qemu/migration/rdma.c
<<
>>
Prefs
   1/*
   2 * RDMA protocol and interfaces
   3 *
   4 * Copyright IBM, Corp. 2010-2013
   5 * Copyright Red Hat, Inc. 2015-2016
   6 *
   7 * Authors:
   8 *  Michael R. Hines <mrhines@us.ibm.com>
   9 *  Jiuxing Liu <jl@us.ibm.com>
  10 *  Daniel P. Berrange <berrange@redhat.com>
  11 *
  12 * This work is licensed under the terms of the GNU GPL, version 2 or
  13 * later.  See the COPYING file in the top-level directory.
  14 *
  15 */
  16
  17#include "qemu/osdep.h"
  18#include "qapi/error.h"
  19#include "qemu/cutils.h"
  20#include "rdma.h"
  21#include "migration.h"
  22#include "qemu-file.h"
  23#include "ram.h"
  24#include "qemu-file-channel.h"
  25#include "qemu/error-report.h"
  26#include "qemu/main-loop.h"
  27#include "qemu/module.h"
  28#include "qemu/rcu.h"
  29#include "qemu/sockets.h"
  30#include "qemu/bitmap.h"
  31#include "qemu/coroutine.h"
  32#include "exec/memory.h"
  33#include <sys/socket.h>
  34#include <netdb.h>
  35#include <arpa/inet.h>
  36#include <rdma/rdma_cma.h>
  37#include "trace.h"
  38#include "qom/object.h"
  39#include <poll.h>
  40
  41/*
  42 * Print and error on both the Monitor and the Log file.
  43 */
  44#define ERROR(errp, fmt, ...) \
  45    do { \
  46        fprintf(stderr, "RDMA ERROR: " fmt "\n", ## __VA_ARGS__); \
  47        if (errp && (*(errp) == NULL)) { \
  48            error_setg(errp, "RDMA ERROR: " fmt, ## __VA_ARGS__); \
  49        } \
  50    } while (0)
  51
  52#define RDMA_RESOLVE_TIMEOUT_MS 10000
  53
  54/* Do not merge data if larger than this. */
  55#define RDMA_MERGE_MAX (2 * 1024 * 1024)
  56#define RDMA_SIGNALED_SEND_MAX (RDMA_MERGE_MAX / 4096)
  57
  58#define RDMA_REG_CHUNK_SHIFT 20 /* 1 MB */
  59
  60/*
  61 * This is only for non-live state being migrated.
  62 * Instead of RDMA_WRITE messages, we use RDMA_SEND
  63 * messages for that state, which requires a different
  64 * delivery design than main memory.
  65 */
  66#define RDMA_SEND_INCREMENT 32768
  67
  68/*
  69 * Maximum size infiniband SEND message
  70 */
  71#define RDMA_CONTROL_MAX_BUFFER (512 * 1024)
  72#define RDMA_CONTROL_MAX_COMMANDS_PER_MESSAGE 4096
  73
  74#define RDMA_CONTROL_VERSION_CURRENT 1
  75/*
  76 * Capabilities for negotiation.
  77 */
  78#define RDMA_CAPABILITY_PIN_ALL 0x01
  79
  80/*
  81 * Add the other flags above to this list of known capabilities
  82 * as they are introduced.
  83 */
  84static uint32_t known_capabilities = RDMA_CAPABILITY_PIN_ALL;
  85
  86#define CHECK_ERROR_STATE() \
  87    do { \
  88        if (rdma->error_state) { \
  89            if (!rdma->error_reported) { \
  90                error_report("RDMA is in an error state waiting migration" \
  91                                " to abort!"); \
  92                rdma->error_reported = 1; \
  93            } \
  94            return rdma->error_state; \
  95        } \
  96    } while (0)
  97
  98/*
  99 * A work request ID is 64-bits and we split up these bits
 100 * into 3 parts:
 101 *
 102 * bits 0-15 : type of control message, 2^16
 103 * bits 16-29: ram block index, 2^14
 104 * bits 30-63: ram block chunk number, 2^34
 105 *
 106 * The last two bit ranges are only used for RDMA writes,
 107 * in order to track their completion and potentially
 108 * also track unregistration status of the message.
 109 */
 110#define RDMA_WRID_TYPE_SHIFT  0UL
 111#define RDMA_WRID_BLOCK_SHIFT 16UL
 112#define RDMA_WRID_CHUNK_SHIFT 30UL
 113
 114#define RDMA_WRID_TYPE_MASK \
 115    ((1UL << RDMA_WRID_BLOCK_SHIFT) - 1UL)
 116
 117#define RDMA_WRID_BLOCK_MASK \
 118    (~RDMA_WRID_TYPE_MASK & ((1UL << RDMA_WRID_CHUNK_SHIFT) - 1UL))
 119
 120#define RDMA_WRID_CHUNK_MASK (~RDMA_WRID_BLOCK_MASK & ~RDMA_WRID_TYPE_MASK)
 121
 122/*
 123 * RDMA migration protocol:
 124 * 1. RDMA Writes (data messages, i.e. RAM)
 125 * 2. IB Send/Recv (control channel messages)
 126 */
 127enum {
 128    RDMA_WRID_NONE = 0,
 129    RDMA_WRID_RDMA_WRITE = 1,
 130    RDMA_WRID_SEND_CONTROL = 2000,
 131    RDMA_WRID_RECV_CONTROL = 4000,
 132};
 133
 134static const char *wrid_desc[] = {
 135    [RDMA_WRID_NONE] = "NONE",
 136    [RDMA_WRID_RDMA_WRITE] = "WRITE RDMA",
 137    [RDMA_WRID_SEND_CONTROL] = "CONTROL SEND",
 138    [RDMA_WRID_RECV_CONTROL] = "CONTROL RECV",
 139};
 140
 141/*
 142 * Work request IDs for IB SEND messages only (not RDMA writes).
 143 * This is used by the migration protocol to transmit
 144 * control messages (such as device state and registration commands)
 145 *
 146 * We could use more WRs, but we have enough for now.
 147 */
 148enum {
 149    RDMA_WRID_READY = 0,
 150    RDMA_WRID_DATA,
 151    RDMA_WRID_CONTROL,
 152    RDMA_WRID_MAX,
 153};
 154
 155/*
 156 * SEND/RECV IB Control Messages.
 157 */
 158enum {
 159    RDMA_CONTROL_NONE = 0,
 160    RDMA_CONTROL_ERROR,
 161    RDMA_CONTROL_READY,               /* ready to receive */
 162    RDMA_CONTROL_QEMU_FILE,           /* QEMUFile-transmitted bytes */
 163    RDMA_CONTROL_RAM_BLOCKS_REQUEST,  /* RAMBlock synchronization */
 164    RDMA_CONTROL_RAM_BLOCKS_RESULT,   /* RAMBlock synchronization */
 165    RDMA_CONTROL_COMPRESS,            /* page contains repeat values */
 166    RDMA_CONTROL_REGISTER_REQUEST,    /* dynamic page registration */
 167    RDMA_CONTROL_REGISTER_RESULT,     /* key to use after registration */
 168    RDMA_CONTROL_REGISTER_FINISHED,   /* current iteration finished */
 169    RDMA_CONTROL_UNREGISTER_REQUEST,  /* dynamic UN-registration */
 170    RDMA_CONTROL_UNREGISTER_FINISHED, /* unpinning finished */
 171};
 172
 173
 174/*
 175 * Memory and MR structures used to represent an IB Send/Recv work request.
 176 * This is *not* used for RDMA writes, only IB Send/Recv.
 177 */
 178typedef struct {
 179    uint8_t  control[RDMA_CONTROL_MAX_BUFFER]; /* actual buffer to register */
 180    struct   ibv_mr *control_mr;               /* registration metadata */
 181    size_t   control_len;                      /* length of the message */
 182    uint8_t *control_curr;                     /* start of unconsumed bytes */
 183} RDMAWorkRequestData;
 184
 185/*
 186 * Negotiate RDMA capabilities during connection-setup time.
 187 */
 188typedef struct {
 189    uint32_t version;
 190    uint32_t flags;
 191} RDMACapabilities;
 192
 193static void caps_to_network(RDMACapabilities *cap)
 194{
 195    cap->version = htonl(cap->version);
 196    cap->flags = htonl(cap->flags);
 197}
 198
 199static void network_to_caps(RDMACapabilities *cap)
 200{
 201    cap->version = ntohl(cap->version);
 202    cap->flags = ntohl(cap->flags);
 203}
 204
 205/*
 206 * Representation of a RAMBlock from an RDMA perspective.
 207 * This is not transmitted, only local.
 208 * This and subsequent structures cannot be linked lists
 209 * because we're using a single IB message to transmit
 210 * the information. It's small anyway, so a list is overkill.
 211 */
 212typedef struct RDMALocalBlock {
 213    char          *block_name;
 214    uint8_t       *local_host_addr; /* local virtual address */
 215    uint64_t       remote_host_addr; /* remote virtual address */
 216    uint64_t       offset;
 217    uint64_t       length;
 218    struct         ibv_mr **pmr;    /* MRs for chunk-level registration */
 219    struct         ibv_mr *mr;      /* MR for non-chunk-level registration */
 220    uint32_t      *remote_keys;     /* rkeys for chunk-level registration */
 221    uint32_t       remote_rkey;     /* rkeys for non-chunk-level registration */
 222    int            index;           /* which block are we */
 223    unsigned int   src_index;       /* (Only used on dest) */
 224    bool           is_ram_block;
 225    int            nb_chunks;
 226    unsigned long *transit_bitmap;
 227    unsigned long *unregister_bitmap;
 228} RDMALocalBlock;
 229
 230/*
 231 * Also represents a RAMblock, but only on the dest.
 232 * This gets transmitted by the dest during connection-time
 233 * to the source VM and then is used to populate the
 234 * corresponding RDMALocalBlock with
 235 * the information needed to perform the actual RDMA.
 236 */
 237typedef struct QEMU_PACKED RDMADestBlock {
 238    uint64_t remote_host_addr;
 239    uint64_t offset;
 240    uint64_t length;
 241    uint32_t remote_rkey;
 242    uint32_t padding;
 243} RDMADestBlock;
 244
 245static const char *control_desc(unsigned int rdma_control)
 246{
 247    static const char *strs[] = {
 248        [RDMA_CONTROL_NONE] = "NONE",
 249        [RDMA_CONTROL_ERROR] = "ERROR",
 250        [RDMA_CONTROL_READY] = "READY",
 251        [RDMA_CONTROL_QEMU_FILE] = "QEMU FILE",
 252        [RDMA_CONTROL_RAM_BLOCKS_REQUEST] = "RAM BLOCKS REQUEST",
 253        [RDMA_CONTROL_RAM_BLOCKS_RESULT] = "RAM BLOCKS RESULT",
 254        [RDMA_CONTROL_COMPRESS] = "COMPRESS",
 255        [RDMA_CONTROL_REGISTER_REQUEST] = "REGISTER REQUEST",
 256        [RDMA_CONTROL_REGISTER_RESULT] = "REGISTER RESULT",
 257        [RDMA_CONTROL_REGISTER_FINISHED] = "REGISTER FINISHED",
 258        [RDMA_CONTROL_UNREGISTER_REQUEST] = "UNREGISTER REQUEST",
 259        [RDMA_CONTROL_UNREGISTER_FINISHED] = "UNREGISTER FINISHED",
 260    };
 261
 262    if (rdma_control > RDMA_CONTROL_UNREGISTER_FINISHED) {
 263        return "??BAD CONTROL VALUE??";
 264    }
 265
 266    return strs[rdma_control];
 267}
 268
 269static uint64_t htonll(uint64_t v)
 270{
 271    union { uint32_t lv[2]; uint64_t llv; } u;
 272    u.lv[0] = htonl(v >> 32);
 273    u.lv[1] = htonl(v & 0xFFFFFFFFULL);
 274    return u.llv;
 275}
 276
 277static uint64_t ntohll(uint64_t v)
 278{
 279    union { uint32_t lv[2]; uint64_t llv; } u;
 280    u.llv = v;
 281    return ((uint64_t)ntohl(u.lv[0]) << 32) | (uint64_t) ntohl(u.lv[1]);
 282}
 283
 284static void dest_block_to_network(RDMADestBlock *db)
 285{
 286    db->remote_host_addr = htonll(db->remote_host_addr);
 287    db->offset = htonll(db->offset);
 288    db->length = htonll(db->length);
 289    db->remote_rkey = htonl(db->remote_rkey);
 290}
 291
 292static void network_to_dest_block(RDMADestBlock *db)
 293{
 294    db->remote_host_addr = ntohll(db->remote_host_addr);
 295    db->offset = ntohll(db->offset);
 296    db->length = ntohll(db->length);
 297    db->remote_rkey = ntohl(db->remote_rkey);
 298}
 299
 300/*
 301 * Virtual address of the above structures used for transmitting
 302 * the RAMBlock descriptions at connection-time.
 303 * This structure is *not* transmitted.
 304 */
 305typedef struct RDMALocalBlocks {
 306    int nb_blocks;
 307    bool     init;             /* main memory init complete */
 308    RDMALocalBlock *block;
 309} RDMALocalBlocks;
 310
 311/*
 312 * Main data structure for RDMA state.
 313 * While there is only one copy of this structure being allocated right now,
 314 * this is the place where one would start if you wanted to consider
 315 * having more than one RDMA connection open at the same time.
 316 */
 317typedef struct RDMAContext {
 318    char *host;
 319    int port;
 320    char *host_port;
 321
 322    RDMAWorkRequestData wr_data[RDMA_WRID_MAX];
 323
 324    /*
 325     * This is used by *_exchange_send() to figure out whether or not
 326     * the initial "READY" message has already been received or not.
 327     * This is because other functions may potentially poll() and detect
 328     * the READY message before send() does, in which case we need to
 329     * know if it completed.
 330     */
 331    int control_ready_expected;
 332
 333    /* number of outstanding writes */
 334    int nb_sent;
 335
 336    /* store info about current buffer so that we can
 337       merge it with future sends */
 338    uint64_t current_addr;
 339    uint64_t current_length;
 340    /* index of ram block the current buffer belongs to */
 341    int current_index;
 342    /* index of the chunk in the current ram block */
 343    int current_chunk;
 344
 345    bool pin_all;
 346
 347    /*
 348     * infiniband-specific variables for opening the device
 349     * and maintaining connection state and so forth.
 350     *
 351     * cm_id also has ibv_context, rdma_event_channel, and ibv_qp in
 352     * cm_id->verbs, cm_id->channel, and cm_id->qp.
 353     */
 354    struct rdma_cm_id *cm_id;               /* connection manager ID */
 355    struct rdma_cm_id *listen_id;
 356    bool connected;
 357
 358    struct ibv_context          *verbs;
 359    struct rdma_event_channel   *channel;
 360    struct ibv_qp *qp;                      /* queue pair */
 361    struct ibv_comp_channel *recv_comp_channel;  /* recv completion channel */
 362    struct ibv_comp_channel *send_comp_channel;  /* send completion channel */
 363    struct ibv_pd *pd;                      /* protection domain */
 364    struct ibv_cq *recv_cq;                 /* recvieve completion queue */
 365    struct ibv_cq *send_cq;                 /* send completion queue */
 366
 367    /*
 368     * If a previous write failed (perhaps because of a failed
 369     * memory registration, then do not attempt any future work
 370     * and remember the error state.
 371     */
 372    int error_state;
 373    int error_reported;
 374    int received_error;
 375
 376    /*
 377     * Description of ram blocks used throughout the code.
 378     */
 379    RDMALocalBlocks local_ram_blocks;
 380    RDMADestBlock  *dest_blocks;
 381
 382    /* Index of the next RAMBlock received during block registration */
 383    unsigned int    next_src_index;
 384
 385    /*
 386     * Migration on *destination* started.
 387     * Then use coroutine yield function.
 388     * Source runs in a thread, so we don't care.
 389     */
 390    int migration_started_on_destination;
 391
 392    int total_registrations;
 393    int total_writes;
 394
 395    int unregister_current, unregister_next;
 396    uint64_t unregistrations[RDMA_SIGNALED_SEND_MAX];
 397
 398    GHashTable *blockmap;
 399
 400    /* the RDMAContext for return path */
 401    struct RDMAContext *return_path;
 402    bool is_return_path;
 403} RDMAContext;
 404
 405#define TYPE_QIO_CHANNEL_RDMA "qio-channel-rdma"
 406OBJECT_DECLARE_SIMPLE_TYPE(QIOChannelRDMA, QIO_CHANNEL_RDMA)
 407
 408
 409
 410struct QIOChannelRDMA {
 411    QIOChannel parent;
 412    RDMAContext *rdmain;
 413    RDMAContext *rdmaout;
 414    QEMUFile *file;
 415    bool blocking; /* XXX we don't actually honour this yet */
 416};
 417
 418/*
 419 * Main structure for IB Send/Recv control messages.
 420 * This gets prepended at the beginning of every Send/Recv.
 421 */
 422typedef struct QEMU_PACKED {
 423    uint32_t len;     /* Total length of data portion */
 424    uint32_t type;    /* which control command to perform */
 425    uint32_t repeat;  /* number of commands in data portion of same type */
 426    uint32_t padding;
 427} RDMAControlHeader;
 428
 429static void control_to_network(RDMAControlHeader *control)
 430{
 431    control->type = htonl(control->type);
 432    control->len = htonl(control->len);
 433    control->repeat = htonl(control->repeat);
 434}
 435
 436static void network_to_control(RDMAControlHeader *control)
 437{
 438    control->type = ntohl(control->type);
 439    control->len = ntohl(control->len);
 440    control->repeat = ntohl(control->repeat);
 441}
 442
 443/*
 444 * Register a single Chunk.
 445 * Information sent by the source VM to inform the dest
 446 * to register an single chunk of memory before we can perform
 447 * the actual RDMA operation.
 448 */
 449typedef struct QEMU_PACKED {
 450    union QEMU_PACKED {
 451        uint64_t current_addr;  /* offset into the ram_addr_t space */
 452        uint64_t chunk;         /* chunk to lookup if unregistering */
 453    } key;
 454    uint32_t current_index; /* which ramblock the chunk belongs to */
 455    uint32_t padding;
 456    uint64_t chunks;            /* how many sequential chunks to register */
 457} RDMARegister;
 458
 459static void register_to_network(RDMAContext *rdma, RDMARegister *reg)
 460{
 461    RDMALocalBlock *local_block;
 462    local_block  = &rdma->local_ram_blocks.block[reg->current_index];
 463
 464    if (local_block->is_ram_block) {
 465        /*
 466         * current_addr as passed in is an address in the local ram_addr_t
 467         * space, we need to translate this for the destination
 468         */
 469        reg->key.current_addr -= local_block->offset;
 470        reg->key.current_addr += rdma->dest_blocks[reg->current_index].offset;
 471    }
 472    reg->key.current_addr = htonll(reg->key.current_addr);
 473    reg->current_index = htonl(reg->current_index);
 474    reg->chunks = htonll(reg->chunks);
 475}
 476
 477static void network_to_register(RDMARegister *reg)
 478{
 479    reg->key.current_addr = ntohll(reg->key.current_addr);
 480    reg->current_index = ntohl(reg->current_index);
 481    reg->chunks = ntohll(reg->chunks);
 482}
 483
 484typedef struct QEMU_PACKED {
 485    uint32_t value;     /* if zero, we will madvise() */
 486    uint32_t block_idx; /* which ram block index */
 487    uint64_t offset;    /* Address in remote ram_addr_t space */
 488    uint64_t length;    /* length of the chunk */
 489} RDMACompress;
 490
 491static void compress_to_network(RDMAContext *rdma, RDMACompress *comp)
 492{
 493    comp->value = htonl(comp->value);
 494    /*
 495     * comp->offset as passed in is an address in the local ram_addr_t
 496     * space, we need to translate this for the destination
 497     */
 498    comp->offset -= rdma->local_ram_blocks.block[comp->block_idx].offset;
 499    comp->offset += rdma->dest_blocks[comp->block_idx].offset;
 500    comp->block_idx = htonl(comp->block_idx);
 501    comp->offset = htonll(comp->offset);
 502    comp->length = htonll(comp->length);
 503}
 504
 505static void network_to_compress(RDMACompress *comp)
 506{
 507    comp->value = ntohl(comp->value);
 508    comp->block_idx = ntohl(comp->block_idx);
 509    comp->offset = ntohll(comp->offset);
 510    comp->length = ntohll(comp->length);
 511}
 512
 513/*
 514 * The result of the dest's memory registration produces an "rkey"
 515 * which the source VM must reference in order to perform
 516 * the RDMA operation.
 517 */
 518typedef struct QEMU_PACKED {
 519    uint32_t rkey;
 520    uint32_t padding;
 521    uint64_t host_addr;
 522} RDMARegisterResult;
 523
 524static void result_to_network(RDMARegisterResult *result)
 525{
 526    result->rkey = htonl(result->rkey);
 527    result->host_addr = htonll(result->host_addr);
 528};
 529
 530static void network_to_result(RDMARegisterResult *result)
 531{
 532    result->rkey = ntohl(result->rkey);
 533    result->host_addr = ntohll(result->host_addr);
 534};
 535
 536const char *print_wrid(int wrid);
 537static int qemu_rdma_exchange_send(RDMAContext *rdma, RDMAControlHeader *head,
 538                                   uint8_t *data, RDMAControlHeader *resp,
 539                                   int *resp_idx,
 540                                   int (*callback)(RDMAContext *rdma));
 541
 542static inline uint64_t ram_chunk_index(const uint8_t *start,
 543                                       const uint8_t *host)
 544{
 545    return ((uintptr_t) host - (uintptr_t) start) >> RDMA_REG_CHUNK_SHIFT;
 546}
 547
 548static inline uint8_t *ram_chunk_start(const RDMALocalBlock *rdma_ram_block,
 549                                       uint64_t i)
 550{
 551    return (uint8_t *)(uintptr_t)(rdma_ram_block->local_host_addr +
 552                                  (i << RDMA_REG_CHUNK_SHIFT));
 553}
 554
 555static inline uint8_t *ram_chunk_end(const RDMALocalBlock *rdma_ram_block,
 556                                     uint64_t i)
 557{
 558    uint8_t *result = ram_chunk_start(rdma_ram_block, i) +
 559                                         (1UL << RDMA_REG_CHUNK_SHIFT);
 560
 561    if (result > (rdma_ram_block->local_host_addr + rdma_ram_block->length)) {
 562        result = rdma_ram_block->local_host_addr + rdma_ram_block->length;
 563    }
 564
 565    return result;
 566}
 567
 568static int rdma_add_block(RDMAContext *rdma, const char *block_name,
 569                         void *host_addr,
 570                         ram_addr_t block_offset, uint64_t length)
 571{
 572    RDMALocalBlocks *local = &rdma->local_ram_blocks;
 573    RDMALocalBlock *block;
 574    RDMALocalBlock *old = local->block;
 575
 576    local->block = g_new0(RDMALocalBlock, local->nb_blocks + 1);
 577
 578    if (local->nb_blocks) {
 579        int x;
 580
 581        if (rdma->blockmap) {
 582            for (x = 0; x < local->nb_blocks; x++) {
 583                g_hash_table_remove(rdma->blockmap,
 584                                    (void *)(uintptr_t)old[x].offset);
 585                g_hash_table_insert(rdma->blockmap,
 586                                    (void *)(uintptr_t)old[x].offset,
 587                                    &local->block[x]);
 588            }
 589        }
 590        memcpy(local->block, old, sizeof(RDMALocalBlock) * local->nb_blocks);
 591        g_free(old);
 592    }
 593
 594    block = &local->block[local->nb_blocks];
 595
 596    block->block_name = g_strdup(block_name);
 597    block->local_host_addr = host_addr;
 598    block->offset = block_offset;
 599    block->length = length;
 600    block->index = local->nb_blocks;
 601    block->src_index = ~0U; /* Filled in by the receipt of the block list */
 602    block->nb_chunks = ram_chunk_index(host_addr, host_addr + length) + 1UL;
 603    block->transit_bitmap = bitmap_new(block->nb_chunks);
 604    bitmap_clear(block->transit_bitmap, 0, block->nb_chunks);
 605    block->unregister_bitmap = bitmap_new(block->nb_chunks);
 606    bitmap_clear(block->unregister_bitmap, 0, block->nb_chunks);
 607    block->remote_keys = g_new0(uint32_t, block->nb_chunks);
 608
 609    block->is_ram_block = local->init ? false : true;
 610
 611    if (rdma->blockmap) {
 612        g_hash_table_insert(rdma->blockmap, (void *)(uintptr_t)block_offset, block);
 613    }
 614
 615    trace_rdma_add_block(block_name, local->nb_blocks,
 616                         (uintptr_t) block->local_host_addr,
 617                         block->offset, block->length,
 618                         (uintptr_t) (block->local_host_addr + block->length),
 619                         BITS_TO_LONGS(block->nb_chunks) *
 620                             sizeof(unsigned long) * 8,
 621                         block->nb_chunks);
 622
 623    local->nb_blocks++;
 624
 625    return 0;
 626}
 627
 628/*
 629 * Memory regions need to be registered with the device and queue pairs setup
 630 * in advanced before the migration starts. This tells us where the RAM blocks
 631 * are so that we can register them individually.
 632 */
 633static int qemu_rdma_init_one_block(RAMBlock *rb, void *opaque)
 634{
 635    const char *block_name = qemu_ram_get_idstr(rb);
 636    void *host_addr = qemu_ram_get_host_addr(rb);
 637    ram_addr_t block_offset = qemu_ram_get_offset(rb);
 638    ram_addr_t length = qemu_ram_get_used_length(rb);
 639    return rdma_add_block(opaque, block_name, host_addr, block_offset, length);
 640}
 641
 642/*
 643 * Identify the RAMBlocks and their quantity. They will be references to
 644 * identify chunk boundaries inside each RAMBlock and also be referenced
 645 * during dynamic page registration.
 646 */
 647static int qemu_rdma_init_ram_blocks(RDMAContext *rdma)
 648{
 649    RDMALocalBlocks *local = &rdma->local_ram_blocks;
 650    int ret;
 651
 652    assert(rdma->blockmap == NULL);
 653    memset(local, 0, sizeof *local);
 654    ret = foreach_not_ignored_block(qemu_rdma_init_one_block, rdma);
 655    if (ret) {
 656        return ret;
 657    }
 658    trace_qemu_rdma_init_ram_blocks(local->nb_blocks);
 659    rdma->dest_blocks = g_new0(RDMADestBlock,
 660                               rdma->local_ram_blocks.nb_blocks);
 661    local->init = true;
 662    return 0;
 663}
 664
 665/*
 666 * Note: If used outside of cleanup, the caller must ensure that the destination
 667 * block structures are also updated
 668 */
 669static int rdma_delete_block(RDMAContext *rdma, RDMALocalBlock *block)
 670{
 671    RDMALocalBlocks *local = &rdma->local_ram_blocks;
 672    RDMALocalBlock *old = local->block;
 673    int x;
 674
 675    if (rdma->blockmap) {
 676        g_hash_table_remove(rdma->blockmap, (void *)(uintptr_t)block->offset);
 677    }
 678    if (block->pmr) {
 679        int j;
 680
 681        for (j = 0; j < block->nb_chunks; j++) {
 682            if (!block->pmr[j]) {
 683                continue;
 684            }
 685            ibv_dereg_mr(block->pmr[j]);
 686            rdma->total_registrations--;
 687        }
 688        g_free(block->pmr);
 689        block->pmr = NULL;
 690    }
 691
 692    if (block->mr) {
 693        ibv_dereg_mr(block->mr);
 694        rdma->total_registrations--;
 695        block->mr = NULL;
 696    }
 697
 698    g_free(block->transit_bitmap);
 699    block->transit_bitmap = NULL;
 700
 701    g_free(block->unregister_bitmap);
 702    block->unregister_bitmap = NULL;
 703
 704    g_free(block->remote_keys);
 705    block->remote_keys = NULL;
 706
 707    g_free(block->block_name);
 708    block->block_name = NULL;
 709
 710    if (rdma->blockmap) {
 711        for (x = 0; x < local->nb_blocks; x++) {
 712            g_hash_table_remove(rdma->blockmap,
 713                                (void *)(uintptr_t)old[x].offset);
 714        }
 715    }
 716
 717    if (local->nb_blocks > 1) {
 718
 719        local->block = g_new0(RDMALocalBlock, local->nb_blocks - 1);
 720
 721        if (block->index) {
 722            memcpy(local->block, old, sizeof(RDMALocalBlock) * block->index);
 723        }
 724
 725        if (block->index < (local->nb_blocks - 1)) {
 726            memcpy(local->block + block->index, old + (block->index + 1),
 727                sizeof(RDMALocalBlock) *
 728                    (local->nb_blocks - (block->index + 1)));
 729            for (x = block->index; x < local->nb_blocks - 1; x++) {
 730                local->block[x].index--;
 731            }
 732        }
 733    } else {
 734        assert(block == local->block);
 735        local->block = NULL;
 736    }
 737
 738    trace_rdma_delete_block(block, (uintptr_t)block->local_host_addr,
 739                           block->offset, block->length,
 740                            (uintptr_t)(block->local_host_addr + block->length),
 741                           BITS_TO_LONGS(block->nb_chunks) *
 742                               sizeof(unsigned long) * 8, block->nb_chunks);
 743
 744    g_free(old);
 745
 746    local->nb_blocks--;
 747
 748    if (local->nb_blocks && rdma->blockmap) {
 749        for (x = 0; x < local->nb_blocks; x++) {
 750            g_hash_table_insert(rdma->blockmap,
 751                                (void *)(uintptr_t)local->block[x].offset,
 752                                &local->block[x]);
 753        }
 754    }
 755
 756    return 0;
 757}
 758
 759/*
 760 * Put in the log file which RDMA device was opened and the details
 761 * associated with that device.
 762 */
 763static void qemu_rdma_dump_id(const char *who, struct ibv_context *verbs)
 764{
 765    struct ibv_port_attr port;
 766
 767    if (ibv_query_port(verbs, 1, &port)) {
 768        error_report("Failed to query port information");
 769        return;
 770    }
 771
 772    printf("%s RDMA Device opened: kernel name %s "
 773           "uverbs device name %s, "
 774           "infiniband_verbs class device path %s, "
 775           "infiniband class device path %s, "
 776           "transport: (%d) %s\n",
 777                who,
 778                verbs->device->name,
 779                verbs->device->dev_name,
 780                verbs->device->dev_path,
 781                verbs->device->ibdev_path,
 782                port.link_layer,
 783                (port.link_layer == IBV_LINK_LAYER_INFINIBAND) ? "Infiniband" :
 784                 ((port.link_layer == IBV_LINK_LAYER_ETHERNET)
 785                    ? "Ethernet" : "Unknown"));
 786}
 787
 788/*
 789 * Put in the log file the RDMA gid addressing information,
 790 * useful for folks who have trouble understanding the
 791 * RDMA device hierarchy in the kernel.
 792 */
 793static void qemu_rdma_dump_gid(const char *who, struct rdma_cm_id *id)
 794{
 795    char sgid[33];
 796    char dgid[33];
 797    inet_ntop(AF_INET6, &id->route.addr.addr.ibaddr.sgid, sgid, sizeof sgid);
 798    inet_ntop(AF_INET6, &id->route.addr.addr.ibaddr.dgid, dgid, sizeof dgid);
 799    trace_qemu_rdma_dump_gid(who, sgid, dgid);
 800}
 801
 802/*
 803 * As of now, IPv6 over RoCE / iWARP is not supported by linux.
 804 * We will try the next addrinfo struct, and fail if there are
 805 * no other valid addresses to bind against.
 806 *
 807 * If user is listening on '[::]', then we will not have a opened a device
 808 * yet and have no way of verifying if the device is RoCE or not.
 809 *
 810 * In this case, the source VM will throw an error for ALL types of
 811 * connections (both IPv4 and IPv6) if the destination machine does not have
 812 * a regular infiniband network available for use.
 813 *
 814 * The only way to guarantee that an error is thrown for broken kernels is
 815 * for the management software to choose a *specific* interface at bind time
 816 * and validate what time of hardware it is.
 817 *
 818 * Unfortunately, this puts the user in a fix:
 819 *
 820 *  If the source VM connects with an IPv4 address without knowing that the
 821 *  destination has bound to '[::]' the migration will unconditionally fail
 822 *  unless the management software is explicitly listening on the IPv4
 823 *  address while using a RoCE-based device.
 824 *
 825 *  If the source VM connects with an IPv6 address, then we're OK because we can
 826 *  throw an error on the source (and similarly on the destination).
 827 *
 828 *  But in mixed environments, this will be broken for a while until it is fixed
 829 *  inside linux.
 830 *
 831 * We do provide a *tiny* bit of help in this function: We can list all of the
 832 * devices in the system and check to see if all the devices are RoCE or
 833 * Infiniband.
 834 *
 835 * If we detect that we have a *pure* RoCE environment, then we can safely
 836 * thrown an error even if the management software has specified '[::]' as the
 837 * bind address.
 838 *
 839 * However, if there is are multiple hetergeneous devices, then we cannot make
 840 * this assumption and the user just has to be sure they know what they are
 841 * doing.
 842 *
 843 * Patches are being reviewed on linux-rdma.
 844 */
 845static int qemu_rdma_broken_ipv6_kernel(struct ibv_context *verbs, Error **errp)
 846{
 847    /* This bug only exists in linux, to our knowledge. */
 848#ifdef CONFIG_LINUX
 849    struct ibv_port_attr port_attr;
 850
 851    /*
 852     * Verbs are only NULL if management has bound to '[::]'.
 853     *
 854     * Let's iterate through all the devices and see if there any pure IB
 855     * devices (non-ethernet).
 856     *
 857     * If not, then we can safely proceed with the migration.
 858     * Otherwise, there are no guarantees until the bug is fixed in linux.
 859     */
 860    if (!verbs) {
 861        int num_devices, x;
 862        struct ibv_device **dev_list = ibv_get_device_list(&num_devices);
 863        bool roce_found = false;
 864        bool ib_found = false;
 865
 866        for (x = 0; x < num_devices; x++) {
 867            verbs = ibv_open_device(dev_list[x]);
 868            if (!verbs) {
 869                if (errno == EPERM) {
 870                    continue;
 871                } else {
 872                    return -EINVAL;
 873                }
 874            }
 875
 876            if (ibv_query_port(verbs, 1, &port_attr)) {
 877                ibv_close_device(verbs);
 878                ERROR(errp, "Could not query initial IB port");
 879                return -EINVAL;
 880            }
 881
 882            if (port_attr.link_layer == IBV_LINK_LAYER_INFINIBAND) {
 883                ib_found = true;
 884            } else if (port_attr.link_layer == IBV_LINK_LAYER_ETHERNET) {
 885                roce_found = true;
 886            }
 887
 888            ibv_close_device(verbs);
 889
 890        }
 891
 892        if (roce_found) {
 893            if (ib_found) {
 894                fprintf(stderr, "WARN: migrations may fail:"
 895                                " IPv6 over RoCE / iWARP in linux"
 896                                " is broken. But since you appear to have a"
 897                                " mixed RoCE / IB environment, be sure to only"
 898                                " migrate over the IB fabric until the kernel "
 899                                " fixes the bug.\n");
 900            } else {
 901                ERROR(errp, "You only have RoCE / iWARP devices in your systems"
 902                            " and your management software has specified '[::]'"
 903                            ", but IPv6 over RoCE / iWARP is not supported in Linux.");
 904                return -ENONET;
 905            }
 906        }
 907
 908        return 0;
 909    }
 910
 911    /*
 912     * If we have a verbs context, that means that some other than '[::]' was
 913     * used by the management software for binding. In which case we can
 914     * actually warn the user about a potentially broken kernel.
 915     */
 916
 917    /* IB ports start with 1, not 0 */
 918    if (ibv_query_port(verbs, 1, &port_attr)) {
 919        ERROR(errp, "Could not query initial IB port");
 920        return -EINVAL;
 921    }
 922
 923    if (port_attr.link_layer == IBV_LINK_LAYER_ETHERNET) {
 924        ERROR(errp, "Linux kernel's RoCE / iWARP does not support IPv6 "
 925                    "(but patches on linux-rdma in progress)");
 926        return -ENONET;
 927    }
 928
 929#endif
 930
 931    return 0;
 932}
 933
 934/*
 935 * Figure out which RDMA device corresponds to the requested IP hostname
 936 * Also create the initial connection manager identifiers for opening
 937 * the connection.
 938 */
 939static int qemu_rdma_resolve_host(RDMAContext *rdma, Error **errp)
 940{
 941    int ret;
 942    struct rdma_addrinfo *res;
 943    char port_str[16];
 944    struct rdma_cm_event *cm_event;
 945    char ip[40] = "unknown";
 946    struct rdma_addrinfo *e;
 947
 948    if (rdma->host == NULL || !strcmp(rdma->host, "")) {
 949        ERROR(errp, "RDMA hostname has not been set");
 950        return -EINVAL;
 951    }
 952
 953    /* create CM channel */
 954    rdma->channel = rdma_create_event_channel();
 955    if (!rdma->channel) {
 956        ERROR(errp, "could not create CM channel");
 957        return -EINVAL;
 958    }
 959
 960    /* create CM id */
 961    ret = rdma_create_id(rdma->channel, &rdma->cm_id, NULL, RDMA_PS_TCP);
 962    if (ret) {
 963        ERROR(errp, "could not create channel id");
 964        goto err_resolve_create_id;
 965    }
 966
 967    snprintf(port_str, 16, "%d", rdma->port);
 968    port_str[15] = '\0';
 969
 970    ret = rdma_getaddrinfo(rdma->host, port_str, NULL, &res);
 971    if (ret < 0) {
 972        ERROR(errp, "could not rdma_getaddrinfo address %s", rdma->host);
 973        goto err_resolve_get_addr;
 974    }
 975
 976    for (e = res; e != NULL; e = e->ai_next) {
 977        inet_ntop(e->ai_family,
 978            &((struct sockaddr_in *) e->ai_dst_addr)->sin_addr, ip, sizeof ip);
 979        trace_qemu_rdma_resolve_host_trying(rdma->host, ip);
 980
 981        ret = rdma_resolve_addr(rdma->cm_id, NULL, e->ai_dst_addr,
 982                RDMA_RESOLVE_TIMEOUT_MS);
 983        if (!ret) {
 984            if (e->ai_family == AF_INET6) {
 985                ret = qemu_rdma_broken_ipv6_kernel(rdma->cm_id->verbs, errp);
 986                if (ret) {
 987                    continue;
 988                }
 989            }
 990            goto route;
 991        }
 992    }
 993
 994    rdma_freeaddrinfo(res);
 995    ERROR(errp, "could not resolve address %s", rdma->host);
 996    goto err_resolve_get_addr;
 997
 998route:
 999    rdma_freeaddrinfo(res);
1000    qemu_rdma_dump_gid("source_resolve_addr", rdma->cm_id);
1001
1002    ret = rdma_get_cm_event(rdma->channel, &cm_event);
1003    if (ret) {
1004        ERROR(errp, "could not perform event_addr_resolved");
1005        goto err_resolve_get_addr;
1006    }
1007
1008    if (cm_event->event != RDMA_CM_EVENT_ADDR_RESOLVED) {
1009        ERROR(errp, "result not equal to event_addr_resolved %s",
1010                rdma_event_str(cm_event->event));
1011        error_report("rdma_resolve_addr");
1012        rdma_ack_cm_event(cm_event);
1013        ret = -EINVAL;
1014        goto err_resolve_get_addr;
1015    }
1016    rdma_ack_cm_event(cm_event);
1017
1018    /* resolve route */
1019    ret = rdma_resolve_route(rdma->cm_id, RDMA_RESOLVE_TIMEOUT_MS);
1020    if (ret) {
1021        ERROR(errp, "could not resolve rdma route");
1022        goto err_resolve_get_addr;
1023    }
1024
1025    ret = rdma_get_cm_event(rdma->channel, &cm_event);
1026    if (ret) {
1027        ERROR(errp, "could not perform event_route_resolved");
1028        goto err_resolve_get_addr;
1029    }
1030    if (cm_event->event != RDMA_CM_EVENT_ROUTE_RESOLVED) {
1031        ERROR(errp, "result not equal to event_route_resolved: %s",
1032                        rdma_event_str(cm_event->event));
1033        rdma_ack_cm_event(cm_event);
1034        ret = -EINVAL;
1035        goto err_resolve_get_addr;
1036    }
1037    rdma_ack_cm_event(cm_event);
1038    rdma->verbs = rdma->cm_id->verbs;
1039    qemu_rdma_dump_id("source_resolve_host", rdma->cm_id->verbs);
1040    qemu_rdma_dump_gid("source_resolve_host", rdma->cm_id);
1041    return 0;
1042
1043err_resolve_get_addr:
1044    rdma_destroy_id(rdma->cm_id);
1045    rdma->cm_id = NULL;
1046err_resolve_create_id:
1047    rdma_destroy_event_channel(rdma->channel);
1048    rdma->channel = NULL;
1049    return ret;
1050}
1051
1052/*
1053 * Create protection domain and completion queues
1054 */
1055static int qemu_rdma_alloc_pd_cq(RDMAContext *rdma)
1056{
1057    /* allocate pd */
1058    rdma->pd = ibv_alloc_pd(rdma->verbs);
1059    if (!rdma->pd) {
1060        error_report("failed to allocate protection domain");
1061        return -1;
1062    }
1063
1064    /* create receive completion channel */
1065    rdma->recv_comp_channel = ibv_create_comp_channel(rdma->verbs);
1066    if (!rdma->recv_comp_channel) {
1067        error_report("failed to allocate receive completion channel");
1068        goto err_alloc_pd_cq;
1069    }
1070
1071    /*
1072     * Completion queue can be filled by read work requests.
1073     */
1074    rdma->recv_cq = ibv_create_cq(rdma->verbs, (RDMA_SIGNALED_SEND_MAX * 3),
1075                                  NULL, rdma->recv_comp_channel, 0);
1076    if (!rdma->recv_cq) {
1077        error_report("failed to allocate receive completion queue");
1078        goto err_alloc_pd_cq;
1079    }
1080
1081    /* create send completion channel */
1082    rdma->send_comp_channel = ibv_create_comp_channel(rdma->verbs);
1083    if (!rdma->send_comp_channel) {
1084        error_report("failed to allocate send completion channel");
1085        goto err_alloc_pd_cq;
1086    }
1087
1088    rdma->send_cq = ibv_create_cq(rdma->verbs, (RDMA_SIGNALED_SEND_MAX * 3),
1089                                  NULL, rdma->send_comp_channel, 0);
1090    if (!rdma->send_cq) {
1091        error_report("failed to allocate send completion queue");
1092        goto err_alloc_pd_cq;
1093    }
1094
1095    return 0;
1096
1097err_alloc_pd_cq:
1098    if (rdma->pd) {
1099        ibv_dealloc_pd(rdma->pd);
1100    }
1101    if (rdma->recv_comp_channel) {
1102        ibv_destroy_comp_channel(rdma->recv_comp_channel);
1103    }
1104    if (rdma->send_comp_channel) {
1105        ibv_destroy_comp_channel(rdma->send_comp_channel);
1106    }
1107    if (rdma->recv_cq) {
1108        ibv_destroy_cq(rdma->recv_cq);
1109        rdma->recv_cq = NULL;
1110    }
1111    rdma->pd = NULL;
1112    rdma->recv_comp_channel = NULL;
1113    rdma->send_comp_channel = NULL;
1114    return -1;
1115
1116}
1117
1118/*
1119 * Create queue pairs.
1120 */
1121static int qemu_rdma_alloc_qp(RDMAContext *rdma)
1122{
1123    struct ibv_qp_init_attr attr = { 0 };
1124    int ret;
1125
1126    attr.cap.max_send_wr = RDMA_SIGNALED_SEND_MAX;
1127    attr.cap.max_recv_wr = 3;
1128    attr.cap.max_send_sge = 1;
1129    attr.cap.max_recv_sge = 1;
1130    attr.send_cq = rdma->send_cq;
1131    attr.recv_cq = rdma->recv_cq;
1132    attr.qp_type = IBV_QPT_RC;
1133
1134    ret = rdma_create_qp(rdma->cm_id, rdma->pd, &attr);
1135    if (ret) {
1136        return -1;
1137    }
1138
1139    rdma->qp = rdma->cm_id->qp;
1140    return 0;
1141}
1142
1143/* Check whether On-Demand Paging is supported by RDAM device */
1144static bool rdma_support_odp(struct ibv_context *dev)
1145{
1146    struct ibv_device_attr_ex attr = {0};
1147    int ret = ibv_query_device_ex(dev, NULL, &attr);
1148    if (ret) {
1149        return false;
1150    }
1151
1152    if (attr.odp_caps.general_caps & IBV_ODP_SUPPORT) {
1153        return true;
1154    }
1155
1156    return false;
1157}
1158
1159/*
1160 * ibv_advise_mr to avoid RNR NAK error as far as possible.
1161 * The responder mr registering with ODP will sent RNR NAK back to
1162 * the requester in the face of the page fault.
1163 */
1164static void qemu_rdma_advise_prefetch_mr(struct ibv_pd *pd, uint64_t addr,
1165                                         uint32_t len,  uint32_t lkey,
1166                                         const char *name, bool wr)
1167{
1168#ifdef HAVE_IBV_ADVISE_MR
1169    int ret;
1170    int advice = wr ? IBV_ADVISE_MR_ADVICE_PREFETCH_WRITE :
1171                 IBV_ADVISE_MR_ADVICE_PREFETCH;
1172    struct ibv_sge sg_list = {.lkey = lkey, .addr = addr, .length = len};
1173
1174    ret = ibv_advise_mr(pd, advice,
1175                        IBV_ADVISE_MR_FLAG_FLUSH, &sg_list, 1);
1176    /* ignore the error */
1177    if (ret) {
1178        trace_qemu_rdma_advise_mr(name, len, addr, strerror(errno));
1179    } else {
1180        trace_qemu_rdma_advise_mr(name, len, addr, "successed");
1181    }
1182#endif
1183}
1184
1185static int qemu_rdma_reg_whole_ram_blocks(RDMAContext *rdma)
1186{
1187    int i;
1188    RDMALocalBlocks *local = &rdma->local_ram_blocks;
1189
1190    for (i = 0; i < local->nb_blocks; i++) {
1191        int access = IBV_ACCESS_LOCAL_WRITE | IBV_ACCESS_REMOTE_WRITE;
1192
1193        local->block[i].mr =
1194            ibv_reg_mr(rdma->pd,
1195                    local->block[i].local_host_addr,
1196                    local->block[i].length, access
1197                    );
1198
1199        if (!local->block[i].mr &&
1200            errno == ENOTSUP && rdma_support_odp(rdma->verbs)) {
1201                access |= IBV_ACCESS_ON_DEMAND;
1202                /* register ODP mr */
1203                local->block[i].mr =
1204                    ibv_reg_mr(rdma->pd,
1205                               local->block[i].local_host_addr,
1206                               local->block[i].length, access);
1207                trace_qemu_rdma_register_odp_mr(local->block[i].block_name);
1208
1209                if (local->block[i].mr) {
1210                    qemu_rdma_advise_prefetch_mr(rdma->pd,
1211                                    (uintptr_t)local->block[i].local_host_addr,
1212                                    local->block[i].length,
1213                                    local->block[i].mr->lkey,
1214                                    local->block[i].block_name,
1215                                    true);
1216                }
1217        }
1218
1219        if (!local->block[i].mr) {
1220            perror("Failed to register local dest ram block!");
1221            break;
1222        }
1223        rdma->total_registrations++;
1224    }
1225
1226    if (i >= local->nb_blocks) {
1227        return 0;
1228    }
1229
1230    for (i--; i >= 0; i--) {
1231        ibv_dereg_mr(local->block[i].mr);
1232        local->block[i].mr = NULL;
1233        rdma->total_registrations--;
1234    }
1235
1236    return -1;
1237
1238}
1239
1240/*
1241 * Find the ram block that corresponds to the page requested to be
1242 * transmitted by QEMU.
1243 *
1244 * Once the block is found, also identify which 'chunk' within that
1245 * block that the page belongs to.
1246 *
1247 * This search cannot fail or the migration will fail.
1248 */
1249static int qemu_rdma_search_ram_block(RDMAContext *rdma,
1250                                      uintptr_t block_offset,
1251                                      uint64_t offset,
1252                                      uint64_t length,
1253                                      uint64_t *block_index,
1254                                      uint64_t *chunk_index)
1255{
1256    uint64_t current_addr = block_offset + offset;
1257    RDMALocalBlock *block = g_hash_table_lookup(rdma->blockmap,
1258                                                (void *) block_offset);
1259    assert(block);
1260    assert(current_addr >= block->offset);
1261    assert((current_addr + length) <= (block->offset + block->length));
1262
1263    *block_index = block->index;
1264    *chunk_index = ram_chunk_index(block->local_host_addr,
1265                block->local_host_addr + (current_addr - block->offset));
1266
1267    return 0;
1268}
1269
1270/*
1271 * Register a chunk with IB. If the chunk was already registered
1272 * previously, then skip.
1273 *
1274 * Also return the keys associated with the registration needed
1275 * to perform the actual RDMA operation.
1276 */
1277static int qemu_rdma_register_and_get_keys(RDMAContext *rdma,
1278        RDMALocalBlock *block, uintptr_t host_addr,
1279        uint32_t *lkey, uint32_t *rkey, int chunk,
1280        uint8_t *chunk_start, uint8_t *chunk_end)
1281{
1282    if (block->mr) {
1283        if (lkey) {
1284            *lkey = block->mr->lkey;
1285        }
1286        if (rkey) {
1287            *rkey = block->mr->rkey;
1288        }
1289        return 0;
1290    }
1291
1292    /* allocate memory to store chunk MRs */
1293    if (!block->pmr) {
1294        block->pmr = g_new0(struct ibv_mr *, block->nb_chunks);
1295    }
1296
1297    /*
1298     * If 'rkey', then we're the destination, so grant access to the source.
1299     *
1300     * If 'lkey', then we're the source VM, so grant access only to ourselves.
1301     */
1302    if (!block->pmr[chunk]) {
1303        uint64_t len = chunk_end - chunk_start;
1304        int access = rkey ? IBV_ACCESS_LOCAL_WRITE | IBV_ACCESS_REMOTE_WRITE :
1305                     0;
1306
1307        trace_qemu_rdma_register_and_get_keys(len, chunk_start);
1308
1309        block->pmr[chunk] = ibv_reg_mr(rdma->pd, chunk_start, len, access);
1310        if (!block->pmr[chunk] &&
1311            errno == ENOTSUP && rdma_support_odp(rdma->verbs)) {
1312            access |= IBV_ACCESS_ON_DEMAND;
1313            /* register ODP mr */
1314            block->pmr[chunk] = ibv_reg_mr(rdma->pd, chunk_start, len, access);
1315            trace_qemu_rdma_register_odp_mr(block->block_name);
1316
1317            if (block->pmr[chunk]) {
1318                qemu_rdma_advise_prefetch_mr(rdma->pd, (uintptr_t)chunk_start,
1319                                            len, block->pmr[chunk]->lkey,
1320                                            block->block_name, rkey);
1321
1322            }
1323        }
1324    }
1325    if (!block->pmr[chunk]) {
1326        perror("Failed to register chunk!");
1327        fprintf(stderr, "Chunk details: block: %d chunk index %d"
1328                        " start %" PRIuPTR " end %" PRIuPTR
1329                        " host %" PRIuPTR
1330                        " local %" PRIuPTR " registrations: %d\n",
1331                        block->index, chunk, (uintptr_t)chunk_start,
1332                        (uintptr_t)chunk_end, host_addr,
1333                        (uintptr_t)block->local_host_addr,
1334                        rdma->total_registrations);
1335        return -1;
1336    }
1337    rdma->total_registrations++;
1338
1339    if (lkey) {
1340        *lkey = block->pmr[chunk]->lkey;
1341    }
1342    if (rkey) {
1343        *rkey = block->pmr[chunk]->rkey;
1344    }
1345    return 0;
1346}
1347
1348/*
1349 * Register (at connection time) the memory used for control
1350 * channel messages.
1351 */
1352static int qemu_rdma_reg_control(RDMAContext *rdma, int idx)
1353{
1354    rdma->wr_data[idx].control_mr = ibv_reg_mr(rdma->pd,
1355            rdma->wr_data[idx].control, RDMA_CONTROL_MAX_BUFFER,
1356            IBV_ACCESS_LOCAL_WRITE | IBV_ACCESS_REMOTE_WRITE);
1357    if (rdma->wr_data[idx].control_mr) {
1358        rdma->total_registrations++;
1359        return 0;
1360    }
1361    error_report("qemu_rdma_reg_control failed");
1362    return -1;
1363}
1364
1365const char *print_wrid(int wrid)
1366{
1367    if (wrid >= RDMA_WRID_RECV_CONTROL) {
1368        return wrid_desc[RDMA_WRID_RECV_CONTROL];
1369    }
1370    return wrid_desc[wrid];
1371}
1372
1373/*
1374 * RDMA requires memory registration (mlock/pinning), but this is not good for
1375 * overcommitment.
1376 *
1377 * In preparation for the future where LRU information or workload-specific
1378 * writable writable working set memory access behavior is available to QEMU
1379 * it would be nice to have in place the ability to UN-register/UN-pin
1380 * particular memory regions from the RDMA hardware when it is determine that
1381 * those regions of memory will likely not be accessed again in the near future.
1382 *
1383 * While we do not yet have such information right now, the following
1384 * compile-time option allows us to perform a non-optimized version of this
1385 * behavior.
1386 *
1387 * By uncommenting this option, you will cause *all* RDMA transfers to be
1388 * unregistered immediately after the transfer completes on both sides of the
1389 * connection. This has no effect in 'rdma-pin-all' mode, only regular mode.
1390 *
1391 * This will have a terrible impact on migration performance, so until future
1392 * workload information or LRU information is available, do not attempt to use
1393 * this feature except for basic testing.
1394 */
1395/* #define RDMA_UNREGISTRATION_EXAMPLE */
1396
1397/*
1398 * Perform a non-optimized memory unregistration after every transfer
1399 * for demonstration purposes, only if pin-all is not requested.
1400 *
1401 * Potential optimizations:
1402 * 1. Start a new thread to run this function continuously
1403        - for bit clearing
1404        - and for receipt of unregister messages
1405 * 2. Use an LRU.
1406 * 3. Use workload hints.
1407 */
1408static int qemu_rdma_unregister_waiting(RDMAContext *rdma)
1409{
1410    while (rdma->unregistrations[rdma->unregister_current]) {
1411        int ret;
1412        uint64_t wr_id = rdma->unregistrations[rdma->unregister_current];
1413        uint64_t chunk =
1414            (wr_id & RDMA_WRID_CHUNK_MASK) >> RDMA_WRID_CHUNK_SHIFT;
1415        uint64_t index =
1416            (wr_id & RDMA_WRID_BLOCK_MASK) >> RDMA_WRID_BLOCK_SHIFT;
1417        RDMALocalBlock *block =
1418            &(rdma->local_ram_blocks.block[index]);
1419        RDMARegister reg = { .current_index = index };
1420        RDMAControlHeader resp = { .type = RDMA_CONTROL_UNREGISTER_FINISHED,
1421                                 };
1422        RDMAControlHeader head = { .len = sizeof(RDMARegister),
1423                                   .type = RDMA_CONTROL_UNREGISTER_REQUEST,
1424                                   .repeat = 1,
1425                                 };
1426
1427        trace_qemu_rdma_unregister_waiting_proc(chunk,
1428                                                rdma->unregister_current);
1429
1430        rdma->unregistrations[rdma->unregister_current] = 0;
1431        rdma->unregister_current++;
1432
1433        if (rdma->unregister_current == RDMA_SIGNALED_SEND_MAX) {
1434            rdma->unregister_current = 0;
1435        }
1436
1437
1438        /*
1439         * Unregistration is speculative (because migration is single-threaded
1440         * and we cannot break the protocol's inifinband message ordering).
1441         * Thus, if the memory is currently being used for transmission,
1442         * then abort the attempt to unregister and try again
1443         * later the next time a completion is received for this memory.
1444         */
1445        clear_bit(chunk, block->unregister_bitmap);
1446
1447        if (test_bit(chunk, block->transit_bitmap)) {
1448            trace_qemu_rdma_unregister_waiting_inflight(chunk);
1449            continue;
1450        }
1451
1452        trace_qemu_rdma_unregister_waiting_send(chunk);
1453
1454        ret = ibv_dereg_mr(block->pmr[chunk]);
1455        block->pmr[chunk] = NULL;
1456        block->remote_keys[chunk] = 0;
1457
1458        if (ret != 0) {
1459            perror("unregistration chunk failed");
1460            return -ret;
1461        }
1462        rdma->total_registrations--;
1463
1464        reg.key.chunk = chunk;
1465        register_to_network(rdma, &reg);
1466        ret = qemu_rdma_exchange_send(rdma, &head, (uint8_t *) &reg,
1467                                &resp, NULL, NULL);
1468        if (ret < 0) {
1469            return ret;
1470        }
1471
1472        trace_qemu_rdma_unregister_waiting_complete(chunk);
1473    }
1474
1475    return 0;
1476}
1477
1478static uint64_t qemu_rdma_make_wrid(uint64_t wr_id, uint64_t index,
1479                                         uint64_t chunk)
1480{
1481    uint64_t result = wr_id & RDMA_WRID_TYPE_MASK;
1482
1483    result |= (index << RDMA_WRID_BLOCK_SHIFT);
1484    result |= (chunk << RDMA_WRID_CHUNK_SHIFT);
1485
1486    return result;
1487}
1488
1489/*
1490 * Set bit for unregistration in the next iteration.
1491 * We cannot transmit right here, but will unpin later.
1492 */
1493static void qemu_rdma_signal_unregister(RDMAContext *rdma, uint64_t index,
1494                                        uint64_t chunk, uint64_t wr_id)
1495{
1496    if (rdma->unregistrations[rdma->unregister_next] != 0) {
1497        error_report("rdma migration: queue is full");
1498    } else {
1499        RDMALocalBlock *block = &(rdma->local_ram_blocks.block[index]);
1500
1501        if (!test_and_set_bit(chunk, block->unregister_bitmap)) {
1502            trace_qemu_rdma_signal_unregister_append(chunk,
1503                                                     rdma->unregister_next);
1504
1505            rdma->unregistrations[rdma->unregister_next++] =
1506                    qemu_rdma_make_wrid(wr_id, index, chunk);
1507
1508            if (rdma->unregister_next == RDMA_SIGNALED_SEND_MAX) {
1509                rdma->unregister_next = 0;
1510            }
1511        } else {
1512            trace_qemu_rdma_signal_unregister_already(chunk);
1513        }
1514    }
1515}
1516
1517/*
1518 * Consult the connection manager to see a work request
1519 * (of any kind) has completed.
1520 * Return the work request ID that completed.
1521 */
1522static uint64_t qemu_rdma_poll(RDMAContext *rdma, struct ibv_cq *cq,
1523                               uint64_t *wr_id_out, uint32_t *byte_len)
1524{
1525    int ret;
1526    struct ibv_wc wc;
1527    uint64_t wr_id;
1528
1529    ret = ibv_poll_cq(cq, 1, &wc);
1530
1531    if (!ret) {
1532        *wr_id_out = RDMA_WRID_NONE;
1533        return 0;
1534    }
1535
1536    if (ret < 0) {
1537        error_report("ibv_poll_cq return %d", ret);
1538        return ret;
1539    }
1540
1541    wr_id = wc.wr_id & RDMA_WRID_TYPE_MASK;
1542
1543    if (wc.status != IBV_WC_SUCCESS) {
1544        fprintf(stderr, "ibv_poll_cq wc.status=%d %s!\n",
1545                        wc.status, ibv_wc_status_str(wc.status));
1546        fprintf(stderr, "ibv_poll_cq wrid=%s!\n", wrid_desc[wr_id]);
1547
1548        return -1;
1549    }
1550
1551    if (rdma->control_ready_expected &&
1552        (wr_id >= RDMA_WRID_RECV_CONTROL)) {
1553        trace_qemu_rdma_poll_recv(wrid_desc[RDMA_WRID_RECV_CONTROL],
1554                  wr_id - RDMA_WRID_RECV_CONTROL, wr_id, rdma->nb_sent);
1555        rdma->control_ready_expected = 0;
1556    }
1557
1558    if (wr_id == RDMA_WRID_RDMA_WRITE) {
1559        uint64_t chunk =
1560            (wc.wr_id & RDMA_WRID_CHUNK_MASK) >> RDMA_WRID_CHUNK_SHIFT;
1561        uint64_t index =
1562            (wc.wr_id & RDMA_WRID_BLOCK_MASK) >> RDMA_WRID_BLOCK_SHIFT;
1563        RDMALocalBlock *block = &(rdma->local_ram_blocks.block[index]);
1564
1565        trace_qemu_rdma_poll_write(print_wrid(wr_id), wr_id, rdma->nb_sent,
1566                                   index, chunk, block->local_host_addr,
1567                                   (void *)(uintptr_t)block->remote_host_addr);
1568
1569        clear_bit(chunk, block->transit_bitmap);
1570
1571        if (rdma->nb_sent > 0) {
1572            rdma->nb_sent--;
1573        }
1574
1575        if (!rdma->pin_all) {
1576            /*
1577             * FYI: If one wanted to signal a specific chunk to be unregistered
1578             * using LRU or workload-specific information, this is the function
1579             * you would call to do so. That chunk would then get asynchronously
1580             * unregistered later.
1581             */
1582#ifdef RDMA_UNREGISTRATION_EXAMPLE
1583            qemu_rdma_signal_unregister(rdma, index, chunk, wc.wr_id);
1584#endif
1585        }
1586    } else {
1587        trace_qemu_rdma_poll_other(print_wrid(wr_id), wr_id, rdma->nb_sent);
1588    }
1589
1590    *wr_id_out = wc.wr_id;
1591    if (byte_len) {
1592        *byte_len = wc.byte_len;
1593    }
1594
1595    return  0;
1596}
1597
1598/* Wait for activity on the completion channel.
1599 * Returns 0 on success, none-0 on error.
1600 */
1601static int qemu_rdma_wait_comp_channel(RDMAContext *rdma,
1602                                       struct ibv_comp_channel *comp_channel)
1603{
1604    struct rdma_cm_event *cm_event;
1605    int ret = -1;
1606
1607    /*
1608     * Coroutine doesn't start until migration_fd_process_incoming()
1609     * so don't yield unless we know we're running inside of a coroutine.
1610     */
1611    if (rdma->migration_started_on_destination &&
1612        migration_incoming_get_current()->state == MIGRATION_STATUS_ACTIVE) {
1613        yield_until_fd_readable(comp_channel->fd);
1614    } else {
1615        /* This is the source side, we're in a separate thread
1616         * or destination prior to migration_fd_process_incoming()
1617         * after postcopy, the destination also in a separate thread.
1618         * we can't yield; so we have to poll the fd.
1619         * But we need to be able to handle 'cancel' or an error
1620         * without hanging forever.
1621         */
1622        while (!rdma->error_state  && !rdma->received_error) {
1623            GPollFD pfds[2];
1624            pfds[0].fd = comp_channel->fd;
1625            pfds[0].events = G_IO_IN | G_IO_HUP | G_IO_ERR;
1626            pfds[0].revents = 0;
1627
1628            pfds[1].fd = rdma->channel->fd;
1629            pfds[1].events = G_IO_IN | G_IO_HUP | G_IO_ERR;
1630            pfds[1].revents = 0;
1631
1632            /* 0.1s timeout, should be fine for a 'cancel' */
1633            switch (qemu_poll_ns(pfds, 2, 100 * 1000 * 1000)) {
1634            case 2:
1635            case 1: /* fd active */
1636                if (pfds[0].revents) {
1637                    return 0;
1638                }
1639
1640                if (pfds[1].revents) {
1641                    ret = rdma_get_cm_event(rdma->channel, &cm_event);
1642                    if (ret) {
1643                        error_report("failed to get cm event while wait "
1644                                     "completion channel");
1645                        return -EPIPE;
1646                    }
1647
1648                    error_report("receive cm event while wait comp channel,"
1649                                 "cm event is %d", cm_event->event);
1650                    if (cm_event->event == RDMA_CM_EVENT_DISCONNECTED ||
1651                        cm_event->event == RDMA_CM_EVENT_DEVICE_REMOVAL) {
1652                        rdma_ack_cm_event(cm_event);
1653                        return -EPIPE;
1654                    }
1655                    rdma_ack_cm_event(cm_event);
1656                }
1657                break;
1658
1659            case 0: /* Timeout, go around again */
1660                break;
1661
1662            default: /* Error of some type -
1663                      * I don't trust errno from qemu_poll_ns
1664                     */
1665                error_report("%s: poll failed", __func__);
1666                return -EPIPE;
1667            }
1668
1669            if (migrate_get_current()->state == MIGRATION_STATUS_CANCELLING) {
1670                /* Bail out and let the cancellation happen */
1671                return -EPIPE;
1672            }
1673        }
1674    }
1675
1676    if (rdma->received_error) {
1677        return -EPIPE;
1678    }
1679    return rdma->error_state;
1680}
1681
1682static struct ibv_comp_channel *to_channel(RDMAContext *rdma, int wrid)
1683{
1684    return wrid < RDMA_WRID_RECV_CONTROL ? rdma->send_comp_channel :
1685           rdma->recv_comp_channel;
1686}
1687
1688static struct ibv_cq *to_cq(RDMAContext *rdma, int wrid)
1689{
1690    return wrid < RDMA_WRID_RECV_CONTROL ? rdma->send_cq : rdma->recv_cq;
1691}
1692
1693/*
1694 * Block until the next work request has completed.
1695 *
1696 * First poll to see if a work request has already completed,
1697 * otherwise block.
1698 *
1699 * If we encounter completed work requests for IDs other than
1700 * the one we're interested in, then that's generally an error.
1701 *
1702 * The only exception is actual RDMA Write completions. These
1703 * completions only need to be recorded, but do not actually
1704 * need further processing.
1705 */
1706static int qemu_rdma_block_for_wrid(RDMAContext *rdma, int wrid_requested,
1707                                    uint32_t *byte_len)
1708{
1709    int num_cq_events = 0, ret = 0;
1710    struct ibv_cq *cq;
1711    void *cq_ctx;
1712    uint64_t wr_id = RDMA_WRID_NONE, wr_id_in;
1713    struct ibv_comp_channel *ch = to_channel(rdma, wrid_requested);
1714    struct ibv_cq *poll_cq = to_cq(rdma, wrid_requested);
1715
1716    if (ibv_req_notify_cq(poll_cq, 0)) {
1717        return -1;
1718    }
1719    /* poll cq first */
1720    while (wr_id != wrid_requested) {
1721        ret = qemu_rdma_poll(rdma, poll_cq, &wr_id_in, byte_len);
1722        if (ret < 0) {
1723            return ret;
1724        }
1725
1726        wr_id = wr_id_in & RDMA_WRID_TYPE_MASK;
1727
1728        if (wr_id == RDMA_WRID_NONE) {
1729            break;
1730        }
1731        if (wr_id != wrid_requested) {
1732            trace_qemu_rdma_block_for_wrid_miss(print_wrid(wrid_requested),
1733                       wrid_requested, print_wrid(wr_id), wr_id);
1734        }
1735    }
1736
1737    if (wr_id == wrid_requested) {
1738        return 0;
1739    }
1740
1741    while (1) {
1742        ret = qemu_rdma_wait_comp_channel(rdma, ch);
1743        if (ret) {
1744            goto err_block_for_wrid;
1745        }
1746
1747        ret = ibv_get_cq_event(ch, &cq, &cq_ctx);
1748        if (ret) {
1749            perror("ibv_get_cq_event");
1750            goto err_block_for_wrid;
1751        }
1752
1753        num_cq_events++;
1754
1755        ret = -ibv_req_notify_cq(cq, 0);
1756        if (ret) {
1757            goto err_block_for_wrid;
1758        }
1759
1760        while (wr_id != wrid_requested) {
1761            ret = qemu_rdma_poll(rdma, poll_cq, &wr_id_in, byte_len);
1762            if (ret < 0) {
1763                goto err_block_for_wrid;
1764            }
1765
1766            wr_id = wr_id_in & RDMA_WRID_TYPE_MASK;
1767
1768            if (wr_id == RDMA_WRID_NONE) {
1769                break;
1770            }
1771            if (wr_id != wrid_requested) {
1772                trace_qemu_rdma_block_for_wrid_miss(print_wrid(wrid_requested),
1773                                   wrid_requested, print_wrid(wr_id), wr_id);
1774            }
1775        }
1776
1777        if (wr_id == wrid_requested) {
1778            goto success_block_for_wrid;
1779        }
1780    }
1781
1782success_block_for_wrid:
1783    if (num_cq_events) {
1784        ibv_ack_cq_events(cq, num_cq_events);
1785    }
1786    return 0;
1787
1788err_block_for_wrid:
1789    if (num_cq_events) {
1790        ibv_ack_cq_events(cq, num_cq_events);
1791    }
1792
1793    rdma->error_state = ret;
1794    return ret;
1795}
1796
1797/*
1798 * Post a SEND message work request for the control channel
1799 * containing some data and block until the post completes.
1800 */
1801static int qemu_rdma_post_send_control(RDMAContext *rdma, uint8_t *buf,
1802                                       RDMAControlHeader *head)
1803{
1804    int ret = 0;
1805    RDMAWorkRequestData *wr = &rdma->wr_data[RDMA_WRID_CONTROL];
1806    struct ibv_send_wr *bad_wr;
1807    struct ibv_sge sge = {
1808                           .addr = (uintptr_t)(wr->control),
1809                           .length = head->len + sizeof(RDMAControlHeader),
1810                           .lkey = wr->control_mr->lkey,
1811                         };
1812    struct ibv_send_wr send_wr = {
1813                                   .wr_id = RDMA_WRID_SEND_CONTROL,
1814                                   .opcode = IBV_WR_SEND,
1815                                   .send_flags = IBV_SEND_SIGNALED,
1816                                   .sg_list = &sge,
1817                                   .num_sge = 1,
1818                                };
1819
1820    trace_qemu_rdma_post_send_control(control_desc(head->type));
1821
1822    /*
1823     * We don't actually need to do a memcpy() in here if we used
1824     * the "sge" properly, but since we're only sending control messages
1825     * (not RAM in a performance-critical path), then its OK for now.
1826     *
1827     * The copy makes the RDMAControlHeader simpler to manipulate
1828     * for the time being.
1829     */
1830    assert(head->len <= RDMA_CONTROL_MAX_BUFFER - sizeof(*head));
1831    memcpy(wr->control, head, sizeof(RDMAControlHeader));
1832    control_to_network((void *) wr->control);
1833
1834    if (buf) {
1835        memcpy(wr->control + sizeof(RDMAControlHeader), buf, head->len);
1836    }
1837
1838
1839    ret = ibv_post_send(rdma->qp, &send_wr, &bad_wr);
1840
1841    if (ret > 0) {
1842        error_report("Failed to use post IB SEND for control");
1843        return -ret;
1844    }
1845
1846    ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_SEND_CONTROL, NULL);
1847    if (ret < 0) {
1848        error_report("rdma migration: send polling control error");
1849    }
1850
1851    return ret;
1852}
1853
1854/*
1855 * Post a RECV work request in anticipation of some future receipt
1856 * of data on the control channel.
1857 */
1858static int qemu_rdma_post_recv_control(RDMAContext *rdma, int idx)
1859{
1860    struct ibv_recv_wr *bad_wr;
1861    struct ibv_sge sge = {
1862                            .addr = (uintptr_t)(rdma->wr_data[idx].control),
1863                            .length = RDMA_CONTROL_MAX_BUFFER,
1864                            .lkey = rdma->wr_data[idx].control_mr->lkey,
1865                         };
1866
1867    struct ibv_recv_wr recv_wr = {
1868                                    .wr_id = RDMA_WRID_RECV_CONTROL + idx,
1869                                    .sg_list = &sge,
1870                                    .num_sge = 1,
1871                                 };
1872
1873
1874    if (ibv_post_recv(rdma->qp, &recv_wr, &bad_wr)) {
1875        return -1;
1876    }
1877
1878    return 0;
1879}
1880
1881/*
1882 * Block and wait for a RECV control channel message to arrive.
1883 */
1884static int qemu_rdma_exchange_get_response(RDMAContext *rdma,
1885                RDMAControlHeader *head, int expecting, int idx)
1886{
1887    uint32_t byte_len;
1888    int ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_RECV_CONTROL + idx,
1889                                       &byte_len);
1890
1891    if (ret < 0) {
1892        error_report("rdma migration: recv polling control error!");
1893        return ret;
1894    }
1895
1896    network_to_control((void *) rdma->wr_data[idx].control);
1897    memcpy(head, rdma->wr_data[idx].control, sizeof(RDMAControlHeader));
1898
1899    trace_qemu_rdma_exchange_get_response_start(control_desc(expecting));
1900
1901    if (expecting == RDMA_CONTROL_NONE) {
1902        trace_qemu_rdma_exchange_get_response_none(control_desc(head->type),
1903                                             head->type);
1904    } else if (head->type != expecting || head->type == RDMA_CONTROL_ERROR) {
1905        error_report("Was expecting a %s (%d) control message"
1906                ", but got: %s (%d), length: %d",
1907                control_desc(expecting), expecting,
1908                control_desc(head->type), head->type, head->len);
1909        if (head->type == RDMA_CONTROL_ERROR) {
1910            rdma->received_error = true;
1911        }
1912        return -EIO;
1913    }
1914    if (head->len > RDMA_CONTROL_MAX_BUFFER - sizeof(*head)) {
1915        error_report("too long length: %d", head->len);
1916        return -EINVAL;
1917    }
1918    if (sizeof(*head) + head->len != byte_len) {
1919        error_report("Malformed length: %d byte_len %d", head->len, byte_len);
1920        return -EINVAL;
1921    }
1922
1923    return 0;
1924}
1925
1926/*
1927 * When a RECV work request has completed, the work request's
1928 * buffer is pointed at the header.
1929 *
1930 * This will advance the pointer to the data portion
1931 * of the control message of the work request's buffer that
1932 * was populated after the work request finished.
1933 */
1934static void qemu_rdma_move_header(RDMAContext *rdma, int idx,
1935                                  RDMAControlHeader *head)
1936{
1937    rdma->wr_data[idx].control_len = head->len;
1938    rdma->wr_data[idx].control_curr =
1939        rdma->wr_data[idx].control + sizeof(RDMAControlHeader);
1940}
1941
1942/*
1943 * This is an 'atomic' high-level operation to deliver a single, unified
1944 * control-channel message.
1945 *
1946 * Additionally, if the user is expecting some kind of reply to this message,
1947 * they can request a 'resp' response message be filled in by posting an
1948 * additional work request on behalf of the user and waiting for an additional
1949 * completion.
1950 *
1951 * The extra (optional) response is used during registration to us from having
1952 * to perform an *additional* exchange of message just to provide a response by
1953 * instead piggy-backing on the acknowledgement.
1954 */
1955static int qemu_rdma_exchange_send(RDMAContext *rdma, RDMAControlHeader *head,
1956                                   uint8_t *data, RDMAControlHeader *resp,
1957                                   int *resp_idx,
1958                                   int (*callback)(RDMAContext *rdma))
1959{
1960    int ret = 0;
1961
1962    /*
1963     * Wait until the dest is ready before attempting to deliver the message
1964     * by waiting for a READY message.
1965     */
1966    if (rdma->control_ready_expected) {
1967        RDMAControlHeader resp;
1968        ret = qemu_rdma_exchange_get_response(rdma,
1969                                    &resp, RDMA_CONTROL_READY, RDMA_WRID_READY);
1970        if (ret < 0) {
1971            return ret;
1972        }
1973    }
1974
1975    /*
1976     * If the user is expecting a response, post a WR in anticipation of it.
1977     */
1978    if (resp) {
1979        ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_DATA);
1980        if (ret) {
1981            error_report("rdma migration: error posting"
1982                    " extra control recv for anticipated result!");
1983            return ret;
1984        }
1985    }
1986
1987    /*
1988     * Post a WR to replace the one we just consumed for the READY message.
1989     */
1990    ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_READY);
1991    if (ret) {
1992        error_report("rdma migration: error posting first control recv!");
1993        return ret;
1994    }
1995
1996    /*
1997     * Deliver the control message that was requested.
1998     */
1999    ret = qemu_rdma_post_send_control(rdma, data, head);
2000
2001    if (ret < 0) {
2002        error_report("Failed to send control buffer!");
2003        return ret;
2004    }
2005
2006    /*
2007     * If we're expecting a response, block and wait for it.
2008     */
2009    if (resp) {
2010        if (callback) {
2011            trace_qemu_rdma_exchange_send_issue_callback();
2012            ret = callback(rdma);
2013            if (ret < 0) {
2014                return ret;
2015            }
2016        }
2017
2018        trace_qemu_rdma_exchange_send_waiting(control_desc(resp->type));
2019        ret = qemu_rdma_exchange_get_response(rdma, resp,
2020                                              resp->type, RDMA_WRID_DATA);
2021
2022        if (ret < 0) {
2023            return ret;
2024        }
2025
2026        qemu_rdma_move_header(rdma, RDMA_WRID_DATA, resp);
2027        if (resp_idx) {
2028            *resp_idx = RDMA_WRID_DATA;
2029        }
2030        trace_qemu_rdma_exchange_send_received(control_desc(resp->type));
2031    }
2032
2033    rdma->control_ready_expected = 1;
2034
2035    return 0;
2036}
2037
2038/*
2039 * This is an 'atomic' high-level operation to receive a single, unified
2040 * control-channel message.
2041 */
2042static int qemu_rdma_exchange_recv(RDMAContext *rdma, RDMAControlHeader *head,
2043                                int expecting)
2044{
2045    RDMAControlHeader ready = {
2046                                .len = 0,
2047                                .type = RDMA_CONTROL_READY,
2048                                .repeat = 1,
2049                              };
2050    int ret;
2051
2052    /*
2053     * Inform the source that we're ready to receive a message.
2054     */
2055    ret = qemu_rdma_post_send_control(rdma, NULL, &ready);
2056
2057    if (ret < 0) {
2058        error_report("Failed to send control buffer!");
2059        return ret;
2060    }
2061
2062    /*
2063     * Block and wait for the message.
2064     */
2065    ret = qemu_rdma_exchange_get_response(rdma, head,
2066                                          expecting, RDMA_WRID_READY);
2067
2068    if (ret < 0) {
2069        return ret;
2070    }
2071
2072    qemu_rdma_move_header(rdma, RDMA_WRID_READY, head);
2073
2074    /*
2075     * Post a new RECV work request to replace the one we just consumed.
2076     */
2077    ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_READY);
2078    if (ret) {
2079        error_report("rdma migration: error posting second control recv!");
2080        return ret;
2081    }
2082
2083    return 0;
2084}
2085
2086/*
2087 * Write an actual chunk of memory using RDMA.
2088 *
2089 * If we're using dynamic registration on the dest-side, we have to
2090 * send a registration command first.
2091 */
2092static int qemu_rdma_write_one(QEMUFile *f, RDMAContext *rdma,
2093                               int current_index, uint64_t current_addr,
2094                               uint64_t length)
2095{
2096    struct ibv_sge sge;
2097    struct ibv_send_wr send_wr = { 0 };
2098    struct ibv_send_wr *bad_wr;
2099    int reg_result_idx, ret, count = 0;
2100    uint64_t chunk, chunks;
2101    uint8_t *chunk_start, *chunk_end;
2102    RDMALocalBlock *block = &(rdma->local_ram_blocks.block[current_index]);
2103    RDMARegister reg;
2104    RDMARegisterResult *reg_result;
2105    RDMAControlHeader resp = { .type = RDMA_CONTROL_REGISTER_RESULT };
2106    RDMAControlHeader head = { .len = sizeof(RDMARegister),
2107                               .type = RDMA_CONTROL_REGISTER_REQUEST,
2108                               .repeat = 1,
2109                             };
2110
2111retry:
2112    sge.addr = (uintptr_t)(block->local_host_addr +
2113                            (current_addr - block->offset));
2114    sge.length = length;
2115
2116    chunk = ram_chunk_index(block->local_host_addr,
2117                            (uint8_t *)(uintptr_t)sge.addr);
2118    chunk_start = ram_chunk_start(block, chunk);
2119
2120    if (block->is_ram_block) {
2121        chunks = length / (1UL << RDMA_REG_CHUNK_SHIFT);
2122
2123        if (chunks && ((length % (1UL << RDMA_REG_CHUNK_SHIFT)) == 0)) {
2124            chunks--;
2125        }
2126    } else {
2127        chunks = block->length / (1UL << RDMA_REG_CHUNK_SHIFT);
2128
2129        if (chunks && ((block->length % (1UL << RDMA_REG_CHUNK_SHIFT)) == 0)) {
2130            chunks--;
2131        }
2132    }
2133
2134    trace_qemu_rdma_write_one_top(chunks + 1,
2135                                  (chunks + 1) *
2136                                  (1UL << RDMA_REG_CHUNK_SHIFT) / 1024 / 1024);
2137
2138    chunk_end = ram_chunk_end(block, chunk + chunks);
2139
2140    if (!rdma->pin_all) {
2141#ifdef RDMA_UNREGISTRATION_EXAMPLE
2142        qemu_rdma_unregister_waiting(rdma);
2143#endif
2144    }
2145
2146    while (test_bit(chunk, block->transit_bitmap)) {
2147        (void)count;
2148        trace_qemu_rdma_write_one_block(count++, current_index, chunk,
2149                sge.addr, length, rdma->nb_sent, block->nb_chunks);
2150
2151        ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_RDMA_WRITE, NULL);
2152
2153        if (ret < 0) {
2154            error_report("Failed to Wait for previous write to complete "
2155                    "block %d chunk %" PRIu64
2156                    " current %" PRIu64 " len %" PRIu64 " %d",
2157                    current_index, chunk, sge.addr, length, rdma->nb_sent);
2158            return ret;
2159        }
2160    }
2161
2162    if (!rdma->pin_all || !block->is_ram_block) {
2163        if (!block->remote_keys[chunk]) {
2164            /*
2165             * This chunk has not yet been registered, so first check to see
2166             * if the entire chunk is zero. If so, tell the other size to
2167             * memset() + madvise() the entire chunk without RDMA.
2168             */
2169
2170            if (buffer_is_zero((void *)(uintptr_t)sge.addr, length)) {
2171                RDMACompress comp = {
2172                                        .offset = current_addr,
2173                                        .value = 0,
2174                                        .block_idx = current_index,
2175                                        .length = length,
2176                                    };
2177
2178                head.len = sizeof(comp);
2179                head.type = RDMA_CONTROL_COMPRESS;
2180
2181                trace_qemu_rdma_write_one_zero(chunk, sge.length,
2182                                               current_index, current_addr);
2183
2184                compress_to_network(rdma, &comp);
2185                ret = qemu_rdma_exchange_send(rdma, &head,
2186                                (uint8_t *) &comp, NULL, NULL, NULL);
2187
2188                if (ret < 0) {
2189                    return -EIO;
2190                }
2191
2192                acct_update_position(f, sge.length, true);
2193
2194                return 1;
2195            }
2196
2197            /*
2198             * Otherwise, tell other side to register.
2199             */
2200            reg.current_index = current_index;
2201            if (block->is_ram_block) {
2202                reg.key.current_addr = current_addr;
2203            } else {
2204                reg.key.chunk = chunk;
2205            }
2206            reg.chunks = chunks;
2207
2208            trace_qemu_rdma_write_one_sendreg(chunk, sge.length, current_index,
2209                                              current_addr);
2210
2211            register_to_network(rdma, &reg);
2212            ret = qemu_rdma_exchange_send(rdma, &head, (uint8_t *) &reg,
2213                                    &resp, &reg_result_idx, NULL);
2214            if (ret < 0) {
2215                return ret;
2216            }
2217
2218            /* try to overlap this single registration with the one we sent. */
2219            if (qemu_rdma_register_and_get_keys(rdma, block, sge.addr,
2220                                                &sge.lkey, NULL, chunk,
2221                                                chunk_start, chunk_end)) {
2222                error_report("cannot get lkey");
2223                return -EINVAL;
2224            }
2225
2226            reg_result = (RDMARegisterResult *)
2227                    rdma->wr_data[reg_result_idx].control_curr;
2228
2229            network_to_result(reg_result);
2230
2231            trace_qemu_rdma_write_one_recvregres(block->remote_keys[chunk],
2232                                                 reg_result->rkey, chunk);
2233
2234            block->remote_keys[chunk] = reg_result->rkey;
2235            block->remote_host_addr = reg_result->host_addr;
2236        } else {
2237            /* already registered before */
2238            if (qemu_rdma_register_and_get_keys(rdma, block, sge.addr,
2239                                                &sge.lkey, NULL, chunk,
2240                                                chunk_start, chunk_end)) {
2241                error_report("cannot get lkey!");
2242                return -EINVAL;
2243            }
2244        }
2245
2246        send_wr.wr.rdma.rkey = block->remote_keys[chunk];
2247    } else {
2248        send_wr.wr.rdma.rkey = block->remote_rkey;
2249
2250        if (qemu_rdma_register_and_get_keys(rdma, block, sge.addr,
2251                                                     &sge.lkey, NULL, chunk,
2252                                                     chunk_start, chunk_end)) {
2253            error_report("cannot get lkey!");
2254            return -EINVAL;
2255        }
2256    }
2257
2258    /*
2259     * Encode the ram block index and chunk within this wrid.
2260     * We will use this information at the time of completion
2261     * to figure out which bitmap to check against and then which
2262     * chunk in the bitmap to look for.
2263     */
2264    send_wr.wr_id = qemu_rdma_make_wrid(RDMA_WRID_RDMA_WRITE,
2265                                        current_index, chunk);
2266
2267    send_wr.opcode = IBV_WR_RDMA_WRITE;
2268    send_wr.send_flags = IBV_SEND_SIGNALED;
2269    send_wr.sg_list = &sge;
2270    send_wr.num_sge = 1;
2271    send_wr.wr.rdma.remote_addr = block->remote_host_addr +
2272                                (current_addr - block->offset);
2273
2274    trace_qemu_rdma_write_one_post(chunk, sge.addr, send_wr.wr.rdma.remote_addr,
2275                                   sge.length);
2276
2277    /*
2278     * ibv_post_send() does not return negative error numbers,
2279     * per the specification they are positive - no idea why.
2280     */
2281    ret = ibv_post_send(rdma->qp, &send_wr, &bad_wr);
2282
2283    if (ret == ENOMEM) {
2284        trace_qemu_rdma_write_one_queue_full();
2285        ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_RDMA_WRITE, NULL);
2286        if (ret < 0) {
2287            error_report("rdma migration: failed to make "
2288                         "room in full send queue! %d", ret);
2289            return ret;
2290        }
2291
2292        goto retry;
2293
2294    } else if (ret > 0) {
2295        perror("rdma migration: post rdma write failed");
2296        return -ret;
2297    }
2298
2299    set_bit(chunk, block->transit_bitmap);
2300    acct_update_position(f, sge.length, false);
2301    rdma->total_writes++;
2302
2303    return 0;
2304}
2305
2306/*
2307 * Push out any unwritten RDMA operations.
2308 *
2309 * We support sending out multiple chunks at the same time.
2310 * Not all of them need to get signaled in the completion queue.
2311 */
2312static int qemu_rdma_write_flush(QEMUFile *f, RDMAContext *rdma)
2313{
2314    int ret;
2315
2316    if (!rdma->current_length) {
2317        return 0;
2318    }
2319
2320    ret = qemu_rdma_write_one(f, rdma,
2321            rdma->current_index, rdma->current_addr, rdma->current_length);
2322
2323    if (ret < 0) {
2324        return ret;
2325    }
2326
2327    if (ret == 0) {
2328        rdma->nb_sent++;
2329        trace_qemu_rdma_write_flush(rdma->nb_sent);
2330    }
2331
2332    rdma->current_length = 0;
2333    rdma->current_addr = 0;
2334
2335    return 0;
2336}
2337
2338static inline int qemu_rdma_buffer_mergable(RDMAContext *rdma,
2339                    uint64_t offset, uint64_t len)
2340{
2341    RDMALocalBlock *block;
2342    uint8_t *host_addr;
2343    uint8_t *chunk_end;
2344
2345    if (rdma->current_index < 0) {
2346        return 0;
2347    }
2348
2349    if (rdma->current_chunk < 0) {
2350        return 0;
2351    }
2352
2353    block = &(rdma->local_ram_blocks.block[rdma->current_index]);
2354    host_addr = block->local_host_addr + (offset - block->offset);
2355    chunk_end = ram_chunk_end(block, rdma->current_chunk);
2356
2357    if (rdma->current_length == 0) {
2358        return 0;
2359    }
2360
2361    /*
2362     * Only merge into chunk sequentially.
2363     */
2364    if (offset != (rdma->current_addr + rdma->current_length)) {
2365        return 0;
2366    }
2367
2368    if (offset < block->offset) {
2369        return 0;
2370    }
2371
2372    if ((offset + len) > (block->offset + block->length)) {
2373        return 0;
2374    }
2375
2376    if ((host_addr + len) > chunk_end) {
2377        return 0;
2378    }
2379
2380    return 1;
2381}
2382
2383/*
2384 * We're not actually writing here, but doing three things:
2385 *
2386 * 1. Identify the chunk the buffer belongs to.
2387 * 2. If the chunk is full or the buffer doesn't belong to the current
2388 *    chunk, then start a new chunk and flush() the old chunk.
2389 * 3. To keep the hardware busy, we also group chunks into batches
2390 *    and only require that a batch gets acknowledged in the completion
2391 *    queue instead of each individual chunk.
2392 */
2393static int qemu_rdma_write(QEMUFile *f, RDMAContext *rdma,
2394                           uint64_t block_offset, uint64_t offset,
2395                           uint64_t len)
2396{
2397    uint64_t current_addr = block_offset + offset;
2398    uint64_t index = rdma->current_index;
2399    uint64_t chunk = rdma->current_chunk;
2400    int ret;
2401
2402    /* If we cannot merge it, we flush the current buffer first. */
2403    if (!qemu_rdma_buffer_mergable(rdma, current_addr, len)) {
2404        ret = qemu_rdma_write_flush(f, rdma);
2405        if (ret) {
2406            return ret;
2407        }
2408        rdma->current_length = 0;
2409        rdma->current_addr = current_addr;
2410
2411        ret = qemu_rdma_search_ram_block(rdma, block_offset,
2412                                         offset, len, &index, &chunk);
2413        if (ret) {
2414            error_report("ram block search failed");
2415            return ret;
2416        }
2417        rdma->current_index = index;
2418        rdma->current_chunk = chunk;
2419    }
2420
2421    /* merge it */
2422    rdma->current_length += len;
2423
2424    /* flush it if buffer is too large */
2425    if (rdma->current_length >= RDMA_MERGE_MAX) {
2426        return qemu_rdma_write_flush(f, rdma);
2427    }
2428
2429    return 0;
2430}
2431
2432static void qemu_rdma_cleanup(RDMAContext *rdma)
2433{
2434    int idx;
2435
2436    if (rdma->cm_id && rdma->connected) {
2437        if ((rdma->error_state ||
2438             migrate_get_current()->state == MIGRATION_STATUS_CANCELLING) &&
2439            !rdma->received_error) {
2440            RDMAControlHeader head = { .len = 0,
2441                                       .type = RDMA_CONTROL_ERROR,
2442                                       .repeat = 1,
2443                                     };
2444            error_report("Early error. Sending error.");
2445            qemu_rdma_post_send_control(rdma, NULL, &head);
2446        }
2447
2448        rdma_disconnect(rdma->cm_id);
2449        trace_qemu_rdma_cleanup_disconnect();
2450        rdma->connected = false;
2451    }
2452
2453    if (rdma->channel) {
2454        qemu_set_fd_handler(rdma->channel->fd, NULL, NULL, NULL);
2455    }
2456    g_free(rdma->dest_blocks);
2457    rdma->dest_blocks = NULL;
2458
2459    for (idx = 0; idx < RDMA_WRID_MAX; idx++) {
2460        if (rdma->wr_data[idx].control_mr) {
2461            rdma->total_registrations--;
2462            ibv_dereg_mr(rdma->wr_data[idx].control_mr);
2463        }
2464        rdma->wr_data[idx].control_mr = NULL;
2465    }
2466
2467    if (rdma->local_ram_blocks.block) {
2468        while (rdma->local_ram_blocks.nb_blocks) {
2469            rdma_delete_block(rdma, &rdma->local_ram_blocks.block[0]);
2470        }
2471    }
2472
2473    if (rdma->qp) {
2474        rdma_destroy_qp(rdma->cm_id);
2475        rdma->qp = NULL;
2476    }
2477    if (rdma->recv_cq) {
2478        ibv_destroy_cq(rdma->recv_cq);
2479        rdma->recv_cq = NULL;
2480    }
2481    if (rdma->send_cq) {
2482        ibv_destroy_cq(rdma->send_cq);
2483        rdma->send_cq = NULL;
2484    }
2485    if (rdma->recv_comp_channel) {
2486        ibv_destroy_comp_channel(rdma->recv_comp_channel);
2487        rdma->recv_comp_channel = NULL;
2488    }
2489    if (rdma->send_comp_channel) {
2490        ibv_destroy_comp_channel(rdma->send_comp_channel);
2491        rdma->send_comp_channel = NULL;
2492    }
2493    if (rdma->pd) {
2494        ibv_dealloc_pd(rdma->pd);
2495        rdma->pd = NULL;
2496    }
2497    if (rdma->cm_id) {
2498        rdma_destroy_id(rdma->cm_id);
2499        rdma->cm_id = NULL;
2500    }
2501
2502    /* the destination side, listen_id and channel is shared */
2503    if (rdma->listen_id) {
2504        if (!rdma->is_return_path) {
2505            rdma_destroy_id(rdma->listen_id);
2506        }
2507        rdma->listen_id = NULL;
2508
2509        if (rdma->channel) {
2510            if (!rdma->is_return_path) {
2511                rdma_destroy_event_channel(rdma->channel);
2512            }
2513            rdma->channel = NULL;
2514        }
2515    }
2516
2517    if (rdma->channel) {
2518        rdma_destroy_event_channel(rdma->channel);
2519        rdma->channel = NULL;
2520    }
2521    g_free(rdma->host);
2522    g_free(rdma->host_port);
2523    rdma->host = NULL;
2524    rdma->host_port = NULL;
2525}
2526
2527
2528static int qemu_rdma_source_init(RDMAContext *rdma, bool pin_all, Error **errp)
2529{
2530    int ret, idx;
2531    Error *local_err = NULL, **temp = &local_err;
2532
2533    /*
2534     * Will be validated against destination's actual capabilities
2535     * after the connect() completes.
2536     */
2537    rdma->pin_all = pin_all;
2538
2539    ret = qemu_rdma_resolve_host(rdma, temp);
2540    if (ret) {
2541        goto err_rdma_source_init;
2542    }
2543
2544    ret = qemu_rdma_alloc_pd_cq(rdma);
2545    if (ret) {
2546        ERROR(temp, "rdma migration: error allocating pd and cq! Your mlock()"
2547                    " limits may be too low. Please check $ ulimit -a # and "
2548                    "search for 'ulimit -l' in the output");
2549        goto err_rdma_source_init;
2550    }
2551
2552    ret = qemu_rdma_alloc_qp(rdma);
2553    if (ret) {
2554        ERROR(temp, "rdma migration: error allocating qp!");
2555        goto err_rdma_source_init;
2556    }
2557
2558    ret = qemu_rdma_init_ram_blocks(rdma);
2559    if (ret) {
2560        ERROR(temp, "rdma migration: error initializing ram blocks!");
2561        goto err_rdma_source_init;
2562    }
2563
2564    /* Build the hash that maps from offset to RAMBlock */
2565    rdma->blockmap = g_hash_table_new(g_direct_hash, g_direct_equal);
2566    for (idx = 0; idx < rdma->local_ram_blocks.nb_blocks; idx++) {
2567        g_hash_table_insert(rdma->blockmap,
2568                (void *)(uintptr_t)rdma->local_ram_blocks.block[idx].offset,
2569                &rdma->local_ram_blocks.block[idx]);
2570    }
2571
2572    for (idx = 0; idx < RDMA_WRID_MAX; idx++) {
2573        ret = qemu_rdma_reg_control(rdma, idx);
2574        if (ret) {
2575            ERROR(temp, "rdma migration: error registering %d control!",
2576                                                            idx);
2577            goto err_rdma_source_init;
2578        }
2579    }
2580
2581    return 0;
2582
2583err_rdma_source_init:
2584    error_propagate(errp, local_err);
2585    qemu_rdma_cleanup(rdma);
2586    return -1;
2587}
2588
2589static int qemu_get_cm_event_timeout(RDMAContext *rdma,
2590                                     struct rdma_cm_event **cm_event,
2591                                     long msec, Error **errp)
2592{
2593    int ret;
2594    struct pollfd poll_fd = {
2595                                .fd = rdma->channel->fd,
2596                                .events = POLLIN,
2597                                .revents = 0
2598                            };
2599
2600    do {
2601        ret = poll(&poll_fd, 1, msec);
2602    } while (ret < 0 && errno == EINTR);
2603
2604    if (ret == 0) {
2605        ERROR(errp, "poll cm event timeout");
2606        return -1;
2607    } else if (ret < 0) {
2608        ERROR(errp, "failed to poll cm event, errno=%i", errno);
2609        return -1;
2610    } else if (poll_fd.revents & POLLIN) {
2611        return rdma_get_cm_event(rdma->channel, cm_event);
2612    } else {
2613        ERROR(errp, "no POLLIN event, revent=%x", poll_fd.revents);
2614        return -1;
2615    }
2616}
2617
2618static int qemu_rdma_connect(RDMAContext *rdma, Error **errp, bool return_path)
2619{
2620    RDMACapabilities cap = {
2621                                .version = RDMA_CONTROL_VERSION_CURRENT,
2622                                .flags = 0,
2623                           };
2624    struct rdma_conn_param conn_param = { .initiator_depth = 2,
2625                                          .retry_count = 5,
2626                                          .private_data = &cap,
2627                                          .private_data_len = sizeof(cap),
2628                                        };
2629    struct rdma_cm_event *cm_event;
2630    int ret;
2631
2632    /*
2633     * Only negotiate the capability with destination if the user
2634     * on the source first requested the capability.
2635     */
2636    if (rdma->pin_all) {
2637        trace_qemu_rdma_connect_pin_all_requested();
2638        cap.flags |= RDMA_CAPABILITY_PIN_ALL;
2639    }
2640
2641    caps_to_network(&cap);
2642
2643    ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_READY);
2644    if (ret) {
2645        ERROR(errp, "posting second control recv");
2646        goto err_rdma_source_connect;
2647    }
2648
2649    ret = rdma_connect(rdma->cm_id, &conn_param);
2650    if (ret) {
2651        perror("rdma_connect");
2652        ERROR(errp, "connecting to destination!");
2653        goto err_rdma_source_connect;
2654    }
2655
2656    if (return_path) {
2657        ret = qemu_get_cm_event_timeout(rdma, &cm_event, 5000, errp);
2658    } else {
2659        ret = rdma_get_cm_event(rdma->channel, &cm_event);
2660    }
2661    if (ret) {
2662        perror("rdma_get_cm_event after rdma_connect");
2663        ERROR(errp, "connecting to destination!");
2664        goto err_rdma_source_connect;
2665    }
2666
2667    if (cm_event->event != RDMA_CM_EVENT_ESTABLISHED) {
2668        error_report("rdma_get_cm_event != EVENT_ESTABLISHED after rdma_connect");
2669        ERROR(errp, "connecting to destination!");
2670        rdma_ack_cm_event(cm_event);
2671        goto err_rdma_source_connect;
2672    }
2673    rdma->connected = true;
2674
2675    memcpy(&cap, cm_event->param.conn.private_data, sizeof(cap));
2676    network_to_caps(&cap);
2677
2678    /*
2679     * Verify that the *requested* capabilities are supported by the destination
2680     * and disable them otherwise.
2681     */
2682    if (rdma->pin_all && !(cap.flags & RDMA_CAPABILITY_PIN_ALL)) {
2683        ERROR(errp, "Server cannot support pinning all memory. "
2684                        "Will register memory dynamically.");
2685        rdma->pin_all = false;
2686    }
2687
2688    trace_qemu_rdma_connect_pin_all_outcome(rdma->pin_all);
2689
2690    rdma_ack_cm_event(cm_event);
2691
2692    rdma->control_ready_expected = 1;
2693    rdma->nb_sent = 0;
2694    return 0;
2695
2696err_rdma_source_connect:
2697    qemu_rdma_cleanup(rdma);
2698    return -1;
2699}
2700
2701static int qemu_rdma_dest_init(RDMAContext *rdma, Error **errp)
2702{
2703    int ret, idx;
2704    struct rdma_cm_id *listen_id;
2705    char ip[40] = "unknown";
2706    struct rdma_addrinfo *res, *e;
2707    char port_str[16];
2708
2709    for (idx = 0; idx < RDMA_WRID_MAX; idx++) {
2710        rdma->wr_data[idx].control_len = 0;
2711        rdma->wr_data[idx].control_curr = NULL;
2712    }
2713
2714    if (!rdma->host || !rdma->host[0]) {
2715        ERROR(errp, "RDMA host is not set!");
2716        rdma->error_state = -EINVAL;
2717        return -1;
2718    }
2719    /* create CM channel */
2720    rdma->channel = rdma_create_event_channel();
2721    if (!rdma->channel) {
2722        ERROR(errp, "could not create rdma event channel");
2723        rdma->error_state = -EINVAL;
2724        return -1;
2725    }
2726
2727    /* create CM id */
2728    ret = rdma_create_id(rdma->channel, &listen_id, NULL, RDMA_PS_TCP);
2729    if (ret) {
2730        ERROR(errp, "could not create cm_id!");
2731        goto err_dest_init_create_listen_id;
2732    }
2733
2734    snprintf(port_str, 16, "%d", rdma->port);
2735    port_str[15] = '\0';
2736
2737    ret = rdma_getaddrinfo(rdma->host, port_str, NULL, &res);
2738    if (ret < 0) {
2739        ERROR(errp, "could not rdma_getaddrinfo address %s", rdma->host);
2740        goto err_dest_init_bind_addr;
2741    }
2742
2743    for (e = res; e != NULL; e = e->ai_next) {
2744        inet_ntop(e->ai_family,
2745            &((struct sockaddr_in *) e->ai_dst_addr)->sin_addr, ip, sizeof ip);
2746        trace_qemu_rdma_dest_init_trying(rdma->host, ip);
2747        ret = rdma_bind_addr(listen_id, e->ai_dst_addr);
2748        if (ret) {
2749            continue;
2750        }
2751        if (e->ai_family == AF_INET6) {
2752            ret = qemu_rdma_broken_ipv6_kernel(listen_id->verbs, errp);
2753            if (ret) {
2754                continue;
2755            }
2756        }
2757        break;
2758    }
2759
2760    rdma_freeaddrinfo(res);
2761    if (!e) {
2762        ERROR(errp, "Error: could not rdma_bind_addr!");
2763        goto err_dest_init_bind_addr;
2764    }
2765
2766    rdma->listen_id = listen_id;
2767    qemu_rdma_dump_gid("dest_init", listen_id);
2768    return 0;
2769
2770err_dest_init_bind_addr:
2771    rdma_destroy_id(listen_id);
2772err_dest_init_create_listen_id:
2773    rdma_destroy_event_channel(rdma->channel);
2774    rdma->channel = NULL;
2775    rdma->error_state = ret;
2776    return ret;
2777
2778}
2779
2780static void qemu_rdma_return_path_dest_init(RDMAContext *rdma_return_path,
2781                                            RDMAContext *rdma)
2782{
2783    int idx;
2784
2785    for (idx = 0; idx < RDMA_WRID_MAX; idx++) {
2786        rdma_return_path->wr_data[idx].control_len = 0;
2787        rdma_return_path->wr_data[idx].control_curr = NULL;
2788    }
2789
2790    /*the CM channel and CM id is shared*/
2791    rdma_return_path->channel = rdma->channel;
2792    rdma_return_path->listen_id = rdma->listen_id;
2793
2794    rdma->return_path = rdma_return_path;
2795    rdma_return_path->return_path = rdma;
2796    rdma_return_path->is_return_path = true;
2797}
2798
2799static void *qemu_rdma_data_init(const char *host_port, Error **errp)
2800{
2801    RDMAContext *rdma = NULL;
2802    InetSocketAddress *addr;
2803
2804    if (host_port) {
2805        rdma = g_new0(RDMAContext, 1);
2806        rdma->current_index = -1;
2807        rdma->current_chunk = -1;
2808
2809        addr = g_new(InetSocketAddress, 1);
2810        if (!inet_parse(addr, host_port, NULL)) {
2811            rdma->port = atoi(addr->port);
2812            rdma->host = g_strdup(addr->host);
2813            rdma->host_port = g_strdup(host_port);
2814        } else {
2815            ERROR(errp, "bad RDMA migration address '%s'", host_port);
2816            g_free(rdma);
2817            rdma = NULL;
2818        }
2819
2820        qapi_free_InetSocketAddress(addr);
2821    }
2822
2823    return rdma;
2824}
2825
2826/*
2827 * QEMUFile interface to the control channel.
2828 * SEND messages for control only.
2829 * VM's ram is handled with regular RDMA messages.
2830 */
2831static ssize_t qio_channel_rdma_writev(QIOChannel *ioc,
2832                                       const struct iovec *iov,
2833                                       size_t niov,
2834                                       int *fds,
2835                                       size_t nfds,
2836                                       Error **errp)
2837{
2838    QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(ioc);
2839    QEMUFile *f = rioc->file;
2840    RDMAContext *rdma;
2841    int ret;
2842    ssize_t done = 0;
2843    size_t i;
2844    size_t len = 0;
2845
2846    RCU_READ_LOCK_GUARD();
2847    rdma = qatomic_rcu_read(&rioc->rdmaout);
2848
2849    if (!rdma) {
2850        return -EIO;
2851    }
2852
2853    CHECK_ERROR_STATE();
2854
2855    /*
2856     * Push out any writes that
2857     * we're queued up for VM's ram.
2858     */
2859    ret = qemu_rdma_write_flush(f, rdma);
2860    if (ret < 0) {
2861        rdma->error_state = ret;
2862        return ret;
2863    }
2864
2865    for (i = 0; i < niov; i++) {
2866        size_t remaining = iov[i].iov_len;
2867        uint8_t * data = (void *)iov[i].iov_base;
2868        while (remaining) {
2869            RDMAControlHeader head;
2870
2871            len = MIN(remaining, RDMA_SEND_INCREMENT);
2872            remaining -= len;
2873
2874            head.len = len;
2875            head.type = RDMA_CONTROL_QEMU_FILE;
2876
2877            ret = qemu_rdma_exchange_send(rdma, &head, data, NULL, NULL, NULL);
2878
2879            if (ret < 0) {
2880                rdma->error_state = ret;
2881                return ret;
2882            }
2883
2884            data += len;
2885            done += len;
2886        }
2887    }
2888
2889    return done;
2890}
2891
2892static size_t qemu_rdma_fill(RDMAContext *rdma, uint8_t *buf,
2893                             size_t size, int idx)
2894{
2895    size_t len = 0;
2896
2897    if (rdma->wr_data[idx].control_len) {
2898        trace_qemu_rdma_fill(rdma->wr_data[idx].control_len, size);
2899
2900        len = MIN(size, rdma->wr_data[idx].control_len);
2901        memcpy(buf, rdma->wr_data[idx].control_curr, len);
2902        rdma->wr_data[idx].control_curr += len;
2903        rdma->wr_data[idx].control_len -= len;
2904    }
2905
2906    return len;
2907}
2908
2909/*
2910 * QEMUFile interface to the control channel.
2911 * RDMA links don't use bytestreams, so we have to
2912 * return bytes to QEMUFile opportunistically.
2913 */
2914static ssize_t qio_channel_rdma_readv(QIOChannel *ioc,
2915                                      const struct iovec *iov,
2916                                      size_t niov,
2917                                      int **fds,
2918                                      size_t *nfds,
2919                                      Error **errp)
2920{
2921    QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(ioc);
2922    RDMAContext *rdma;
2923    RDMAControlHeader head;
2924    int ret = 0;
2925    ssize_t i;
2926    size_t done = 0;
2927
2928    RCU_READ_LOCK_GUARD();
2929    rdma = qatomic_rcu_read(&rioc->rdmain);
2930
2931    if (!rdma) {
2932        return -EIO;
2933    }
2934
2935    CHECK_ERROR_STATE();
2936
2937    for (i = 0; i < niov; i++) {
2938        size_t want = iov[i].iov_len;
2939        uint8_t *data = (void *)iov[i].iov_base;
2940
2941        /*
2942         * First, we hold on to the last SEND message we
2943         * were given and dish out the bytes until we run
2944         * out of bytes.
2945         */
2946        ret = qemu_rdma_fill(rdma, data, want, 0);
2947        done += ret;
2948        want -= ret;
2949        /* Got what we needed, so go to next iovec */
2950        if (want == 0) {
2951            continue;
2952        }
2953
2954        /* If we got any data so far, then don't wait
2955         * for more, just return what we have */
2956        if (done > 0) {
2957            break;
2958        }
2959
2960
2961        /* We've got nothing at all, so lets wait for
2962         * more to arrive
2963         */
2964        ret = qemu_rdma_exchange_recv(rdma, &head, RDMA_CONTROL_QEMU_FILE);
2965
2966        if (ret < 0) {
2967            rdma->error_state = ret;
2968            return ret;
2969        }
2970
2971        /*
2972         * SEND was received with new bytes, now try again.
2973         */
2974        ret = qemu_rdma_fill(rdma, data, want, 0);
2975        done += ret;
2976        want -= ret;
2977
2978        /* Still didn't get enough, so lets just return */
2979        if (want) {
2980            if (done == 0) {
2981                return QIO_CHANNEL_ERR_BLOCK;
2982            } else {
2983                break;
2984            }
2985        }
2986    }
2987    return done;
2988}
2989
2990/*
2991 * Block until all the outstanding chunks have been delivered by the hardware.
2992 */
2993static int qemu_rdma_drain_cq(QEMUFile *f, RDMAContext *rdma)
2994{
2995    int ret;
2996
2997    if (qemu_rdma_write_flush(f, rdma) < 0) {
2998        return -EIO;
2999    }
3000
3001    while (rdma->nb_sent) {
3002        ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_RDMA_WRITE, NULL);
3003        if (ret < 0) {
3004            error_report("rdma migration: complete polling error!");
3005            return -EIO;
3006        }
3007    }
3008
3009    qemu_rdma_unregister_waiting(rdma);
3010
3011    return 0;
3012}
3013
3014
3015static int qio_channel_rdma_set_blocking(QIOChannel *ioc,
3016                                         bool blocking,
3017                                         Error **errp)
3018{
3019    QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(ioc);
3020    /* XXX we should make readv/writev actually honour this :-) */
3021    rioc->blocking = blocking;
3022    return 0;
3023}
3024
3025
3026typedef struct QIOChannelRDMASource QIOChannelRDMASource;
3027struct QIOChannelRDMASource {
3028    GSource parent;
3029    QIOChannelRDMA *rioc;
3030    GIOCondition condition;
3031};
3032
3033static gboolean
3034qio_channel_rdma_source_prepare(GSource *source,
3035                                gint *timeout)
3036{
3037    QIOChannelRDMASource *rsource = (QIOChannelRDMASource *)source;
3038    RDMAContext *rdma;
3039    GIOCondition cond = 0;
3040    *timeout = -1;
3041
3042    RCU_READ_LOCK_GUARD();
3043    if (rsource->condition == G_IO_IN) {
3044        rdma = qatomic_rcu_read(&rsource->rioc->rdmain);
3045    } else {
3046        rdma = qatomic_rcu_read(&rsource->rioc->rdmaout);
3047    }
3048
3049    if (!rdma) {
3050        error_report("RDMAContext is NULL when prepare Gsource");
3051        return FALSE;
3052    }
3053
3054    if (rdma->wr_data[0].control_len) {
3055        cond |= G_IO_IN;
3056    }
3057    cond |= G_IO_OUT;
3058
3059    return cond & rsource->condition;
3060}
3061
3062static gboolean
3063qio_channel_rdma_source_check(GSource *source)
3064{
3065    QIOChannelRDMASource *rsource = (QIOChannelRDMASource *)source;
3066    RDMAContext *rdma;
3067    GIOCondition cond = 0;
3068
3069    RCU_READ_LOCK_GUARD();
3070    if (rsource->condition == G_IO_IN) {
3071        rdma = qatomic_rcu_read(&rsource->rioc->rdmain);
3072    } else {
3073        rdma = qatomic_rcu_read(&rsource->rioc->rdmaout);
3074    }
3075
3076    if (!rdma) {
3077        error_report("RDMAContext is NULL when check Gsource");
3078        return FALSE;
3079    }
3080
3081    if (rdma->wr_data[0].control_len) {
3082        cond |= G_IO_IN;
3083    }
3084    cond |= G_IO_OUT;
3085
3086    return cond & rsource->condition;
3087}
3088
3089static gboolean
3090qio_channel_rdma_source_dispatch(GSource *source,
3091                                 GSourceFunc callback,
3092                                 gpointer user_data)
3093{
3094    QIOChannelFunc func = (QIOChannelFunc)callback;
3095    QIOChannelRDMASource *rsource = (QIOChannelRDMASource *)source;
3096    RDMAContext *rdma;
3097    GIOCondition cond = 0;
3098
3099    RCU_READ_LOCK_GUARD();
3100    if (rsource->condition == G_IO_IN) {
3101        rdma = qatomic_rcu_read(&rsource->rioc->rdmain);
3102    } else {
3103        rdma = qatomic_rcu_read(&rsource->rioc->rdmaout);
3104    }
3105
3106    if (!rdma) {
3107        error_report("RDMAContext is NULL when dispatch Gsource");
3108        return FALSE;
3109    }
3110
3111    if (rdma->wr_data[0].control_len) {
3112        cond |= G_IO_IN;
3113    }
3114    cond |= G_IO_OUT;
3115
3116    return (*func)(QIO_CHANNEL(rsource->rioc),
3117                   (cond & rsource->condition),
3118                   user_data);
3119}
3120
3121static void
3122qio_channel_rdma_source_finalize(GSource *source)
3123{
3124    QIOChannelRDMASource *ssource = (QIOChannelRDMASource *)source;
3125
3126    object_unref(OBJECT(ssource->rioc));
3127}
3128
3129GSourceFuncs qio_channel_rdma_source_funcs = {
3130    qio_channel_rdma_source_prepare,
3131    qio_channel_rdma_source_check,
3132    qio_channel_rdma_source_dispatch,
3133    qio_channel_rdma_source_finalize
3134};
3135
3136static GSource *qio_channel_rdma_create_watch(QIOChannel *ioc,
3137                                              GIOCondition condition)
3138{
3139    QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(ioc);
3140    QIOChannelRDMASource *ssource;
3141    GSource *source;
3142
3143    source = g_source_new(&qio_channel_rdma_source_funcs,
3144                          sizeof(QIOChannelRDMASource));
3145    ssource = (QIOChannelRDMASource *)source;
3146
3147    ssource->rioc = rioc;
3148    object_ref(OBJECT(rioc));
3149
3150    ssource->condition = condition;
3151
3152    return source;
3153}
3154
3155static void qio_channel_rdma_set_aio_fd_handler(QIOChannel *ioc,
3156                                                  AioContext *ctx,
3157                                                  IOHandler *io_read,
3158                                                  IOHandler *io_write,
3159                                                  void *opaque)
3160{
3161    QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(ioc);
3162    if (io_read) {
3163        aio_set_fd_handler(ctx, rioc->rdmain->recv_comp_channel->fd,
3164                           false, io_read, io_write, NULL, opaque);
3165        aio_set_fd_handler(ctx, rioc->rdmain->send_comp_channel->fd,
3166                           false, io_read, io_write, NULL, opaque);
3167    } else {
3168        aio_set_fd_handler(ctx, rioc->rdmaout->recv_comp_channel->fd,
3169                           false, io_read, io_write, NULL, opaque);
3170        aio_set_fd_handler(ctx, rioc->rdmaout->send_comp_channel->fd,
3171                           false, io_read, io_write, NULL, opaque);
3172    }
3173}
3174
3175struct rdma_close_rcu {
3176    struct rcu_head rcu;
3177    RDMAContext *rdmain;
3178    RDMAContext *rdmaout;
3179};
3180
3181/* callback from qio_channel_rdma_close via call_rcu */
3182static void qio_channel_rdma_close_rcu(struct rdma_close_rcu *rcu)
3183{
3184    if (rcu->rdmain) {
3185        qemu_rdma_cleanup(rcu->rdmain);
3186    }
3187
3188    if (rcu->rdmaout) {
3189        qemu_rdma_cleanup(rcu->rdmaout);
3190    }
3191
3192    g_free(rcu->rdmain);
3193    g_free(rcu->rdmaout);
3194    g_free(rcu);
3195}
3196
3197static int qio_channel_rdma_close(QIOChannel *ioc,
3198                                  Error **errp)
3199{
3200    QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(ioc);
3201    RDMAContext *rdmain, *rdmaout;
3202    struct rdma_close_rcu *rcu = g_new(struct rdma_close_rcu, 1);
3203
3204    trace_qemu_rdma_close();
3205
3206    rdmain = rioc->rdmain;
3207    if (rdmain) {
3208        qatomic_rcu_set(&rioc->rdmain, NULL);
3209    }
3210
3211    rdmaout = rioc->rdmaout;
3212    if (rdmaout) {
3213        qatomic_rcu_set(&rioc->rdmaout, NULL);
3214    }
3215
3216    rcu->rdmain = rdmain;
3217    rcu->rdmaout = rdmaout;
3218    call_rcu(rcu, qio_channel_rdma_close_rcu, rcu);
3219
3220    return 0;
3221}
3222
3223static int
3224qio_channel_rdma_shutdown(QIOChannel *ioc,
3225                            QIOChannelShutdown how,
3226                            Error **errp)
3227{
3228    QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(ioc);
3229    RDMAContext *rdmain, *rdmaout;
3230
3231    RCU_READ_LOCK_GUARD();
3232
3233    rdmain = qatomic_rcu_read(&rioc->rdmain);
3234    rdmaout = qatomic_rcu_read(&rioc->rdmain);
3235
3236    switch (how) {
3237    case QIO_CHANNEL_SHUTDOWN_READ:
3238        if (rdmain) {
3239            rdmain->error_state = -1;
3240        }
3241        break;
3242    case QIO_CHANNEL_SHUTDOWN_WRITE:
3243        if (rdmaout) {
3244            rdmaout->error_state = -1;
3245        }
3246        break;
3247    case QIO_CHANNEL_SHUTDOWN_BOTH:
3248    default:
3249        if (rdmain) {
3250            rdmain->error_state = -1;
3251        }
3252        if (rdmaout) {
3253            rdmaout->error_state = -1;
3254        }
3255        break;
3256    }
3257
3258    return 0;
3259}
3260
3261/*
3262 * Parameters:
3263 *    @offset == 0 :
3264 *        This means that 'block_offset' is a full virtual address that does not
3265 *        belong to a RAMBlock of the virtual machine and instead
3266 *        represents a private malloc'd memory area that the caller wishes to
3267 *        transfer.
3268 *
3269 *    @offset != 0 :
3270 *        Offset is an offset to be added to block_offset and used
3271 *        to also lookup the corresponding RAMBlock.
3272 *
3273 *    @size > 0 :
3274 *        Initiate an transfer this size.
3275 *
3276 *    @size == 0 :
3277 *        A 'hint' or 'advice' that means that we wish to speculatively
3278 *        and asynchronously unregister this memory. In this case, there is no
3279 *        guarantee that the unregister will actually happen, for example,
3280 *        if the memory is being actively transmitted. Additionally, the memory
3281 *        may be re-registered at any future time if a write within the same
3282 *        chunk was requested again, even if you attempted to unregister it
3283 *        here.
3284 *
3285 *    @size < 0 : TODO, not yet supported
3286 *        Unregister the memory NOW. This means that the caller does not
3287 *        expect there to be any future RDMA transfers and we just want to clean
3288 *        things up. This is used in case the upper layer owns the memory and
3289 *        cannot wait for qemu_fclose() to occur.
3290 *
3291 *    @bytes_sent : User-specificed pointer to indicate how many bytes were
3292 *                  sent. Usually, this will not be more than a few bytes of
3293 *                  the protocol because most transfers are sent asynchronously.
3294 */
3295static size_t qemu_rdma_save_page(QEMUFile *f, void *opaque,
3296                                  ram_addr_t block_offset, ram_addr_t offset,
3297                                  size_t size, uint64_t *bytes_sent)
3298{
3299    QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(opaque);
3300    RDMAContext *rdma;
3301    int ret;
3302
3303    RCU_READ_LOCK_GUARD();
3304    rdma = qatomic_rcu_read(&rioc->rdmaout);
3305
3306    if (!rdma) {
3307        return -EIO;
3308    }
3309
3310    CHECK_ERROR_STATE();
3311
3312    if (migration_in_postcopy()) {
3313        return RAM_SAVE_CONTROL_NOT_SUPP;
3314    }
3315
3316    qemu_fflush(f);
3317
3318    if (size > 0) {
3319        /*
3320         * Add this page to the current 'chunk'. If the chunk
3321         * is full, or the page doesn't belong to the current chunk,
3322         * an actual RDMA write will occur and a new chunk will be formed.
3323         */
3324        ret = qemu_rdma_write(f, rdma, block_offset, offset, size);
3325        if (ret < 0) {
3326            error_report("rdma migration: write error! %d", ret);
3327            goto err;
3328        }
3329
3330        /*
3331         * We always return 1 bytes because the RDMA
3332         * protocol is completely asynchronous. We do not yet know
3333         * whether an  identified chunk is zero or not because we're
3334         * waiting for other pages to potentially be merged with
3335         * the current chunk. So, we have to call qemu_update_position()
3336         * later on when the actual write occurs.
3337         */
3338        if (bytes_sent) {
3339            *bytes_sent = 1;
3340        }
3341    } else {
3342        uint64_t index, chunk;
3343
3344        /* TODO: Change QEMUFileOps prototype to be signed: size_t => long
3345        if (size < 0) {
3346            ret = qemu_rdma_drain_cq(f, rdma);
3347            if (ret < 0) {
3348                fprintf(stderr, "rdma: failed to synchronously drain"
3349                                " completion queue before unregistration.\n");
3350                goto err;
3351            }
3352        }
3353        */
3354
3355        ret = qemu_rdma_search_ram_block(rdma, block_offset,
3356                                         offset, size, &index, &chunk);
3357
3358        if (ret) {
3359            error_report("ram block search failed");
3360            goto err;
3361        }
3362
3363        qemu_rdma_signal_unregister(rdma, index, chunk, 0);
3364
3365        /*
3366         * TODO: Synchronous, guaranteed unregistration (should not occur during
3367         * fast-path). Otherwise, unregisters will process on the next call to
3368         * qemu_rdma_drain_cq()
3369        if (size < 0) {
3370            qemu_rdma_unregister_waiting(rdma);
3371        }
3372        */
3373    }
3374
3375    /*
3376     * Drain the Completion Queue if possible, but do not block,
3377     * just poll.
3378     *
3379     * If nothing to poll, the end of the iteration will do this
3380     * again to make sure we don't overflow the request queue.
3381     */
3382    while (1) {
3383        uint64_t wr_id, wr_id_in;
3384        int ret = qemu_rdma_poll(rdma, rdma->recv_cq, &wr_id_in, NULL);
3385        if (ret < 0) {
3386            error_report("rdma migration: polling error! %d", ret);
3387            goto err;
3388        }
3389
3390        wr_id = wr_id_in & RDMA_WRID_TYPE_MASK;
3391
3392        if (wr_id == RDMA_WRID_NONE) {
3393            break;
3394        }
3395    }
3396
3397    while (1) {
3398        uint64_t wr_id, wr_id_in;
3399        int ret = qemu_rdma_poll(rdma, rdma->send_cq, &wr_id_in, NULL);
3400        if (ret < 0) {
3401            error_report("rdma migration: polling error! %d", ret);
3402            goto err;
3403        }
3404
3405        wr_id = wr_id_in & RDMA_WRID_TYPE_MASK;
3406
3407        if (wr_id == RDMA_WRID_NONE) {
3408            break;
3409        }
3410    }
3411
3412    return RAM_SAVE_CONTROL_DELAYED;
3413err:
3414    rdma->error_state = ret;
3415    return ret;
3416}
3417
3418static void rdma_accept_incoming_migration(void *opaque);
3419
3420static void rdma_cm_poll_handler(void *opaque)
3421{
3422    RDMAContext *rdma = opaque;
3423    int ret;
3424    struct rdma_cm_event *cm_event;
3425    MigrationIncomingState *mis = migration_incoming_get_current();
3426
3427    ret = rdma_get_cm_event(rdma->channel, &cm_event);
3428    if (ret) {
3429        error_report("get_cm_event failed %d", errno);
3430        return;
3431    }
3432
3433    if (cm_event->event == RDMA_CM_EVENT_DISCONNECTED ||
3434        cm_event->event == RDMA_CM_EVENT_DEVICE_REMOVAL) {
3435        if (!rdma->error_state &&
3436            migration_incoming_get_current()->state !=
3437              MIGRATION_STATUS_COMPLETED) {
3438            error_report("receive cm event, cm event is %d", cm_event->event);
3439            rdma->error_state = -EPIPE;
3440            if (rdma->return_path) {
3441                rdma->return_path->error_state = -EPIPE;
3442            }
3443        }
3444        rdma_ack_cm_event(cm_event);
3445
3446        if (mis->migration_incoming_co) {
3447            qemu_coroutine_enter(mis->migration_incoming_co);
3448        }
3449        return;
3450    }
3451    rdma_ack_cm_event(cm_event);
3452}
3453
3454static int qemu_rdma_accept(RDMAContext *rdma)
3455{
3456    RDMACapabilities cap;
3457    struct rdma_conn_param conn_param = {
3458                                            .responder_resources = 2,
3459                                            .private_data = &cap,
3460                                            .private_data_len = sizeof(cap),
3461                                         };
3462    RDMAContext *rdma_return_path = NULL;
3463    struct rdma_cm_event *cm_event;
3464    struct ibv_context *verbs;
3465    int ret = -EINVAL;
3466    int idx;
3467
3468    ret = rdma_get_cm_event(rdma->channel, &cm_event);
3469    if (ret) {
3470        goto err_rdma_dest_wait;
3471    }
3472
3473    if (cm_event->event != RDMA_CM_EVENT_CONNECT_REQUEST) {
3474        rdma_ack_cm_event(cm_event);
3475        goto err_rdma_dest_wait;
3476    }
3477
3478    /*
3479     * initialize the RDMAContext for return path for postcopy after first
3480     * connection request reached.
3481     */
3482    if (migrate_postcopy() && !rdma->is_return_path) {
3483        rdma_return_path = qemu_rdma_data_init(rdma->host_port, NULL);
3484        if (rdma_return_path == NULL) {
3485            rdma_ack_cm_event(cm_event);
3486            goto err_rdma_dest_wait;
3487        }
3488
3489        qemu_rdma_return_path_dest_init(rdma_return_path, rdma);
3490    }
3491
3492    memcpy(&cap, cm_event->param.conn.private_data, sizeof(cap));
3493
3494    network_to_caps(&cap);
3495
3496    if (cap.version < 1 || cap.version > RDMA_CONTROL_VERSION_CURRENT) {
3497            error_report("Unknown source RDMA version: %d, bailing...",
3498                            cap.version);
3499            rdma_ack_cm_event(cm_event);
3500            goto err_rdma_dest_wait;
3501    }
3502
3503    /*
3504     * Respond with only the capabilities this version of QEMU knows about.
3505     */
3506    cap.flags &= known_capabilities;
3507
3508    /*
3509     * Enable the ones that we do know about.
3510     * Add other checks here as new ones are introduced.
3511     */
3512    if (cap.flags & RDMA_CAPABILITY_PIN_ALL) {
3513        rdma->pin_all = true;
3514    }
3515
3516    rdma->cm_id = cm_event->id;
3517    verbs = cm_event->id->verbs;
3518
3519    rdma_ack_cm_event(cm_event);
3520
3521    trace_qemu_rdma_accept_pin_state(rdma->pin_all);
3522
3523    caps_to_network(&cap);
3524
3525    trace_qemu_rdma_accept_pin_verbsc(verbs);
3526
3527    if (!rdma->verbs) {
3528        rdma->verbs = verbs;
3529    } else if (rdma->verbs != verbs) {
3530            error_report("ibv context not matching %p, %p!", rdma->verbs,
3531                         verbs);
3532            goto err_rdma_dest_wait;
3533    }
3534
3535    qemu_rdma_dump_id("dest_init", verbs);
3536
3537    ret = qemu_rdma_alloc_pd_cq(rdma);
3538    if (ret) {
3539        error_report("rdma migration: error allocating pd and cq!");
3540        goto err_rdma_dest_wait;
3541    }
3542
3543    ret = qemu_rdma_alloc_qp(rdma);
3544    if (ret) {
3545        error_report("rdma migration: error allocating qp!");
3546        goto err_rdma_dest_wait;
3547    }
3548
3549    ret = qemu_rdma_init_ram_blocks(rdma);
3550    if (ret) {
3551        error_report("rdma migration: error initializing ram blocks!");
3552        goto err_rdma_dest_wait;
3553    }
3554
3555    for (idx = 0; idx < RDMA_WRID_MAX; idx++) {
3556        ret = qemu_rdma_reg_control(rdma, idx);
3557        if (ret) {
3558            error_report("rdma: error registering %d control", idx);
3559            goto err_rdma_dest_wait;
3560        }
3561    }
3562
3563    /* Accept the second connection request for return path */
3564    if (migrate_postcopy() && !rdma->is_return_path) {
3565        qemu_set_fd_handler(rdma->channel->fd, rdma_accept_incoming_migration,
3566                            NULL,
3567                            (void *)(intptr_t)rdma->return_path);
3568    } else {
3569        qemu_set_fd_handler(rdma->channel->fd, rdma_cm_poll_handler,
3570                            NULL, rdma);
3571    }
3572
3573    ret = rdma_accept(rdma->cm_id, &conn_param);
3574    if (ret) {
3575        error_report("rdma_accept returns %d", ret);
3576        goto err_rdma_dest_wait;
3577    }
3578
3579    ret = rdma_get_cm_event(rdma->channel, &cm_event);
3580    if (ret) {
3581        error_report("rdma_accept get_cm_event failed %d", ret);
3582        goto err_rdma_dest_wait;
3583    }
3584
3585    if (cm_event->event != RDMA_CM_EVENT_ESTABLISHED) {
3586        error_report("rdma_accept not event established");
3587        rdma_ack_cm_event(cm_event);
3588        goto err_rdma_dest_wait;
3589    }
3590
3591    rdma_ack_cm_event(cm_event);
3592    rdma->connected = true;
3593
3594    ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_READY);
3595    if (ret) {
3596        error_report("rdma migration: error posting second control recv");
3597        goto err_rdma_dest_wait;
3598    }
3599
3600    qemu_rdma_dump_gid("dest_connect", rdma->cm_id);
3601
3602    return 0;
3603
3604err_rdma_dest_wait:
3605    rdma->error_state = ret;
3606    qemu_rdma_cleanup(rdma);
3607    g_free(rdma_return_path);
3608    return ret;
3609}
3610
3611static int dest_ram_sort_func(const void *a, const void *b)
3612{
3613    unsigned int a_index = ((const RDMALocalBlock *)a)->src_index;
3614    unsigned int b_index = ((const RDMALocalBlock *)b)->src_index;
3615
3616    return (a_index < b_index) ? -1 : (a_index != b_index);
3617}
3618
3619/*
3620 * During each iteration of the migration, we listen for instructions
3621 * by the source VM to perform dynamic page registrations before they
3622 * can perform RDMA operations.
3623 *
3624 * We respond with the 'rkey'.
3625 *
3626 * Keep doing this until the source tells us to stop.
3627 */
3628static int qemu_rdma_registration_handle(QEMUFile *f, void *opaque)
3629{
3630    RDMAControlHeader reg_resp = { .len = sizeof(RDMARegisterResult),
3631                               .type = RDMA_CONTROL_REGISTER_RESULT,
3632                               .repeat = 0,
3633                             };
3634    RDMAControlHeader unreg_resp = { .len = 0,
3635                               .type = RDMA_CONTROL_UNREGISTER_FINISHED,
3636                               .repeat = 0,
3637                             };
3638    RDMAControlHeader blocks = { .type = RDMA_CONTROL_RAM_BLOCKS_RESULT,
3639                                 .repeat = 1 };
3640    QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(opaque);
3641    RDMAContext *rdma;
3642    RDMALocalBlocks *local;
3643    RDMAControlHeader head;
3644    RDMARegister *reg, *registers;
3645    RDMACompress *comp;
3646    RDMARegisterResult *reg_result;
3647    static RDMARegisterResult results[RDMA_CONTROL_MAX_COMMANDS_PER_MESSAGE];
3648    RDMALocalBlock *block;
3649    void *host_addr;
3650    int ret = 0;
3651    int idx = 0;
3652    int count = 0;
3653    int i = 0;
3654
3655    RCU_READ_LOCK_GUARD();
3656    rdma = qatomic_rcu_read(&rioc->rdmain);
3657
3658    if (!rdma) {
3659        return -EIO;
3660    }
3661
3662    CHECK_ERROR_STATE();
3663
3664    local = &rdma->local_ram_blocks;
3665    do {
3666        trace_qemu_rdma_registration_handle_wait();
3667
3668        ret = qemu_rdma_exchange_recv(rdma, &head, RDMA_CONTROL_NONE);
3669
3670        if (ret < 0) {
3671            break;
3672        }
3673
3674        if (head.repeat > RDMA_CONTROL_MAX_COMMANDS_PER_MESSAGE) {
3675            error_report("rdma: Too many requests in this message (%d)."
3676                            "Bailing.", head.repeat);
3677            ret = -EIO;
3678            break;
3679        }
3680
3681        switch (head.type) {
3682        case RDMA_CONTROL_COMPRESS:
3683            comp = (RDMACompress *) rdma->wr_data[idx].control_curr;
3684            network_to_compress(comp);
3685
3686            trace_qemu_rdma_registration_handle_compress(comp->length,
3687                                                         comp->block_idx,
3688                                                         comp->offset);
3689            if (comp->block_idx >= rdma->local_ram_blocks.nb_blocks) {
3690                error_report("rdma: 'compress' bad block index %u (vs %d)",
3691                             (unsigned int)comp->block_idx,
3692                             rdma->local_ram_blocks.nb_blocks);
3693                ret = -EIO;
3694                goto out;
3695            }
3696            block = &(rdma->local_ram_blocks.block[comp->block_idx]);
3697
3698            host_addr = block->local_host_addr +
3699                            (comp->offset - block->offset);
3700
3701            ram_handle_compressed(host_addr, comp->value, comp->length);
3702            break;
3703
3704        case RDMA_CONTROL_REGISTER_FINISHED:
3705            trace_qemu_rdma_registration_handle_finished();
3706            goto out;
3707
3708        case RDMA_CONTROL_RAM_BLOCKS_REQUEST:
3709            trace_qemu_rdma_registration_handle_ram_blocks();
3710
3711            /* Sort our local RAM Block list so it's the same as the source,
3712             * we can do this since we've filled in a src_index in the list
3713             * as we received the RAMBlock list earlier.
3714             */
3715            qsort(rdma->local_ram_blocks.block,
3716                  rdma->local_ram_blocks.nb_blocks,
3717                  sizeof(RDMALocalBlock), dest_ram_sort_func);
3718            for (i = 0; i < local->nb_blocks; i++) {
3719                local->block[i].index = i;
3720            }
3721
3722            if (rdma->pin_all) {
3723                ret = qemu_rdma_reg_whole_ram_blocks(rdma);
3724                if (ret) {
3725                    error_report("rdma migration: error dest "
3726                                    "registering ram blocks");
3727                    goto out;
3728                }
3729            }
3730
3731            /*
3732             * Dest uses this to prepare to transmit the RAMBlock descriptions
3733             * to the source VM after connection setup.
3734             * Both sides use the "remote" structure to communicate and update
3735             * their "local" descriptions with what was sent.
3736             */
3737            for (i = 0; i < local->nb_blocks; i++) {
3738                rdma->dest_blocks[i].remote_host_addr =
3739                    (uintptr_t)(local->block[i].local_host_addr);
3740
3741                if (rdma->pin_all) {
3742                    rdma->dest_blocks[i].remote_rkey = local->block[i].mr->rkey;
3743                }
3744
3745                rdma->dest_blocks[i].offset = local->block[i].offset;
3746                rdma->dest_blocks[i].length = local->block[i].length;
3747
3748                dest_block_to_network(&rdma->dest_blocks[i]);
3749                trace_qemu_rdma_registration_handle_ram_blocks_loop(
3750                    local->block[i].block_name,
3751                    local->block[i].offset,
3752                    local->block[i].length,
3753                    local->block[i].local_host_addr,
3754                    local->block[i].src_index);
3755            }
3756
3757            blocks.len = rdma->local_ram_blocks.nb_blocks
3758                                                * sizeof(RDMADestBlock);
3759
3760
3761            ret = qemu_rdma_post_send_control(rdma,
3762                                        (uint8_t *) rdma->dest_blocks, &blocks);
3763
3764            if (ret < 0) {
3765                error_report("rdma migration: error sending remote info");
3766                goto out;
3767            }
3768
3769            break;
3770        case RDMA_CONTROL_REGISTER_REQUEST:
3771            trace_qemu_rdma_registration_handle_register(head.repeat);
3772
3773            reg_resp.repeat = head.repeat;
3774            registers = (RDMARegister *) rdma->wr_data[idx].control_curr;
3775
3776            for (count = 0; count < head.repeat; count++) {
3777                uint64_t chunk;
3778                uint8_t *chunk_start, *chunk_end;
3779
3780                reg = &registers[count];
3781                network_to_register(reg);
3782
3783                reg_result = &results[count];
3784
3785                trace_qemu_rdma_registration_handle_register_loop(count,
3786                         reg->current_index, reg->key.current_addr, reg->chunks);
3787
3788                if (reg->current_index >= rdma->local_ram_blocks.nb_blocks) {
3789                    error_report("rdma: 'register' bad block index %u (vs %d)",
3790                                 (unsigned int)reg->current_index,
3791                                 rdma->local_ram_blocks.nb_blocks);
3792                    ret = -ENOENT;
3793                    goto out;
3794                }
3795                block = &(rdma->local_ram_blocks.block[reg->current_index]);
3796                if (block->is_ram_block) {
3797                    if (block->offset > reg->key.current_addr) {
3798                        error_report("rdma: bad register address for block %s"
3799                            " offset: %" PRIx64 " current_addr: %" PRIx64,
3800                            block->block_name, block->offset,
3801                            reg->key.current_addr);
3802                        ret = -ERANGE;
3803                        goto out;
3804                    }
3805                    host_addr = (block->local_host_addr +
3806                                (reg->key.current_addr - block->offset));
3807                    chunk = ram_chunk_index(block->local_host_addr,
3808                                            (uint8_t *) host_addr);
3809                } else {
3810                    chunk = reg->key.chunk;
3811                    host_addr = block->local_host_addr +
3812                        (reg->key.chunk * (1UL << RDMA_REG_CHUNK_SHIFT));
3813                    /* Check for particularly bad chunk value */
3814                    if (host_addr < (void *)block->local_host_addr) {
3815                        error_report("rdma: bad chunk for block %s"
3816                            " chunk: %" PRIx64,
3817                            block->block_name, reg->key.chunk);
3818                        ret = -ERANGE;
3819                        goto out;
3820                    }
3821                }
3822                chunk_start = ram_chunk_start(block, chunk);
3823                chunk_end = ram_chunk_end(block, chunk + reg->chunks);
3824                /* avoid "-Waddress-of-packed-member" warning */
3825                uint32_t tmp_rkey = 0;
3826                if (qemu_rdma_register_and_get_keys(rdma, block,
3827                            (uintptr_t)host_addr, NULL, &tmp_rkey,
3828                            chunk, chunk_start, chunk_end)) {
3829                    error_report("cannot get rkey");
3830                    ret = -EINVAL;
3831                    goto out;
3832                }
3833                reg_result->rkey = tmp_rkey;
3834
3835                reg_result->host_addr = (uintptr_t)block->local_host_addr;
3836
3837                trace_qemu_rdma_registration_handle_register_rkey(
3838                                                           reg_result->rkey);
3839
3840                result_to_network(reg_result);
3841            }
3842
3843            ret = qemu_rdma_post_send_control(rdma,
3844                            (uint8_t *) results, &reg_resp);
3845
3846            if (ret < 0) {
3847                error_report("Failed to send control buffer");
3848                goto out;
3849            }
3850            break;
3851        case RDMA_CONTROL_UNREGISTER_REQUEST:
3852            trace_qemu_rdma_registration_handle_unregister(head.repeat);
3853            unreg_resp.repeat = head.repeat;
3854            registers = (RDMARegister *) rdma->wr_data[idx].control_curr;
3855
3856            for (count = 0; count < head.repeat; count++) {
3857                reg = &registers[count];
3858                network_to_register(reg);
3859
3860                trace_qemu_rdma_registration_handle_unregister_loop(count,
3861                           reg->current_index, reg->key.chunk);
3862
3863                block = &(rdma->local_ram_blocks.block[reg->current_index]);
3864
3865                ret = ibv_dereg_mr(block->pmr[reg->key.chunk]);
3866                block->pmr[reg->key.chunk] = NULL;
3867
3868                if (ret != 0) {
3869                    perror("rdma unregistration chunk failed");
3870                    ret = -ret;
3871                    goto out;
3872                }
3873
3874                rdma->total_registrations--;
3875
3876                trace_qemu_rdma_registration_handle_unregister_success(
3877                                                       reg->key.chunk);
3878            }
3879
3880            ret = qemu_rdma_post_send_control(rdma, NULL, &unreg_resp);
3881
3882            if (ret < 0) {
3883                error_report("Failed to send control buffer");
3884                goto out;
3885            }
3886            break;
3887        case RDMA_CONTROL_REGISTER_RESULT:
3888            error_report("Invalid RESULT message at dest.");
3889            ret = -EIO;
3890            goto out;
3891        default:
3892            error_report("Unknown control message %s", control_desc(head.type));
3893            ret = -EIO;
3894            goto out;
3895        }
3896    } while (1);
3897out:
3898    if (ret < 0) {
3899        rdma->error_state = ret;
3900    }
3901    return ret;
3902}
3903
3904/* Destination:
3905 * Called via a ram_control_load_hook during the initial RAM load section which
3906 * lists the RAMBlocks by name.  This lets us know the order of the RAMBlocks
3907 * on the source.
3908 * We've already built our local RAMBlock list, but not yet sent the list to
3909 * the source.
3910 */
3911static int
3912rdma_block_notification_handle(QIOChannelRDMA *rioc, const char *name)
3913{
3914    RDMAContext *rdma;
3915    int curr;
3916    int found = -1;
3917
3918    RCU_READ_LOCK_GUARD();
3919    rdma = qatomic_rcu_read(&rioc->rdmain);
3920
3921    if (!rdma) {
3922        return -EIO;
3923    }
3924
3925    /* Find the matching RAMBlock in our local list */
3926    for (curr = 0; curr < rdma->local_ram_blocks.nb_blocks; curr++) {
3927        if (!strcmp(rdma->local_ram_blocks.block[curr].block_name, name)) {
3928            found = curr;
3929            break;
3930        }
3931    }
3932
3933    if (found == -1) {
3934        error_report("RAMBlock '%s' not found on destination", name);
3935        return -ENOENT;
3936    }
3937
3938    rdma->local_ram_blocks.block[curr].src_index = rdma->next_src_index;
3939    trace_rdma_block_notification_handle(name, rdma->next_src_index);
3940    rdma->next_src_index++;
3941
3942    return 0;
3943}
3944
3945static int rdma_load_hook(QEMUFile *f, void *opaque, uint64_t flags, void *data)
3946{
3947    switch (flags) {
3948    case RAM_CONTROL_BLOCK_REG:
3949        return rdma_block_notification_handle(opaque, data);
3950
3951    case RAM_CONTROL_HOOK:
3952        return qemu_rdma_registration_handle(f, opaque);
3953
3954    default:
3955        /* Shouldn't be called with any other values */
3956        abort();
3957    }
3958}
3959
3960static int qemu_rdma_registration_start(QEMUFile *f, void *opaque,
3961                                        uint64_t flags, void *data)
3962{
3963    QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(opaque);
3964    RDMAContext *rdma;
3965
3966    RCU_READ_LOCK_GUARD();
3967    rdma = qatomic_rcu_read(&rioc->rdmaout);
3968    if (!rdma) {
3969        return -EIO;
3970    }
3971
3972    CHECK_ERROR_STATE();
3973
3974    if (migration_in_postcopy()) {
3975        return 0;
3976    }
3977
3978    trace_qemu_rdma_registration_start(flags);
3979    qemu_put_be64(f, RAM_SAVE_FLAG_HOOK);
3980    qemu_fflush(f);
3981
3982    return 0;
3983}
3984
3985/*
3986 * Inform dest that dynamic registrations are done for now.
3987 * First, flush writes, if any.
3988 */
3989static int qemu_rdma_registration_stop(QEMUFile *f, void *opaque,
3990                                       uint64_t flags, void *data)
3991{
3992    QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(opaque);
3993    RDMAContext *rdma;
3994    RDMAControlHeader head = { .len = 0, .repeat = 1 };
3995    int ret = 0;
3996
3997    RCU_READ_LOCK_GUARD();
3998    rdma = qatomic_rcu_read(&rioc->rdmaout);
3999    if (!rdma) {
4000        return -EIO;
4001    }
4002
4003    CHECK_ERROR_STATE();
4004
4005    if (migration_in_postcopy()) {
4006        return 0;
4007    }
4008
4009    qemu_fflush(f);
4010    ret = qemu_rdma_drain_cq(f, rdma);
4011
4012    if (ret < 0) {
4013        goto err;
4014    }
4015
4016    if (flags == RAM_CONTROL_SETUP) {
4017        RDMAControlHeader resp = {.type = RDMA_CONTROL_RAM_BLOCKS_RESULT };
4018        RDMALocalBlocks *local = &rdma->local_ram_blocks;
4019        int reg_result_idx, i, nb_dest_blocks;
4020
4021        head.type = RDMA_CONTROL_RAM_BLOCKS_REQUEST;
4022        trace_qemu_rdma_registration_stop_ram();
4023
4024        /*
4025         * Make sure that we parallelize the pinning on both sides.
4026         * For very large guests, doing this serially takes a really
4027         * long time, so we have to 'interleave' the pinning locally
4028         * with the control messages by performing the pinning on this
4029         * side before we receive the control response from the other
4030         * side that the pinning has completed.
4031         */
4032        ret = qemu_rdma_exchange_send(rdma, &head, NULL, &resp,
4033                    &reg_result_idx, rdma->pin_all ?
4034                    qemu_rdma_reg_whole_ram_blocks : NULL);
4035        if (ret < 0) {
4036            fprintf(stderr, "receiving remote info!");
4037            return ret;
4038        }
4039
4040        nb_dest_blocks = resp.len / sizeof(RDMADestBlock);
4041
4042        /*
4043         * The protocol uses two different sets of rkeys (mutually exclusive):
4044         * 1. One key to represent the virtual address of the entire ram block.
4045         *    (dynamic chunk registration disabled - pin everything with one rkey.)
4046         * 2. One to represent individual chunks within a ram block.
4047         *    (dynamic chunk registration enabled - pin individual chunks.)
4048         *
4049         * Once the capability is successfully negotiated, the destination transmits
4050         * the keys to use (or sends them later) including the virtual addresses
4051         * and then propagates the remote ram block descriptions to his local copy.
4052         */
4053
4054        if (local->nb_blocks != nb_dest_blocks) {
4055            fprintf(stderr, "ram blocks mismatch (Number of blocks %d vs %d) "
4056                    "Your QEMU command line parameters are probably "
4057                    "not identical on both the source and destination.",
4058                    local->nb_blocks, nb_dest_blocks);
4059            rdma->error_state = -EINVAL;
4060            return -EINVAL;
4061        }
4062
4063        qemu_rdma_move_header(rdma, reg_result_idx, &resp);
4064        memcpy(rdma->dest_blocks,
4065            rdma->wr_data[reg_result_idx].control_curr, resp.len);
4066        for (i = 0; i < nb_dest_blocks; i++) {
4067            network_to_dest_block(&rdma->dest_blocks[i]);
4068
4069            /* We require that the blocks are in the same order */
4070            if (rdma->dest_blocks[i].length != local->block[i].length) {
4071                fprintf(stderr, "Block %s/%d has a different length %" PRIu64
4072                        "vs %" PRIu64, local->block[i].block_name, i,
4073                        local->block[i].length,
4074                        rdma->dest_blocks[i].length);
4075                rdma->error_state = -EINVAL;
4076                return -EINVAL;
4077            }
4078            local->block[i].remote_host_addr =
4079                    rdma->dest_blocks[i].remote_host_addr;
4080            local->block[i].remote_rkey = rdma->dest_blocks[i].remote_rkey;
4081        }
4082    }
4083
4084    trace_qemu_rdma_registration_stop(flags);
4085
4086    head.type = RDMA_CONTROL_REGISTER_FINISHED;
4087    ret = qemu_rdma_exchange_send(rdma, &head, NULL, NULL, NULL, NULL);
4088
4089    if (ret < 0) {
4090        goto err;
4091    }
4092
4093    return 0;
4094err:
4095    rdma->error_state = ret;
4096    return ret;
4097}
4098
4099static const QEMUFileHooks rdma_read_hooks = {
4100    .hook_ram_load = rdma_load_hook,
4101};
4102
4103static const QEMUFileHooks rdma_write_hooks = {
4104    .before_ram_iterate = qemu_rdma_registration_start,
4105    .after_ram_iterate  = qemu_rdma_registration_stop,
4106    .save_page          = qemu_rdma_save_page,
4107};
4108
4109
4110static void qio_channel_rdma_finalize(Object *obj)
4111{
4112    QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(obj);
4113    if (rioc->rdmain) {
4114        qemu_rdma_cleanup(rioc->rdmain);
4115        g_free(rioc->rdmain);
4116        rioc->rdmain = NULL;
4117    }
4118    if (rioc->rdmaout) {
4119        qemu_rdma_cleanup(rioc->rdmaout);
4120        g_free(rioc->rdmaout);
4121        rioc->rdmaout = NULL;
4122    }
4123}
4124
4125static void qio_channel_rdma_class_init(ObjectClass *klass,
4126                                        void *class_data G_GNUC_UNUSED)
4127{
4128    QIOChannelClass *ioc_klass = QIO_CHANNEL_CLASS(klass);
4129
4130    ioc_klass->io_writev = qio_channel_rdma_writev;
4131    ioc_klass->io_readv = qio_channel_rdma_readv;
4132    ioc_klass->io_set_blocking = qio_channel_rdma_set_blocking;
4133    ioc_klass->io_close = qio_channel_rdma_close;
4134    ioc_klass->io_create_watch = qio_channel_rdma_create_watch;
4135    ioc_klass->io_set_aio_fd_handler = qio_channel_rdma_set_aio_fd_handler;
4136    ioc_klass->io_shutdown = qio_channel_rdma_shutdown;
4137}
4138
4139static const TypeInfo qio_channel_rdma_info = {
4140    .parent = TYPE_QIO_CHANNEL,
4141    .name = TYPE_QIO_CHANNEL_RDMA,
4142    .instance_size = sizeof(QIOChannelRDMA),
4143    .instance_finalize = qio_channel_rdma_finalize,
4144    .class_init = qio_channel_rdma_class_init,
4145};
4146
4147static void qio_channel_rdma_register_types(void)
4148{
4149    type_register_static(&qio_channel_rdma_info);
4150}
4151
4152type_init(qio_channel_rdma_register_types);
4153
4154static QEMUFile *qemu_fopen_rdma(RDMAContext *rdma, const char *mode)
4155{
4156    QIOChannelRDMA *rioc;
4157
4158    if (qemu_file_mode_is_not_valid(mode)) {
4159        return NULL;
4160    }
4161
4162    rioc = QIO_CHANNEL_RDMA(object_new(TYPE_QIO_CHANNEL_RDMA));
4163
4164    if (mode[0] == 'w') {
4165        rioc->file = qemu_fopen_channel_output(QIO_CHANNEL(rioc));
4166        rioc->rdmaout = rdma;
4167        rioc->rdmain = rdma->return_path;
4168        qemu_file_set_hooks(rioc->file, &rdma_write_hooks);
4169    } else {
4170        rioc->file = qemu_fopen_channel_input(QIO_CHANNEL(rioc));
4171        rioc->rdmain = rdma;
4172        rioc->rdmaout = rdma->return_path;
4173        qemu_file_set_hooks(rioc->file, &rdma_read_hooks);
4174    }
4175
4176    return rioc->file;
4177}
4178
4179static void rdma_accept_incoming_migration(void *opaque)
4180{
4181    RDMAContext *rdma = opaque;
4182    int ret;
4183    QEMUFile *f;
4184    Error *local_err = NULL;
4185
4186    trace_qemu_rdma_accept_incoming_migration();
4187    ret = qemu_rdma_accept(rdma);
4188
4189    if (ret) {
4190        fprintf(stderr, "RDMA ERROR: Migration initialization failed\n");
4191        return;
4192    }
4193
4194    trace_qemu_rdma_accept_incoming_migration_accepted();
4195
4196    if (rdma->is_return_path) {
4197        return;
4198    }
4199
4200    f = qemu_fopen_rdma(rdma, "rb");
4201    if (f == NULL) {
4202        fprintf(stderr, "RDMA ERROR: could not qemu_fopen_rdma\n");
4203        qemu_rdma_cleanup(rdma);
4204        return;
4205    }
4206
4207    rdma->migration_started_on_destination = 1;
4208    migration_fd_process_incoming(f, &local_err);
4209    if (local_err) {
4210        error_reportf_err(local_err, "RDMA ERROR:");
4211    }
4212}
4213
4214void rdma_start_incoming_migration(const char *host_port, Error **errp)
4215{
4216    int ret;
4217    RDMAContext *rdma, *rdma_return_path = NULL;
4218    Error *local_err = NULL;
4219
4220    trace_rdma_start_incoming_migration();
4221
4222    /* Avoid ram_block_discard_disable(), cannot change during migration. */
4223    if (ram_block_discard_is_required()) {
4224        error_setg(errp, "RDMA: cannot disable RAM discard");
4225        return;
4226    }
4227
4228    rdma = qemu_rdma_data_init(host_port, &local_err);
4229    if (rdma == NULL) {
4230        goto err;
4231    }
4232
4233    ret = qemu_rdma_dest_init(rdma, &local_err);
4234
4235    if (ret) {
4236        goto err;
4237    }
4238
4239    trace_rdma_start_incoming_migration_after_dest_init();
4240
4241    ret = rdma_listen(rdma->listen_id, 5);
4242
4243    if (ret) {
4244        ERROR(errp, "listening on socket!");
4245        goto cleanup_rdma;
4246    }
4247
4248    trace_rdma_start_incoming_migration_after_rdma_listen();
4249
4250    qemu_set_fd_handler(rdma->channel->fd, rdma_accept_incoming_migration,
4251                        NULL, (void *)(intptr_t)rdma);
4252    return;
4253
4254cleanup_rdma:
4255    qemu_rdma_cleanup(rdma);
4256err:
4257    error_propagate(errp, local_err);
4258    if (rdma) {
4259        g_free(rdma->host);
4260        g_free(rdma->host_port);
4261    }
4262    g_free(rdma);
4263    g_free(rdma_return_path);
4264}
4265
4266void rdma_start_outgoing_migration(void *opaque,
4267                            const char *host_port, Error **errp)
4268{
4269    MigrationState *s = opaque;
4270    RDMAContext *rdma_return_path = NULL;
4271    RDMAContext *rdma;
4272    int ret = 0;
4273
4274    /* Avoid ram_block_discard_disable(), cannot change during migration. */
4275    if (ram_block_discard_is_required()) {
4276        error_setg(errp, "RDMA: cannot disable RAM discard");
4277        return;
4278    }
4279
4280    rdma = qemu_rdma_data_init(host_port, errp);
4281    if (rdma == NULL) {
4282        goto err;
4283    }
4284
4285    ret = qemu_rdma_source_init(rdma,
4286        s->enabled_capabilities[MIGRATION_CAPABILITY_RDMA_PIN_ALL], errp);
4287
4288    if (ret) {
4289        goto err;
4290    }
4291
4292    trace_rdma_start_outgoing_migration_after_rdma_source_init();
4293    ret = qemu_rdma_connect(rdma, errp, false);
4294
4295    if (ret) {
4296        goto err;
4297    }
4298
4299    /* RDMA postcopy need a separate queue pair for return path */
4300    if (migrate_postcopy()) {
4301        rdma_return_path = qemu_rdma_data_init(host_port, errp);
4302
4303        if (rdma_return_path == NULL) {
4304            goto return_path_err;
4305        }
4306
4307        ret = qemu_rdma_source_init(rdma_return_path,
4308            s->enabled_capabilities[MIGRATION_CAPABILITY_RDMA_PIN_ALL], errp);
4309
4310        if (ret) {
4311            goto return_path_err;
4312        }
4313
4314        ret = qemu_rdma_connect(rdma_return_path, errp, true);
4315
4316        if (ret) {
4317            goto return_path_err;
4318        }
4319
4320        rdma->return_path = rdma_return_path;
4321        rdma_return_path->return_path = rdma;
4322        rdma_return_path->is_return_path = true;
4323    }
4324
4325    trace_rdma_start_outgoing_migration_after_rdma_connect();
4326
4327    s->to_dst_file = qemu_fopen_rdma(rdma, "wb");
4328    migrate_fd_connect(s, NULL);
4329    return;
4330return_path_err:
4331    qemu_rdma_cleanup(rdma);
4332err:
4333    g_free(rdma);
4334    g_free(rdma_return_path);
4335}
4336