qemu/linux-user/sparc/signal.c
<<
>>
Prefs
   1/*
   2 *  Emulation of Linux signals
   3 *
   4 *  Copyright (c) 2003 Fabrice Bellard
   5 *
   6 *  This program is free software; you can redistribute it and/or modify
   7 *  it under the terms of the GNU General Public License as published by
   8 *  the Free Software Foundation; either version 2 of the License, or
   9 *  (at your option) any later version.
  10 *
  11 *  This program is distributed in the hope that it will be useful,
  12 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
  13 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  14 *  GNU General Public License for more details.
  15 *
  16 *  You should have received a copy of the GNU General Public License
  17 *  along with this program; if not, see <http://www.gnu.org/licenses/>.
  18 */
  19#include "qemu/osdep.h"
  20#include "qemu.h"
  21#include "user-internals.h"
  22#include "signal-common.h"
  23#include "linux-user/trace.h"
  24
  25/* A Sparc register window */
  26struct target_reg_window {
  27    abi_ulong locals[8];
  28    abi_ulong ins[8];
  29};
  30
  31/* A Sparc stack frame. */
  32struct target_stackf {
  33    /*
  34     * Since qemu does not reference fp or callers_pc directly,
  35     * it's simpler to treat fp and callers_pc as elements of ins[],
  36     * and then bundle locals[] and ins[] into reg_window.
  37     */
  38    struct target_reg_window win;
  39    /*
  40     * Similarly, bundle structptr and xxargs into xargs[].
  41     * This portion of the struct is part of the function call abi,
  42     * and belongs to the callee for spilling argument registers.
  43     */
  44    abi_ulong xargs[8];
  45};
  46
  47struct target_siginfo_fpu {
  48#ifdef TARGET_SPARC64
  49    uint64_t si_double_regs[32];
  50    uint64_t si_fsr;
  51    uint64_t si_gsr;
  52    uint64_t si_fprs;
  53#else
  54    /* It is more convenient for qemu to move doubles, not singles. */
  55    uint64_t si_double_regs[16];
  56    uint32_t si_fsr;
  57    uint32_t si_fpqdepth;
  58    struct {
  59        uint32_t insn_addr;
  60        uint32_t insn;
  61    } si_fpqueue [16];
  62#endif
  63};
  64
  65#ifdef TARGET_ARCH_HAS_SETUP_FRAME
  66struct target_signal_frame {
  67    struct target_stackf ss;
  68    struct target_pt_regs regs;
  69    uint32_t si_mask;
  70    abi_ulong fpu_save;
  71    uint32_t insns[2] QEMU_ALIGNED(8);
  72    abi_ulong extramask[TARGET_NSIG_WORDS - 1];
  73    abi_ulong extra_size; /* Should be 0 */
  74    abi_ulong rwin_save;
  75};
  76#endif
  77
  78struct target_rt_signal_frame {
  79    struct target_stackf ss;
  80    target_siginfo_t info;
  81    struct target_pt_regs regs;
  82#if defined(TARGET_SPARC64) && !defined(TARGET_ABI32)
  83    abi_ulong fpu_save;
  84    target_stack_t stack;
  85    target_sigset_t mask;
  86#else
  87    target_sigset_t mask;
  88    abi_ulong fpu_save;
  89    uint32_t insns[2];
  90    target_stack_t stack;
  91    abi_ulong extra_size; /* Should be 0 */
  92#endif
  93    abi_ulong rwin_save;
  94};
  95
  96static abi_ulong get_sigframe(struct target_sigaction *sa,
  97                              CPUSPARCState *env,
  98                              size_t framesize)
  99{
 100    abi_ulong sp = get_sp_from_cpustate(env);
 101
 102    /*
 103     * If we are on the alternate signal stack and would overflow it, don't.
 104     * Return an always-bogus address instead so we will die with SIGSEGV.
 105     */
 106    if (on_sig_stack(sp) && !likely(on_sig_stack(sp - framesize))) {
 107        return -1;
 108    }
 109
 110    /* This is the X/Open sanctioned signal stack switching.  */
 111    sp = target_sigsp(sp, sa) - framesize;
 112
 113    /*
 114     * Always align the stack frame.  This handles two cases.  First,
 115     * sigaltstack need not be mindful of platform specific stack
 116     * alignment.  Second, if we took this signal because the stack
 117     * is not aligned properly, we'd like to take the signal cleanly
 118     * and report that.
 119     */
 120    sp &= ~15UL;
 121
 122    return sp;
 123}
 124
 125static void save_pt_regs(struct target_pt_regs *regs, CPUSPARCState *env)
 126{
 127    int i;
 128
 129#if defined(TARGET_SPARC64) && !defined(TARGET_ABI32)
 130    __put_user(sparc64_tstate(env), &regs->tstate);
 131    /* TODO: magic should contain PT_REG_MAGIC + %tt. */
 132    __put_user(0, &regs->magic);
 133#else
 134    __put_user(cpu_get_psr(env), &regs->psr);
 135#endif
 136
 137    __put_user(env->pc, &regs->pc);
 138    __put_user(env->npc, &regs->npc);
 139    __put_user(env->y, &regs->y);
 140
 141    for (i = 0; i < 8; i++) {
 142        __put_user(env->gregs[i], &regs->u_regs[i]);
 143    }
 144    for (i = 0; i < 8; i++) {
 145        __put_user(env->regwptr[WREG_O0 + i], &regs->u_regs[i + 8]);
 146    }
 147}
 148
 149static void restore_pt_regs(struct target_pt_regs *regs, CPUSPARCState *env)
 150{
 151    int i;
 152
 153#if defined(TARGET_SPARC64) && !defined(TARGET_ABI32)
 154    /* User can only change condition codes and %asi in %tstate. */
 155    uint64_t tstate;
 156    __get_user(tstate, &regs->tstate);
 157    cpu_put_ccr(env, tstate >> 32);
 158    env->asi = extract64(tstate, 24, 8);
 159#else
 160    /*
 161     * User can only change condition codes and FPU enabling in %psr.
 162     * But don't bother with FPU enabling, since a real kernel would
 163     * just re-enable the FPU upon the next fpu trap.
 164     */
 165    uint32_t psr;
 166    __get_user(psr, &regs->psr);
 167    env->psr = (psr & PSR_ICC) | (env->psr & ~PSR_ICC);
 168#endif
 169
 170    /* Note that pc and npc are handled in the caller. */
 171
 172    __get_user(env->y, &regs->y);
 173
 174    for (i = 0; i < 8; i++) {
 175        __get_user(env->gregs[i], &regs->u_regs[i]);
 176    }
 177    for (i = 0; i < 8; i++) {
 178        __get_user(env->regwptr[WREG_O0 + i], &regs->u_regs[i + 8]);
 179    }
 180}
 181
 182static void save_reg_win(struct target_reg_window *win, CPUSPARCState *env)
 183{
 184    int i;
 185
 186    for (i = 0; i < 8; i++) {
 187        __put_user(env->regwptr[i + WREG_L0], &win->locals[i]);
 188    }
 189    for (i = 0; i < 8; i++) {
 190        __put_user(env->regwptr[i + WREG_I0], &win->ins[i]);
 191    }
 192}
 193
 194static void save_fpu(struct target_siginfo_fpu *fpu, CPUSPARCState *env)
 195{
 196    int i;
 197
 198#ifdef TARGET_SPARC64
 199    for (i = 0; i < 32; ++i) {
 200        __put_user(env->fpr[i].ll, &fpu->si_double_regs[i]);
 201    }
 202    __put_user(env->fsr, &fpu->si_fsr);
 203    __put_user(env->gsr, &fpu->si_gsr);
 204    __put_user(env->fprs, &fpu->si_fprs);
 205#else
 206    for (i = 0; i < 16; ++i) {
 207        __put_user(env->fpr[i].ll, &fpu->si_double_regs[i]);
 208    }
 209    __put_user(env->fsr, &fpu->si_fsr);
 210    __put_user(0, &fpu->si_fpqdepth);
 211#endif
 212}
 213
 214static void restore_fpu(struct target_siginfo_fpu *fpu, CPUSPARCState *env)
 215{
 216    int i;
 217
 218#ifdef TARGET_SPARC64
 219    uint64_t fprs;
 220    __get_user(fprs, &fpu->si_fprs);
 221
 222    /* In case the user mucks about with FPRS, restore as directed. */
 223    if (fprs & FPRS_DL) {
 224        for (i = 0; i < 16; ++i) {
 225            __get_user(env->fpr[i].ll, &fpu->si_double_regs[i]);
 226        }
 227    }
 228    if (fprs & FPRS_DU) {
 229        for (i = 16; i < 32; ++i) {
 230            __get_user(env->fpr[i].ll, &fpu->si_double_regs[i]);
 231        }
 232    }
 233    __get_user(env->fsr, &fpu->si_fsr);
 234    __get_user(env->gsr, &fpu->si_gsr);
 235    env->fprs |= fprs;
 236#else
 237    for (i = 0; i < 16; ++i) {
 238        __get_user(env->fpr[i].ll, &fpu->si_double_regs[i]);
 239    }
 240    __get_user(env->fsr, &fpu->si_fsr);
 241#endif
 242}
 243
 244#ifdef TARGET_ARCH_HAS_SETUP_FRAME
 245static void install_sigtramp(uint32_t *tramp, int syscall)
 246{
 247    __put_user(0x82102000u + syscall, &tramp[0]); /* mov syscall, %g1 */
 248    __put_user(0x91d02010u, &tramp[1]);           /* t 0x10 */
 249}
 250
 251void setup_frame(int sig, struct target_sigaction *ka,
 252                 target_sigset_t *set, CPUSPARCState *env)
 253{
 254    abi_ulong sf_addr;
 255    struct target_signal_frame *sf;
 256    size_t sf_size = sizeof(*sf) + sizeof(struct target_siginfo_fpu);
 257    int i;
 258
 259    sf_addr = get_sigframe(ka, env, sf_size);
 260    trace_user_setup_frame(env, sf_addr);
 261
 262    sf = lock_user(VERIFY_WRITE, sf_addr, sf_size, 0);
 263    if (!sf) {
 264        force_sigsegv(sig);
 265        return;
 266    }
 267
 268    /* 2. Save the current process state */
 269    save_pt_regs(&sf->regs, env);
 270    __put_user(0, &sf->extra_size);
 271
 272    save_fpu((struct target_siginfo_fpu *)(sf + 1), env);
 273    __put_user(sf_addr + sizeof(*sf), &sf->fpu_save);
 274
 275    __put_user(0, &sf->rwin_save);  /* TODO: save_rwin_state */
 276
 277    __put_user(set->sig[0], &sf->si_mask);
 278    for (i = 0; i < TARGET_NSIG_WORDS - 1; i++) {
 279        __put_user(set->sig[i + 1], &sf->extramask[i]);
 280    }
 281
 282    save_reg_win(&sf->ss.win, env);
 283
 284    /* 3. signal handler back-trampoline and parameters */
 285    env->regwptr[WREG_SP] = sf_addr;
 286    env->regwptr[WREG_O0] = sig;
 287    env->regwptr[WREG_O1] = sf_addr +
 288            offsetof(struct target_signal_frame, regs);
 289    env->regwptr[WREG_O2] = sf_addr +
 290            offsetof(struct target_signal_frame, regs);
 291
 292    /* 4. signal handler */
 293    env->pc = ka->_sa_handler;
 294    env->npc = env->pc + 4;
 295
 296    /* 5. return to kernel instructions */
 297    if (ka->ka_restorer) {
 298        env->regwptr[WREG_O7] = ka->ka_restorer;
 299    } else {
 300        /* Not used, but retain for ABI compatibility. */
 301        install_sigtramp(sf->insns, TARGET_NR_sigreturn);
 302        env->regwptr[WREG_O7] = default_sigreturn;
 303    }
 304    unlock_user(sf, sf_addr, sf_size);
 305}
 306#endif /* TARGET_ARCH_HAS_SETUP_FRAME */
 307
 308void setup_rt_frame(int sig, struct target_sigaction *ka,
 309                    target_siginfo_t *info,
 310                    target_sigset_t *set, CPUSPARCState *env)
 311{
 312    abi_ulong sf_addr;
 313    struct target_rt_signal_frame *sf;
 314    size_t sf_size = sizeof(*sf) + sizeof(struct target_siginfo_fpu);
 315
 316    sf_addr = get_sigframe(ka, env, sf_size);
 317    trace_user_setup_rt_frame(env, sf_addr);
 318
 319    sf = lock_user(VERIFY_WRITE, sf_addr, sf_size, 0);
 320    if (!sf) {
 321        force_sigsegv(sig);
 322        return;
 323    }
 324
 325    /* 2. Save the current process state */
 326    save_reg_win(&sf->ss.win, env);
 327    save_pt_regs(&sf->regs, env);
 328
 329    save_fpu((struct target_siginfo_fpu *)(sf + 1), env);
 330    __put_user(sf_addr + sizeof(*sf), &sf->fpu_save);
 331
 332    __put_user(0, &sf->rwin_save);  /* TODO: save_rwin_state */
 333
 334    tswap_siginfo(&sf->info, info);
 335    tswap_sigset(&sf->mask, set);
 336    target_save_altstack(&sf->stack, env);
 337
 338#ifdef TARGET_ABI32
 339    __put_user(0, &sf->extra_size);
 340#endif
 341
 342    /* 3. signal handler back-trampoline and parameters */
 343    env->regwptr[WREG_SP] = sf_addr - TARGET_STACK_BIAS;
 344    env->regwptr[WREG_O0] = sig;
 345    env->regwptr[WREG_O1] =
 346        sf_addr + offsetof(struct target_rt_signal_frame, info);
 347#ifdef TARGET_ABI32
 348    env->regwptr[WREG_O2] =
 349        sf_addr + offsetof(struct target_rt_signal_frame, regs);
 350#else
 351    env->regwptr[WREG_O2] = env->regwptr[WREG_O1];
 352#endif
 353
 354    /* 4. signal handler */
 355    env->pc = ka->_sa_handler;
 356    env->npc = env->pc + 4;
 357
 358    /* 5. return to kernel instructions */
 359#ifdef TARGET_ABI32
 360    if (ka->ka_restorer) {
 361        env->regwptr[WREG_O7] = ka->ka_restorer;
 362    } else {
 363        /* Not used, but retain for ABI compatibility. */
 364        install_sigtramp(sf->insns, TARGET_NR_rt_sigreturn);
 365        env->regwptr[WREG_O7] = default_rt_sigreturn;
 366    }
 367#else
 368    env->regwptr[WREG_O7] = ka->ka_restorer;
 369#endif
 370
 371    unlock_user(sf, sf_addr, sf_size);
 372}
 373
 374long do_sigreturn(CPUSPARCState *env)
 375{
 376#ifdef TARGET_ARCH_HAS_SETUP_FRAME
 377    abi_ulong sf_addr;
 378    struct target_signal_frame *sf = NULL;
 379    abi_ulong pc, npc, ptr;
 380    target_sigset_t set;
 381    sigset_t host_set;
 382    int i;
 383
 384    sf_addr = env->regwptr[WREG_SP];
 385    trace_user_do_sigreturn(env, sf_addr);
 386
 387    /* 1. Make sure we are not getting garbage from the user */
 388    if ((sf_addr & 15) || !lock_user_struct(VERIFY_READ, sf, sf_addr, 1)) {
 389        goto segv_and_exit;
 390    }
 391
 392    /* Make sure stack pointer is aligned.  */
 393    __get_user(ptr, &sf->regs.u_regs[14]);
 394    if (ptr & 7) {
 395        goto segv_and_exit;
 396    }
 397
 398    /* Make sure instruction pointers are aligned.  */
 399    __get_user(pc, &sf->regs.pc);
 400    __get_user(npc, &sf->regs.npc);
 401    if ((pc | npc) & 3) {
 402        goto segv_and_exit;
 403    }
 404
 405    /* 2. Restore the state */
 406    restore_pt_regs(&sf->regs, env);
 407    env->pc = pc;
 408    env->npc = npc;
 409
 410    __get_user(ptr, &sf->fpu_save);
 411    if (ptr) {
 412        struct target_siginfo_fpu *fpu;
 413        if ((ptr & 3) || !lock_user_struct(VERIFY_READ, fpu, ptr, 1)) {
 414            goto segv_and_exit;
 415        }
 416        restore_fpu(fpu, env);
 417        unlock_user_struct(fpu, ptr, 0);
 418    }
 419
 420    __get_user(ptr, &sf->rwin_save);
 421    if (ptr) {
 422        goto segv_and_exit;  /* TODO: restore_rwin */
 423    }
 424
 425    __get_user(set.sig[0], &sf->si_mask);
 426    for (i = 1; i < TARGET_NSIG_WORDS; i++) {
 427        __get_user(set.sig[i], &sf->extramask[i - 1]);
 428    }
 429
 430    target_to_host_sigset_internal(&host_set, &set);
 431    set_sigmask(&host_set);
 432
 433    unlock_user_struct(sf, sf_addr, 0);
 434    return -TARGET_QEMU_ESIGRETURN;
 435
 436 segv_and_exit:
 437    unlock_user_struct(sf, sf_addr, 0);
 438    force_sig(TARGET_SIGSEGV);
 439    return -TARGET_QEMU_ESIGRETURN;
 440#else
 441    return -TARGET_ENOSYS;
 442#endif
 443}
 444
 445long do_rt_sigreturn(CPUSPARCState *env)
 446{
 447    abi_ulong sf_addr, tpc, tnpc, ptr;
 448    struct target_rt_signal_frame *sf = NULL;
 449    sigset_t set;
 450
 451    sf_addr = get_sp_from_cpustate(env);
 452    trace_user_do_rt_sigreturn(env, sf_addr);
 453
 454    /* 1. Make sure we are not getting garbage from the user */
 455    if ((sf_addr & 15) || !lock_user_struct(VERIFY_READ, sf, sf_addr, 1)) {
 456        goto segv_and_exit;
 457    }
 458
 459    /* Validate SP alignment.  */
 460    __get_user(ptr, &sf->regs.u_regs[8 + WREG_SP]);
 461    if ((ptr + TARGET_STACK_BIAS) & 7) {
 462        goto segv_and_exit;
 463    }
 464
 465    /* Validate PC and NPC alignment.  */
 466    __get_user(tpc, &sf->regs.pc);
 467    __get_user(tnpc, &sf->regs.npc);
 468    if ((tpc | tnpc) & 3) {
 469        goto segv_and_exit;
 470    }
 471
 472    /* 2. Restore the state */
 473    restore_pt_regs(&sf->regs, env);
 474
 475    __get_user(ptr, &sf->fpu_save);
 476    if (ptr) {
 477        struct target_siginfo_fpu *fpu;
 478        if ((ptr & 7) || !lock_user_struct(VERIFY_READ, fpu, ptr, 1)) {
 479            goto segv_and_exit;
 480        }
 481        restore_fpu(fpu, env);
 482        unlock_user_struct(fpu, ptr, 0);
 483    }
 484
 485    __get_user(ptr, &sf->rwin_save);
 486    if (ptr) {
 487        goto segv_and_exit;  /* TODO: restore_rwin_state */
 488    }
 489
 490    target_restore_altstack(&sf->stack, env);
 491    target_to_host_sigset(&set, &sf->mask);
 492    set_sigmask(&set);
 493
 494    env->pc = tpc;
 495    env->npc = tnpc;
 496
 497    unlock_user_struct(sf, sf_addr, 0);
 498    return -TARGET_QEMU_ESIGRETURN;
 499
 500 segv_and_exit:
 501    unlock_user_struct(sf, sf_addr, 0);
 502    force_sig(TARGET_SIGSEGV);
 503    return -TARGET_QEMU_ESIGRETURN;
 504}
 505
 506#if defined(TARGET_SPARC64) && !defined(TARGET_ABI32)
 507#define SPARC_MC_TSTATE 0
 508#define SPARC_MC_PC 1
 509#define SPARC_MC_NPC 2
 510#define SPARC_MC_Y 3
 511#define SPARC_MC_G1 4
 512#define SPARC_MC_G2 5
 513#define SPARC_MC_G3 6
 514#define SPARC_MC_G4 7
 515#define SPARC_MC_G5 8
 516#define SPARC_MC_G6 9
 517#define SPARC_MC_G7 10
 518#define SPARC_MC_O0 11
 519#define SPARC_MC_O1 12
 520#define SPARC_MC_O2 13
 521#define SPARC_MC_O3 14
 522#define SPARC_MC_O4 15
 523#define SPARC_MC_O5 16
 524#define SPARC_MC_O6 17
 525#define SPARC_MC_O7 18
 526#define SPARC_MC_NGREG 19
 527
 528typedef abi_ulong target_mc_greg_t;
 529typedef target_mc_greg_t target_mc_gregset_t[SPARC_MC_NGREG];
 530
 531struct target_mc_fq {
 532    abi_ulong mcfq_addr;
 533    uint32_t mcfq_insn;
 534};
 535
 536/*
 537 * Note the manual 16-alignment; the kernel gets this because it
 538 * includes a "long double qregs[16]" in the mcpu_fregs union,
 539 * which we can't do.
 540 */
 541struct target_mc_fpu {
 542    union {
 543        uint32_t sregs[32];
 544        uint64_t dregs[32];
 545        //uint128_t qregs[16];
 546    } mcfpu_fregs;
 547    abi_ulong mcfpu_fsr;
 548    abi_ulong mcfpu_fprs;
 549    abi_ulong mcfpu_gsr;
 550    abi_ulong mcfpu_fq;
 551    unsigned char mcfpu_qcnt;
 552    unsigned char mcfpu_qentsz;
 553    unsigned char mcfpu_enab;
 554} __attribute__((aligned(16)));
 555typedef struct target_mc_fpu target_mc_fpu_t;
 556
 557typedef struct {
 558    target_mc_gregset_t mc_gregs;
 559    target_mc_greg_t mc_fp;
 560    target_mc_greg_t mc_i7;
 561    target_mc_fpu_t mc_fpregs;
 562} target_mcontext_t;
 563
 564struct target_ucontext {
 565    abi_ulong tuc_link;
 566    abi_ulong tuc_flags;
 567    target_sigset_t tuc_sigmask;
 568    target_mcontext_t tuc_mcontext;
 569};
 570
 571/* {set, get}context() needed for 64-bit SparcLinux userland. */
 572void sparc64_set_context(CPUSPARCState *env)
 573{
 574    abi_ulong ucp_addr;
 575    struct target_ucontext *ucp;
 576    target_mc_gregset_t *grp;
 577    target_mc_fpu_t *fpup;
 578    abi_ulong pc, npc, tstate;
 579    unsigned int i;
 580    unsigned char fenab;
 581
 582    ucp_addr = env->regwptr[WREG_O0];
 583    if (!lock_user_struct(VERIFY_READ, ucp, ucp_addr, 1)) {
 584        goto do_sigsegv;
 585    }
 586    grp  = &ucp->tuc_mcontext.mc_gregs;
 587    __get_user(pc, &((*grp)[SPARC_MC_PC]));
 588    __get_user(npc, &((*grp)[SPARC_MC_NPC]));
 589    if ((pc | npc) & 3) {
 590        goto do_sigsegv;
 591    }
 592    if (env->regwptr[WREG_O1]) {
 593        target_sigset_t target_set;
 594        sigset_t set;
 595
 596        if (TARGET_NSIG_WORDS == 1) {
 597            __get_user(target_set.sig[0], &ucp->tuc_sigmask.sig[0]);
 598        } else {
 599            abi_ulong *src, *dst;
 600            src = ucp->tuc_sigmask.sig;
 601            dst = target_set.sig;
 602            for (i = 0; i < TARGET_NSIG_WORDS; i++, dst++, src++) {
 603                __get_user(*dst, src);
 604            }
 605        }
 606        target_to_host_sigset_internal(&set, &target_set);
 607        set_sigmask(&set);
 608    }
 609    env->pc = pc;
 610    env->npc = npc;
 611    __get_user(env->y, &((*grp)[SPARC_MC_Y]));
 612    __get_user(tstate, &((*grp)[SPARC_MC_TSTATE]));
 613    /* Honour TSTATE_ASI, TSTATE_ICC and TSTATE_XCC only */
 614    env->asi = (tstate >> 24) & 0xff;
 615    cpu_put_ccr(env, (tstate >> 32) & 0xff);
 616    __get_user(env->gregs[1], (&(*grp)[SPARC_MC_G1]));
 617    __get_user(env->gregs[2], (&(*grp)[SPARC_MC_G2]));
 618    __get_user(env->gregs[3], (&(*grp)[SPARC_MC_G3]));
 619    __get_user(env->gregs[4], (&(*grp)[SPARC_MC_G4]));
 620    __get_user(env->gregs[5], (&(*grp)[SPARC_MC_G5]));
 621    __get_user(env->gregs[6], (&(*grp)[SPARC_MC_G6]));
 622    /* Skip g7 as that's the thread register in userspace */
 623
 624    /*
 625     * Note that unlike the kernel, we didn't need to mess with the
 626     * guest register window state to save it into a pt_regs to run
 627     * the kernel. So for us the guest's O regs are still in WREG_O*
 628     * (unlike the kernel which has put them in UREG_I* in a pt_regs)
 629     * and the fp and i7 are still in WREG_I6 and WREG_I7 and don't
 630     * need to be written back to userspace memory.
 631     */
 632    __get_user(env->regwptr[WREG_O0], (&(*grp)[SPARC_MC_O0]));
 633    __get_user(env->regwptr[WREG_O1], (&(*grp)[SPARC_MC_O1]));
 634    __get_user(env->regwptr[WREG_O2], (&(*grp)[SPARC_MC_O2]));
 635    __get_user(env->regwptr[WREG_O3], (&(*grp)[SPARC_MC_O3]));
 636    __get_user(env->regwptr[WREG_O4], (&(*grp)[SPARC_MC_O4]));
 637    __get_user(env->regwptr[WREG_O5], (&(*grp)[SPARC_MC_O5]));
 638    __get_user(env->regwptr[WREG_O6], (&(*grp)[SPARC_MC_O6]));
 639    __get_user(env->regwptr[WREG_O7], (&(*grp)[SPARC_MC_O7]));
 640
 641    __get_user(env->regwptr[WREG_FP], &(ucp->tuc_mcontext.mc_fp));
 642    __get_user(env->regwptr[WREG_I7], &(ucp->tuc_mcontext.mc_i7));
 643
 644    fpup = &ucp->tuc_mcontext.mc_fpregs;
 645
 646    __get_user(fenab, &(fpup->mcfpu_enab));
 647    if (fenab) {
 648        abi_ulong fprs;
 649
 650        /*
 651         * We use the FPRS from the guest only in deciding whether
 652         * to restore the upper, lower, or both banks of the FPU regs.
 653         * The kernel here writes the FPU register data into the
 654         * process's current_thread_info state and unconditionally
 655         * clears FPRS and TSTATE_PEF: this disables the FPU so that the
 656         * next FPU-disabled trap will copy the data out of
 657         * current_thread_info and into the real FPU registers.
 658         * QEMU doesn't need to handle lazy-FPU-state-restoring like that,
 659         * so we always load the data directly into the FPU registers
 660         * and leave FPRS and TSTATE_PEF alone (so the FPU stays enabled).
 661         * Note that because we (and the kernel) always write zeroes for
 662         * the fenab and fprs in sparc64_get_context() none of this code
 663         * will execute unless the guest manually constructed or changed
 664         * the context structure.
 665         */
 666        __get_user(fprs, &(fpup->mcfpu_fprs));
 667        if (fprs & FPRS_DL) {
 668            for (i = 0; i < 16; i++) {
 669                __get_user(env->fpr[i].ll, &(fpup->mcfpu_fregs.dregs[i]));
 670            }
 671        }
 672        if (fprs & FPRS_DU) {
 673            for (i = 16; i < 32; i++) {
 674                __get_user(env->fpr[i].ll, &(fpup->mcfpu_fregs.dregs[i]));
 675            }
 676        }
 677        __get_user(env->fsr, &(fpup->mcfpu_fsr));
 678        __get_user(env->gsr, &(fpup->mcfpu_gsr));
 679    }
 680    unlock_user_struct(ucp, ucp_addr, 0);
 681    return;
 682do_sigsegv:
 683    unlock_user_struct(ucp, ucp_addr, 0);
 684    force_sig(TARGET_SIGSEGV);
 685}
 686
 687void sparc64_get_context(CPUSPARCState *env)
 688{
 689    abi_ulong ucp_addr;
 690    struct target_ucontext *ucp;
 691    target_mc_gregset_t *grp;
 692    target_mcontext_t *mcp;
 693    int err;
 694    unsigned int i;
 695    target_sigset_t target_set;
 696    sigset_t set;
 697
 698    ucp_addr = env->regwptr[WREG_O0];
 699    if (!lock_user_struct(VERIFY_WRITE, ucp, ucp_addr, 0)) {
 700        goto do_sigsegv;
 701    }
 702
 703    memset(ucp, 0, sizeof(*ucp));
 704
 705    mcp = &ucp->tuc_mcontext;
 706    grp = &mcp->mc_gregs;
 707
 708    /* Skip over the trap instruction, first. */
 709    env->pc = env->npc;
 710    env->npc += 4;
 711
 712    /* If we're only reading the signal mask then do_sigprocmask()
 713     * is guaranteed not to fail, which is important because we don't
 714     * have any way to signal a failure or restart this operation since
 715     * this is not a normal syscall.
 716     */
 717    err = do_sigprocmask(0, NULL, &set);
 718    assert(err == 0);
 719    host_to_target_sigset_internal(&target_set, &set);
 720    if (TARGET_NSIG_WORDS == 1) {
 721        __put_user(target_set.sig[0],
 722                   (abi_ulong *)&ucp->tuc_sigmask);
 723    } else {
 724        abi_ulong *src, *dst;
 725        src = target_set.sig;
 726        dst = ucp->tuc_sigmask.sig;
 727        for (i = 0; i < TARGET_NSIG_WORDS; i++, dst++, src++) {
 728            __put_user(*src, dst);
 729        }
 730    }
 731
 732    __put_user(sparc64_tstate(env), &((*grp)[SPARC_MC_TSTATE]));
 733    __put_user(env->pc, &((*grp)[SPARC_MC_PC]));
 734    __put_user(env->npc, &((*grp)[SPARC_MC_NPC]));
 735    __put_user(env->y, &((*grp)[SPARC_MC_Y]));
 736    __put_user(env->gregs[1], &((*grp)[SPARC_MC_G1]));
 737    __put_user(env->gregs[2], &((*grp)[SPARC_MC_G2]));
 738    __put_user(env->gregs[3], &((*grp)[SPARC_MC_G3]));
 739    __put_user(env->gregs[4], &((*grp)[SPARC_MC_G4]));
 740    __put_user(env->gregs[5], &((*grp)[SPARC_MC_G5]));
 741    __put_user(env->gregs[6], &((*grp)[SPARC_MC_G6]));
 742    __put_user(env->gregs[7], &((*grp)[SPARC_MC_G7]));
 743
 744    /*
 745     * Note that unlike the kernel, we didn't need to mess with the
 746     * guest register window state to save it into a pt_regs to run
 747     * the kernel. So for us the guest's O regs are still in WREG_O*
 748     * (unlike the kernel which has put them in UREG_I* in a pt_regs)
 749     * and the fp and i7 are still in WREG_I6 and WREG_I7 and don't
 750     * need to be fished out of userspace memory.
 751     */
 752    __put_user(env->regwptr[WREG_O0], &((*grp)[SPARC_MC_O0]));
 753    __put_user(env->regwptr[WREG_O1], &((*grp)[SPARC_MC_O1]));
 754    __put_user(env->regwptr[WREG_O2], &((*grp)[SPARC_MC_O2]));
 755    __put_user(env->regwptr[WREG_O3], &((*grp)[SPARC_MC_O3]));
 756    __put_user(env->regwptr[WREG_O4], &((*grp)[SPARC_MC_O4]));
 757    __put_user(env->regwptr[WREG_O5], &((*grp)[SPARC_MC_O5]));
 758    __put_user(env->regwptr[WREG_O6], &((*grp)[SPARC_MC_O6]));
 759    __put_user(env->regwptr[WREG_O7], &((*grp)[SPARC_MC_O7]));
 760
 761    __put_user(env->regwptr[WREG_FP], &(mcp->mc_fp));
 762    __put_user(env->regwptr[WREG_I7], &(mcp->mc_i7));
 763
 764    /*
 765     * We don't write out the FPU state. This matches the kernel's
 766     * implementation (which has the code for doing this but
 767     * hidden behind an "if (fenab)" where fenab is always 0).
 768     */
 769
 770    unlock_user_struct(ucp, ucp_addr, 1);
 771    return;
 772do_sigsegv:
 773    unlock_user_struct(ucp, ucp_addr, 1);
 774    force_sig(TARGET_SIGSEGV);
 775}
 776#else
 777void setup_sigtramp(abi_ulong sigtramp_page)
 778{
 779    uint32_t *tramp = lock_user(VERIFY_WRITE, sigtramp_page, 2 * 8, 0);
 780    assert(tramp != NULL);
 781
 782    default_sigreturn = sigtramp_page;
 783    install_sigtramp(tramp, TARGET_NR_sigreturn);
 784
 785    default_rt_sigreturn = sigtramp_page + 8;
 786    install_sigtramp(tramp + 2, TARGET_NR_rt_sigreturn);
 787
 788    unlock_user(tramp, sigtramp_page, 2 * 8);
 789}
 790#endif
 791