qemu/migration/postcopy-ram.c
<<
>>
Prefs
   1/*
   2 * Postcopy migration for RAM
   3 *
   4 * Copyright 2013-2015 Red Hat, Inc. and/or its affiliates
   5 *
   6 * Authors:
   7 *  Dave Gilbert  <dgilbert@redhat.com>
   8 *
   9 * This work is licensed under the terms of the GNU GPL, version 2 or later.
  10 * See the COPYING file in the top-level directory.
  11 *
  12 */
  13
  14/*
  15 * Postcopy is a migration technique where the execution flips from the
  16 * source to the destination before all the data has been copied.
  17 */
  18
  19#include "qemu/osdep.h"
  20#include "qemu/rcu.h"
  21#include "exec/target_page.h"
  22#include "migration.h"
  23#include "qemu-file.h"
  24#include "savevm.h"
  25#include "postcopy-ram.h"
  26#include "ram.h"
  27#include "qapi/error.h"
  28#include "qemu/notify.h"
  29#include "qemu/rcu.h"
  30#include "sysemu/sysemu.h"
  31#include "qemu/error-report.h"
  32#include "trace.h"
  33#include "hw/boards.h"
  34#include "exec/ramblock.h"
  35
  36/* Arbitrary limit on size of each discard command,
  37 * keeps them around ~200 bytes
  38 */
  39#define MAX_DISCARDS_PER_COMMAND 12
  40
  41struct PostcopyDiscardState {
  42    const char *ramblock_name;
  43    uint16_t cur_entry;
  44    /*
  45     * Start and length of a discard range (bytes)
  46     */
  47    uint64_t start_list[MAX_DISCARDS_PER_COMMAND];
  48    uint64_t length_list[MAX_DISCARDS_PER_COMMAND];
  49    unsigned int nsentwords;
  50    unsigned int nsentcmds;
  51};
  52
  53static NotifierWithReturnList postcopy_notifier_list;
  54
  55void postcopy_infrastructure_init(void)
  56{
  57    notifier_with_return_list_init(&postcopy_notifier_list);
  58}
  59
  60void postcopy_add_notifier(NotifierWithReturn *nn)
  61{
  62    notifier_with_return_list_add(&postcopy_notifier_list, nn);
  63}
  64
  65void postcopy_remove_notifier(NotifierWithReturn *n)
  66{
  67    notifier_with_return_remove(n);
  68}
  69
  70int postcopy_notify(enum PostcopyNotifyReason reason, Error **errp)
  71{
  72    struct PostcopyNotifyData pnd;
  73    pnd.reason = reason;
  74    pnd.errp = errp;
  75
  76    return notifier_with_return_list_notify(&postcopy_notifier_list,
  77                                            &pnd);
  78}
  79
  80/* Postcopy needs to detect accesses to pages that haven't yet been copied
  81 * across, and efficiently map new pages in, the techniques for doing this
  82 * are target OS specific.
  83 */
  84#if defined(__linux__)
  85
  86#include <poll.h>
  87#include <sys/ioctl.h>
  88#include <sys/syscall.h>
  89#include <asm/types.h> /* for __u64 */
  90#endif
  91
  92#if defined(__linux__) && defined(__NR_userfaultfd) && defined(CONFIG_EVENTFD)
  93#include <sys/eventfd.h>
  94#include <linux/userfaultfd.h>
  95
  96typedef struct PostcopyBlocktimeContext {
  97    /* time when page fault initiated per vCPU */
  98    uint32_t *page_fault_vcpu_time;
  99    /* page address per vCPU */
 100    uintptr_t *vcpu_addr;
 101    uint32_t total_blocktime;
 102    /* blocktime per vCPU */
 103    uint32_t *vcpu_blocktime;
 104    /* point in time when last page fault was initiated */
 105    uint32_t last_begin;
 106    /* number of vCPU are suspended */
 107    int smp_cpus_down;
 108    uint64_t start_time;
 109
 110    /*
 111     * Handler for exit event, necessary for
 112     * releasing whole blocktime_ctx
 113     */
 114    Notifier exit_notifier;
 115} PostcopyBlocktimeContext;
 116
 117static void destroy_blocktime_context(struct PostcopyBlocktimeContext *ctx)
 118{
 119    g_free(ctx->page_fault_vcpu_time);
 120    g_free(ctx->vcpu_addr);
 121    g_free(ctx->vcpu_blocktime);
 122    g_free(ctx);
 123}
 124
 125static void migration_exit_cb(Notifier *n, void *data)
 126{
 127    PostcopyBlocktimeContext *ctx = container_of(n, PostcopyBlocktimeContext,
 128                                                 exit_notifier);
 129    destroy_blocktime_context(ctx);
 130}
 131
 132static struct PostcopyBlocktimeContext *blocktime_context_new(void)
 133{
 134    MachineState *ms = MACHINE(qdev_get_machine());
 135    unsigned int smp_cpus = ms->smp.cpus;
 136    PostcopyBlocktimeContext *ctx = g_new0(PostcopyBlocktimeContext, 1);
 137    ctx->page_fault_vcpu_time = g_new0(uint32_t, smp_cpus);
 138    ctx->vcpu_addr = g_new0(uintptr_t, smp_cpus);
 139    ctx->vcpu_blocktime = g_new0(uint32_t, smp_cpus);
 140
 141    ctx->exit_notifier.notify = migration_exit_cb;
 142    ctx->start_time = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
 143    qemu_add_exit_notifier(&ctx->exit_notifier);
 144    return ctx;
 145}
 146
 147static uint32List *get_vcpu_blocktime_list(PostcopyBlocktimeContext *ctx)
 148{
 149    MachineState *ms = MACHINE(qdev_get_machine());
 150    uint32List *list = NULL;
 151    int i;
 152
 153    for (i = ms->smp.cpus - 1; i >= 0; i--) {
 154        QAPI_LIST_PREPEND(list, ctx->vcpu_blocktime[i]);
 155    }
 156
 157    return list;
 158}
 159
 160/*
 161 * This function just populates MigrationInfo from postcopy's
 162 * blocktime context. It will not populate MigrationInfo,
 163 * unless postcopy-blocktime capability was set.
 164 *
 165 * @info: pointer to MigrationInfo to populate
 166 */
 167void fill_destination_postcopy_migration_info(MigrationInfo *info)
 168{
 169    MigrationIncomingState *mis = migration_incoming_get_current();
 170    PostcopyBlocktimeContext *bc = mis->blocktime_ctx;
 171
 172    if (!bc) {
 173        return;
 174    }
 175
 176    info->has_postcopy_blocktime = true;
 177    info->postcopy_blocktime = bc->total_blocktime;
 178    info->has_postcopy_vcpu_blocktime = true;
 179    info->postcopy_vcpu_blocktime = get_vcpu_blocktime_list(bc);
 180}
 181
 182static uint32_t get_postcopy_total_blocktime(void)
 183{
 184    MigrationIncomingState *mis = migration_incoming_get_current();
 185    PostcopyBlocktimeContext *bc = mis->blocktime_ctx;
 186
 187    if (!bc) {
 188        return 0;
 189    }
 190
 191    return bc->total_blocktime;
 192}
 193
 194/**
 195 * receive_ufd_features: check userfault fd features, to request only supported
 196 * features in the future.
 197 *
 198 * Returns: true on success
 199 *
 200 * __NR_userfaultfd - should be checked before
 201 *  @features: out parameter will contain uffdio_api.features provided by kernel
 202 *              in case of success
 203 */
 204static bool receive_ufd_features(uint64_t *features)
 205{
 206    struct uffdio_api api_struct = {0};
 207    int ufd;
 208    bool ret = true;
 209
 210    /* if we are here __NR_userfaultfd should exists */
 211    ufd = syscall(__NR_userfaultfd, O_CLOEXEC);
 212    if (ufd == -1) {
 213        error_report("%s: syscall __NR_userfaultfd failed: %s", __func__,
 214                     strerror(errno));
 215        return false;
 216    }
 217
 218    /* ask features */
 219    api_struct.api = UFFD_API;
 220    api_struct.features = 0;
 221    if (ioctl(ufd, UFFDIO_API, &api_struct)) {
 222        error_report("%s: UFFDIO_API failed: %s", __func__,
 223                     strerror(errno));
 224        ret = false;
 225        goto release_ufd;
 226    }
 227
 228    *features = api_struct.features;
 229
 230release_ufd:
 231    close(ufd);
 232    return ret;
 233}
 234
 235/**
 236 * request_ufd_features: this function should be called only once on a newly
 237 * opened ufd, subsequent calls will lead to error.
 238 *
 239 * Returns: true on success
 240 *
 241 * @ufd: fd obtained from userfaultfd syscall
 242 * @features: bit mask see UFFD_API_FEATURES
 243 */
 244static bool request_ufd_features(int ufd, uint64_t features)
 245{
 246    struct uffdio_api api_struct = {0};
 247    uint64_t ioctl_mask;
 248
 249    api_struct.api = UFFD_API;
 250    api_struct.features = features;
 251    if (ioctl(ufd, UFFDIO_API, &api_struct)) {
 252        error_report("%s failed: UFFDIO_API failed: %s", __func__,
 253                     strerror(errno));
 254        return false;
 255    }
 256
 257    ioctl_mask = (__u64)1 << _UFFDIO_REGISTER |
 258                 (__u64)1 << _UFFDIO_UNREGISTER;
 259    if ((api_struct.ioctls & ioctl_mask) != ioctl_mask) {
 260        error_report("Missing userfault features: %" PRIx64,
 261                     (uint64_t)(~api_struct.ioctls & ioctl_mask));
 262        return false;
 263    }
 264
 265    return true;
 266}
 267
 268static bool ufd_check_and_apply(int ufd, MigrationIncomingState *mis)
 269{
 270    uint64_t asked_features = 0;
 271    static uint64_t supported_features;
 272
 273    /*
 274     * it's not possible to
 275     * request UFFD_API twice per one fd
 276     * userfault fd features is persistent
 277     */
 278    if (!supported_features) {
 279        if (!receive_ufd_features(&supported_features)) {
 280            error_report("%s failed", __func__);
 281            return false;
 282        }
 283    }
 284
 285#ifdef UFFD_FEATURE_THREAD_ID
 286    if (migrate_postcopy_blocktime() && mis &&
 287        UFFD_FEATURE_THREAD_ID & supported_features) {
 288        /* kernel supports that feature */
 289        /* don't create blocktime_context if it exists */
 290        if (!mis->blocktime_ctx) {
 291            mis->blocktime_ctx = blocktime_context_new();
 292        }
 293
 294        asked_features |= UFFD_FEATURE_THREAD_ID;
 295    }
 296#endif
 297
 298    /*
 299     * request features, even if asked_features is 0, due to
 300     * kernel expects UFFD_API before UFFDIO_REGISTER, per
 301     * userfault file descriptor
 302     */
 303    if (!request_ufd_features(ufd, asked_features)) {
 304        error_report("%s failed: features %" PRIu64, __func__,
 305                     asked_features);
 306        return false;
 307    }
 308
 309    if (qemu_real_host_page_size != ram_pagesize_summary()) {
 310        bool have_hp = false;
 311        /* We've got a huge page */
 312#ifdef UFFD_FEATURE_MISSING_HUGETLBFS
 313        have_hp = supported_features & UFFD_FEATURE_MISSING_HUGETLBFS;
 314#endif
 315        if (!have_hp) {
 316            error_report("Userfault on this host does not support huge pages");
 317            return false;
 318        }
 319    }
 320    return true;
 321}
 322
 323/* Callback from postcopy_ram_supported_by_host block iterator.
 324 */
 325static int test_ramblock_postcopiable(RAMBlock *rb, void *opaque)
 326{
 327    const char *block_name = qemu_ram_get_idstr(rb);
 328    ram_addr_t length = qemu_ram_get_used_length(rb);
 329    size_t pagesize = qemu_ram_pagesize(rb);
 330
 331    if (length % pagesize) {
 332        error_report("Postcopy requires RAM blocks to be a page size multiple,"
 333                     " block %s is 0x" RAM_ADDR_FMT " bytes with a "
 334                     "page size of 0x%zx", block_name, length, pagesize);
 335        return 1;
 336    }
 337    return 0;
 338}
 339
 340/*
 341 * Note: This has the side effect of munlock'ing all of RAM, that's
 342 * normally fine since if the postcopy succeeds it gets turned back on at the
 343 * end.
 344 */
 345bool postcopy_ram_supported_by_host(MigrationIncomingState *mis)
 346{
 347    long pagesize = qemu_real_host_page_size;
 348    int ufd = -1;
 349    bool ret = false; /* Error unless we change it */
 350    void *testarea = NULL;
 351    struct uffdio_register reg_struct;
 352    struct uffdio_range range_struct;
 353    uint64_t feature_mask;
 354    Error *local_err = NULL;
 355
 356    if (qemu_target_page_size() > pagesize) {
 357        error_report("Target page size bigger than host page size");
 358        goto out;
 359    }
 360
 361    ufd = syscall(__NR_userfaultfd, O_CLOEXEC);
 362    if (ufd == -1) {
 363        error_report("%s: userfaultfd not available: %s", __func__,
 364                     strerror(errno));
 365        goto out;
 366    }
 367
 368    /* Give devices a chance to object */
 369    if (postcopy_notify(POSTCOPY_NOTIFY_PROBE, &local_err)) {
 370        error_report_err(local_err);
 371        goto out;
 372    }
 373
 374    /* Version and features check */
 375    if (!ufd_check_and_apply(ufd, mis)) {
 376        goto out;
 377    }
 378
 379    /* We don't support postcopy with shared RAM yet */
 380    if (foreach_not_ignored_block(test_ramblock_postcopiable, NULL)) {
 381        goto out;
 382    }
 383
 384    /*
 385     * userfault and mlock don't go together; we'll put it back later if
 386     * it was enabled.
 387     */
 388    if (munlockall()) {
 389        error_report("%s: munlockall: %s", __func__,  strerror(errno));
 390        goto out;
 391    }
 392
 393    /*
 394     *  We need to check that the ops we need are supported on anon memory
 395     *  To do that we need to register a chunk and see the flags that
 396     *  are returned.
 397     */
 398    testarea = mmap(NULL, pagesize, PROT_READ | PROT_WRITE, MAP_PRIVATE |
 399                                    MAP_ANONYMOUS, -1, 0);
 400    if (testarea == MAP_FAILED) {
 401        error_report("%s: Failed to map test area: %s", __func__,
 402                     strerror(errno));
 403        goto out;
 404    }
 405    g_assert(QEMU_PTR_IS_ALIGNED(testarea, pagesize));
 406
 407    reg_struct.range.start = (uintptr_t)testarea;
 408    reg_struct.range.len = pagesize;
 409    reg_struct.mode = UFFDIO_REGISTER_MODE_MISSING;
 410
 411    if (ioctl(ufd, UFFDIO_REGISTER, &reg_struct)) {
 412        error_report("%s userfault register: %s", __func__, strerror(errno));
 413        goto out;
 414    }
 415
 416    range_struct.start = (uintptr_t)testarea;
 417    range_struct.len = pagesize;
 418    if (ioctl(ufd, UFFDIO_UNREGISTER, &range_struct)) {
 419        error_report("%s userfault unregister: %s", __func__, strerror(errno));
 420        goto out;
 421    }
 422
 423    feature_mask = (__u64)1 << _UFFDIO_WAKE |
 424                   (__u64)1 << _UFFDIO_COPY |
 425                   (__u64)1 << _UFFDIO_ZEROPAGE;
 426    if ((reg_struct.ioctls & feature_mask) != feature_mask) {
 427        error_report("Missing userfault map features: %" PRIx64,
 428                     (uint64_t)(~reg_struct.ioctls & feature_mask));
 429        goto out;
 430    }
 431
 432    /* Success! */
 433    ret = true;
 434out:
 435    if (testarea) {
 436        munmap(testarea, pagesize);
 437    }
 438    if (ufd != -1) {
 439        close(ufd);
 440    }
 441    return ret;
 442}
 443
 444/*
 445 * Setup an area of RAM so that it *can* be used for postcopy later; this
 446 * must be done right at the start prior to pre-copy.
 447 * opaque should be the MIS.
 448 */
 449static int init_range(RAMBlock *rb, void *opaque)
 450{
 451    const char *block_name = qemu_ram_get_idstr(rb);
 452    void *host_addr = qemu_ram_get_host_addr(rb);
 453    ram_addr_t offset = qemu_ram_get_offset(rb);
 454    ram_addr_t length = qemu_ram_get_used_length(rb);
 455    trace_postcopy_init_range(block_name, host_addr, offset, length);
 456
 457    /*
 458     * Save the used_length before running the guest. In case we have to
 459     * resize RAM blocks when syncing RAM block sizes from the source during
 460     * precopy, we'll update it manually via the ram block notifier.
 461     */
 462    rb->postcopy_length = length;
 463
 464    /*
 465     * We need the whole of RAM to be truly empty for postcopy, so things
 466     * like ROMs and any data tables built during init must be zero'd
 467     * - we're going to get the copy from the source anyway.
 468     * (Precopy will just overwrite this data, so doesn't need the discard)
 469     */
 470    if (ram_discard_range(block_name, 0, length)) {
 471        return -1;
 472    }
 473
 474    return 0;
 475}
 476
 477/*
 478 * At the end of migration, undo the effects of init_range
 479 * opaque should be the MIS.
 480 */
 481static int cleanup_range(RAMBlock *rb, void *opaque)
 482{
 483    const char *block_name = qemu_ram_get_idstr(rb);
 484    void *host_addr = qemu_ram_get_host_addr(rb);
 485    ram_addr_t offset = qemu_ram_get_offset(rb);
 486    ram_addr_t length = rb->postcopy_length;
 487    MigrationIncomingState *mis = opaque;
 488    struct uffdio_range range_struct;
 489    trace_postcopy_cleanup_range(block_name, host_addr, offset, length);
 490
 491    /*
 492     * We turned off hugepage for the precopy stage with postcopy enabled
 493     * we can turn it back on now.
 494     */
 495    qemu_madvise(host_addr, length, QEMU_MADV_HUGEPAGE);
 496
 497    /*
 498     * We can also turn off userfault now since we should have all the
 499     * pages.   It can be useful to leave it on to debug postcopy
 500     * if you're not sure it's always getting every page.
 501     */
 502    range_struct.start = (uintptr_t)host_addr;
 503    range_struct.len = length;
 504
 505    if (ioctl(mis->userfault_fd, UFFDIO_UNREGISTER, &range_struct)) {
 506        error_report("%s: userfault unregister %s", __func__, strerror(errno));
 507
 508        return -1;
 509    }
 510
 511    return 0;
 512}
 513
 514/*
 515 * Initialise postcopy-ram, setting the RAM to a state where we can go into
 516 * postcopy later; must be called prior to any precopy.
 517 * called from arch_init's similarly named ram_postcopy_incoming_init
 518 */
 519int postcopy_ram_incoming_init(MigrationIncomingState *mis)
 520{
 521    if (foreach_not_ignored_block(init_range, NULL)) {
 522        return -1;
 523    }
 524
 525    return 0;
 526}
 527
 528/*
 529 * At the end of a migration where postcopy_ram_incoming_init was called.
 530 */
 531int postcopy_ram_incoming_cleanup(MigrationIncomingState *mis)
 532{
 533    trace_postcopy_ram_incoming_cleanup_entry();
 534
 535    if (mis->have_fault_thread) {
 536        Error *local_err = NULL;
 537
 538        /* Let the fault thread quit */
 539        qatomic_set(&mis->fault_thread_quit, 1);
 540        postcopy_fault_thread_notify(mis);
 541        trace_postcopy_ram_incoming_cleanup_join();
 542        qemu_thread_join(&mis->fault_thread);
 543
 544        if (postcopy_notify(POSTCOPY_NOTIFY_INBOUND_END, &local_err)) {
 545            error_report_err(local_err);
 546            return -1;
 547        }
 548
 549        if (foreach_not_ignored_block(cleanup_range, mis)) {
 550            return -1;
 551        }
 552
 553        trace_postcopy_ram_incoming_cleanup_closeuf();
 554        close(mis->userfault_fd);
 555        close(mis->userfault_event_fd);
 556        mis->have_fault_thread = false;
 557    }
 558
 559    if (enable_mlock) {
 560        if (os_mlock() < 0) {
 561            error_report("mlock: %s", strerror(errno));
 562            /*
 563             * It doesn't feel right to fail at this point, we have a valid
 564             * VM state.
 565             */
 566        }
 567    }
 568
 569    if (mis->postcopy_tmp_page) {
 570        munmap(mis->postcopy_tmp_page, mis->largest_page_size);
 571        mis->postcopy_tmp_page = NULL;
 572    }
 573    if (mis->postcopy_tmp_zero_page) {
 574        munmap(mis->postcopy_tmp_zero_page, mis->largest_page_size);
 575        mis->postcopy_tmp_zero_page = NULL;
 576    }
 577    trace_postcopy_ram_incoming_cleanup_blocktime(
 578            get_postcopy_total_blocktime());
 579
 580    trace_postcopy_ram_incoming_cleanup_exit();
 581    return 0;
 582}
 583
 584/*
 585 * Disable huge pages on an area
 586 */
 587static int nhp_range(RAMBlock *rb, void *opaque)
 588{
 589    const char *block_name = qemu_ram_get_idstr(rb);
 590    void *host_addr = qemu_ram_get_host_addr(rb);
 591    ram_addr_t offset = qemu_ram_get_offset(rb);
 592    ram_addr_t length = rb->postcopy_length;
 593    trace_postcopy_nhp_range(block_name, host_addr, offset, length);
 594
 595    /*
 596     * Before we do discards we need to ensure those discards really
 597     * do delete areas of the page, even if THP thinks a hugepage would
 598     * be a good idea, so force hugepages off.
 599     */
 600    qemu_madvise(host_addr, length, QEMU_MADV_NOHUGEPAGE);
 601
 602    return 0;
 603}
 604
 605/*
 606 * Userfault requires us to mark RAM as NOHUGEPAGE prior to discard
 607 * however leaving it until after precopy means that most of the precopy
 608 * data is still THPd
 609 */
 610int postcopy_ram_prepare_discard(MigrationIncomingState *mis)
 611{
 612    if (foreach_not_ignored_block(nhp_range, mis)) {
 613        return -1;
 614    }
 615
 616    postcopy_state_set(POSTCOPY_INCOMING_DISCARD);
 617
 618    return 0;
 619}
 620
 621/*
 622 * Mark the given area of RAM as requiring notification to unwritten areas
 623 * Used as a  callback on foreach_not_ignored_block.
 624 *   host_addr: Base of area to mark
 625 *   offset: Offset in the whole ram arena
 626 *   length: Length of the section
 627 *   opaque: MigrationIncomingState pointer
 628 * Returns 0 on success
 629 */
 630static int ram_block_enable_notify(RAMBlock *rb, void *opaque)
 631{
 632    MigrationIncomingState *mis = opaque;
 633    struct uffdio_register reg_struct;
 634
 635    reg_struct.range.start = (uintptr_t)qemu_ram_get_host_addr(rb);
 636    reg_struct.range.len = rb->postcopy_length;
 637    reg_struct.mode = UFFDIO_REGISTER_MODE_MISSING;
 638
 639    /* Now tell our userfault_fd that it's responsible for this area */
 640    if (ioctl(mis->userfault_fd, UFFDIO_REGISTER, &reg_struct)) {
 641        error_report("%s userfault register: %s", __func__, strerror(errno));
 642        return -1;
 643    }
 644    if (!(reg_struct.ioctls & ((__u64)1 << _UFFDIO_COPY))) {
 645        error_report("%s userfault: Region doesn't support COPY", __func__);
 646        return -1;
 647    }
 648    if (reg_struct.ioctls & ((__u64)1 << _UFFDIO_ZEROPAGE)) {
 649        qemu_ram_set_uf_zeroable(rb);
 650    }
 651
 652    return 0;
 653}
 654
 655int postcopy_wake_shared(struct PostCopyFD *pcfd,
 656                         uint64_t client_addr,
 657                         RAMBlock *rb)
 658{
 659    size_t pagesize = qemu_ram_pagesize(rb);
 660    struct uffdio_range range;
 661    int ret;
 662    trace_postcopy_wake_shared(client_addr, qemu_ram_get_idstr(rb));
 663    range.start = ROUND_DOWN(client_addr, pagesize);
 664    range.len = pagesize;
 665    ret = ioctl(pcfd->fd, UFFDIO_WAKE, &range);
 666    if (ret) {
 667        error_report("%s: Failed to wake: %zx in %s (%s)",
 668                     __func__, (size_t)client_addr, qemu_ram_get_idstr(rb),
 669                     strerror(errno));
 670    }
 671    return ret;
 672}
 673
 674static int postcopy_request_page(MigrationIncomingState *mis, RAMBlock *rb,
 675                                 ram_addr_t start, uint64_t haddr)
 676{
 677    void *aligned = (void *)(uintptr_t)ROUND_DOWN(haddr, qemu_ram_pagesize(rb));
 678
 679    /*
 680     * Discarded pages (via RamDiscardManager) are never migrated. On unlikely
 681     * access, place a zeropage, which will also set the relevant bits in the
 682     * recv_bitmap accordingly, so we won't try placing a zeropage twice.
 683     *
 684     * Checking a single bit is sufficient to handle pagesize > TPS as either
 685     * all relevant bits are set or not.
 686     */
 687    assert(QEMU_IS_ALIGNED(start, qemu_ram_pagesize(rb)));
 688    if (ramblock_page_is_discarded(rb, start)) {
 689        bool received = ramblock_recv_bitmap_test_byte_offset(rb, start);
 690
 691        return received ? 0 : postcopy_place_page_zero(mis, aligned, rb);
 692    }
 693
 694    return migrate_send_rp_req_pages(mis, rb, start, haddr);
 695}
 696
 697/*
 698 * Callback from shared fault handlers to ask for a page,
 699 * the page must be specified by a RAMBlock and an offset in that rb
 700 * Note: Only for use by shared fault handlers (in fault thread)
 701 */
 702int postcopy_request_shared_page(struct PostCopyFD *pcfd, RAMBlock *rb,
 703                                 uint64_t client_addr, uint64_t rb_offset)
 704{
 705    uint64_t aligned_rbo = ROUND_DOWN(rb_offset, qemu_ram_pagesize(rb));
 706    MigrationIncomingState *mis = migration_incoming_get_current();
 707
 708    trace_postcopy_request_shared_page(pcfd->idstr, qemu_ram_get_idstr(rb),
 709                                       rb_offset);
 710    if (ramblock_recv_bitmap_test_byte_offset(rb, aligned_rbo)) {
 711        trace_postcopy_request_shared_page_present(pcfd->idstr,
 712                                        qemu_ram_get_idstr(rb), rb_offset);
 713        return postcopy_wake_shared(pcfd, client_addr, rb);
 714    }
 715    postcopy_request_page(mis, rb, aligned_rbo, client_addr);
 716    return 0;
 717}
 718
 719static int get_mem_fault_cpu_index(uint32_t pid)
 720{
 721    CPUState *cpu_iter;
 722
 723    CPU_FOREACH(cpu_iter) {
 724        if (cpu_iter->thread_id == pid) {
 725            trace_get_mem_fault_cpu_index(cpu_iter->cpu_index, pid);
 726            return cpu_iter->cpu_index;
 727        }
 728    }
 729    trace_get_mem_fault_cpu_index(-1, pid);
 730    return -1;
 731}
 732
 733static uint32_t get_low_time_offset(PostcopyBlocktimeContext *dc)
 734{
 735    int64_t start_time_offset = qemu_clock_get_ms(QEMU_CLOCK_REALTIME) -
 736                                    dc->start_time;
 737    return start_time_offset < 1 ? 1 : start_time_offset & UINT32_MAX;
 738}
 739
 740/*
 741 * This function is being called when pagefault occurs. It
 742 * tracks down vCPU blocking time.
 743 *
 744 * @addr: faulted host virtual address
 745 * @ptid: faulted process thread id
 746 * @rb: ramblock appropriate to addr
 747 */
 748static void mark_postcopy_blocktime_begin(uintptr_t addr, uint32_t ptid,
 749                                          RAMBlock *rb)
 750{
 751    int cpu, already_received;
 752    MigrationIncomingState *mis = migration_incoming_get_current();
 753    PostcopyBlocktimeContext *dc = mis->blocktime_ctx;
 754    uint32_t low_time_offset;
 755
 756    if (!dc || ptid == 0) {
 757        return;
 758    }
 759    cpu = get_mem_fault_cpu_index(ptid);
 760    if (cpu < 0) {
 761        return;
 762    }
 763
 764    low_time_offset = get_low_time_offset(dc);
 765    if (dc->vcpu_addr[cpu] == 0) {
 766        qatomic_inc(&dc->smp_cpus_down);
 767    }
 768
 769    qatomic_xchg(&dc->last_begin, low_time_offset);
 770    qatomic_xchg(&dc->page_fault_vcpu_time[cpu], low_time_offset);
 771    qatomic_xchg(&dc->vcpu_addr[cpu], addr);
 772
 773    /*
 774     * check it here, not at the beginning of the function,
 775     * due to, check could occur early than bitmap_set in
 776     * qemu_ufd_copy_ioctl
 777     */
 778    already_received = ramblock_recv_bitmap_test(rb, (void *)addr);
 779    if (already_received) {
 780        qatomic_xchg(&dc->vcpu_addr[cpu], 0);
 781        qatomic_xchg(&dc->page_fault_vcpu_time[cpu], 0);
 782        qatomic_dec(&dc->smp_cpus_down);
 783    }
 784    trace_mark_postcopy_blocktime_begin(addr, dc, dc->page_fault_vcpu_time[cpu],
 785                                        cpu, already_received);
 786}
 787
 788/*
 789 *  This function just provide calculated blocktime per cpu and trace it.
 790 *  Total blocktime is calculated in mark_postcopy_blocktime_end.
 791 *
 792 *
 793 * Assume we have 3 CPU
 794 *
 795 *      S1        E1           S1               E1
 796 * -----***********------------xxx***************------------------------> CPU1
 797 *
 798 *             S2                E2
 799 * ------------****************xxx---------------------------------------> CPU2
 800 *
 801 *                         S3            E3
 802 * ------------------------****xxx********-------------------------------> CPU3
 803 *
 804 * We have sequence S1,S2,E1,S3,S1,E2,E3,E1
 805 * S2,E1 - doesn't match condition due to sequence S1,S2,E1 doesn't include CPU3
 806 * S3,S1,E2 - sequence includes all CPUs, in this case overlap will be S1,E2 -
 807 *            it's a part of total blocktime.
 808 * S1 - here is last_begin
 809 * Legend of the picture is following:
 810 *              * - means blocktime per vCPU
 811 *              x - means overlapped blocktime (total blocktime)
 812 *
 813 * @addr: host virtual address
 814 */
 815static void mark_postcopy_blocktime_end(uintptr_t addr)
 816{
 817    MigrationIncomingState *mis = migration_incoming_get_current();
 818    PostcopyBlocktimeContext *dc = mis->blocktime_ctx;
 819    MachineState *ms = MACHINE(qdev_get_machine());
 820    unsigned int smp_cpus = ms->smp.cpus;
 821    int i, affected_cpu = 0;
 822    bool vcpu_total_blocktime = false;
 823    uint32_t read_vcpu_time, low_time_offset;
 824
 825    if (!dc) {
 826        return;
 827    }
 828
 829    low_time_offset = get_low_time_offset(dc);
 830    /* lookup cpu, to clear it,
 831     * that algorithm looks straightforward, but it's not
 832     * optimal, more optimal algorithm is keeping tree or hash
 833     * where key is address value is a list of  */
 834    for (i = 0; i < smp_cpus; i++) {
 835        uint32_t vcpu_blocktime = 0;
 836
 837        read_vcpu_time = qatomic_fetch_add(&dc->page_fault_vcpu_time[i], 0);
 838        if (qatomic_fetch_add(&dc->vcpu_addr[i], 0) != addr ||
 839            read_vcpu_time == 0) {
 840            continue;
 841        }
 842        qatomic_xchg(&dc->vcpu_addr[i], 0);
 843        vcpu_blocktime = low_time_offset - read_vcpu_time;
 844        affected_cpu += 1;
 845        /* we need to know is that mark_postcopy_end was due to
 846         * faulted page, another possible case it's prefetched
 847         * page and in that case we shouldn't be here */
 848        if (!vcpu_total_blocktime &&
 849            qatomic_fetch_add(&dc->smp_cpus_down, 0) == smp_cpus) {
 850            vcpu_total_blocktime = true;
 851        }
 852        /* continue cycle, due to one page could affect several vCPUs */
 853        dc->vcpu_blocktime[i] += vcpu_blocktime;
 854    }
 855
 856    qatomic_sub(&dc->smp_cpus_down, affected_cpu);
 857    if (vcpu_total_blocktime) {
 858        dc->total_blocktime += low_time_offset - qatomic_fetch_add(
 859                &dc->last_begin, 0);
 860    }
 861    trace_mark_postcopy_blocktime_end(addr, dc, dc->total_blocktime,
 862                                      affected_cpu);
 863}
 864
 865static bool postcopy_pause_fault_thread(MigrationIncomingState *mis)
 866{
 867    trace_postcopy_pause_fault_thread();
 868
 869    qemu_sem_wait(&mis->postcopy_pause_sem_fault);
 870
 871    trace_postcopy_pause_fault_thread_continued();
 872
 873    return true;
 874}
 875
 876/*
 877 * Handle faults detected by the USERFAULT markings
 878 */
 879static void *postcopy_ram_fault_thread(void *opaque)
 880{
 881    MigrationIncomingState *mis = opaque;
 882    struct uffd_msg msg;
 883    int ret;
 884    size_t index;
 885    RAMBlock *rb = NULL;
 886
 887    trace_postcopy_ram_fault_thread_entry();
 888    rcu_register_thread();
 889    mis->last_rb = NULL; /* last RAMBlock we sent part of */
 890    qemu_sem_post(&mis->fault_thread_sem);
 891
 892    struct pollfd *pfd;
 893    size_t pfd_len = 2 + mis->postcopy_remote_fds->len;
 894
 895    pfd = g_new0(struct pollfd, pfd_len);
 896
 897    pfd[0].fd = mis->userfault_fd;
 898    pfd[0].events = POLLIN;
 899    pfd[1].fd = mis->userfault_event_fd;
 900    pfd[1].events = POLLIN; /* Waiting for eventfd to go positive */
 901    trace_postcopy_ram_fault_thread_fds_core(pfd[0].fd, pfd[1].fd);
 902    for (index = 0; index < mis->postcopy_remote_fds->len; index++) {
 903        struct PostCopyFD *pcfd = &g_array_index(mis->postcopy_remote_fds,
 904                                                 struct PostCopyFD, index);
 905        pfd[2 + index].fd = pcfd->fd;
 906        pfd[2 + index].events = POLLIN;
 907        trace_postcopy_ram_fault_thread_fds_extra(2 + index, pcfd->idstr,
 908                                                  pcfd->fd);
 909    }
 910
 911    while (true) {
 912        ram_addr_t rb_offset;
 913        int poll_result;
 914
 915        /*
 916         * We're mainly waiting for the kernel to give us a faulting HVA,
 917         * however we can be told to quit via userfault_quit_fd which is
 918         * an eventfd
 919         */
 920
 921        poll_result = poll(pfd, pfd_len, -1 /* Wait forever */);
 922        if (poll_result == -1) {
 923            error_report("%s: userfault poll: %s", __func__, strerror(errno));
 924            break;
 925        }
 926
 927        if (!mis->to_src_file) {
 928            /*
 929             * Possibly someone tells us that the return path is
 930             * broken already using the event. We should hold until
 931             * the channel is rebuilt.
 932             */
 933            if (postcopy_pause_fault_thread(mis)) {
 934                /* Continue to read the userfaultfd */
 935            } else {
 936                error_report("%s: paused but don't allow to continue",
 937                             __func__);
 938                break;
 939            }
 940        }
 941
 942        if (pfd[1].revents) {
 943            uint64_t tmp64 = 0;
 944
 945            /* Consume the signal */
 946            if (read(mis->userfault_event_fd, &tmp64, 8) != 8) {
 947                /* Nothing obviously nicer than posting this error. */
 948                error_report("%s: read() failed", __func__);
 949            }
 950
 951            if (qatomic_read(&mis->fault_thread_quit)) {
 952                trace_postcopy_ram_fault_thread_quit();
 953                break;
 954            }
 955        }
 956
 957        if (pfd[0].revents) {
 958            poll_result--;
 959            ret = read(mis->userfault_fd, &msg, sizeof(msg));
 960            if (ret != sizeof(msg)) {
 961                if (errno == EAGAIN) {
 962                    /*
 963                     * if a wake up happens on the other thread just after
 964                     * the poll, there is nothing to read.
 965                     */
 966                    continue;
 967                }
 968                if (ret < 0) {
 969                    error_report("%s: Failed to read full userfault "
 970                                 "message: %s",
 971                                 __func__, strerror(errno));
 972                    break;
 973                } else {
 974                    error_report("%s: Read %d bytes from userfaultfd "
 975                                 "expected %zd",
 976                                 __func__, ret, sizeof(msg));
 977                    break; /* Lost alignment, don't know what we'd read next */
 978                }
 979            }
 980            if (msg.event != UFFD_EVENT_PAGEFAULT) {
 981                error_report("%s: Read unexpected event %ud from userfaultfd",
 982                             __func__, msg.event);
 983                continue; /* It's not a page fault, shouldn't happen */
 984            }
 985
 986            rb = qemu_ram_block_from_host(
 987                     (void *)(uintptr_t)msg.arg.pagefault.address,
 988                     true, &rb_offset);
 989            if (!rb) {
 990                error_report("postcopy_ram_fault_thread: Fault outside guest: %"
 991                             PRIx64, (uint64_t)msg.arg.pagefault.address);
 992                break;
 993            }
 994
 995            rb_offset = ROUND_DOWN(rb_offset, qemu_ram_pagesize(rb));
 996            trace_postcopy_ram_fault_thread_request(msg.arg.pagefault.address,
 997                                                qemu_ram_get_idstr(rb),
 998                                                rb_offset,
 999                                                msg.arg.pagefault.feat.ptid);
1000            mark_postcopy_blocktime_begin(
1001                    (uintptr_t)(msg.arg.pagefault.address),
1002                                msg.arg.pagefault.feat.ptid, rb);
1003
1004retry:
1005            /*
1006             * Send the request to the source - we want to request one
1007             * of our host page sizes (which is >= TPS)
1008             */
1009            ret = postcopy_request_page(mis, rb, rb_offset,
1010                                        msg.arg.pagefault.address);
1011            if (ret) {
1012                /* May be network failure, try to wait for recovery */
1013                if (ret == -EIO && postcopy_pause_fault_thread(mis)) {
1014                    /* We got reconnected somehow, try to continue */
1015                    goto retry;
1016                } else {
1017                    /* This is a unavoidable fault */
1018                    error_report("%s: postcopy_request_page() get %d",
1019                                 __func__, ret);
1020                    break;
1021                }
1022            }
1023        }
1024
1025        /* Now handle any requests from external processes on shared memory */
1026        /* TODO: May need to handle devices deregistering during postcopy */
1027        for (index = 2; index < pfd_len && poll_result; index++) {
1028            if (pfd[index].revents) {
1029                struct PostCopyFD *pcfd =
1030                    &g_array_index(mis->postcopy_remote_fds,
1031                                   struct PostCopyFD, index - 2);
1032
1033                poll_result--;
1034                if (pfd[index].revents & POLLERR) {
1035                    error_report("%s: POLLERR on poll %zd fd=%d",
1036                                 __func__, index, pcfd->fd);
1037                    pfd[index].events = 0;
1038                    continue;
1039                }
1040
1041                ret = read(pcfd->fd, &msg, sizeof(msg));
1042                if (ret != sizeof(msg)) {
1043                    if (errno == EAGAIN) {
1044                        /*
1045                         * if a wake up happens on the other thread just after
1046                         * the poll, there is nothing to read.
1047                         */
1048                        continue;
1049                    }
1050                    if (ret < 0) {
1051                        error_report("%s: Failed to read full userfault "
1052                                     "message: %s (shared) revents=%d",
1053                                     __func__, strerror(errno),
1054                                     pfd[index].revents);
1055                        /*TODO: Could just disable this sharer */
1056                        break;
1057                    } else {
1058                        error_report("%s: Read %d bytes from userfaultfd "
1059                                     "expected %zd (shared)",
1060                                     __func__, ret, sizeof(msg));
1061                        /*TODO: Could just disable this sharer */
1062                        break; /*Lost alignment,don't know what we'd read next*/
1063                    }
1064                }
1065                if (msg.event != UFFD_EVENT_PAGEFAULT) {
1066                    error_report("%s: Read unexpected event %ud "
1067                                 "from userfaultfd (shared)",
1068                                 __func__, msg.event);
1069                    continue; /* It's not a page fault, shouldn't happen */
1070                }
1071                /* Call the device handler registered with us */
1072                ret = pcfd->handler(pcfd, &msg);
1073                if (ret) {
1074                    error_report("%s: Failed to resolve shared fault on %zd/%s",
1075                                 __func__, index, pcfd->idstr);
1076                    /* TODO: Fail? Disable this sharer? */
1077                }
1078            }
1079        }
1080    }
1081    rcu_unregister_thread();
1082    trace_postcopy_ram_fault_thread_exit();
1083    g_free(pfd);
1084    return NULL;
1085}
1086
1087int postcopy_ram_incoming_setup(MigrationIncomingState *mis)
1088{
1089    /* Open the fd for the kernel to give us userfaults */
1090    mis->userfault_fd = syscall(__NR_userfaultfd, O_CLOEXEC | O_NONBLOCK);
1091    if (mis->userfault_fd == -1) {
1092        error_report("%s: Failed to open userfault fd: %s", __func__,
1093                     strerror(errno));
1094        return -1;
1095    }
1096
1097    /*
1098     * Although the host check already tested the API, we need to
1099     * do the check again as an ABI handshake on the new fd.
1100     */
1101    if (!ufd_check_and_apply(mis->userfault_fd, mis)) {
1102        return -1;
1103    }
1104
1105    /* Now an eventfd we use to tell the fault-thread to quit */
1106    mis->userfault_event_fd = eventfd(0, EFD_CLOEXEC);
1107    if (mis->userfault_event_fd == -1) {
1108        error_report("%s: Opening userfault_event_fd: %s", __func__,
1109                     strerror(errno));
1110        close(mis->userfault_fd);
1111        return -1;
1112    }
1113
1114    qemu_sem_init(&mis->fault_thread_sem, 0);
1115    qemu_thread_create(&mis->fault_thread, "postcopy/fault",
1116                       postcopy_ram_fault_thread, mis, QEMU_THREAD_JOINABLE);
1117    qemu_sem_wait(&mis->fault_thread_sem);
1118    qemu_sem_destroy(&mis->fault_thread_sem);
1119    mis->have_fault_thread = true;
1120
1121    /* Mark so that we get notified of accesses to unwritten areas */
1122    if (foreach_not_ignored_block(ram_block_enable_notify, mis)) {
1123        error_report("ram_block_enable_notify failed");
1124        return -1;
1125    }
1126
1127    mis->postcopy_tmp_page = mmap(NULL, mis->largest_page_size,
1128                                  PROT_READ | PROT_WRITE, MAP_PRIVATE |
1129                                  MAP_ANONYMOUS, -1, 0);
1130    if (mis->postcopy_tmp_page == MAP_FAILED) {
1131        mis->postcopy_tmp_page = NULL;
1132        error_report("%s: Failed to map postcopy_tmp_page %s",
1133                     __func__, strerror(errno));
1134        return -1;
1135    }
1136
1137    /*
1138     * Map large zero page when kernel can't use UFFDIO_ZEROPAGE for hugepages
1139     */
1140    mis->postcopy_tmp_zero_page = mmap(NULL, mis->largest_page_size,
1141                                       PROT_READ | PROT_WRITE,
1142                                       MAP_PRIVATE | MAP_ANONYMOUS,
1143                                       -1, 0);
1144    if (mis->postcopy_tmp_zero_page == MAP_FAILED) {
1145        int e = errno;
1146        mis->postcopy_tmp_zero_page = NULL;
1147        error_report("%s: Failed to map large zero page %s",
1148                     __func__, strerror(e));
1149        return -e;
1150    }
1151    memset(mis->postcopy_tmp_zero_page, '\0', mis->largest_page_size);
1152
1153    trace_postcopy_ram_enable_notify();
1154
1155    return 0;
1156}
1157
1158static int qemu_ufd_copy_ioctl(MigrationIncomingState *mis, void *host_addr,
1159                               void *from_addr, uint64_t pagesize, RAMBlock *rb)
1160{
1161    int userfault_fd = mis->userfault_fd;
1162    int ret;
1163
1164    if (from_addr) {
1165        struct uffdio_copy copy_struct;
1166        copy_struct.dst = (uint64_t)(uintptr_t)host_addr;
1167        copy_struct.src = (uint64_t)(uintptr_t)from_addr;
1168        copy_struct.len = pagesize;
1169        copy_struct.mode = 0;
1170        ret = ioctl(userfault_fd, UFFDIO_COPY, &copy_struct);
1171    } else {
1172        struct uffdio_zeropage zero_struct;
1173        zero_struct.range.start = (uint64_t)(uintptr_t)host_addr;
1174        zero_struct.range.len = pagesize;
1175        zero_struct.mode = 0;
1176        ret = ioctl(userfault_fd, UFFDIO_ZEROPAGE, &zero_struct);
1177    }
1178    if (!ret) {
1179        qemu_mutex_lock(&mis->page_request_mutex);
1180        ramblock_recv_bitmap_set_range(rb, host_addr,
1181                                       pagesize / qemu_target_page_size());
1182        /*
1183         * If this page resolves a page fault for a previous recorded faulted
1184         * address, take a special note to maintain the requested page list.
1185         */
1186        if (g_tree_lookup(mis->page_requested, host_addr)) {
1187            g_tree_remove(mis->page_requested, host_addr);
1188            mis->page_requested_count--;
1189            trace_postcopy_page_req_del(host_addr, mis->page_requested_count);
1190        }
1191        qemu_mutex_unlock(&mis->page_request_mutex);
1192        mark_postcopy_blocktime_end((uintptr_t)host_addr);
1193    }
1194    return ret;
1195}
1196
1197int postcopy_notify_shared_wake(RAMBlock *rb, uint64_t offset)
1198{
1199    int i;
1200    MigrationIncomingState *mis = migration_incoming_get_current();
1201    GArray *pcrfds = mis->postcopy_remote_fds;
1202
1203    for (i = 0; i < pcrfds->len; i++) {
1204        struct PostCopyFD *cur = &g_array_index(pcrfds, struct PostCopyFD, i);
1205        int ret = cur->waker(cur, rb, offset);
1206        if (ret) {
1207            return ret;
1208        }
1209    }
1210    return 0;
1211}
1212
1213/*
1214 * Place a host page (from) at (host) atomically
1215 * returns 0 on success
1216 */
1217int postcopy_place_page(MigrationIncomingState *mis, void *host, void *from,
1218                        RAMBlock *rb)
1219{
1220    size_t pagesize = qemu_ram_pagesize(rb);
1221
1222    /* copy also acks to the kernel waking the stalled thread up
1223     * TODO: We can inhibit that ack and only do it if it was requested
1224     * which would be slightly cheaper, but we'd have to be careful
1225     * of the order of updating our page state.
1226     */
1227    if (qemu_ufd_copy_ioctl(mis, host, from, pagesize, rb)) {
1228        int e = errno;
1229        error_report("%s: %s copy host: %p from: %p (size: %zd)",
1230                     __func__, strerror(e), host, from, pagesize);
1231
1232        return -e;
1233    }
1234
1235    trace_postcopy_place_page(host);
1236    return postcopy_notify_shared_wake(rb,
1237                                       qemu_ram_block_host_offset(rb, host));
1238}
1239
1240/*
1241 * Place a zero page at (host) atomically
1242 * returns 0 on success
1243 */
1244int postcopy_place_page_zero(MigrationIncomingState *mis, void *host,
1245                             RAMBlock *rb)
1246{
1247    size_t pagesize = qemu_ram_pagesize(rb);
1248    trace_postcopy_place_page_zero(host);
1249
1250    /* Normal RAMBlocks can zero a page using UFFDIO_ZEROPAGE
1251     * but it's not available for everything (e.g. hugetlbpages)
1252     */
1253    if (qemu_ram_is_uf_zeroable(rb)) {
1254        if (qemu_ufd_copy_ioctl(mis, host, NULL, pagesize, rb)) {
1255            int e = errno;
1256            error_report("%s: %s zero host: %p",
1257                         __func__, strerror(e), host);
1258
1259            return -e;
1260        }
1261        return postcopy_notify_shared_wake(rb,
1262                                           qemu_ram_block_host_offset(rb,
1263                                                                      host));
1264    } else {
1265        return postcopy_place_page(mis, host, mis->postcopy_tmp_zero_page, rb);
1266    }
1267}
1268
1269#else
1270/* No target OS support, stubs just fail */
1271void fill_destination_postcopy_migration_info(MigrationInfo *info)
1272{
1273}
1274
1275bool postcopy_ram_supported_by_host(MigrationIncomingState *mis)
1276{
1277    error_report("%s: No OS support", __func__);
1278    return false;
1279}
1280
1281int postcopy_ram_incoming_init(MigrationIncomingState *mis)
1282{
1283    error_report("postcopy_ram_incoming_init: No OS support");
1284    return -1;
1285}
1286
1287int postcopy_ram_incoming_cleanup(MigrationIncomingState *mis)
1288{
1289    assert(0);
1290    return -1;
1291}
1292
1293int postcopy_ram_prepare_discard(MigrationIncomingState *mis)
1294{
1295    assert(0);
1296    return -1;
1297}
1298
1299int postcopy_request_shared_page(struct PostCopyFD *pcfd, RAMBlock *rb,
1300                                 uint64_t client_addr, uint64_t rb_offset)
1301{
1302    assert(0);
1303    return -1;
1304}
1305
1306int postcopy_ram_incoming_setup(MigrationIncomingState *mis)
1307{
1308    assert(0);
1309    return -1;
1310}
1311
1312int postcopy_place_page(MigrationIncomingState *mis, void *host, void *from,
1313                        RAMBlock *rb)
1314{
1315    assert(0);
1316    return -1;
1317}
1318
1319int postcopy_place_page_zero(MigrationIncomingState *mis, void *host,
1320                        RAMBlock *rb)
1321{
1322    assert(0);
1323    return -1;
1324}
1325
1326int postcopy_wake_shared(struct PostCopyFD *pcfd,
1327                         uint64_t client_addr,
1328                         RAMBlock *rb)
1329{
1330    assert(0);
1331    return -1;
1332}
1333#endif
1334
1335/* ------------------------------------------------------------------------- */
1336
1337void postcopy_fault_thread_notify(MigrationIncomingState *mis)
1338{
1339    uint64_t tmp64 = 1;
1340
1341    /*
1342     * Wakeup the fault_thread.  It's an eventfd that should currently
1343     * be at 0, we're going to increment it to 1
1344     */
1345    if (write(mis->userfault_event_fd, &tmp64, 8) != 8) {
1346        /* Not much we can do here, but may as well report it */
1347        error_report("%s: incrementing failed: %s", __func__,
1348                     strerror(errno));
1349    }
1350}
1351
1352/**
1353 * postcopy_discard_send_init: Called at the start of each RAMBlock before
1354 *   asking to discard individual ranges.
1355 *
1356 * @ms: The current migration state.
1357 * @offset: the bitmap offset of the named RAMBlock in the migration bitmap.
1358 * @name: RAMBlock that discards will operate on.
1359 */
1360static PostcopyDiscardState pds = {0};
1361void postcopy_discard_send_init(MigrationState *ms, const char *name)
1362{
1363    pds.ramblock_name = name;
1364    pds.cur_entry = 0;
1365    pds.nsentwords = 0;
1366    pds.nsentcmds = 0;
1367}
1368
1369/**
1370 * postcopy_discard_send_range: Called by the bitmap code for each chunk to
1371 *   discard. May send a discard message, may just leave it queued to
1372 *   be sent later.
1373 *
1374 * @ms: Current migration state.
1375 * @start,@length: a range of pages in the migration bitmap in the
1376 *   RAM block passed to postcopy_discard_send_init() (length=1 is one page)
1377 */
1378void postcopy_discard_send_range(MigrationState *ms, unsigned long start,
1379                                 unsigned long length)
1380{
1381    size_t tp_size = qemu_target_page_size();
1382    /* Convert to byte offsets within the RAM block */
1383    pds.start_list[pds.cur_entry] = start  * tp_size;
1384    pds.length_list[pds.cur_entry] = length * tp_size;
1385    trace_postcopy_discard_send_range(pds.ramblock_name, start, length);
1386    pds.cur_entry++;
1387    pds.nsentwords++;
1388
1389    if (pds.cur_entry == MAX_DISCARDS_PER_COMMAND) {
1390        /* Full set, ship it! */
1391        qemu_savevm_send_postcopy_ram_discard(ms->to_dst_file,
1392                                              pds.ramblock_name,
1393                                              pds.cur_entry,
1394                                              pds.start_list,
1395                                              pds.length_list);
1396        pds.nsentcmds++;
1397        pds.cur_entry = 0;
1398    }
1399}
1400
1401/**
1402 * postcopy_discard_send_finish: Called at the end of each RAMBlock by the
1403 * bitmap code. Sends any outstanding discard messages, frees the PDS
1404 *
1405 * @ms: Current migration state.
1406 */
1407void postcopy_discard_send_finish(MigrationState *ms)
1408{
1409    /* Anything unsent? */
1410    if (pds.cur_entry) {
1411        qemu_savevm_send_postcopy_ram_discard(ms->to_dst_file,
1412                                              pds.ramblock_name,
1413                                              pds.cur_entry,
1414                                              pds.start_list,
1415                                              pds.length_list);
1416        pds.nsentcmds++;
1417    }
1418
1419    trace_postcopy_discard_send_finish(pds.ramblock_name, pds.nsentwords,
1420                                       pds.nsentcmds);
1421}
1422
1423/*
1424 * Current state of incoming postcopy; note this is not part of
1425 * MigrationIncomingState since it's state is used during cleanup
1426 * at the end as MIS is being freed.
1427 */
1428static PostcopyState incoming_postcopy_state;
1429
1430PostcopyState  postcopy_state_get(void)
1431{
1432    return qatomic_mb_read(&incoming_postcopy_state);
1433}
1434
1435/* Set the state and return the old state */
1436PostcopyState postcopy_state_set(PostcopyState new_state)
1437{
1438    return qatomic_xchg(&incoming_postcopy_state, new_state);
1439}
1440
1441/* Register a handler for external shared memory postcopy
1442 * called on the destination.
1443 */
1444void postcopy_register_shared_ufd(struct PostCopyFD *pcfd)
1445{
1446    MigrationIncomingState *mis = migration_incoming_get_current();
1447
1448    mis->postcopy_remote_fds = g_array_append_val(mis->postcopy_remote_fds,
1449                                                  *pcfd);
1450}
1451
1452/* Unregister a handler for external shared memory postcopy
1453 */
1454void postcopy_unregister_shared_ufd(struct PostCopyFD *pcfd)
1455{
1456    guint i;
1457    MigrationIncomingState *mis = migration_incoming_get_current();
1458    GArray *pcrfds = mis->postcopy_remote_fds;
1459
1460    if (!pcrfds) {
1461        /* migration has already finished and freed the array */
1462        return;
1463    }
1464    for (i = 0; i < pcrfds->len; i++) {
1465        struct PostCopyFD *cur = &g_array_index(pcrfds, struct PostCopyFD, i);
1466        if (cur->fd == pcfd->fd) {
1467            mis->postcopy_remote_fds = g_array_remove_index(pcrfds, i);
1468            return;
1469        }
1470    }
1471}
1472