 *
1865 * @ptr: the host pointer to be converted
1866 * @offset: the offset within memory region
1867 */
1868MemoryRegion *memory_region_from_host(void *ptr, ram_addr_t *offset);
1869
1870/**
1871 * memory_region_get_ram_ptr: Get a pointer into a RAM memory region.
1872 *
1873 * Returns a host pointer to a RAM memory region (created with
1874 * memory_region_init_ram() or memory_region_init_ram_ptr()).
1875 *
1876 * Use with care; by the time this function returns, the returned pointer is
1877 * not protected by RCU anymore.  If the caller is not within an RCU critical
1878 * section and does not hold the iothread lock, it must have other means of
1879 * protecting the pointer, such as a reference to the region that includes
1880 * the incoming ram_addr_t.
1881 *
1882 * @mr: the memory region being queried.
1883 */
1884void *memory_region_get_ram_ptr(MemoryRegion *mr);
1885
1886/* memory_region_ram_resize: Resize a RAM region.
1887 *
1888 * Resizing RAM while migrating can result in the migration being canceled.
1889 * Care has to be taken if the guest might have already detected the memory.
1890 *
1891 * @mr: a memory region created with @memory_region_init_resizeable_ram.
1892 * @newsize: the new size the region
1893 * @errp: pointer to Error*, to store an error if it happens.
1894 */
1895void memory_region_ram_resize(MemoryRegion *mr, ram_addr_t newsize,
1896                              Error **errp);
1897
1898/**
1899 * memory_region_msync: Synchronize selected address range of
1900 * a memory mapped region
1901 *
1902 * @mr: the memory region to be msync
1903 * @addr: the initial address of the range to be sync
1904 * @size: the size of the range to be sync
1905 */
1906void memory_region_msync(MemoryRegion *mr, hwaddr addr, hwaddr size);
1907
1908/**
1909 * memory_region_writeback: Trigger cache writeback for
1910 * selected address range
1911 *
1912 * @mr: the memory region to be updated
1913 * @addr: the initial address of the range to be written back
1914 * @size: the size of the range to be written back
1915 */
1916void memory_region_writeback(MemoryRegion *mr, hwaddr addr, hwaddr size);
1917
1918/**
1919 * memory_region_set_log: Turn dirty logging on or off for a region.
1920 *
1921 * Turns dirty logging on or off for a specified client (display, migration).
1922 * Only meaningful for RAM regions.
1923 *
1924 * @mr: the memory region being updated.
1925 * @log: whether dirty logging is to be enabled or disabled.
1926 * @client: the user of the logging information; %DIRTY_MEMORY_VGA only.
1927 */
1928void memory_region_set_log(MemoryRegion *mr, bool log, unsigned client);
1929
1930/**
1931 * memory_region_set_dirty: Mark a range of bytes as dirty in a memory region.
1932 *
1933 * Marks a range of bytes as dirty, after it has been dirtied outside
1934 * guest code.
1935 *
1936 * @mr: the memory region being dirtied.
1937 * @addr: the address (relative to the start of the region) being dirtied.
1938 * @size: size of the range being dirtied.
1939 */
1940void memory_region_set_dirty(MemoryRegion *mr, hwaddr addr,
1941                             hwaddr size);
1942
1943/**
1944 * memory_region_clear_dirty_bitmap - clear dirty bitmap for memory range
1945 *
1946 * This function is called when the caller wants to clear the remote
1947 * dirty bitmap of a memory range within the memory region.  This can
1948 * be used by e.g. KVM to manually clear dirty log when
1949 * KVM_CAP_MANUAL_DIRTY_LOG_PROTECT is declared support by the host
1950 * kernel.
1951 *
1952 * @mr:     the memory region to clear the dirty log upon
1953 * @start:  start address offset within the memory region
1954 * @len:    length of the memory region to clear dirty bitmap
1955 */
1956void memory_region_clear_dirty_bitmap(MemoryRegion *mr, hwaddr start,
1957                                      hwaddr len);
1958
1959/**
1960 * memory_region_snapshot_and_clear_dirty: Get a snapshot of the dirty
1961 *                                         bitmap and clear it.
1962 *
1963 * Creates a snapshot of the dirty bitmap, clears the dirty bitmap and
1964 * returns the snapshot.  The snapshot can then be used to query dirty
1965 * status, using memory_region_snapshot_get_dirty.  Snapshotting allows
1966 * querying the same page multiple times, which is especially useful for
1967 * display updates where the scanlines often are not page aligned.
1968 *
1969 * The dirty bitmap region which gets copyed into the snapshot (and
1970 * cleared afterwards) can be larger than requested.  The boundaries
1971 * are rounded up/down so complete bitmap longs (covering 64 pages on
1972 * 64bit hosts) can be copied over into the bitmap snapshot.  Which
1973 * isn't a problem for display updates as the extra pages are outside
1974 * the visible area, and in case the visible area changes a full
1975 * display redraw is due anyway.  Should other use cases for this
1976 * function emerge we might have to revisit this implementation
1977 * detail.
1978 *
1979 * Use g_free to release DirtyBitmapSnapshot.
1980 *
1981 * @mr: the memory region being queried.
1982 * @addr: the address (relative to the start of the region) being queried.
1983 * @size: the size of the range being queried.
1984 * @client: the user of the logging information; typically %DIRTY_MEMORY_VGA.
1985 */
1986DirtyBitmapSnapshot *memory_region_snapshot_and_clear_dirty(MemoryRegion *mr,
1987                                                            hwaddr addr,
1988                                                            hwaddr size,
1989                                                            unsigned client);
1990
1991/**
1992 * memory_region_snapshot_get_dirty: Check whether a range of bytes is dirty
1993 *                                   in the specified dirty bitmap snapshot.
1994 *
1995 * @mr: the memory region being queried.
1996 * @snap: the dirty bitmap snapshot
1997 * @addr: the address (relative to the start of the region) being queried.
1998 * @size: the size of the range being queried.
1999 */
2000bool memory_region_snapshot_get_dirty(MemoryRegion *mr,
2001                                      DirtyBitmapSnapshot *snap,
2002                                      hwaddr addr, hwaddr size);
2003
2004/**
2005 * memory_region_reset_dirty: Mark a range of pages as clean, for a specified
2006 *                            client.
2007 *
2008 * Marks a range of pages as no longer dirty.
2009 *
2010 * @mr: the region being updated.
2011 * @addr: the start of the subrange being cleaned.
2012 * @size: the size of the subrange being cleaned.
2013 * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or
2014 *          %DIRTY_MEMORY_VGA.
2015 */
2016void memory_region_reset_dirty(MemoryRegion *mr, hwaddr addr,
2017                               hwaddr size, unsigned client);
2018
2019/**
2020 * memory_region_flush_rom_device: Mark a range of pages dirty and invalidate
2021 *                                 TBs (for self-modifying code).
2022 *
2023 * The MemoryRegionOps->write() callback of a ROM device must use this function
2024 * to mark byte ranges that have been modified internally, such as by directly
2025 * accessing the memory returned by memory_region_get_ram_ptr().
2026 *
2027 * This function marks the range dirty and invalidates TBs so that TCG can
2028 * detect self-modifying code.
2029 *
2030 * @mr: the region being flushed.
2031 * @addr: the start, relative to the start of the region, of the range being
2032 *        flushed.
2033 * @size: the size, in bytes, of the range being flushed.
2034 */
2035void memory_region_flush_rom_device(MemoryRegion *mr, hwaddr addr, hwaddr size);
2036
2037/**
2038 * memory_region_set_readonly: Turn a memory region read-only (or read-write)
2039 *
2040 * Allows a memory region to be marked as read-only (turning it into a ROM).
2041 * only useful on RAM regions.
2042 *
2043 * @mr: the region being updated.
2044 * @readonly: whether rhe region is to be ROM or RAM.
2045 */
2046void memory_region_set_readonly(MemoryRegion *mr, bool readonly);
2047
2048/**
2049 * memory_region_set_nonvolatile: Turn a memory region non-volatile
2050 *
2051 * Allows a memory region to be marked as non-volatile.
2052 * only useful on RAM regions.
2053 *
2054 * @mr: the region being updated.
2055 * @nonvolatile: whether rhe region is to be non-volatile.
2056 */
2057void memory_region_set_nonvolatile(MemoryRegion *mr, bool nonvolatile);
2058
2059/**
2060 * memory_region_rom_device_set_romd: enable/disable ROMD mode
2061 *
2062 * Allows a ROM device (initialized with memory_region_init_rom_device() to
2063 * set to ROMD mode (default) or MMIO mode.  When it is in ROMD mode, the
2064 * device is mapped to guest memory and satisfies read access directly.
2065 * When in MMIO mode, reads are forwarded to the #MemoryRegion.read function.
2066 * Writes are always handled by the #MemoryRegion.write function.
2067 *
2068 * @mr: the memory region to be updated
2069 * @romd_mode: %true to put the region into ROMD mode
2070 */
2071void memory_region_rom_device_set_romd(MemoryRegion *mr, bool romd_mode);
2072
2073/**
2074 * memory_region_set_coalescing: Enable memory coalescing for the region.
2075 *
2076 * Enabled writes to a region to be queued for later processing. MMIO ->write
2077 * callbacks may be delayed until a non-coalesced MMIO is issued.
2078 * Only useful for IO regions.  Roughly similar to write-combining hardware.
2079 *
2080 * @mr: the memory region to be write coalesced
2081 */
2082void memory_region_set_coalescing(MemoryRegion *mr);
2083
2084/**
2085 * memory_region_add_coalescing: Enable memory coalescing for a sub-range of
2086 *                               a region.
2087 *
2088 * Like memory_region_set_coalescing(), but works on a sub-range of a region.
2089 * Multiple calls can be issued coalesced disjoint ranges.
2090 *
2091 * @mr: the memory region to be updated.
2092 * @offset: the start of the range within the region to be coalesced.
2093 * @size: the size of the subrange to be coalesced.
2094 */
2095void memory_region_add_coalescing(MemoryRegion *mr,
2096                                  hwaddr offset,
2097                                  uint64_t size);
2098
2099/**
2100 * memory_region_clear_coalescing: Disable MMIO coalescing for the region.
2101 *
2102 * Disables any coalescing caused by memory_region_set_coalescing() or
2103 * memory_region_add_coalescing().  Roughly equivalent to uncacheble memory
2104 * hardware.
2105 *
2106 * @mr: the memory region to be updated.
2107 */
2108void memory_region_clear_coalescing(MemoryRegion *mr);
2109
2110/**
2111 * memory_region_set_flush_coalesced: Enforce memory coalescing flush before
2112 *                                    accesses.
2113 *
2114 * Ensure that pending coalesced MMIO request are flushed before the memory
2115 * region is accessed. This property is automatically enabled for all regions
2116 * passed to memory_region_set_coalescing() and memory_region_add_coalescing().
2117 *
2118 * @mr: the memory region to be updated.
2119 */
2120void memory_region_set_flush_coalesced(MemoryRegion *mr);
2121
2122/**
2123 * memory_region_clear_flush_coalesced: Disable memory coalescing flush before
2124 *                                      accesses.
2125 *
2126 * Clear the automatic coalesced MMIO flushing enabled via
2127 * memory_region_set_flush_coalesced. Note that this service has no effect on
2128 * memory regions that have MMIO coalescing enabled for themselves. For them,
2129 * automatic flushing will stop once coalescing is disabled.
2130 *
2131 * @mr: the memory region to be updated.
2132 */
2133void memory_region_clear_flush_coalesced(MemoryRegion *mr);
2134
2135/**
2136 * memory_region_add_eventfd: Request an eventfd to be triggered when a word
2137 *                            is written to a location.
2138 *
2139 * Marks a word in an IO region (initialized with memory_region_init_io())
2140 * as a trigger for an eventfd event.  The I/O callback will not be called.
2141 * The caller must be prepared to handle failure (that is, take the required
2142 * action if the callback _is_ called).
2143 *
2144 * @mr: the memory region being updated.
2145 * @addr: the address within @mr that is to be monitored
2146 * @size: the size of the access to trigger the eventfd
2147 * @match_data: whether to match against @data, instead of just @addr
2148 * @data: the data to match against the guest write
2149 * @e: event notifier to be triggered when @addr, @size, and @data all match.
2150 **/
2151void memory_region_add_eventfd(MemoryRegion *mr,
2152                               hwaddr addr,
2153                               unsigned size,
2154                               bool match_data,
2155                               uint64_t data,
2156                               EventNotifier *e);
2157
2158/**
2159 * memory_region_del_eventfd: Cancel an eventfd.
2160 *
2161 * Cancels an eventfd trigger requested by a previous
2162 * memory_region_add_eventfd() call.
2163 *
2164 * @mr: the memory region being updated.
2165 * @addr: the address within @mr that is to be monitored
2166 * @size: the size of the access to trigger the eventfd
2167 * @match_data: whether to match against @data, instead of just @addr
2168 * @data: the data to match against the guest write
2169 * @e: event notifier to be triggered when @addr, @size, and @data all match.
2170 */
2171void memory_region_del_eventfd(MemoryRegion *mr,
2172                               hwaddr addr,
2173                               unsigned size,
2174                               bool match_data,
2175                               uint64_t data,
2176                               EventNotifier *e);
2177
2178/**
2179 * memory_region_add_subregion: Add a subregion to a container.
2180 *
2181 * Adds a subregion at @offset.  The subregion may not overlap with other
2182 * subregions (except for those explicitly marked as overlapping).  A region
2183 * may only be added once as a subregion (unless removed with
2184 * memory_region_del_subregion()); use memory_region_init_alias() if you
2185 * want a region to be a subregion in multiple locations.
2186 *
2187 * @mr: the region to contain the new subregion; must be a container
2188 *      initialized with memory_region_init().
2189 * @offset: the offset relative to @mr where @subregion is added.
2190 * @subregion: the subregion to be added.
2191 */
2192void memory_region_add_subregion(MemoryRegion *mr,
2193                                 hwaddr offset,
2194                                 MemoryRegion *subregion);
2195/**
2196 * memory_region_add_subregion_overlap: Add a subregion to a container
2197 *                                      with overlap.
2198 *
2199 * Adds a subregion at @offset.  The subregion may overlap with other
2200 * subregions.  Conflicts are resolved by having a higher @priority hide a
2201 * lower @priority. Subregions without priority are taken as @priority 0.
2202 * A region may only be added once as a subregion (unless removed with
2203 * memory_region_del_subregion()); use memory_region_init_alias() if you
2204 * want a region to be a subregion in multiple locations.
2205 *
2206 * @mr: the region to contain the new subregion; must be a container
2207 *      initialized with memory_region_init().
2208 * @offset: the offset relative to @mr where @subregion is added.
2209 * @subregion: the subregion to be added.
2210 * @priority: used for resolving overlaps; highest priority wins.
2211 */
2212void memory_region_add_subregion_overlap(MemoryRegion *mr,
2213                                         hwaddr offset,
2214                                         MemoryRegion *subregion,
2215                                         int priority);
2216
2217/**
2218 * memory_region_get_ram_addr: Get the ram address associated with a memory
2219 *                             region
2220 *
2221 * @mr: the region to be queried
2222 */
2223ram_addr_t memory_region_get_ram_addr(MemoryRegion *mr);
2224
2225uint64_t memory_region_get_alignment(const MemoryRegion *mr);
2226/**
2227 * memory_region_del_subregion: Remove a subregion.
2228 *
2229 * Removes a subregion from its container.
2230 *
2231 * @mr: the container to be updated.
2232 * @subregion: the region being removed; must be a current subregion of @mr.
2233 */
2234void memory_region_del_subregion(MemoryRegion *mr,
2235                                 MemoryRegion *subregion);
2236
2237/*
2238 * memory_region_set_enabled: dynamically enable or disable a region
2239 *
2240 * Enables or disables a memory region.  A disabled memory region
2241 * ignores all accesses to itself and its subregions.  It does not
2242 * obscure sibling subregions with lower priority - it simply behaves as
2243 * if it was removed from the hierarchy.
2244 *
2245 * Regions default to being enabled.
2246 *
2247 * @mr: the region to be updated
2248 * @enabled: whether to enable or disable the region
2249 */
2250void memory_region_set_enabled(MemoryRegion *mr, bool enabled);
2251
2252/*
2253 * memory_region_set_address: dynamically update the address of a region
2254 *
2255 * Dynamically updates the address of a region, relative to its container.
2256 * May be used on regions are currently part of a memory hierarchy.
2257 *
2258 * @mr: the region to be updated
2259 * @addr: new address, relative to container region
2260 */
2261void memory_region_set_address(MemoryRegion *mr, hwaddr addr);
2262
2263/*
2264 * memory_region_set_size: dynamically update the size of a region.
2265 *
2266 * Dynamically updates the size of a region.
2267 *
2268 * @mr: the region to be updated
2269 * @size: used size of the region.
2270 */
2271void memory_region_set_size(MemoryRegion *mr, uint64_t size);
2272
2273/*
2274 * memory_region_set_alias_offset: dynamically update a memory alias's offset
2275 *
2276 * Dynamically updates the offset into the target region that an alias points
2277 * to, as if the fourth argument to memory_region_init_alias() has changed.
2278 *
2279 * @mr: the #MemoryRegion to be updated; should be an alias.
2280 * @offset: the new offset into the target memory region
2281 */
2282void memory_region_set_alias_offset(MemoryRegion *mr,
2283                                    hwaddr offset);
2284
2285/**
2286 * memory_region_present: checks if an address relative to a @container
2287 * translates into #MemoryRegion within @container
2288 *
2289 * Answer whether a #MemoryRegion within @container covers the address
2290 * @addr.
2291 *
2292 * @container: a #MemoryRegion within which @addr is a relative address
2293 * @addr: the area within @container to be searched
2294 */
2295bool memory_region_present(MemoryRegion *container, hwaddr addr);
2296
2297/**
2298 * memory_region_is_mapped: returns true if #MemoryRegion is mapped
2299 * into any address space.
2300 *
2301 * @mr: a #MemoryRegion which should be checked if it's mapped
2302 */
2303bool memory_region_is_mapped(MemoryRegion *mr);
2304
2305/**
2306 * memory_region_get_ram_discard_manager: get the #RamDiscardManager for a
2307 * #MemoryRegion
2308 *
2309 * The #RamDiscardManager cannot change while a memory region is mapped.
2310 *
2311 * @mr: the #MemoryRegion
2312 */
2313RamDiscardManager *memory_region_get_ram_discard_manager(MemoryRegion *mr);
2314
2315/**
2316 * memory_region_has_ram_discard_manager: check whether a #MemoryRegion has a
2317 * #RamDiscardManager assigned
2318 *
2319 * @mr: the #MemoryRegion
2320 */
2321static inline bool memory_region_has_ram_discard_manager(MemoryRegion *mr)
2322{
2323    return !!memory_region_get_ram_discard_manager(mr);
2324}
2325
2326/**
2327 * memory_region_set_ram_discard_manager: set the #RamDiscardManager for a
2328 * #MemoryRegion
2329 *
2330 * This function must not be called for a mapped #MemoryRegion, a #MemoryRegion
2331 * that does not cover RAM, or a #MemoryRegion that already has a
2332 * #RamDiscardManager assigned.
2333 *
2334 * @mr: the #MemoryRegion
2335 * @rdm: #RamDiscardManager to set
2336 */
2337void memory_region_set_ram_discard_manager(MemoryRegion *mr,
2338                                           RamDiscardManager *rdm);
2339
2340/**
2341 * memory_region_find: translate an address/size relative to a
2342 * MemoryRegion into a #MemoryRegionSection.
2343 *
2344 * Locates the first #MemoryRegion within @mr that overlaps the range
2345 * given by @addr and @size.
2346 *
2347 * Returns a #MemoryRegionSection that describes a contiguous overlap.
2348 * It will have the following characteristics:
2349 * - @size = 0 iff no overlap was found
2350 * - @mr is non-%NULL iff an overlap was found
2351 *
2352 * Remember that in the return value the @offset_within_region is
2353 * relative to the returned region (in the .@mr field), not to the
2354 * @mr argument.
2355 *
2356 * Similarly, the .@offset_within_address_space is relative to the
2357 * address space that contains both regions, the passed and the
2358 * returned one.  However, in the special case where the @mr argument
2359 * has no container (and thus is the root of the address space), the
2360 * following will hold:
2361 * - @offset_within_address_space >= @addr
2362 * - @offset_within_address_space + .@size <= @addr + @size
2363 *
2364 * @mr: a MemoryRegion within which @addr is a relative address
2365 * @addr: start of the area within @as to be searched
2366 * @size: size of the area to be searched
2367 */
2368MemoryRegionSection memory_region_find(MemoryRegion *mr,
2369                                       hwaddr addr, uint64_t size);
2370
2371/**
2372 * memory_global_dirty_log_sync: synchronize the dirty log for all memory
2373 *
2374 * Synchronizes the dirty page log for all address spaces.
2375 */
2376void memory_global_dirty_log_sync(void);
2377
2378/**
2379 * memory_global_dirty_log_sync: synchronize the dirty log for all memory
2380 *
2381 * Synchronizes the vCPUs with a thread that is reading the dirty bitmap.
2382 * This function must be called after the dirty log bitmap is cleared, and
2383 * before dirty guest memory pages are read.  If you are using
2384 * #DirtyBitmapSnapshot, memory_region_snapshot_and_clear_dirty() takes
2385 * care of doing this.
2386 */
2387void memory_global_after_dirty_log_sync(void);
2388
2389/**
2390 * memory_region_transaction_begin: Start a transaction.
2391 *
2392 * During a transaction, changes will be accumulated and made visible
2393 * only when the transaction ends (is committed).
2394 */
2395void memory_region_transaction_begin(void);
2396
2397/**
2398 * memory_region_transaction_commit: Commit a transaction and make changes
2399 *                                   visible to the guest.
2400 */
2401void memory_region_transaction_commit(void);
2402
2403/**
2404 * memory_listener_register: register callbacks to be called when memory
2405 *                           sections are mapped or unmapped into an address
2406 *                           space
2407 *
2408 * @listener: an object containing the callbacks to be called
2409 * @filter: if non-%NULL, only regions in this address space will be observed
2410 */
2411void memory_listener_register(MemoryListener *listener, AddressSpace *filter);
2412
2413/**
2414 * memory_listener_unregister: undo the effect of memory_listener_register()
2415 *
2416 * @listener: an object containing the callbacks to be removed
2417 */
2418void memory_listener_unregister(MemoryListener *listener);
2419
2420/**
2421 * memory_global_dirty_log_start: begin dirty logging for all regions
2422 *
2423 * @flags: purpose of starting dirty log, migration or dirty rate
2424 */
2425void memory_global_dirty_log_start(unsigned int flags);
2426
2427/**
2428 * memory_global_dirty_log_stop: end dirty logging for all regions
2429 *
2430 * @flags: purpose of stopping dirty log, migration or dirty rate
2431 */
2432void memory_global_dirty_log_stop(unsigned int flags);
2433
2434void mtree_info(bool flatview, bool dispatch_tree, bool owner, bool disabled);
2435
2436/**
2437 * memory_region_dispatch_read: perform a read directly to the specified
2438 * MemoryRegion.
2439 *
2440 * @mr: #MemoryRegion to access
2441 * @addr: address within that region
2442 * @pval: pointer to uint64_t which the data is written to
2443 * @op: size, sign, and endianness of the memory operation
2444 * @attrs: memory transaction attributes to use for the access
2445 */
2446MemTxResult memory_region_dispatch_read(MemoryRegion *mr,
2447                                        hwaddr addr,
2448                                        uint64_t *pval,
2449                                        MemOp op,
2450                                        MemTxAttrs attrs);
2451/**
2452 * memory_region_dispatch_write: perform a write directly to the specified
2453 * MemoryRegion.
2454 *
2455 * @mr: #MemoryRegion to access
2456 * @addr: address within that region
2457 * @data: data to write
2458 * @op: size, sign, and endianness of the memory operation
2459 * @attrs: memory transaction attributes to use for the access
2460 */
2461MemTxResult memory_region_dispatch_write(MemoryRegion *mr,
2462                                         hwaddr addr,
2463                                         uint64_t data,
2464                                         MemOp op,
2465                                         MemTxAttrs attrs);
2466
2467/**
2468 * address_space_init: initializes an address space
2469 *
2470 * @as: an uninitialized #AddressSpace
2471 * @root: a #MemoryRegion that routes addresses for the address space
2472 * @name: an address space name.  The name is only used for debugging
2473 *        output.
2474 */
2475void address_space_init(AddressSpace *as, MemoryRegion *root, const char *name);
2476
2477/**
2478 * address_space_destroy: destroy an address space
2479 *
2480 * Releases all resources associated with an address space.  After an address space
2481 * is destroyed, its root memory region (given by address_space_init()) may be destroyed
2482 * as well.
2483 *
2484 * @as: address space to be destroyed
2485 */
2486void address_space_destroy(AddressSpace *as);
2487
2488/**
2489 * address_space_remove_listeners: unregister all listeners of an address space
2490 *
2491 * Removes all callbacks previously registered with memory_listener_register()
2492 * for @as.
2493 *
2494 * @as: an initialized #AddressSpace
2495 */
2496void address_space_remove_listeners(AddressSpace *as);
2497
2498/**
2499 * address_space_rw: read from or write to an address space.
2500 *
2501 * Return a MemTxResult indicating whether the operation succeeded
2502 * or failed (eg unassigned memory, device rejected the transaction,
2503 * IOMMU fault).
2504 *
2505 * @as: #AddressSpace to be accessed
2506 * @addr: address within that address space
2507 * @attrs: memory transaction attributes
2508 * @buf: buffer with the data transferred
2509 * @len: the number of bytes to read or write
2510 * @is_write: indicates the transfer direction
2511 */
2512MemTxResult address_space_rw(AddressSpace *as, hwaddr addr,
2513                             MemTxAttrs attrs, void *buf,
2514                             hwaddr len, bool is_write);
2515
2516/**
2517 * address_space_write: write to address space.
2518 *
2519 * Return a MemTxResult indicating whether the operation succeeded
2520 * or failed (eg unassigned memory, device rejected the transaction,
2521 * IOMMU fault).
2522 *
2523 * @as: #AddressSpace to be accessed
2524 * @addr: address within that address space
2525 * @attrs: memory transaction attributes
2526 * @buf: buffer with the data transferred
2527 * @len: the number of bytes to write
2528 */
2529MemTxResult address_space_write(AddressSpace *as, hwaddr addr,
2530                                MemTxAttrs attrs,
2531                                const void *buf, hwaddr len);
2532
2533/**
2534 * address_space_write_rom: write to address space, including ROM.
2535 *
2536 * This function writes to the specified address space, but will
2537 * write data to both ROM and RAM. This is used for non-guest
2538 * writes like writes from the gdb debug stub or initial loading
2539 * of ROM contents.
2540 *
2541 * Note that portions of the write which attempt to write data to
2542 * a device will be silently ignored -- only real RAM and ROM will
2543 * be written to.
2544 *
2545 * Return a MemTxResult indicating whether the operation succeeded
2546 * or failed (eg unassigned memory, device rejected the transaction,
2547 * IOMMU fault).
2548 *
2549 * @as: #AddressSpace to be accessed
2550 * @addr: address within that address space
2551 * @attrs: memory transaction attributes
2552 * @buf: buffer with the data transferred
2553 * @len: the number of bytes to write
2554 */
2555MemTxResult address_space_write_rom(AddressSpace *as, hwaddr addr,
2556                                    MemTxAttrs attrs,
2557                                    const void *buf, hwaddr len);
2558
2559/* address_space_ld*: load from an address space
2560 * address_space_st*: store to an address space
2561 *
2562 * These functions perform a load or store of the byte, word,
2563 * longword or quad to the specified address within the AddressSpace.
2564 * The _le suffixed functions treat the data as little endian;
2565 * _be indicates big endian; no suffix indicates "same endianness
2566 * as guest CPU".
2567 *
2568 * The "guest CPU endianness" accessors are deprecated for use outside
2569 * target-* code; devices should be CPU-agnostic and use either the LE
2570 * or the BE accessors.
2571 *
2572 * @as #AddressSpace to be accessed
2573 * @addr: address within that address space
2574 * @val: data value, for stores
2575 * @attrs: memory transaction attributes
2576 * @result: location to write the success/failure of the transaction;
2577 *   if NULL, this information is discarded
2578 */
2579
2580#define SUFFIX
2581#define ARG1         as
2582#define ARG1_DECL    AddressSpace *as
2583#include "exec/memory_ldst.h.inc"
2584
2585#define SUFFIX
2586#define ARG1         as
2587#define ARG1_DECL    AddressSpace *as
2588#include "exec/memory_ldst_phys.h.inc"
2589
2590struct MemoryRegionCache {
2591    void *ptr;
2592    hwaddr xlat;
2593    hwaddr len;
2594    FlatView *fv;
2595    MemoryRegionSection mrs;
2596    bool is_write;
2597};
2598
2599#define MEMORY_REGION_CACHE_INVALID ((MemoryRegionCache) { .mrs.mr = NULL })
2600
2601
2602/* address_space_ld*_cached: load from a cached #MemoryRegion
2603 * address_space_st*_cached: store into a cached #MemoryRegion
2604 *
2605 * These functions perform a load or store of the byte, word,
2606 * longword or quad to the specified address.  The address is
2607 * a physical address in the AddressSpace, but it must lie within
2608 * a #MemoryRegion that was mapped with address_space_cache_init.
2609 *
2610 * The _le suffixed functions treat the data as little endian;
2611 * _be indicates big endian; no suffix indicates "same endianness
2612 * as guest CPU".
2613 *
2614 * The "guest CPU endianness" accessors are deprecated for use outside
2615 * target-* code; devices should be CPU-agnostic and use either the LE
2616 * or the BE accessors.
2617 *
2618 * @cache: previously initialized #MemoryRegionCache to be accessed
2619 * @addr: address within the address space
2620 * @val: data value, for stores
2621 * @attrs: memory transaction attributes
2622 * @result: location to write the success/failure of the transaction;
2623 *   if NULL, this information is discarded
2624 */
2625
2626#define SUFFIX       _cached_slow
2627#define ARG1         cache
2628#define ARG1_DECL    MemoryRegionCache *cache
2629#include "exec/memory_ldst.h.inc"
2630
2631/* Inline fast path for direct RAM access.  */
2632static inline uint8_t address_space_ldub_cached(MemoryRegionCache *cache,
2633    hwaddr addr, MemTxAttrs attrs, MemTxResult *result)
2634{
2635    assert(addr < cache->len);
2636    if (likely(cache->ptr)) {
2637        return ldub_p(cache->ptr + addr);
2638    } else {
2639        return address_space_ldub_cached_slow(cache, addr, attrs, result);
2640    }
2641}
2642
2643static inline void address_space_stb_cached(MemoryRegionCache *cache,
2644    hwaddr addr, uint8_t val, MemTxAttrs attrs, MemTxResult *result)
2645{
2646    assert(addr < cache->len);
2647    if (likely(cache->ptr)) {
2648        stb_p(cache->ptr + addr, val);
2649    } else {
2650        address_space_stb_cached_slow(cache, addr, val, attrs, result);
2651    }
2652}
2653
2654#define ENDIANNESS   _le
2655#include "exec/memory_ldst_cached.h.inc"
2656
2657#define ENDIANNESS   _be
2658#include "exec/memory_ldst_cached.h.inc"
2659
2660#define SUFFIX       _cached
2661#define ARG1         cache
2662#define ARG1_DECL    MemoryRegionCache *cache
2663#include "exec/memory_ldst_phys.h.inc"
2664
2665/* address_space_cache_init: prepare for repeated access to a physical
2666 * memory region
2667 *
2668 * @cache: #MemoryRegionCache to be filled
2669 * @as: #AddressSpace to be accessed
2670 * @addr: address within that address space
2671 * @len: length of buffer
2672 * @is_write: indicates the transfer direction
2673 *
2674 * Will only work with RAM, and may map a subset of the requested range by
2675 * returning a value that is less than @len.  On failure, return a negative
2676 * errno value.
2677 *
2678 * Because it only works with RAM, this function can be used for
2679 * read-modify-write operations.  In this case, is_write should be %true.
2680 *
2681 * Note that addresses passed to the address_space_*_cached functions
2682 * are relative to @addr.
2683 */
2684int64_t address_space_cache_init(MemoryRegionCache *cache,
2685                                 AddressSpace *as,
2686                                 hwaddr addr,
2687                                 hwaddr len,
2688                                 bool is_write);
2689
2690/**
2691 * address_space_cache_invalidate: complete a write to a #MemoryRegionCache
2692 *
2693 * @cache: The #MemoryRegionCache to operate on.
2694 * @addr: The first physical address that was written, relative to the
2695 * address that was passed to @address_space_cache_init.
2696 * @access_len: The number of bytes that were written starting at @addr.
2697 */
2698void address_space_cache_invalidate(MemoryRegionCache *cache,
2699                                    hwaddr addr,
2700                                    hwaddr access_len);
2701
2702/**
2703 * address_space_cache_destroy: free a #MemoryRegionCache
2704 *
2705 * @cache: The #MemoryRegionCache whose memory should be released.
2706 */
2707void address_space_cache_destroy(MemoryRegionCache *cache);
2708
2709/* address_space_get_iotlb_entry: translate an address into an IOTLB
2710 * entry. Should be called from an RCU critical section.
2711 */
2712IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr,
2713                                            bool is_write, MemTxAttrs attrs);
2714
2715/* address_space_translate: translate an address range into an address space
2716 * into a MemoryRegion and an address range into that section.  Should be
2717 * called from an RCU critical section, to avoid that the last reference
2718 * to the returned region disappears after address_space_translate returns.
2719 *
2720 * @fv: #FlatView to be accessed
2721 * @addr: address within that address space
2722 * @xlat: pointer to address within the returned memory region section's
2723 * #MemoryRegion.
2724 * @len: pointer to length
2725 * @is_write: indicates the transfer direction
2726 * @attrs: memory attributes
2727 */
2728MemoryRegion *flatview_translate(FlatView *fv,
2729                                 hwaddr addr, hwaddr *xlat,
2730                                 hwaddr *len, bool is_write,
2731                                 MemTxAttrs attrs);
2732
2733static inline MemoryRegion *address_space_translate(AddressSpace *as,
2734                                                    hwaddr addr, hwaddr *xlat,
2735                                                    hwaddr *len, bool is_write,
2736                                                    MemTxAttrs attrs)
2737{
2738    return flatview_translate(address_space_to_flatview(as),
2739                              addr, xlat, len, is_write, attrs);
2740}
2741
2742/* address_space_access_valid: check for validity of accessing an address
2743 * space range
2744 *
2745 * Check whether memory is assigned to the given address space range, and
2746 * access is permitted by any IOMMU regions that are active for the address
2747 * space.
2748 *
2749 * For now, addr and len should be aligned to a page size.  This limitation
2750 * will be lifted in the future.
2751 *
2752 * @as: #AddressSpace to be accessed
2753 * @addr: address within that address space
2754 * @len: length of the area to be checked
2755 * @is_write: indicates the transfer direction
2756 * @attrs: memory attributes
2757 */
2758bool address_space_access_valid(AddressSpace *as, hwaddr addr, hwaddr len,
2759                                bool is_write, MemTxAttrs attrs);
2760
2761/* address_space_map: map a physical memory region into a host virtual address
2762 *
2763 * May map a subset of the requested range, given by and returned in @plen.
2764 * May return %NULL and set *@plen to zero(0), if resources needed to perform
2765 * the mapping are exhausted.
2766 * Use only for reads OR writes - not for read-modify-write operations.
2767 * Use cpu_register_map_client() to know when retrying the map operation is
2768 * likely to succeed.
2769 *
2770 * @as: #AddressSpace to be accessed
2771 * @addr: address within that address space
2772 * @plen: pointer to length of buffer; updated on return
2773 * @is_write: indicates the transfer direction
2774 * @attrs: memory attributes
2775 */
2776void *address_space_map(AddressSpace *as, hwaddr addr,
2777                        hwaddr *plen, bool is_write, MemTxAttrs attrs);
2778
2779/* address_space_unmap: Unmaps a memory region previously mapped by address_space_map()
2780 *
2781 * Will also mark the memory as dirty if @is_write == %true.  @access_len gives
2782 * the amount of memory that was actually read or written by the caller.
2783 *
2784 * @as: #AddressSpace used
2785 * @buffer: host pointer as returned by address_space_map()
2786 * @len: buffer length as returned by address_space_map()
2787 * @access_len: amount of data actually transferred
2788 * @is_write: indicates the transfer direction
2789 */
2790void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
2791                         bool is_write, hwaddr access_len);
2792
2793
2794/* Internal functions, part of the implementation of address_space_read.  */
2795MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr,
2796                                    MemTxAttrs attrs, void *buf, hwaddr len);
2797MemTxResult flatview_read_continue(FlatView *fv, hwaddr addr,
2798                                   MemTxAttrs attrs, void *buf,
2799                                   hwaddr len, hwaddr addr1, hwaddr l,
2800                                   MemoryRegion *mr);
2801void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr);
2802
2803/* Internal functions, part of the implementation of address_space_read_cached
2804 * and address_space_write_cached.  */
2805MemTxResult address_space_read_cached_slow(MemoryRegionCache *cache,
2806                                           hwaddr addr, void *buf, hwaddr len);
2807MemTxResult address_space_write_cached_slow(MemoryRegionCache *cache,
2808                                            hwaddr addr, const void *buf,
2809                                            hwaddr len);
2810
2811static inline bool memory_access_is_direct(MemoryRegion *mr, bool is_write)
2812{
2813    if (is_write) {
2814        return memory_region_is_ram(mr) && !mr->readonly &&
2815               !mr->rom_device && !memory_region_is_ram_device(mr);
2816    } else {
2817        return (memory_region_is_ram(mr) && !memory_region_is_ram_device(mr)) ||
2818               memory_region_is_romd(mr);
2819    }
2820}
2821
2822/**
2823 * address_space_read: read from an address space.
2824 *
2825 * Return a MemTxResult indicating whether the operation succeeded
2826 * or failed (eg unassigned memory, device rejected the transaction,
2827 * IOMMU fault).  Called within RCU critical section.
2828 *
2829 * @as: #AddressSpace to be accessed
2830 * @addr: address within that address space
2831 * @attrs: memory transaction attributes
2832 * @buf: buffer with the data transferred
2833 * @len: length of the data transferred
2834 */
2835static inline __attribute__((__always_inline__))
2836MemTxResult address_space_read(AddressSpace *as, hwaddr addr,
2837                               MemTxAttrs attrs, void *buf,
2838                               hwaddr len)
2839{
2840    MemTxResult result = MEMTX_OK;
2841    hwaddr l, addr1;
2842    void *ptr;
2843    MemoryRegion *mr;
2844    FlatView *fv;
2845
2846    if (__builtin_constant_p(len)) {
2847        if (len) {
2848            RCU_READ_LOCK_GUARD();
2849            fv = address_space_to_flatview(as);
2850            l = len;
2851            mr = flatview_translate(fv, addr, &addr1, &l, false, attrs);
2852            if (len == l && memory_access_is_direct(mr, false)) {
2853                ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
2854                memcpy(buf, ptr, len);
2855            } else {
2856                result = flatview_read_continue(fv, addr, attrs, buf, len,
2857                                                addr1, l, mr);
2858            }
2859        }
2860    } else {
2861        result = address_space_read_full(as, addr, attrs, buf, len);
2862    }
2863    return result;
2864}
2865
2866/**
2867 * address_space_read_cached: read from a cached RAM region
2868 *
2869 * @cache: Cached region to be addressed
2870 * @addr: address relative to the base of the RAM region
2871 * @buf: buffer with the data transferred
2872 * @len: length of the data transferred
2873 */
2874static inline MemTxResult
2875address_space_read_cached(MemoryRegionCache *cache, hwaddr addr,
2876                          void *buf, hwaddr len)
2877{
2878    assert(addr < cache->len && len <= cache->len - addr);
2879    fuzz_dma_read_cb(cache->xlat + addr, len, cache->mrs.mr);
2880    if (likely(cache->ptr)) {
2881        memcpy(buf, cache->ptr + addr, len);
2882        return MEMTX_OK;
2883    } else {
2884        return address_space_read_cached_slow(cache, addr, buf, len);
2885    }
2886}
2887
2888/**
2889 * address_space_write_cached: write to a cached RAM region
2890 *
2891 * @cache: Cached region to be addressed
2892 * @addr: address relative to the base of the RAM region
2893 * @buf: buffer with the data transferred
2894 * @len: length of the data transferred
2895 */
2896static inline MemTxResult
2897address_space_write_cached(MemoryRegionCache *cache, hwaddr addr,
2898                           const void *buf, hwaddr len)
2899{
2900    assert(addr < cache->len && len <= cache->len - addr);
2901    if (likely(cache->ptr)) {
2902        memcpy(cache->ptr + addr, buf, len);
2903        return MEMTX_OK;
2904    } else {
2905        return address_space_write_cached_slow(cache, addr, buf, len);
2906    }
2907}
2908
2909#ifdef NEED_CPU_H
2910/* enum device_endian to MemOp.  */
2911static inline MemOp devend_memop(enum device_endian end)
2912{
2913    QEMU_BUILD_BUG_ON(DEVICE_HOST_ENDIAN != DEVICE_LITTLE_ENDIAN &&
2914                      DEVICE_HOST_ENDIAN != DEVICE_BIG_ENDIAN);
2915
2916#if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN)
2917    /* Swap if non-host endianness or native (target) endianness */
2918    return (end == DEVICE_HOST_ENDIAN) ? 0 : MO_BSWAP;
2919#else
2920    const int non_host_endianness =
2921        DEVICE_LITTLE_ENDIAN ^ DEVICE_BIG_ENDIAN ^ DEVICE_HOST_ENDIAN;
2922
2923    /* In this case, native (target) endianness needs no swap.  */
2924    return (end == non_host_endianness) ? MO_BSWAP : 0;
2925#endif
2926}
2927#endif
2928
2929/*
2930 * Inhibit technologies that require discarding of pages in RAM blocks, e.g.,
2931 * to manage the actual amount of memory consumed by the VM (then, the memory
2932 * provided by RAM blocks might be bigger than the desired memory consumption).
2933 * This *must* be set if:
2934 * - Discarding parts of a RAM blocks does not result in the change being
2935 *   reflected in the VM and the pages getting freed.
2936 * - All memory in RAM blocks is pinned or duplicated, invaldiating any previous
2937 *   discards blindly.
2938 * - Discarding parts of a RAM blocks will result in integrity issues (e.g.,
2939 *   encrypted VMs).
2940 * Technologies that only temporarily pin the current working set of a
2941 * driver are fine, because we don't expect such pages to be discarded
2942 * (esp. based on guest action like balloon inflation).
2943 *
2944 * This is *not* to be used to protect from concurrent discards (esp.,
2945 * postcopy).
2946 *
2947 * Returns 0 if successful. Returns -EBUSY if a technology that relies on
2948 * discards to work reliably is active.
2949 */
2950int ram_block_discard_disable(bool state);
2951
2952/*
2953 * See ram_block_discard_disable(): only disable uncoordinated discards,
2954 * keeping coordinated discards (via the RamDiscardManager) enabled.
2955 */
2956int ram_block_uncoordinated_discard_disable(bool state);
2957
2958/*
2959 * Inhibit technologies that disable discarding of pages in RAM blocks.
2960 *
2961 * Returns 0 if successful. Returns -EBUSY if discards are already set to
2962 * broken.
2963 */
2964int ram_block_discard_require(bool state);
2965
2966/*
2967 * See ram_block_discard_require(): only inhibit technologies that disable
2968 * uncoordinated discarding of pages in RAM blocks, allowing co-existance with
2969 * technologies that only inhibit uncoordinated discards (via the
2970 * RamDiscardManager).
2971 */
2972int ram_block_coordinated_discard_require(bool state);
2973
2974/*
2975 * Test if any discarding of memory in ram blocks is disabled.
2976 */
2977bool ram_block_discard_is_disabled(void);
2978
2979/*
2980 * Test if any discarding of memory in ram blocks is required to work reliably.
2981 */
2982bool ram_block_discard_is_required(void);
2983
2984#endif
2985
2986#endif
2987