qemu/target/arm/arm-powerctl.c
<<
>>
Prefs
   1/*
   2 * QEMU support -- ARM Power Control specific functions.
   3 *
   4 * Copyright (c) 2016 Jean-Christophe Dubois
   5 *
   6 * This work is licensed under the terms of the GNU GPL, version 2 or later.
   7 * See the COPYING file in the top-level directory.
   8 *
   9 */
  10
  11#include "qemu/osdep.h"
  12#include "cpu.h"
  13#include "cpu-qom.h"
  14#include "internals.h"
  15#include "arm-powerctl.h"
  16#include "qemu/log.h"
  17#include "qemu/main-loop.h"
  18
  19#ifndef DEBUG_ARM_POWERCTL
  20#define DEBUG_ARM_POWERCTL 0
  21#endif
  22
  23#define DPRINTF(fmt, args...) \
  24    do { \
  25        if (DEBUG_ARM_POWERCTL) { \
  26            fprintf(stderr, "[ARM]%s: " fmt , __func__, ##args); \
  27        } \
  28    } while (0)
  29
  30CPUState *arm_get_cpu_by_id(uint64_t id)
  31{
  32    CPUState *cpu;
  33
  34    DPRINTF("cpu %" PRId64 "\n", id);
  35
  36    CPU_FOREACH(cpu) {
  37        ARMCPU *armcpu = ARM_CPU(cpu);
  38
  39        if (armcpu->mp_affinity == id) {
  40            return cpu;
  41        }
  42    }
  43
  44    qemu_log_mask(LOG_GUEST_ERROR,
  45                  "[ARM]%s: Requesting unknown CPU %" PRId64 "\n",
  46                  __func__, id);
  47
  48    return NULL;
  49}
  50
  51struct CpuOnInfo {
  52    uint64_t entry;
  53    uint64_t context_id;
  54    uint32_t target_el;
  55    bool target_aa64;
  56};
  57
  58
  59static void arm_set_cpu_on_async_work(CPUState *target_cpu_state,
  60                                      run_on_cpu_data data)
  61{
  62    ARMCPU *target_cpu = ARM_CPU(target_cpu_state);
  63    struct CpuOnInfo *info = (struct CpuOnInfo *) data.host_ptr;
  64
  65    /* Initialize the cpu we are turning on */
  66    cpu_reset(target_cpu_state);
  67    target_cpu_state->halted = 0;
  68
  69    if (info->target_aa64) {
  70        if ((info->target_el < 3) && arm_feature(&target_cpu->env,
  71                                                 ARM_FEATURE_EL3)) {
  72            /*
  73             * As target mode is AArch64, we need to set lower
  74             * exception level (the requested level 2) to AArch64
  75             */
  76            target_cpu->env.cp15.scr_el3 |= SCR_RW;
  77        }
  78
  79        if ((info->target_el < 2) && arm_feature(&target_cpu->env,
  80                                                 ARM_FEATURE_EL2)) {
  81            /*
  82             * As target mode is AArch64, we need to set lower
  83             * exception level (the requested level 1) to AArch64
  84             */
  85            target_cpu->env.cp15.hcr_el2 |= HCR_RW;
  86        }
  87
  88        target_cpu->env.pstate = aarch64_pstate_mode(info->target_el, true);
  89    } else {
  90        /* We are requested to boot in AArch32 mode */
  91        static const uint32_t mode_for_el[] = { 0,
  92                                                ARM_CPU_MODE_SVC,
  93                                                ARM_CPU_MODE_HYP,
  94                                                ARM_CPU_MODE_SVC };
  95
  96        cpsr_write(&target_cpu->env, mode_for_el[info->target_el], CPSR_M,
  97                   CPSRWriteRaw);
  98    }
  99
 100    if (info->target_el == 3) {
 101        /* Processor is in secure mode */
 102        target_cpu->env.cp15.scr_el3 &= ~SCR_NS;
 103    } else {
 104        /* Processor is not in secure mode */
 105        target_cpu->env.cp15.scr_el3 |= SCR_NS;
 106
 107        /* Set NSACR.{CP11,CP10} so NS can access the FPU */
 108        target_cpu->env.cp15.nsacr |= 3 << 10;
 109
 110        /*
 111         * If QEMU is providing the equivalent of EL3 firmware, then we need
 112         * to make sure a CPU targeting EL2 comes out of reset with a
 113         * functional HVC insn.
 114         */
 115        if (arm_feature(&target_cpu->env, ARM_FEATURE_EL3)
 116            && info->target_el == 2) {
 117            target_cpu->env.cp15.scr_el3 |= SCR_HCE;
 118        }
 119    }
 120
 121    /* We check if the started CPU is now at the correct level */
 122    assert(info->target_el == arm_current_el(&target_cpu->env));
 123
 124    if (info->target_aa64) {
 125        target_cpu->env.xregs[0] = info->context_id;
 126    } else {
 127        target_cpu->env.regs[0] = info->context_id;
 128    }
 129
 130    /* CP15 update requires rebuilding hflags */
 131    arm_rebuild_hflags(&target_cpu->env);
 132
 133    /* Start the new CPU at the requested address */
 134    cpu_set_pc(target_cpu_state, info->entry);
 135
 136    g_free(info);
 137
 138    /* Finally set the power status */
 139    assert(qemu_mutex_iothread_locked());
 140    target_cpu->power_state = PSCI_ON;
 141}
 142
 143int arm_set_cpu_on(uint64_t cpuid, uint64_t entry, uint64_t context_id,
 144                   uint32_t target_el, bool target_aa64)
 145{
 146    CPUState *target_cpu_state;
 147    ARMCPU *target_cpu;
 148    struct CpuOnInfo *info;
 149
 150    assert(qemu_mutex_iothread_locked());
 151
 152    DPRINTF("cpu %" PRId64 " (EL %d, %s) @ 0x%" PRIx64 " with R0 = 0x%" PRIx64
 153            "\n", cpuid, target_el, target_aa64 ? "aarch64" : "aarch32", entry,
 154            context_id);
 155
 156    /* requested EL level need to be in the 1 to 3 range */
 157    assert((target_el > 0) && (target_el < 4));
 158
 159    if (target_aa64 && (entry & 3)) {
 160        /*
 161         * if we are booting in AArch64 mode then "entry" needs to be 4 bytes
 162         * aligned.
 163         */
 164        return QEMU_ARM_POWERCTL_INVALID_PARAM;
 165    }
 166
 167    /* Retrieve the cpu we are powering up */
 168    target_cpu_state = arm_get_cpu_by_id(cpuid);
 169    if (!target_cpu_state) {
 170        /* The cpu was not found */
 171        return QEMU_ARM_POWERCTL_INVALID_PARAM;
 172    }
 173
 174    target_cpu = ARM_CPU(target_cpu_state);
 175    if (target_cpu->power_state == PSCI_ON) {
 176        qemu_log_mask(LOG_GUEST_ERROR,
 177                      "[ARM]%s: CPU %" PRId64 " is already on\n",
 178                      __func__, cpuid);
 179        return QEMU_ARM_POWERCTL_ALREADY_ON;
 180    }
 181
 182    /*
 183     * The newly brought CPU is requested to enter the exception level
 184     * "target_el" and be in the requested mode (AArch64 or AArch32).
 185     */
 186
 187    if (((target_el == 3) && !arm_feature(&target_cpu->env, ARM_FEATURE_EL3)) ||
 188        ((target_el == 2) && !arm_feature(&target_cpu->env, ARM_FEATURE_EL2))) {
 189        /*
 190         * The CPU does not support requested level
 191         */
 192        return QEMU_ARM_POWERCTL_INVALID_PARAM;
 193    }
 194
 195    if (!target_aa64 && arm_feature(&target_cpu->env, ARM_FEATURE_AARCH64)) {
 196        /*
 197         * For now we don't support booting an AArch64 CPU in AArch32 mode
 198         * TODO: We should add this support later
 199         */
 200        qemu_log_mask(LOG_UNIMP,
 201                      "[ARM]%s: Starting AArch64 CPU %" PRId64
 202                      " in AArch32 mode is not supported yet\n",
 203                      __func__, cpuid);
 204        return QEMU_ARM_POWERCTL_INVALID_PARAM;
 205    }
 206
 207    /*
 208     * If another CPU has powered the target on we are in the state
 209     * ON_PENDING and additional attempts to power on the CPU should
 210     * fail (see 6.6 Implementation CPU_ON/CPU_OFF races in the PSCI
 211     * spec)
 212     */
 213    if (target_cpu->power_state == PSCI_ON_PENDING) {
 214        qemu_log_mask(LOG_GUEST_ERROR,
 215                      "[ARM]%s: CPU %" PRId64 " is already powering on\n",
 216                      __func__, cpuid);
 217        return QEMU_ARM_POWERCTL_ON_PENDING;
 218    }
 219
 220    /* To avoid racing with a CPU we are just kicking off we do the
 221     * final bit of preparation for the work in the target CPUs
 222     * context.
 223     */
 224    info = g_new(struct CpuOnInfo, 1);
 225    info->entry = entry;
 226    info->context_id = context_id;
 227    info->target_el = target_el;
 228    info->target_aa64 = target_aa64;
 229
 230    async_run_on_cpu(target_cpu_state, arm_set_cpu_on_async_work,
 231                     RUN_ON_CPU_HOST_PTR(info));
 232
 233    /* We are good to go */
 234    return QEMU_ARM_POWERCTL_RET_SUCCESS;
 235}
 236
 237static void arm_set_cpu_on_and_reset_async_work(CPUState *target_cpu_state,
 238                                                run_on_cpu_data data)
 239{
 240    ARMCPU *target_cpu = ARM_CPU(target_cpu_state);
 241
 242    /* Initialize the cpu we are turning on */
 243    cpu_reset(target_cpu_state);
 244    target_cpu_state->halted = 0;
 245
 246    /* Finally set the power status */
 247    assert(qemu_mutex_iothread_locked());
 248    target_cpu->power_state = PSCI_ON;
 249}
 250
 251int arm_set_cpu_on_and_reset(uint64_t cpuid)
 252{
 253    CPUState *target_cpu_state;
 254    ARMCPU *target_cpu;
 255
 256    assert(qemu_mutex_iothread_locked());
 257
 258    /* Retrieve the cpu we are powering up */
 259    target_cpu_state = arm_get_cpu_by_id(cpuid);
 260    if (!target_cpu_state) {
 261        /* The cpu was not found */
 262        return QEMU_ARM_POWERCTL_INVALID_PARAM;
 263    }
 264
 265    target_cpu = ARM_CPU(target_cpu_state);
 266    if (target_cpu->power_state == PSCI_ON) {
 267        qemu_log_mask(LOG_GUEST_ERROR,
 268                      "[ARM]%s: CPU %" PRId64 " is already on\n",
 269                      __func__, cpuid);
 270        return QEMU_ARM_POWERCTL_ALREADY_ON;
 271    }
 272
 273    /*
 274     * If another CPU has powered the target on we are in the state
 275     * ON_PENDING and additional attempts to power on the CPU should
 276     * fail (see 6.6 Implementation CPU_ON/CPU_OFF races in the PSCI
 277     * spec)
 278     */
 279    if (target_cpu->power_state == PSCI_ON_PENDING) {
 280        qemu_log_mask(LOG_GUEST_ERROR,
 281                      "[ARM]%s: CPU %" PRId64 " is already powering on\n",
 282                      __func__, cpuid);
 283        return QEMU_ARM_POWERCTL_ON_PENDING;
 284    }
 285
 286    async_run_on_cpu(target_cpu_state, arm_set_cpu_on_and_reset_async_work,
 287                     RUN_ON_CPU_NULL);
 288
 289    /* We are good to go */
 290    return QEMU_ARM_POWERCTL_RET_SUCCESS;
 291}
 292
 293static void arm_set_cpu_off_async_work(CPUState *target_cpu_state,
 294                                       run_on_cpu_data data)
 295{
 296    ARMCPU *target_cpu = ARM_CPU(target_cpu_state);
 297
 298    assert(qemu_mutex_iothread_locked());
 299    target_cpu->power_state = PSCI_OFF;
 300    target_cpu_state->halted = 1;
 301    target_cpu_state->exception_index = EXCP_HLT;
 302}
 303
 304int arm_set_cpu_off(uint64_t cpuid)
 305{
 306    CPUState *target_cpu_state;
 307    ARMCPU *target_cpu;
 308
 309    assert(qemu_mutex_iothread_locked());
 310
 311    DPRINTF("cpu %" PRId64 "\n", cpuid);
 312
 313    /* change to the cpu we are powering up */
 314    target_cpu_state = arm_get_cpu_by_id(cpuid);
 315    if (!target_cpu_state) {
 316        return QEMU_ARM_POWERCTL_INVALID_PARAM;
 317    }
 318    target_cpu = ARM_CPU(target_cpu_state);
 319    if (target_cpu->power_state == PSCI_OFF) {
 320        qemu_log_mask(LOG_GUEST_ERROR,
 321                      "[ARM]%s: CPU %" PRId64 " is already off\n",
 322                      __func__, cpuid);
 323        return QEMU_ARM_POWERCTL_IS_OFF;
 324    }
 325
 326    /* Queue work to run under the target vCPUs context */
 327    async_run_on_cpu(target_cpu_state, arm_set_cpu_off_async_work,
 328                     RUN_ON_CPU_NULL);
 329
 330    return QEMU_ARM_POWERCTL_RET_SUCCESS;
 331}
 332
 333static void arm_reset_cpu_async_work(CPUState *target_cpu_state,
 334                                     run_on_cpu_data data)
 335{
 336    /* Reset the cpu */
 337    cpu_reset(target_cpu_state);
 338}
 339
 340int arm_reset_cpu(uint64_t cpuid)
 341{
 342    CPUState *target_cpu_state;
 343    ARMCPU *target_cpu;
 344
 345    assert(qemu_mutex_iothread_locked());
 346
 347    DPRINTF("cpu %" PRId64 "\n", cpuid);
 348
 349    /* change to the cpu we are resetting */
 350    target_cpu_state = arm_get_cpu_by_id(cpuid);
 351    if (!target_cpu_state) {
 352        return QEMU_ARM_POWERCTL_INVALID_PARAM;
 353    }
 354    target_cpu = ARM_CPU(target_cpu_state);
 355
 356    if (target_cpu->power_state == PSCI_OFF) {
 357        qemu_log_mask(LOG_GUEST_ERROR,
 358                      "[ARM]%s: CPU %" PRId64 " is off\n",
 359                      __func__, cpuid);
 360        return QEMU_ARM_POWERCTL_IS_OFF;
 361    }
 362
 363    /* Queue work to run under the target vCPUs context */
 364    async_run_on_cpu(target_cpu_state, arm_reset_cpu_async_work,
 365                     RUN_ON_CPU_NULL);
 366
 367    return QEMU_ARM_POWERCTL_RET_SUCCESS;
 368}
 369