qemu/target/arm/cpu.c
<<
>>
Prefs
   1/*
   2 * QEMU ARM CPU
   3 *
   4 * Copyright (c) 2012 SUSE LINUX Products GmbH
   5 *
   6 * This program is free software; you can redistribute it and/or
   7 * modify it under the terms of the GNU General Public License
   8 * as published by the Free Software Foundation; either version 2
   9 * of the License, or (at your option) any later version.
  10 *
  11 * This program is distributed in the hope that it will be useful,
  12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  14 * GNU General Public License for more details.
  15 *
  16 * You should have received a copy of the GNU General Public License
  17 * along with this program; if not, see
  18 * <http://www.gnu.org/licenses/gpl-2.0.html>
  19 */
  20
  21#include "qemu/osdep.h"
  22#include "qemu/qemu-print.h"
  23#include "qemu-common.h"
  24#include "target/arm/idau.h"
  25#include "qemu/module.h"
  26#include "qapi/error.h"
  27#include "qapi/visitor.h"
  28#include "cpu.h"
  29#ifdef CONFIG_TCG
  30#include "hw/core/tcg-cpu-ops.h"
  31#endif /* CONFIG_TCG */
  32#include "internals.h"
  33#include "exec/exec-all.h"
  34#include "hw/qdev-properties.h"
  35#if !defined(CONFIG_USER_ONLY)
  36#include "hw/loader.h"
  37#include "hw/boards.h"
  38#endif
  39#include "sysemu/tcg.h"
  40#include "sysemu/hw_accel.h"
  41#include "kvm_arm.h"
  42#include "hvf_arm.h"
  43#include "disas/capstone.h"
  44#include "fpu/softfloat.h"
  45
  46static void arm_cpu_set_pc(CPUState *cs, vaddr value)
  47{
  48    ARMCPU *cpu = ARM_CPU(cs);
  49    CPUARMState *env = &cpu->env;
  50
  51    if (is_a64(env)) {
  52        env->pc = value;
  53        env->thumb = 0;
  54    } else {
  55        env->regs[15] = value & ~1;
  56        env->thumb = value & 1;
  57    }
  58}
  59
  60#ifdef CONFIG_TCG
  61void arm_cpu_synchronize_from_tb(CPUState *cs,
  62                                 const TranslationBlock *tb)
  63{
  64    ARMCPU *cpu = ARM_CPU(cs);
  65    CPUARMState *env = &cpu->env;
  66
  67    /*
  68     * It's OK to look at env for the current mode here, because it's
  69     * never possible for an AArch64 TB to chain to an AArch32 TB.
  70     */
  71    if (is_a64(env)) {
  72        env->pc = tb->pc;
  73    } else {
  74        env->regs[15] = tb->pc;
  75    }
  76}
  77#endif /* CONFIG_TCG */
  78
  79static bool arm_cpu_has_work(CPUState *cs)
  80{
  81    ARMCPU *cpu = ARM_CPU(cs);
  82
  83    return (cpu->power_state != PSCI_OFF)
  84        && cs->interrupt_request &
  85        (CPU_INTERRUPT_FIQ | CPU_INTERRUPT_HARD
  86         | CPU_INTERRUPT_VFIQ | CPU_INTERRUPT_VIRQ
  87         | CPU_INTERRUPT_EXITTB);
  88}
  89
  90void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
  91                                 void *opaque)
  92{
  93    ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1);
  94
  95    entry->hook = hook;
  96    entry->opaque = opaque;
  97
  98    QLIST_INSERT_HEAD(&cpu->pre_el_change_hooks, entry, node);
  99}
 100
 101void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
 102                                 void *opaque)
 103{
 104    ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1);
 105
 106    entry->hook = hook;
 107    entry->opaque = opaque;
 108
 109    QLIST_INSERT_HEAD(&cpu->el_change_hooks, entry, node);
 110}
 111
 112static void cp_reg_reset(gpointer key, gpointer value, gpointer opaque)
 113{
 114    /* Reset a single ARMCPRegInfo register */
 115    ARMCPRegInfo *ri = value;
 116    ARMCPU *cpu = opaque;
 117
 118    if (ri->type & (ARM_CP_SPECIAL | ARM_CP_ALIAS)) {
 119        return;
 120    }
 121
 122    if (ri->resetfn) {
 123        ri->resetfn(&cpu->env, ri);
 124        return;
 125    }
 126
 127    /* A zero offset is never possible as it would be regs[0]
 128     * so we use it to indicate that reset is being handled elsewhere.
 129     * This is basically only used for fields in non-core coprocessors
 130     * (like the pxa2xx ones).
 131     */
 132    if (!ri->fieldoffset) {
 133        return;
 134    }
 135
 136    if (cpreg_field_is_64bit(ri)) {
 137        CPREG_FIELD64(&cpu->env, ri) = ri->resetvalue;
 138    } else {
 139        CPREG_FIELD32(&cpu->env, ri) = ri->resetvalue;
 140    }
 141}
 142
 143static void cp_reg_check_reset(gpointer key, gpointer value,  gpointer opaque)
 144{
 145    /* Purely an assertion check: we've already done reset once,
 146     * so now check that running the reset for the cpreg doesn't
 147     * change its value. This traps bugs where two different cpregs
 148     * both try to reset the same state field but to different values.
 149     */
 150    ARMCPRegInfo *ri = value;
 151    ARMCPU *cpu = opaque;
 152    uint64_t oldvalue, newvalue;
 153
 154    if (ri->type & (ARM_CP_SPECIAL | ARM_CP_ALIAS | ARM_CP_NO_RAW)) {
 155        return;
 156    }
 157
 158    oldvalue = read_raw_cp_reg(&cpu->env, ri);
 159    cp_reg_reset(key, value, opaque);
 160    newvalue = read_raw_cp_reg(&cpu->env, ri);
 161    assert(oldvalue == newvalue);
 162}
 163
 164static void arm_cpu_reset(DeviceState *dev)
 165{
 166    CPUState *s = CPU(dev);
 167    ARMCPU *cpu = ARM_CPU(s);
 168    ARMCPUClass *acc = ARM_CPU_GET_CLASS(cpu);
 169    CPUARMState *env = &cpu->env;
 170
 171    acc->parent_reset(dev);
 172
 173    memset(env, 0, offsetof(CPUARMState, end_reset_fields));
 174
 175    g_hash_table_foreach(cpu->cp_regs, cp_reg_reset, cpu);
 176    g_hash_table_foreach(cpu->cp_regs, cp_reg_check_reset, cpu);
 177
 178    env->vfp.xregs[ARM_VFP_FPSID] = cpu->reset_fpsid;
 179    env->vfp.xregs[ARM_VFP_MVFR0] = cpu->isar.mvfr0;
 180    env->vfp.xregs[ARM_VFP_MVFR1] = cpu->isar.mvfr1;
 181    env->vfp.xregs[ARM_VFP_MVFR2] = cpu->isar.mvfr2;
 182
 183    cpu->power_state = s->start_powered_off ? PSCI_OFF : PSCI_ON;
 184
 185    if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
 186        env->iwmmxt.cregs[ARM_IWMMXT_wCID] = 0x69051000 | 'Q';
 187    }
 188
 189    if (arm_feature(env, ARM_FEATURE_AARCH64)) {
 190        /* 64 bit CPUs always start in 64 bit mode */
 191        env->aarch64 = 1;
 192#if defined(CONFIG_USER_ONLY)
 193        env->pstate = PSTATE_MODE_EL0t;
 194        /* Userspace expects access to DC ZVA, CTL_EL0 and the cache ops */
 195        env->cp15.sctlr_el[1] |= SCTLR_UCT | SCTLR_UCI | SCTLR_DZE;
 196        /* Enable all PAC keys.  */
 197        env->cp15.sctlr_el[1] |= (SCTLR_EnIA | SCTLR_EnIB |
 198                                  SCTLR_EnDA | SCTLR_EnDB);
 199        /* and to the FP/Neon instructions */
 200        env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 20, 2, 3);
 201        /* and to the SVE instructions */
 202        env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 16, 2, 3);
 203        /* with reasonable vector length */
 204        if (cpu_isar_feature(aa64_sve, cpu)) {
 205            env->vfp.zcr_el[1] =
 206                aarch64_sve_zcr_get_valid_len(cpu, cpu->sve_default_vq - 1);
 207        }
 208        /*
 209         * Enable TBI0 but not TBI1.
 210         * Note that this must match useronly_clean_ptr.
 211         */
 212        env->cp15.tcr_el[1].raw_tcr = (1ULL << 37);
 213
 214        /* Enable MTE */
 215        if (cpu_isar_feature(aa64_mte, cpu)) {
 216            /* Enable tag access, but leave TCF0 as No Effect (0). */
 217            env->cp15.sctlr_el[1] |= SCTLR_ATA0;
 218            /*
 219             * Exclude all tags, so that tag 0 is always used.
 220             * This corresponds to Linux current->thread.gcr_incl = 0.
 221             *
 222             * Set RRND, so that helper_irg() will generate a seed later.
 223             * Here in cpu_reset(), the crypto subsystem has not yet been
 224             * initialized.
 225             */
 226            env->cp15.gcr_el1 = 0x1ffff;
 227        }
 228#else
 229        /* Reset into the highest available EL */
 230        if (arm_feature(env, ARM_FEATURE_EL3)) {
 231            env->pstate = PSTATE_MODE_EL3h;
 232        } else if (arm_feature(env, ARM_FEATURE_EL2)) {
 233            env->pstate = PSTATE_MODE_EL2h;
 234        } else {
 235            env->pstate = PSTATE_MODE_EL1h;
 236        }
 237        env->pc = cpu->rvbar;
 238#endif
 239    } else {
 240#if defined(CONFIG_USER_ONLY)
 241        /* Userspace expects access to cp10 and cp11 for FP/Neon */
 242        env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 20, 4, 0xf);
 243#endif
 244    }
 245
 246#if defined(CONFIG_USER_ONLY)
 247    env->uncached_cpsr = ARM_CPU_MODE_USR;
 248    /* For user mode we must enable access to coprocessors */
 249    env->vfp.xregs[ARM_VFP_FPEXC] = 1 << 30;
 250    if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
 251        env->cp15.c15_cpar = 3;
 252    } else if (arm_feature(env, ARM_FEATURE_XSCALE)) {
 253        env->cp15.c15_cpar = 1;
 254    }
 255#else
 256
 257    /*
 258     * If the highest available EL is EL2, AArch32 will start in Hyp
 259     * mode; otherwise it starts in SVC. Note that if we start in
 260     * AArch64 then these values in the uncached_cpsr will be ignored.
 261     */
 262    if (arm_feature(env, ARM_FEATURE_EL2) &&
 263        !arm_feature(env, ARM_FEATURE_EL3)) {
 264        env->uncached_cpsr = ARM_CPU_MODE_HYP;
 265    } else {
 266        env->uncached_cpsr = ARM_CPU_MODE_SVC;
 267    }
 268    env->daif = PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F;
 269
 270    /* AArch32 has a hard highvec setting of 0xFFFF0000.  If we are currently
 271     * executing as AArch32 then check if highvecs are enabled and
 272     * adjust the PC accordingly.
 273     */
 274    if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
 275        env->regs[15] = 0xFFFF0000;
 276    }
 277
 278    env->vfp.xregs[ARM_VFP_FPEXC] = 0;
 279#endif
 280
 281    if (arm_feature(env, ARM_FEATURE_M)) {
 282#ifndef CONFIG_USER_ONLY
 283        uint32_t initial_msp; /* Loaded from 0x0 */
 284        uint32_t initial_pc; /* Loaded from 0x4 */
 285        uint8_t *rom;
 286        uint32_t vecbase;
 287#endif
 288
 289        if (cpu_isar_feature(aa32_lob, cpu)) {
 290            /*
 291             * LTPSIZE is constant 4 if MVE not implemented, and resets
 292             * to an UNKNOWN value if MVE is implemented. We choose to
 293             * always reset to 4.
 294             */
 295            env->v7m.ltpsize = 4;
 296            /* The LTPSIZE field in FPDSCR is constant and reads as 4. */
 297            env->v7m.fpdscr[M_REG_NS] = 4 << FPCR_LTPSIZE_SHIFT;
 298            env->v7m.fpdscr[M_REG_S] = 4 << FPCR_LTPSIZE_SHIFT;
 299        }
 300
 301        if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
 302            env->v7m.secure = true;
 303        } else {
 304            /* This bit resets to 0 if security is supported, but 1 if
 305             * it is not. The bit is not present in v7M, but we set it
 306             * here so we can avoid having to make checks on it conditional
 307             * on ARM_FEATURE_V8 (we don't let the guest see the bit).
 308             */
 309            env->v7m.aircr = R_V7M_AIRCR_BFHFNMINS_MASK;
 310            /*
 311             * Set NSACR to indicate "NS access permitted to everything";
 312             * this avoids having to have all the tests of it being
 313             * conditional on ARM_FEATURE_M_SECURITY. Note also that from
 314             * v8.1M the guest-visible value of NSACR in a CPU without the
 315             * Security Extension is 0xcff.
 316             */
 317            env->v7m.nsacr = 0xcff;
 318        }
 319
 320        /* In v7M the reset value of this bit is IMPDEF, but ARM recommends
 321         * that it resets to 1, so QEMU always does that rather than making
 322         * it dependent on CPU model. In v8M it is RES1.
 323         */
 324        env->v7m.ccr[M_REG_NS] = R_V7M_CCR_STKALIGN_MASK;
 325        env->v7m.ccr[M_REG_S] = R_V7M_CCR_STKALIGN_MASK;
 326        if (arm_feature(env, ARM_FEATURE_V8)) {
 327            /* in v8M the NONBASETHRDENA bit [0] is RES1 */
 328            env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_NONBASETHRDENA_MASK;
 329            env->v7m.ccr[M_REG_S] |= R_V7M_CCR_NONBASETHRDENA_MASK;
 330        }
 331        if (!arm_feature(env, ARM_FEATURE_M_MAIN)) {
 332            env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_UNALIGN_TRP_MASK;
 333            env->v7m.ccr[M_REG_S] |= R_V7M_CCR_UNALIGN_TRP_MASK;
 334        }
 335
 336        if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
 337            env->v7m.fpccr[M_REG_NS] = R_V7M_FPCCR_ASPEN_MASK;
 338            env->v7m.fpccr[M_REG_S] = R_V7M_FPCCR_ASPEN_MASK |
 339                R_V7M_FPCCR_LSPEN_MASK | R_V7M_FPCCR_S_MASK;
 340        }
 341
 342#ifndef CONFIG_USER_ONLY
 343        /* Unlike A/R profile, M profile defines the reset LR value */
 344        env->regs[14] = 0xffffffff;
 345
 346        env->v7m.vecbase[M_REG_S] = cpu->init_svtor & 0xffffff80;
 347        env->v7m.vecbase[M_REG_NS] = cpu->init_nsvtor & 0xffffff80;
 348
 349        /* Load the initial SP and PC from offset 0 and 4 in the vector table */
 350        vecbase = env->v7m.vecbase[env->v7m.secure];
 351        rom = rom_ptr_for_as(s->as, vecbase, 8);
 352        if (rom) {
 353            /* Address zero is covered by ROM which hasn't yet been
 354             * copied into physical memory.
 355             */
 356            initial_msp = ldl_p(rom);
 357            initial_pc = ldl_p(rom + 4);
 358        } else {
 359            /* Address zero not covered by a ROM blob, or the ROM blob
 360             * is in non-modifiable memory and this is a second reset after
 361             * it got copied into memory. In the latter case, rom_ptr
 362             * will return a NULL pointer and we should use ldl_phys instead.
 363             */
 364            initial_msp = ldl_phys(s->as, vecbase);
 365            initial_pc = ldl_phys(s->as, vecbase + 4);
 366        }
 367
 368        env->regs[13] = initial_msp & 0xFFFFFFFC;
 369        env->regs[15] = initial_pc & ~1;
 370        env->thumb = initial_pc & 1;
 371#else
 372        /*
 373         * For user mode we run non-secure and with access to the FPU.
 374         * The FPU context is active (ie does not need further setup)
 375         * and is owned by non-secure.
 376         */
 377        env->v7m.secure = false;
 378        env->v7m.nsacr = 0xcff;
 379        env->v7m.cpacr[M_REG_NS] = 0xf0ffff;
 380        env->v7m.fpccr[M_REG_S] &=
 381            ~(R_V7M_FPCCR_LSPEN_MASK | R_V7M_FPCCR_S_MASK);
 382        env->v7m.control[M_REG_S] |= R_V7M_CONTROL_FPCA_MASK;
 383#endif
 384    }
 385
 386    /* M profile requires that reset clears the exclusive monitor;
 387     * A profile does not, but clearing it makes more sense than having it
 388     * set with an exclusive access on address zero.
 389     */
 390    arm_clear_exclusive(env);
 391
 392    if (arm_feature(env, ARM_FEATURE_PMSA)) {
 393        if (cpu->pmsav7_dregion > 0) {
 394            if (arm_feature(env, ARM_FEATURE_V8)) {
 395                memset(env->pmsav8.rbar[M_REG_NS], 0,
 396                       sizeof(*env->pmsav8.rbar[M_REG_NS])
 397                       * cpu->pmsav7_dregion);
 398                memset(env->pmsav8.rlar[M_REG_NS], 0,
 399                       sizeof(*env->pmsav8.rlar[M_REG_NS])
 400                       * cpu->pmsav7_dregion);
 401                if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
 402                    memset(env->pmsav8.rbar[M_REG_S], 0,
 403                           sizeof(*env->pmsav8.rbar[M_REG_S])
 404                           * cpu->pmsav7_dregion);
 405                    memset(env->pmsav8.rlar[M_REG_S], 0,
 406                           sizeof(*env->pmsav8.rlar[M_REG_S])
 407                           * cpu->pmsav7_dregion);
 408                }
 409            } else if (arm_feature(env, ARM_FEATURE_V7)) {
 410                memset(env->pmsav7.drbar, 0,
 411                       sizeof(*env->pmsav7.drbar) * cpu->pmsav7_dregion);
 412                memset(env->pmsav7.drsr, 0,
 413                       sizeof(*env->pmsav7.drsr) * cpu->pmsav7_dregion);
 414                memset(env->pmsav7.dracr, 0,
 415                       sizeof(*env->pmsav7.dracr) * cpu->pmsav7_dregion);
 416            }
 417        }
 418        env->pmsav7.rnr[M_REG_NS] = 0;
 419        env->pmsav7.rnr[M_REG_S] = 0;
 420        env->pmsav8.mair0[M_REG_NS] = 0;
 421        env->pmsav8.mair0[M_REG_S] = 0;
 422        env->pmsav8.mair1[M_REG_NS] = 0;
 423        env->pmsav8.mair1[M_REG_S] = 0;
 424    }
 425
 426    if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
 427        if (cpu->sau_sregion > 0) {
 428            memset(env->sau.rbar, 0, sizeof(*env->sau.rbar) * cpu->sau_sregion);
 429            memset(env->sau.rlar, 0, sizeof(*env->sau.rlar) * cpu->sau_sregion);
 430        }
 431        env->sau.rnr = 0;
 432        /* SAU_CTRL reset value is IMPDEF; we choose 0, which is what
 433         * the Cortex-M33 does.
 434         */
 435        env->sau.ctrl = 0;
 436    }
 437
 438    set_flush_to_zero(1, &env->vfp.standard_fp_status);
 439    set_flush_inputs_to_zero(1, &env->vfp.standard_fp_status);
 440    set_default_nan_mode(1, &env->vfp.standard_fp_status);
 441    set_default_nan_mode(1, &env->vfp.standard_fp_status_f16);
 442    set_float_detect_tininess(float_tininess_before_rounding,
 443                              &env->vfp.fp_status);
 444    set_float_detect_tininess(float_tininess_before_rounding,
 445                              &env->vfp.standard_fp_status);
 446    set_float_detect_tininess(float_tininess_before_rounding,
 447                              &env->vfp.fp_status_f16);
 448    set_float_detect_tininess(float_tininess_before_rounding,
 449                              &env->vfp.standard_fp_status_f16);
 450#ifndef CONFIG_USER_ONLY
 451    if (kvm_enabled()) {
 452        kvm_arm_reset_vcpu(cpu);
 453    }
 454#endif
 455
 456    hw_breakpoint_update_all(cpu);
 457    hw_watchpoint_update_all(cpu);
 458    arm_rebuild_hflags(env);
 459}
 460
 461#ifndef CONFIG_USER_ONLY
 462
 463static inline bool arm_excp_unmasked(CPUState *cs, unsigned int excp_idx,
 464                                     unsigned int target_el,
 465                                     unsigned int cur_el, bool secure,
 466                                     uint64_t hcr_el2)
 467{
 468    CPUARMState *env = cs->env_ptr;
 469    bool pstate_unmasked;
 470    bool unmasked = false;
 471
 472    /*
 473     * Don't take exceptions if they target a lower EL.
 474     * This check should catch any exceptions that would not be taken
 475     * but left pending.
 476     */
 477    if (cur_el > target_el) {
 478        return false;
 479    }
 480
 481    switch (excp_idx) {
 482    case EXCP_FIQ:
 483        pstate_unmasked = !(env->daif & PSTATE_F);
 484        break;
 485
 486    case EXCP_IRQ:
 487        pstate_unmasked = !(env->daif & PSTATE_I);
 488        break;
 489
 490    case EXCP_VFIQ:
 491        if (!(hcr_el2 & HCR_FMO) || (hcr_el2 & HCR_TGE)) {
 492            /* VFIQs are only taken when hypervized.  */
 493            return false;
 494        }
 495        return !(env->daif & PSTATE_F);
 496    case EXCP_VIRQ:
 497        if (!(hcr_el2 & HCR_IMO) || (hcr_el2 & HCR_TGE)) {
 498            /* VIRQs are only taken when hypervized.  */
 499            return false;
 500        }
 501        return !(env->daif & PSTATE_I);
 502    default:
 503        g_assert_not_reached();
 504    }
 505
 506    /*
 507     * Use the target EL, current execution state and SCR/HCR settings to
 508     * determine whether the corresponding CPSR bit is used to mask the
 509     * interrupt.
 510     */
 511    if ((target_el > cur_el) && (target_el != 1)) {
 512        /* Exceptions targeting a higher EL may not be maskable */
 513        if (arm_feature(env, ARM_FEATURE_AARCH64)) {
 514            /*
 515             * 64-bit masking rules are simple: exceptions to EL3
 516             * can't be masked, and exceptions to EL2 can only be
 517             * masked from Secure state. The HCR and SCR settings
 518             * don't affect the masking logic, only the interrupt routing.
 519             */
 520            if (target_el == 3 || !secure || (env->cp15.scr_el3 & SCR_EEL2)) {
 521                unmasked = true;
 522            }
 523        } else {
 524            /*
 525             * The old 32-bit-only environment has a more complicated
 526             * masking setup. HCR and SCR bits not only affect interrupt
 527             * routing but also change the behaviour of masking.
 528             */
 529            bool hcr, scr;
 530
 531            switch (excp_idx) {
 532            case EXCP_FIQ:
 533                /*
 534                 * If FIQs are routed to EL3 or EL2 then there are cases where
 535                 * we override the CPSR.F in determining if the exception is
 536                 * masked or not. If neither of these are set then we fall back
 537                 * to the CPSR.F setting otherwise we further assess the state
 538                 * below.
 539                 */
 540                hcr = hcr_el2 & HCR_FMO;
 541                scr = (env->cp15.scr_el3 & SCR_FIQ);
 542
 543                /*
 544                 * When EL3 is 32-bit, the SCR.FW bit controls whether the
 545                 * CPSR.F bit masks FIQ interrupts when taken in non-secure
 546                 * state. If SCR.FW is set then FIQs can be masked by CPSR.F
 547                 * when non-secure but only when FIQs are only routed to EL3.
 548                 */
 549                scr = scr && !((env->cp15.scr_el3 & SCR_FW) && !hcr);
 550                break;
 551            case EXCP_IRQ:
 552                /*
 553                 * When EL3 execution state is 32-bit, if HCR.IMO is set then
 554                 * we may override the CPSR.I masking when in non-secure state.
 555                 * The SCR.IRQ setting has already been taken into consideration
 556                 * when setting the target EL, so it does not have a further
 557                 * affect here.
 558                 */
 559                hcr = hcr_el2 & HCR_IMO;
 560                scr = false;
 561                break;
 562            default:
 563                g_assert_not_reached();
 564            }
 565
 566            if ((scr || hcr) && !secure) {
 567                unmasked = true;
 568            }
 569        }
 570    }
 571
 572    /*
 573     * The PSTATE bits only mask the interrupt if we have not overriden the
 574     * ability above.
 575     */
 576    return unmasked || pstate_unmasked;
 577}
 578
 579static bool arm_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
 580{
 581    CPUClass *cc = CPU_GET_CLASS(cs);
 582    CPUARMState *env = cs->env_ptr;
 583    uint32_t cur_el = arm_current_el(env);
 584    bool secure = arm_is_secure(env);
 585    uint64_t hcr_el2 = arm_hcr_el2_eff(env);
 586    uint32_t target_el;
 587    uint32_t excp_idx;
 588
 589    /* The prioritization of interrupts is IMPLEMENTATION DEFINED. */
 590
 591    if (interrupt_request & CPU_INTERRUPT_FIQ) {
 592        excp_idx = EXCP_FIQ;
 593        target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
 594        if (arm_excp_unmasked(cs, excp_idx, target_el,
 595                              cur_el, secure, hcr_el2)) {
 596            goto found;
 597        }
 598    }
 599    if (interrupt_request & CPU_INTERRUPT_HARD) {
 600        excp_idx = EXCP_IRQ;
 601        target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
 602        if (arm_excp_unmasked(cs, excp_idx, target_el,
 603                              cur_el, secure, hcr_el2)) {
 604            goto found;
 605        }
 606    }
 607    if (interrupt_request & CPU_INTERRUPT_VIRQ) {
 608        excp_idx = EXCP_VIRQ;
 609        target_el = 1;
 610        if (arm_excp_unmasked(cs, excp_idx, target_el,
 611                              cur_el, secure, hcr_el2)) {
 612            goto found;
 613        }
 614    }
 615    if (interrupt_request & CPU_INTERRUPT_VFIQ) {
 616        excp_idx = EXCP_VFIQ;
 617        target_el = 1;
 618        if (arm_excp_unmasked(cs, excp_idx, target_el,
 619                              cur_el, secure, hcr_el2)) {
 620            goto found;
 621        }
 622    }
 623    return false;
 624
 625 found:
 626    cs->exception_index = excp_idx;
 627    env->exception.target_el = target_el;
 628    cc->tcg_ops->do_interrupt(cs);
 629    return true;
 630}
 631#endif /* !CONFIG_USER_ONLY */
 632
 633void arm_cpu_update_virq(ARMCPU *cpu)
 634{
 635    /*
 636     * Update the interrupt level for VIRQ, which is the logical OR of
 637     * the HCR_EL2.VI bit and the input line level from the GIC.
 638     */
 639    CPUARMState *env = &cpu->env;
 640    CPUState *cs = CPU(cpu);
 641
 642    bool new_state = (env->cp15.hcr_el2 & HCR_VI) ||
 643        (env->irq_line_state & CPU_INTERRUPT_VIRQ);
 644
 645    if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VIRQ) != 0)) {
 646        if (new_state) {
 647            cpu_interrupt(cs, CPU_INTERRUPT_VIRQ);
 648        } else {
 649            cpu_reset_interrupt(cs, CPU_INTERRUPT_VIRQ);
 650        }
 651    }
 652}
 653
 654void arm_cpu_update_vfiq(ARMCPU *cpu)
 655{
 656    /*
 657     * Update the interrupt level for VFIQ, which is the logical OR of
 658     * the HCR_EL2.VF bit and the input line level from the GIC.
 659     */
 660    CPUARMState *env = &cpu->env;
 661    CPUState *cs = CPU(cpu);
 662
 663    bool new_state = (env->cp15.hcr_el2 & HCR_VF) ||
 664        (env->irq_line_state & CPU_INTERRUPT_VFIQ);
 665
 666    if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VFIQ) != 0)) {
 667        if (new_state) {
 668            cpu_interrupt(cs, CPU_INTERRUPT_VFIQ);
 669        } else {
 670            cpu_reset_interrupt(cs, CPU_INTERRUPT_VFIQ);
 671        }
 672    }
 673}
 674
 675#ifndef CONFIG_USER_ONLY
 676static void arm_cpu_set_irq(void *opaque, int irq, int level)
 677{
 678    ARMCPU *cpu = opaque;
 679    CPUARMState *env = &cpu->env;
 680    CPUState *cs = CPU(cpu);
 681    static const int mask[] = {
 682        [ARM_CPU_IRQ] = CPU_INTERRUPT_HARD,
 683        [ARM_CPU_FIQ] = CPU_INTERRUPT_FIQ,
 684        [ARM_CPU_VIRQ] = CPU_INTERRUPT_VIRQ,
 685        [ARM_CPU_VFIQ] = CPU_INTERRUPT_VFIQ
 686    };
 687
 688    if (level) {
 689        env->irq_line_state |= mask[irq];
 690    } else {
 691        env->irq_line_state &= ~mask[irq];
 692    }
 693
 694    switch (irq) {
 695    case ARM_CPU_VIRQ:
 696        assert(arm_feature(env, ARM_FEATURE_EL2));
 697        arm_cpu_update_virq(cpu);
 698        break;
 699    case ARM_CPU_VFIQ:
 700        assert(arm_feature(env, ARM_FEATURE_EL2));
 701        arm_cpu_update_vfiq(cpu);
 702        break;
 703    case ARM_CPU_IRQ:
 704    case ARM_CPU_FIQ:
 705        if (level) {
 706            cpu_interrupt(cs, mask[irq]);
 707        } else {
 708            cpu_reset_interrupt(cs, mask[irq]);
 709        }
 710        break;
 711    default:
 712        g_assert_not_reached();
 713    }
 714}
 715
 716static void arm_cpu_kvm_set_irq(void *opaque, int irq, int level)
 717{
 718#ifdef CONFIG_KVM
 719    ARMCPU *cpu = opaque;
 720    CPUARMState *env = &cpu->env;
 721    CPUState *cs = CPU(cpu);
 722    uint32_t linestate_bit;
 723    int irq_id;
 724
 725    switch (irq) {
 726    case ARM_CPU_IRQ:
 727        irq_id = KVM_ARM_IRQ_CPU_IRQ;
 728        linestate_bit = CPU_INTERRUPT_HARD;
 729        break;
 730    case ARM_CPU_FIQ:
 731        irq_id = KVM_ARM_IRQ_CPU_FIQ;
 732        linestate_bit = CPU_INTERRUPT_FIQ;
 733        break;
 734    default:
 735        g_assert_not_reached();
 736    }
 737
 738    if (level) {
 739        env->irq_line_state |= linestate_bit;
 740    } else {
 741        env->irq_line_state &= ~linestate_bit;
 742    }
 743    kvm_arm_set_irq(cs->cpu_index, KVM_ARM_IRQ_TYPE_CPU, irq_id, !!level);
 744#endif
 745}
 746
 747static bool arm_cpu_virtio_is_big_endian(CPUState *cs)
 748{
 749    ARMCPU *cpu = ARM_CPU(cs);
 750    CPUARMState *env = &cpu->env;
 751
 752    cpu_synchronize_state(cs);
 753    return arm_cpu_data_is_big_endian(env);
 754}
 755
 756#endif
 757
 758static int
 759print_insn_thumb1(bfd_vma pc, disassemble_info *info)
 760{
 761  return print_insn_arm(pc | 1, info);
 762}
 763
 764static void arm_disas_set_info(CPUState *cpu, disassemble_info *info)
 765{
 766    ARMCPU *ac = ARM_CPU(cpu);
 767    CPUARMState *env = &ac->env;
 768    bool sctlr_b;
 769
 770    if (is_a64(env)) {
 771        /* We might not be compiled with the A64 disassembler
 772         * because it needs a C++ compiler. Leave print_insn
 773         * unset in this case to use the caller default behaviour.
 774         */
 775#if defined(CONFIG_ARM_A64_DIS)
 776        info->print_insn = print_insn_arm_a64;
 777#endif
 778        info->cap_arch = CS_ARCH_ARM64;
 779        info->cap_insn_unit = 4;
 780        info->cap_insn_split = 4;
 781    } else {
 782        int cap_mode;
 783        if (env->thumb) {
 784            info->print_insn = print_insn_thumb1;
 785            info->cap_insn_unit = 2;
 786            info->cap_insn_split = 4;
 787            cap_mode = CS_MODE_THUMB;
 788        } else {
 789            info->print_insn = print_insn_arm;
 790            info->cap_insn_unit = 4;
 791            info->cap_insn_split = 4;
 792            cap_mode = CS_MODE_ARM;
 793        }
 794        if (arm_feature(env, ARM_FEATURE_V8)) {
 795            cap_mode |= CS_MODE_V8;
 796        }
 797        if (arm_feature(env, ARM_FEATURE_M)) {
 798            cap_mode |= CS_MODE_MCLASS;
 799        }
 800        info->cap_arch = CS_ARCH_ARM;
 801        info->cap_mode = cap_mode;
 802    }
 803
 804    sctlr_b = arm_sctlr_b(env);
 805    if (bswap_code(sctlr_b)) {
 806#ifdef TARGET_WORDS_BIGENDIAN
 807        info->endian = BFD_ENDIAN_LITTLE;
 808#else
 809        info->endian = BFD_ENDIAN_BIG;
 810#endif
 811    }
 812    info->flags &= ~INSN_ARM_BE32;
 813#ifndef CONFIG_USER_ONLY
 814    if (sctlr_b) {
 815        info->flags |= INSN_ARM_BE32;
 816    }
 817#endif
 818}
 819
 820#ifdef TARGET_AARCH64
 821
 822static void aarch64_cpu_dump_state(CPUState *cs, FILE *f, int flags)
 823{
 824    ARMCPU *cpu = ARM_CPU(cs);
 825    CPUARMState *env = &cpu->env;
 826    uint32_t psr = pstate_read(env);
 827    int i;
 828    int el = arm_current_el(env);
 829    const char *ns_status;
 830
 831    qemu_fprintf(f, " PC=%016" PRIx64 " ", env->pc);
 832    for (i = 0; i < 32; i++) {
 833        if (i == 31) {
 834            qemu_fprintf(f, " SP=%016" PRIx64 "\n", env->xregs[i]);
 835        } else {
 836            qemu_fprintf(f, "X%02d=%016" PRIx64 "%s", i, env->xregs[i],
 837                         (i + 2) % 3 ? " " : "\n");
 838        }
 839    }
 840
 841    if (arm_feature(env, ARM_FEATURE_EL3) && el != 3) {
 842        ns_status = env->cp15.scr_el3 & SCR_NS ? "NS " : "S ";
 843    } else {
 844        ns_status = "";
 845    }
 846    qemu_fprintf(f, "PSTATE=%08x %c%c%c%c %sEL%d%c",
 847                 psr,
 848                 psr & PSTATE_N ? 'N' : '-',
 849                 psr & PSTATE_Z ? 'Z' : '-',
 850                 psr & PSTATE_C ? 'C' : '-',
 851                 psr & PSTATE_V ? 'V' : '-',
 852                 ns_status,
 853                 el,
 854                 psr & PSTATE_SP ? 'h' : 't');
 855
 856    if (cpu_isar_feature(aa64_bti, cpu)) {
 857        qemu_fprintf(f, "  BTYPE=%d", (psr & PSTATE_BTYPE) >> 10);
 858    }
 859    if (!(flags & CPU_DUMP_FPU)) {
 860        qemu_fprintf(f, "\n");
 861        return;
 862    }
 863    if (fp_exception_el(env, el) != 0) {
 864        qemu_fprintf(f, "    FPU disabled\n");
 865        return;
 866    }
 867    qemu_fprintf(f, "     FPCR=%08x FPSR=%08x\n",
 868                 vfp_get_fpcr(env), vfp_get_fpsr(env));
 869
 870    if (cpu_isar_feature(aa64_sve, cpu) && sve_exception_el(env, el) == 0) {
 871        int j, zcr_len = sve_zcr_len_for_el(env, el);
 872
 873        for (i = 0; i <= FFR_PRED_NUM; i++) {
 874            bool eol;
 875            if (i == FFR_PRED_NUM) {
 876                qemu_fprintf(f, "FFR=");
 877                /* It's last, so end the line.  */
 878                eol = true;
 879            } else {
 880                qemu_fprintf(f, "P%02d=", i);
 881                switch (zcr_len) {
 882                case 0:
 883                    eol = i % 8 == 7;
 884                    break;
 885                case 1:
 886                    eol = i % 6 == 5;
 887                    break;
 888                case 2:
 889                case 3:
 890                    eol = i % 3 == 2;
 891                    break;
 892                default:
 893                    /* More than one quadword per predicate.  */
 894                    eol = true;
 895                    break;
 896                }
 897            }
 898            for (j = zcr_len / 4; j >= 0; j--) {
 899                int digits;
 900                if (j * 4 + 4 <= zcr_len + 1) {
 901                    digits = 16;
 902                } else {
 903                    digits = (zcr_len % 4 + 1) * 4;
 904                }
 905                qemu_fprintf(f, "%0*" PRIx64 "%s", digits,
 906                             env->vfp.pregs[i].p[j],
 907                             j ? ":" : eol ? "\n" : " ");
 908            }
 909        }
 910
 911        for (i = 0; i < 32; i++) {
 912            if (zcr_len == 0) {
 913                qemu_fprintf(f, "Z%02d=%016" PRIx64 ":%016" PRIx64 "%s",
 914                             i, env->vfp.zregs[i].d[1],
 915                             env->vfp.zregs[i].d[0], i & 1 ? "\n" : " ");
 916            } else if (zcr_len == 1) {
 917                qemu_fprintf(f, "Z%02d=%016" PRIx64 ":%016" PRIx64
 918                             ":%016" PRIx64 ":%016" PRIx64 "\n",
 919                             i, env->vfp.zregs[i].d[3], env->vfp.zregs[i].d[2],
 920                             env->vfp.zregs[i].d[1], env->vfp.zregs[i].d[0]);
 921            } else {
 922                for (j = zcr_len; j >= 0; j--) {
 923                    bool odd = (zcr_len - j) % 2 != 0;
 924                    if (j == zcr_len) {
 925                        qemu_fprintf(f, "Z%02d[%x-%x]=", i, j, j - 1);
 926                    } else if (!odd) {
 927                        if (j > 0) {
 928                            qemu_fprintf(f, "   [%x-%x]=", j, j - 1);
 929                        } else {
 930                            qemu_fprintf(f, "     [%x]=", j);
 931                        }
 932                    }
 933                    qemu_fprintf(f, "%016" PRIx64 ":%016" PRIx64 "%s",
 934                                 env->vfp.zregs[i].d[j * 2 + 1],
 935                                 env->vfp.zregs[i].d[j * 2],
 936                                 odd || j == 0 ? "\n" : ":");
 937                }
 938            }
 939        }
 940    } else {
 941        for (i = 0; i < 32; i++) {
 942            uint64_t *q = aa64_vfp_qreg(env, i);
 943            qemu_fprintf(f, "Q%02d=%016" PRIx64 ":%016" PRIx64 "%s",
 944                         i, q[1], q[0], (i & 1 ? "\n" : " "));
 945        }
 946    }
 947}
 948
 949#else
 950
 951static inline void aarch64_cpu_dump_state(CPUState *cs, FILE *f, int flags)
 952{
 953    g_assert_not_reached();
 954}
 955
 956#endif
 957
 958static void arm_cpu_dump_state(CPUState *cs, FILE *f, int flags)
 959{
 960    ARMCPU *cpu = ARM_CPU(cs);
 961    CPUARMState *env = &cpu->env;
 962    int i;
 963
 964    if (is_a64(env)) {
 965        aarch64_cpu_dump_state(cs, f, flags);
 966        return;
 967    }
 968
 969    for (i = 0; i < 16; i++) {
 970        qemu_fprintf(f, "R%02d=%08x", i, env->regs[i]);
 971        if ((i % 4) == 3) {
 972            qemu_fprintf(f, "\n");
 973        } else {
 974            qemu_fprintf(f, " ");
 975        }
 976    }
 977
 978    if (arm_feature(env, ARM_FEATURE_M)) {
 979        uint32_t xpsr = xpsr_read(env);
 980        const char *mode;
 981        const char *ns_status = "";
 982
 983        if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
 984            ns_status = env->v7m.secure ? "S " : "NS ";
 985        }
 986
 987        if (xpsr & XPSR_EXCP) {
 988            mode = "handler";
 989        } else {
 990            if (env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_NPRIV_MASK) {
 991                mode = "unpriv-thread";
 992            } else {
 993                mode = "priv-thread";
 994            }
 995        }
 996
 997        qemu_fprintf(f, "XPSR=%08x %c%c%c%c %c %s%s\n",
 998                     xpsr,
 999                     xpsr & XPSR_N ? 'N' : '-',
1000                     xpsr & XPSR_Z ? 'Z' : '-',
1001                     xpsr & XPSR_C ? 'C' : '-',
1002                     xpsr & XPSR_V ? 'V' : '-',
1003                     xpsr & XPSR_T ? 'T' : 'A',
1004                     ns_status,
1005                     mode);
1006    } else {
1007        uint32_t psr = cpsr_read(env);
1008        const char *ns_status = "";
1009
1010        if (arm_feature(env, ARM_FEATURE_EL3) &&
1011            (psr & CPSR_M) != ARM_CPU_MODE_MON) {
1012            ns_status = env->cp15.scr_el3 & SCR_NS ? "NS " : "S ";
1013        }
1014
1015        qemu_fprintf(f, "PSR=%08x %c%c%c%c %c %s%s%d\n",
1016                     psr,
1017                     psr & CPSR_N ? 'N' : '-',
1018                     psr & CPSR_Z ? 'Z' : '-',
1019                     psr & CPSR_C ? 'C' : '-',
1020                     psr & CPSR_V ? 'V' : '-',
1021                     psr & CPSR_T ? 'T' : 'A',
1022                     ns_status,
1023                     aarch32_mode_name(psr), (psr & 0x10) ? 32 : 26);
1024    }
1025
1026    if (flags & CPU_DUMP_FPU) {
1027        int numvfpregs = 0;
1028        if (cpu_isar_feature(aa32_simd_r32, cpu)) {
1029            numvfpregs = 32;
1030        } else if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
1031            numvfpregs = 16;
1032        }
1033        for (i = 0; i < numvfpregs; i++) {
1034            uint64_t v = *aa32_vfp_dreg(env, i);
1035            qemu_fprintf(f, "s%02d=%08x s%02d=%08x d%02d=%016" PRIx64 "\n",
1036                         i * 2, (uint32_t)v,
1037                         i * 2 + 1, (uint32_t)(v >> 32),
1038                         i, v);
1039        }
1040        qemu_fprintf(f, "FPSCR: %08x\n", vfp_get_fpscr(env));
1041        if (cpu_isar_feature(aa32_mve, cpu)) {
1042            qemu_fprintf(f, "VPR: %08x\n", env->v7m.vpr);
1043        }
1044    }
1045}
1046
1047uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz)
1048{
1049    uint32_t Aff1 = idx / clustersz;
1050    uint32_t Aff0 = idx % clustersz;
1051    return (Aff1 << ARM_AFF1_SHIFT) | Aff0;
1052}
1053
1054static void cpreg_hashtable_data_destroy(gpointer data)
1055{
1056    /*
1057     * Destroy function for cpu->cp_regs hashtable data entries.
1058     * We must free the name string because it was g_strdup()ed in
1059     * add_cpreg_to_hashtable(). It's OK to cast away the 'const'
1060     * from r->name because we know we definitely allocated it.
1061     */
1062    ARMCPRegInfo *r = data;
1063
1064    g_free((void *)r->name);
1065    g_free(r);
1066}
1067
1068static void arm_cpu_initfn(Object *obj)
1069{
1070    ARMCPU *cpu = ARM_CPU(obj);
1071
1072    cpu_set_cpustate_pointers(cpu);
1073    cpu->cp_regs = g_hash_table_new_full(g_int_hash, g_int_equal,
1074                                         g_free, cpreg_hashtable_data_destroy);
1075
1076    QLIST_INIT(&cpu->pre_el_change_hooks);
1077    QLIST_INIT(&cpu->el_change_hooks);
1078
1079#ifdef CONFIG_USER_ONLY
1080# ifdef TARGET_AARCH64
1081    /*
1082     * The linux kernel defaults to 512-bit vectors, when sve is supported.
1083     * See documentation for /proc/sys/abi/sve_default_vector_length, and
1084     * our corresponding sve-default-vector-length cpu property.
1085     */
1086    cpu->sve_default_vq = 4;
1087# endif
1088#else
1089    /* Our inbound IRQ and FIQ lines */
1090    if (kvm_enabled()) {
1091        /* VIRQ and VFIQ are unused with KVM but we add them to maintain
1092         * the same interface as non-KVM CPUs.
1093         */
1094        qdev_init_gpio_in(DEVICE(cpu), arm_cpu_kvm_set_irq, 4);
1095    } else {
1096        qdev_init_gpio_in(DEVICE(cpu), arm_cpu_set_irq, 4);
1097    }
1098
1099    qdev_init_gpio_out(DEVICE(cpu), cpu->gt_timer_outputs,
1100                       ARRAY_SIZE(cpu->gt_timer_outputs));
1101
1102    qdev_init_gpio_out_named(DEVICE(cpu), &cpu->gicv3_maintenance_interrupt,
1103                             "gicv3-maintenance-interrupt", 1);
1104    qdev_init_gpio_out_named(DEVICE(cpu), &cpu->pmu_interrupt,
1105                             "pmu-interrupt", 1);
1106#endif
1107
1108    /* DTB consumers generally don't in fact care what the 'compatible'
1109     * string is, so always provide some string and trust that a hypothetical
1110     * picky DTB consumer will also provide a helpful error message.
1111     */
1112    cpu->dtb_compatible = "qemu,unknown";
1113    cpu->psci_version = 1; /* By default assume PSCI v0.1 */
1114    cpu->kvm_target = QEMU_KVM_ARM_TARGET_NONE;
1115
1116    if (tcg_enabled() || hvf_enabled()) {
1117        cpu->psci_version = 2; /* TCG and HVF implement PSCI 0.2 */
1118    }
1119}
1120
1121static Property arm_cpu_gt_cntfrq_property =
1122            DEFINE_PROP_UINT64("cntfrq", ARMCPU, gt_cntfrq_hz,
1123                               NANOSECONDS_PER_SECOND / GTIMER_SCALE);
1124
1125static Property arm_cpu_reset_cbar_property =
1126            DEFINE_PROP_UINT64("reset-cbar", ARMCPU, reset_cbar, 0);
1127
1128static Property arm_cpu_reset_hivecs_property =
1129            DEFINE_PROP_BOOL("reset-hivecs", ARMCPU, reset_hivecs, false);
1130
1131static Property arm_cpu_rvbar_property =
1132            DEFINE_PROP_UINT64("rvbar", ARMCPU, rvbar, 0);
1133
1134#ifndef CONFIG_USER_ONLY
1135static Property arm_cpu_has_el2_property =
1136            DEFINE_PROP_BOOL("has_el2", ARMCPU, has_el2, true);
1137
1138static Property arm_cpu_has_el3_property =
1139            DEFINE_PROP_BOOL("has_el3", ARMCPU, has_el3, true);
1140#endif
1141
1142static Property arm_cpu_cfgend_property =
1143            DEFINE_PROP_BOOL("cfgend", ARMCPU, cfgend, false);
1144
1145static Property arm_cpu_has_vfp_property =
1146            DEFINE_PROP_BOOL("vfp", ARMCPU, has_vfp, true);
1147
1148static Property arm_cpu_has_neon_property =
1149            DEFINE_PROP_BOOL("neon", ARMCPU, has_neon, true);
1150
1151static Property arm_cpu_has_dsp_property =
1152            DEFINE_PROP_BOOL("dsp", ARMCPU, has_dsp, true);
1153
1154static Property arm_cpu_has_mpu_property =
1155            DEFINE_PROP_BOOL("has-mpu", ARMCPU, has_mpu, true);
1156
1157/* This is like DEFINE_PROP_UINT32 but it doesn't set the default value,
1158 * because the CPU initfn will have already set cpu->pmsav7_dregion to
1159 * the right value for that particular CPU type, and we don't want
1160 * to override that with an incorrect constant value.
1161 */
1162static Property arm_cpu_pmsav7_dregion_property =
1163            DEFINE_PROP_UNSIGNED_NODEFAULT("pmsav7-dregion", ARMCPU,
1164                                           pmsav7_dregion,
1165                                           qdev_prop_uint32, uint32_t);
1166
1167static bool arm_get_pmu(Object *obj, Error **errp)
1168{
1169    ARMCPU *cpu = ARM_CPU(obj);
1170
1171    return cpu->has_pmu;
1172}
1173
1174static void arm_set_pmu(Object *obj, bool value, Error **errp)
1175{
1176    ARMCPU *cpu = ARM_CPU(obj);
1177
1178    if (value) {
1179        if (kvm_enabled() && !kvm_arm_pmu_supported()) {
1180            error_setg(errp, "'pmu' feature not supported by KVM on this host");
1181            return;
1182        }
1183        set_feature(&cpu->env, ARM_FEATURE_PMU);
1184    } else {
1185        unset_feature(&cpu->env, ARM_FEATURE_PMU);
1186    }
1187    cpu->has_pmu = value;
1188}
1189
1190unsigned int gt_cntfrq_period_ns(ARMCPU *cpu)
1191{
1192    /*
1193     * The exact approach to calculating guest ticks is:
1194     *
1195     *     muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), cpu->gt_cntfrq_hz,
1196     *              NANOSECONDS_PER_SECOND);
1197     *
1198     * We don't do that. Rather we intentionally use integer division
1199     * truncation below and in the caller for the conversion of host monotonic
1200     * time to guest ticks to provide the exact inverse for the semantics of
1201     * the QEMUTimer scale factor. QEMUTimer's scale facter is an integer, so
1202     * it loses precision when representing frequencies where
1203     * `(NANOSECONDS_PER_SECOND % cpu->gt_cntfrq) > 0` holds. Failing to
1204     * provide an exact inverse leads to scheduling timers with negative
1205     * periods, which in turn leads to sticky behaviour in the guest.
1206     *
1207     * Finally, CNTFRQ is effectively capped at 1GHz to ensure our scale factor
1208     * cannot become zero.
1209     */
1210    return NANOSECONDS_PER_SECOND > cpu->gt_cntfrq_hz ?
1211      NANOSECONDS_PER_SECOND / cpu->gt_cntfrq_hz : 1;
1212}
1213
1214void arm_cpu_post_init(Object *obj)
1215{
1216    ARMCPU *cpu = ARM_CPU(obj);
1217
1218    /* M profile implies PMSA. We have to do this here rather than
1219     * in realize with the other feature-implication checks because
1220     * we look at the PMSA bit to see if we should add some properties.
1221     */
1222    if (arm_feature(&cpu->env, ARM_FEATURE_M)) {
1223        set_feature(&cpu->env, ARM_FEATURE_PMSA);
1224    }
1225
1226    if (arm_feature(&cpu->env, ARM_FEATURE_CBAR) ||
1227        arm_feature(&cpu->env, ARM_FEATURE_CBAR_RO)) {
1228        qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_cbar_property);
1229    }
1230
1231    if (!arm_feature(&cpu->env, ARM_FEATURE_M)) {
1232        qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_hivecs_property);
1233    }
1234
1235    if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1236        qdev_property_add_static(DEVICE(obj), &arm_cpu_rvbar_property);
1237    }
1238
1239#ifndef CONFIG_USER_ONLY
1240    if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) {
1241        /* Add the has_el3 state CPU property only if EL3 is allowed.  This will
1242         * prevent "has_el3" from existing on CPUs which cannot support EL3.
1243         */
1244        qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el3_property);
1245
1246        object_property_add_link(obj, "secure-memory",
1247                                 TYPE_MEMORY_REGION,
1248                                 (Object **)&cpu->secure_memory,
1249                                 qdev_prop_allow_set_link_before_realize,
1250                                 OBJ_PROP_LINK_STRONG);
1251    }
1252
1253    if (arm_feature(&cpu->env, ARM_FEATURE_EL2)) {
1254        qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el2_property);
1255    }
1256#endif
1257
1258    if (arm_feature(&cpu->env, ARM_FEATURE_PMU)) {
1259        cpu->has_pmu = true;
1260        object_property_add_bool(obj, "pmu", arm_get_pmu, arm_set_pmu);
1261    }
1262
1263    /*
1264     * Allow user to turn off VFP and Neon support, but only for TCG --
1265     * KVM does not currently allow us to lie to the guest about its
1266     * ID/feature registers, so the guest always sees what the host has.
1267     */
1268    if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)
1269        ? cpu_isar_feature(aa64_fp_simd, cpu)
1270        : cpu_isar_feature(aa32_vfp, cpu)) {
1271        cpu->has_vfp = true;
1272        if (!kvm_enabled()) {
1273            qdev_property_add_static(DEVICE(obj), &arm_cpu_has_vfp_property);
1274        }
1275    }
1276
1277    if (arm_feature(&cpu->env, ARM_FEATURE_NEON)) {
1278        cpu->has_neon = true;
1279        if (!kvm_enabled()) {
1280            qdev_property_add_static(DEVICE(obj), &arm_cpu_has_neon_property);
1281        }
1282    }
1283
1284    if (arm_feature(&cpu->env, ARM_FEATURE_M) &&
1285        arm_feature(&cpu->env, ARM_FEATURE_THUMB_DSP)) {
1286        qdev_property_add_static(DEVICE(obj), &arm_cpu_has_dsp_property);
1287    }
1288
1289    if (arm_feature(&cpu->env, ARM_FEATURE_PMSA)) {
1290        qdev_property_add_static(DEVICE(obj), &arm_cpu_has_mpu_property);
1291        if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1292            qdev_property_add_static(DEVICE(obj),
1293                                     &arm_cpu_pmsav7_dregion_property);
1294        }
1295    }
1296
1297    if (arm_feature(&cpu->env, ARM_FEATURE_M_SECURITY)) {
1298        object_property_add_link(obj, "idau", TYPE_IDAU_INTERFACE, &cpu->idau,
1299                                 qdev_prop_allow_set_link_before_realize,
1300                                 OBJ_PROP_LINK_STRONG);
1301        /*
1302         * M profile: initial value of the Secure VTOR. We can't just use
1303         * a simple DEFINE_PROP_UINT32 for this because we want to permit
1304         * the property to be set after realize.
1305         */
1306        object_property_add_uint32_ptr(obj, "init-svtor",
1307                                       &cpu->init_svtor,
1308                                       OBJ_PROP_FLAG_READWRITE);
1309    }
1310    if (arm_feature(&cpu->env, ARM_FEATURE_M)) {
1311        /*
1312         * Initial value of the NS VTOR (for cores without the Security
1313         * extension, this is the only VTOR)
1314         */
1315        object_property_add_uint32_ptr(obj, "init-nsvtor",
1316                                       &cpu->init_nsvtor,
1317                                       OBJ_PROP_FLAG_READWRITE);
1318    }
1319
1320    qdev_property_add_static(DEVICE(obj), &arm_cpu_cfgend_property);
1321
1322    if (arm_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER)) {
1323        qdev_property_add_static(DEVICE(cpu), &arm_cpu_gt_cntfrq_property);
1324    }
1325
1326    if (kvm_enabled()) {
1327        kvm_arm_add_vcpu_properties(obj);
1328    }
1329
1330#ifndef CONFIG_USER_ONLY
1331    if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64) &&
1332        cpu_isar_feature(aa64_mte, cpu)) {
1333        object_property_add_link(obj, "tag-memory",
1334                                 TYPE_MEMORY_REGION,
1335                                 (Object **)&cpu->tag_memory,
1336                                 qdev_prop_allow_set_link_before_realize,
1337                                 OBJ_PROP_LINK_STRONG);
1338
1339        if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) {
1340            object_property_add_link(obj, "secure-tag-memory",
1341                                     TYPE_MEMORY_REGION,
1342                                     (Object **)&cpu->secure_tag_memory,
1343                                     qdev_prop_allow_set_link_before_realize,
1344                                     OBJ_PROP_LINK_STRONG);
1345        }
1346    }
1347#endif
1348}
1349
1350static void arm_cpu_finalizefn(Object *obj)
1351{
1352    ARMCPU *cpu = ARM_CPU(obj);
1353    ARMELChangeHook *hook, *next;
1354
1355    g_hash_table_destroy(cpu->cp_regs);
1356
1357    QLIST_FOREACH_SAFE(hook, &cpu->pre_el_change_hooks, node, next) {
1358        QLIST_REMOVE(hook, node);
1359        g_free(hook);
1360    }
1361    QLIST_FOREACH_SAFE(hook, &cpu->el_change_hooks, node, next) {
1362        QLIST_REMOVE(hook, node);
1363        g_free(hook);
1364    }
1365#ifndef CONFIG_USER_ONLY
1366    if (cpu->pmu_timer) {
1367        timer_free(cpu->pmu_timer);
1368    }
1369#endif
1370}
1371
1372void arm_cpu_finalize_features(ARMCPU *cpu, Error **errp)
1373{
1374    Error *local_err = NULL;
1375
1376    if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1377        arm_cpu_sve_finalize(cpu, &local_err);
1378        if (local_err != NULL) {
1379            error_propagate(errp, local_err);
1380            return;
1381        }
1382
1383        /*
1384         * KVM does not support modifications to this feature.
1385         * We have not registered the cpu properties when KVM
1386         * is in use, so the user will not be able to set them.
1387         */
1388        if (!kvm_enabled()) {
1389            arm_cpu_pauth_finalize(cpu, &local_err);
1390            if (local_err != NULL) {
1391                error_propagate(errp, local_err);
1392                return;
1393            }
1394        }
1395    }
1396
1397    if (kvm_enabled()) {
1398        kvm_arm_steal_time_finalize(cpu, &local_err);
1399        if (local_err != NULL) {
1400            error_propagate(errp, local_err);
1401            return;
1402        }
1403    }
1404}
1405
1406static void arm_cpu_realizefn(DeviceState *dev, Error **errp)
1407{
1408    CPUState *cs = CPU(dev);
1409    ARMCPU *cpu = ARM_CPU(dev);
1410    ARMCPUClass *acc = ARM_CPU_GET_CLASS(dev);
1411    CPUARMState *env = &cpu->env;
1412    int pagebits;
1413    Error *local_err = NULL;
1414    bool no_aa32 = false;
1415
1416    /* If we needed to query the host kernel for the CPU features
1417     * then it's possible that might have failed in the initfn, but
1418     * this is the first point where we can report it.
1419     */
1420    if (cpu->host_cpu_probe_failed) {
1421        if (!kvm_enabled() && !hvf_enabled()) {
1422            error_setg(errp, "The 'host' CPU type can only be used with KVM or HVF");
1423        } else {
1424            error_setg(errp, "Failed to retrieve host CPU features");
1425        }
1426        return;
1427    }
1428
1429#ifndef CONFIG_USER_ONLY
1430    /* The NVIC and M-profile CPU are two halves of a single piece of
1431     * hardware; trying to use one without the other is a command line
1432     * error and will result in segfaults if not caught here.
1433     */
1434    if (arm_feature(env, ARM_FEATURE_M)) {
1435        if (!env->nvic) {
1436            error_setg(errp, "This board cannot be used with Cortex-M CPUs");
1437            return;
1438        }
1439    } else {
1440        if (env->nvic) {
1441            error_setg(errp, "This board can only be used with Cortex-M CPUs");
1442            return;
1443        }
1444    }
1445
1446    if (kvm_enabled()) {
1447        /*
1448         * Catch all the cases which might cause us to create more than one
1449         * address space for the CPU (otherwise we will assert() later in
1450         * cpu_address_space_init()).
1451         */
1452        if (arm_feature(env, ARM_FEATURE_M)) {
1453            error_setg(errp,
1454                       "Cannot enable KVM when using an M-profile guest CPU");
1455            return;
1456        }
1457        if (cpu->has_el3) {
1458            error_setg(errp,
1459                       "Cannot enable KVM when guest CPU has EL3 enabled");
1460            return;
1461        }
1462        if (cpu->tag_memory) {
1463            error_setg(errp,
1464                       "Cannot enable KVM when guest CPUs has MTE enabled");
1465            return;
1466        }
1467    }
1468
1469    {
1470        uint64_t scale;
1471
1472        if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
1473            if (!cpu->gt_cntfrq_hz) {
1474                error_setg(errp, "Invalid CNTFRQ: %"PRId64"Hz",
1475                           cpu->gt_cntfrq_hz);
1476                return;
1477            }
1478            scale = gt_cntfrq_period_ns(cpu);
1479        } else {
1480            scale = GTIMER_SCALE;
1481        }
1482
1483        cpu->gt_timer[GTIMER_PHYS] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1484                                               arm_gt_ptimer_cb, cpu);
1485        cpu->gt_timer[GTIMER_VIRT] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1486                                               arm_gt_vtimer_cb, cpu);
1487        cpu->gt_timer[GTIMER_HYP] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1488                                              arm_gt_htimer_cb, cpu);
1489        cpu->gt_timer[GTIMER_SEC] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1490                                              arm_gt_stimer_cb, cpu);
1491        cpu->gt_timer[GTIMER_HYPVIRT] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1492                                                  arm_gt_hvtimer_cb, cpu);
1493    }
1494#endif
1495
1496    cpu_exec_realizefn(cs, &local_err);
1497    if (local_err != NULL) {
1498        error_propagate(errp, local_err);
1499        return;
1500    }
1501
1502    arm_cpu_finalize_features(cpu, &local_err);
1503    if (local_err != NULL) {
1504        error_propagate(errp, local_err);
1505        return;
1506    }
1507
1508    if (arm_feature(env, ARM_FEATURE_AARCH64) &&
1509        cpu->has_vfp != cpu->has_neon) {
1510        /*
1511         * This is an architectural requirement for AArch64; AArch32 is
1512         * more flexible and permits VFP-no-Neon and Neon-no-VFP.
1513         */
1514        error_setg(errp,
1515                   "AArch64 CPUs must have both VFP and Neon or neither");
1516        return;
1517    }
1518
1519    if (!cpu->has_vfp) {
1520        uint64_t t;
1521        uint32_t u;
1522
1523        t = cpu->isar.id_aa64isar1;
1524        t = FIELD_DP64(t, ID_AA64ISAR1, JSCVT, 0);
1525        cpu->isar.id_aa64isar1 = t;
1526
1527        t = cpu->isar.id_aa64pfr0;
1528        t = FIELD_DP64(t, ID_AA64PFR0, FP, 0xf);
1529        cpu->isar.id_aa64pfr0 = t;
1530
1531        u = cpu->isar.id_isar6;
1532        u = FIELD_DP32(u, ID_ISAR6, JSCVT, 0);
1533        u = FIELD_DP32(u, ID_ISAR6, BF16, 0);
1534        cpu->isar.id_isar6 = u;
1535
1536        u = cpu->isar.mvfr0;
1537        u = FIELD_DP32(u, MVFR0, FPSP, 0);
1538        u = FIELD_DP32(u, MVFR0, FPDP, 0);
1539        u = FIELD_DP32(u, MVFR0, FPDIVIDE, 0);
1540        u = FIELD_DP32(u, MVFR0, FPSQRT, 0);
1541        u = FIELD_DP32(u, MVFR0, FPROUND, 0);
1542        if (!arm_feature(env, ARM_FEATURE_M)) {
1543            u = FIELD_DP32(u, MVFR0, FPTRAP, 0);
1544            u = FIELD_DP32(u, MVFR0, FPSHVEC, 0);
1545        }
1546        cpu->isar.mvfr0 = u;
1547
1548        u = cpu->isar.mvfr1;
1549        u = FIELD_DP32(u, MVFR1, FPFTZ, 0);
1550        u = FIELD_DP32(u, MVFR1, FPDNAN, 0);
1551        u = FIELD_DP32(u, MVFR1, FPHP, 0);
1552        if (arm_feature(env, ARM_FEATURE_M)) {
1553            u = FIELD_DP32(u, MVFR1, FP16, 0);
1554        }
1555        cpu->isar.mvfr1 = u;
1556
1557        u = cpu->isar.mvfr2;
1558        u = FIELD_DP32(u, MVFR2, FPMISC, 0);
1559        cpu->isar.mvfr2 = u;
1560    }
1561
1562    if (!cpu->has_neon) {
1563        uint64_t t;
1564        uint32_t u;
1565
1566        unset_feature(env, ARM_FEATURE_NEON);
1567
1568        t = cpu->isar.id_aa64isar0;
1569        t = FIELD_DP64(t, ID_AA64ISAR0, DP, 0);
1570        cpu->isar.id_aa64isar0 = t;
1571
1572        t = cpu->isar.id_aa64isar1;
1573        t = FIELD_DP64(t, ID_AA64ISAR1, FCMA, 0);
1574        t = FIELD_DP64(t, ID_AA64ISAR1, BF16, 0);
1575        t = FIELD_DP64(t, ID_AA64ISAR1, I8MM, 0);
1576        cpu->isar.id_aa64isar1 = t;
1577
1578        t = cpu->isar.id_aa64pfr0;
1579        t = FIELD_DP64(t, ID_AA64PFR0, ADVSIMD, 0xf);
1580        cpu->isar.id_aa64pfr0 = t;
1581
1582        u = cpu->isar.id_isar5;
1583        u = FIELD_DP32(u, ID_ISAR5, RDM, 0);
1584        u = FIELD_DP32(u, ID_ISAR5, VCMA, 0);
1585        cpu->isar.id_isar5 = u;
1586
1587        u = cpu->isar.id_isar6;
1588        u = FIELD_DP32(u, ID_ISAR6, DP, 0);
1589        u = FIELD_DP32(u, ID_ISAR6, FHM, 0);
1590        u = FIELD_DP32(u, ID_ISAR6, BF16, 0);
1591        u = FIELD_DP32(u, ID_ISAR6, I8MM, 0);
1592        cpu->isar.id_isar6 = u;
1593
1594        if (!arm_feature(env, ARM_FEATURE_M)) {
1595            u = cpu->isar.mvfr1;
1596            u = FIELD_DP32(u, MVFR1, SIMDLS, 0);
1597            u = FIELD_DP32(u, MVFR1, SIMDINT, 0);
1598            u = FIELD_DP32(u, MVFR1, SIMDSP, 0);
1599            u = FIELD_DP32(u, MVFR1, SIMDHP, 0);
1600            cpu->isar.mvfr1 = u;
1601
1602            u = cpu->isar.mvfr2;
1603            u = FIELD_DP32(u, MVFR2, SIMDMISC, 0);
1604            cpu->isar.mvfr2 = u;
1605        }
1606    }
1607
1608    if (!cpu->has_neon && !cpu->has_vfp) {
1609        uint64_t t;
1610        uint32_t u;
1611
1612        t = cpu->isar.id_aa64isar0;
1613        t = FIELD_DP64(t, ID_AA64ISAR0, FHM, 0);
1614        cpu->isar.id_aa64isar0 = t;
1615
1616        t = cpu->isar.id_aa64isar1;
1617        t = FIELD_DP64(t, ID_AA64ISAR1, FRINTTS, 0);
1618        cpu->isar.id_aa64isar1 = t;
1619
1620        u = cpu->isar.mvfr0;
1621        u = FIELD_DP32(u, MVFR0, SIMDREG, 0);
1622        cpu->isar.mvfr0 = u;
1623
1624        /* Despite the name, this field covers both VFP and Neon */
1625        u = cpu->isar.mvfr1;
1626        u = FIELD_DP32(u, MVFR1, SIMDFMAC, 0);
1627        cpu->isar.mvfr1 = u;
1628    }
1629
1630    if (arm_feature(env, ARM_FEATURE_M) && !cpu->has_dsp) {
1631        uint32_t u;
1632
1633        unset_feature(env, ARM_FEATURE_THUMB_DSP);
1634
1635        u = cpu->isar.id_isar1;
1636        u = FIELD_DP32(u, ID_ISAR1, EXTEND, 1);
1637        cpu->isar.id_isar1 = u;
1638
1639        u = cpu->isar.id_isar2;
1640        u = FIELD_DP32(u, ID_ISAR2, MULTU, 1);
1641        u = FIELD_DP32(u, ID_ISAR2, MULTS, 1);
1642        cpu->isar.id_isar2 = u;
1643
1644        u = cpu->isar.id_isar3;
1645        u = FIELD_DP32(u, ID_ISAR3, SIMD, 1);
1646        u = FIELD_DP32(u, ID_ISAR3, SATURATE, 0);
1647        cpu->isar.id_isar3 = u;
1648    }
1649
1650    /* Some features automatically imply others: */
1651    if (arm_feature(env, ARM_FEATURE_V8)) {
1652        if (arm_feature(env, ARM_FEATURE_M)) {
1653            set_feature(env, ARM_FEATURE_V7);
1654        } else {
1655            set_feature(env, ARM_FEATURE_V7VE);
1656        }
1657    }
1658
1659    /*
1660     * There exist AArch64 cpus without AArch32 support.  When KVM
1661     * queries ID_ISAR0_EL1 on such a host, the value is UNKNOWN.
1662     * Similarly, we cannot check ID_AA64PFR0 without AArch64 support.
1663     * As a general principle, we also do not make ID register
1664     * consistency checks anywhere unless using TCG, because only
1665     * for TCG would a consistency-check failure be a QEMU bug.
1666     */
1667    if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1668        no_aa32 = !cpu_isar_feature(aa64_aa32, cpu);
1669    }
1670
1671    if (arm_feature(env, ARM_FEATURE_V7VE)) {
1672        /* v7 Virtualization Extensions. In real hardware this implies
1673         * EL2 and also the presence of the Security Extensions.
1674         * For QEMU, for backwards-compatibility we implement some
1675         * CPUs or CPU configs which have no actual EL2 or EL3 but do
1676         * include the various other features that V7VE implies.
1677         * Presence of EL2 itself is ARM_FEATURE_EL2, and of the
1678         * Security Extensions is ARM_FEATURE_EL3.
1679         */
1680        assert(!tcg_enabled() || no_aa32 ||
1681               cpu_isar_feature(aa32_arm_div, cpu));
1682        set_feature(env, ARM_FEATURE_LPAE);
1683        set_feature(env, ARM_FEATURE_V7);
1684    }
1685    if (arm_feature(env, ARM_FEATURE_V7)) {
1686        set_feature(env, ARM_FEATURE_VAPA);
1687        set_feature(env, ARM_FEATURE_THUMB2);
1688        set_feature(env, ARM_FEATURE_MPIDR);
1689        if (!arm_feature(env, ARM_FEATURE_M)) {
1690            set_feature(env, ARM_FEATURE_V6K);
1691        } else {
1692            set_feature(env, ARM_FEATURE_V6);
1693        }
1694
1695        /* Always define VBAR for V7 CPUs even if it doesn't exist in
1696         * non-EL3 configs. This is needed by some legacy boards.
1697         */
1698        set_feature(env, ARM_FEATURE_VBAR);
1699    }
1700    if (arm_feature(env, ARM_FEATURE_V6K)) {
1701        set_feature(env, ARM_FEATURE_V6);
1702        set_feature(env, ARM_FEATURE_MVFR);
1703    }
1704    if (arm_feature(env, ARM_FEATURE_V6)) {
1705        set_feature(env, ARM_FEATURE_V5);
1706        if (!arm_feature(env, ARM_FEATURE_M)) {
1707            assert(!tcg_enabled() || no_aa32 ||
1708                   cpu_isar_feature(aa32_jazelle, cpu));
1709            set_feature(env, ARM_FEATURE_AUXCR);
1710        }
1711    }
1712    if (arm_feature(env, ARM_FEATURE_V5)) {
1713        set_feature(env, ARM_FEATURE_V4T);
1714    }
1715    if (arm_feature(env, ARM_FEATURE_LPAE)) {
1716        set_feature(env, ARM_FEATURE_V7MP);
1717    }
1718    if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
1719        set_feature(env, ARM_FEATURE_CBAR);
1720    }
1721    if (arm_feature(env, ARM_FEATURE_THUMB2) &&
1722        !arm_feature(env, ARM_FEATURE_M)) {
1723        set_feature(env, ARM_FEATURE_THUMB_DSP);
1724    }
1725
1726    /*
1727     * We rely on no XScale CPU having VFP so we can use the same bits in the
1728     * TB flags field for VECSTRIDE and XSCALE_CPAR.
1729     */
1730    assert(arm_feature(&cpu->env, ARM_FEATURE_AARCH64) ||
1731           !cpu_isar_feature(aa32_vfp_simd, cpu) ||
1732           !arm_feature(env, ARM_FEATURE_XSCALE));
1733
1734    if (arm_feature(env, ARM_FEATURE_V7) &&
1735        !arm_feature(env, ARM_FEATURE_M) &&
1736        !arm_feature(env, ARM_FEATURE_PMSA)) {
1737        /* v7VMSA drops support for the old ARMv5 tiny pages, so we
1738         * can use 4K pages.
1739         */
1740        pagebits = 12;
1741    } else {
1742        /* For CPUs which might have tiny 1K pages, or which have an
1743         * MPU and might have small region sizes, stick with 1K pages.
1744         */
1745        pagebits = 10;
1746    }
1747    if (!set_preferred_target_page_bits(pagebits)) {
1748        /* This can only ever happen for hotplugging a CPU, or if
1749         * the board code incorrectly creates a CPU which it has
1750         * promised via minimum_page_size that it will not.
1751         */
1752        error_setg(errp, "This CPU requires a smaller page size than the "
1753                   "system is using");
1754        return;
1755    }
1756
1757    /* This cpu-id-to-MPIDR affinity is used only for TCG; KVM will override it.
1758     * We don't support setting cluster ID ([16..23]) (known as Aff2
1759     * in later ARM ARM versions), or any of the higher affinity level fields,
1760     * so these bits always RAZ.
1761     */
1762    if (cpu->mp_affinity == ARM64_AFFINITY_INVALID) {
1763        cpu->mp_affinity = arm_cpu_mp_affinity(cs->cpu_index,
1764                                               ARM_DEFAULT_CPUS_PER_CLUSTER);
1765    }
1766
1767    if (cpu->reset_hivecs) {
1768            cpu->reset_sctlr |= (1 << 13);
1769    }
1770
1771    if (cpu->cfgend) {
1772        if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1773            cpu->reset_sctlr |= SCTLR_EE;
1774        } else {
1775            cpu->reset_sctlr |= SCTLR_B;
1776        }
1777    }
1778
1779    if (!arm_feature(env, ARM_FEATURE_M) && !cpu->has_el3) {
1780        /* If the has_el3 CPU property is disabled then we need to disable the
1781         * feature.
1782         */
1783        unset_feature(env, ARM_FEATURE_EL3);
1784
1785        /* Disable the security extension feature bits in the processor feature
1786         * registers as well. These are id_pfr1[7:4] and id_aa64pfr0[15:12].
1787         */
1788        cpu->isar.id_pfr1 &= ~0xf0;
1789        cpu->isar.id_aa64pfr0 &= ~0xf000;
1790    }
1791
1792    if (!cpu->has_el2) {
1793        unset_feature(env, ARM_FEATURE_EL2);
1794    }
1795
1796    if (!cpu->has_pmu) {
1797        unset_feature(env, ARM_FEATURE_PMU);
1798    }
1799    if (arm_feature(env, ARM_FEATURE_PMU)) {
1800        pmu_init(cpu);
1801
1802        if (!kvm_enabled()) {
1803            arm_register_pre_el_change_hook(cpu, &pmu_pre_el_change, 0);
1804            arm_register_el_change_hook(cpu, &pmu_post_el_change, 0);
1805        }
1806
1807#ifndef CONFIG_USER_ONLY
1808        cpu->pmu_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, arm_pmu_timer_cb,
1809                cpu);
1810#endif
1811    } else {
1812        cpu->isar.id_aa64dfr0 =
1813            FIELD_DP64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, PMUVER, 0);
1814        cpu->isar.id_dfr0 = FIELD_DP32(cpu->isar.id_dfr0, ID_DFR0, PERFMON, 0);
1815        cpu->pmceid0 = 0;
1816        cpu->pmceid1 = 0;
1817    }
1818
1819    if (!arm_feature(env, ARM_FEATURE_EL2)) {
1820        /* Disable the hypervisor feature bits in the processor feature
1821         * registers if we don't have EL2. These are id_pfr1[15:12] and
1822         * id_aa64pfr0_el1[11:8].
1823         */
1824        cpu->isar.id_aa64pfr0 &= ~0xf00;
1825        cpu->isar.id_pfr1 &= ~0xf000;
1826    }
1827
1828#ifndef CONFIG_USER_ONLY
1829    if (cpu->tag_memory == NULL && cpu_isar_feature(aa64_mte, cpu)) {
1830        /*
1831         * Disable the MTE feature bits if we do not have tag-memory
1832         * provided by the machine.
1833         */
1834        cpu->isar.id_aa64pfr1 =
1835            FIELD_DP64(cpu->isar.id_aa64pfr1, ID_AA64PFR1, MTE, 0);
1836    }
1837#endif
1838
1839    /* MPU can be configured out of a PMSA CPU either by setting has-mpu
1840     * to false or by setting pmsav7-dregion to 0.
1841     */
1842    if (!cpu->has_mpu) {
1843        cpu->pmsav7_dregion = 0;
1844    }
1845    if (cpu->pmsav7_dregion == 0) {
1846        cpu->has_mpu = false;
1847    }
1848
1849    if (arm_feature(env, ARM_FEATURE_PMSA) &&
1850        arm_feature(env, ARM_FEATURE_V7)) {
1851        uint32_t nr = cpu->pmsav7_dregion;
1852
1853        if (nr > 0xff) {
1854            error_setg(errp, "PMSAv7 MPU #regions invalid %" PRIu32, nr);
1855            return;
1856        }
1857
1858        if (nr) {
1859            if (arm_feature(env, ARM_FEATURE_V8)) {
1860                /* PMSAv8 */
1861                env->pmsav8.rbar[M_REG_NS] = g_new0(uint32_t, nr);
1862                env->pmsav8.rlar[M_REG_NS] = g_new0(uint32_t, nr);
1863                if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1864                    env->pmsav8.rbar[M_REG_S] = g_new0(uint32_t, nr);
1865                    env->pmsav8.rlar[M_REG_S] = g_new0(uint32_t, nr);
1866                }
1867            } else {
1868                env->pmsav7.drbar = g_new0(uint32_t, nr);
1869                env->pmsav7.drsr = g_new0(uint32_t, nr);
1870                env->pmsav7.dracr = g_new0(uint32_t, nr);
1871            }
1872        }
1873    }
1874
1875    if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1876        uint32_t nr = cpu->sau_sregion;
1877
1878        if (nr > 0xff) {
1879            error_setg(errp, "v8M SAU #regions invalid %" PRIu32, nr);
1880            return;
1881        }
1882
1883        if (nr) {
1884            env->sau.rbar = g_new0(uint32_t, nr);
1885            env->sau.rlar = g_new0(uint32_t, nr);
1886        }
1887    }
1888
1889    if (arm_feature(env, ARM_FEATURE_EL3)) {
1890        set_feature(env, ARM_FEATURE_VBAR);
1891    }
1892
1893    register_cp_regs_for_features(cpu);
1894    arm_cpu_register_gdb_regs_for_features(cpu);
1895
1896    init_cpreg_list(cpu);
1897
1898#ifndef CONFIG_USER_ONLY
1899    MachineState *ms = MACHINE(qdev_get_machine());
1900    unsigned int smp_cpus = ms->smp.cpus;
1901    bool has_secure = cpu->has_el3 || arm_feature(env, ARM_FEATURE_M_SECURITY);
1902
1903    /*
1904     * We must set cs->num_ases to the final value before
1905     * the first call to cpu_address_space_init.
1906     */
1907    if (cpu->tag_memory != NULL) {
1908        cs->num_ases = 3 + has_secure;
1909    } else {
1910        cs->num_ases = 1 + has_secure;
1911    }
1912
1913    if (has_secure) {
1914        if (!cpu->secure_memory) {
1915            cpu->secure_memory = cs->memory;
1916        }
1917        cpu_address_space_init(cs, ARMASIdx_S, "cpu-secure-memory",
1918                               cpu->secure_memory);
1919    }
1920
1921    if (cpu->tag_memory != NULL) {
1922        cpu_address_space_init(cs, ARMASIdx_TagNS, "cpu-tag-memory",
1923                               cpu->tag_memory);
1924        if (has_secure) {
1925            cpu_address_space_init(cs, ARMASIdx_TagS, "cpu-tag-memory",
1926                                   cpu->secure_tag_memory);
1927        }
1928    }
1929
1930    cpu_address_space_init(cs, ARMASIdx_NS, "cpu-memory", cs->memory);
1931
1932    /* No core_count specified, default to smp_cpus. */
1933    if (cpu->core_count == -1) {
1934        cpu->core_count = smp_cpus;
1935    }
1936#endif
1937
1938    if (tcg_enabled()) {
1939        int dcz_blocklen = 4 << cpu->dcz_blocksize;
1940
1941        /*
1942         * We only support DCZ blocklen that fits on one page.
1943         *
1944         * Architectually this is always true.  However TARGET_PAGE_SIZE
1945         * is variable and, for compatibility with -machine virt-2.7,
1946         * is only 1KiB, as an artifact of legacy ARMv5 subpage support.
1947         * But even then, while the largest architectural DCZ blocklen
1948         * is 2KiB, no cpu actually uses such a large blocklen.
1949         */
1950        assert(dcz_blocklen <= TARGET_PAGE_SIZE);
1951
1952        /*
1953         * We only support DCZ blocksize >= 2*TAG_GRANULE, which is to say
1954         * both nibbles of each byte storing tag data may be written at once.
1955         * Since TAG_GRANULE is 16, this means that blocklen must be >= 32.
1956         */
1957        if (cpu_isar_feature(aa64_mte, cpu)) {
1958            assert(dcz_blocklen >= 2 * TAG_GRANULE);
1959        }
1960    }
1961
1962    qemu_init_vcpu(cs);
1963    cpu_reset(cs);
1964
1965    acc->parent_realize(dev, errp);
1966}
1967
1968static ObjectClass *arm_cpu_class_by_name(const char *cpu_model)
1969{
1970    ObjectClass *oc;
1971    char *typename;
1972    char **cpuname;
1973    const char *cpunamestr;
1974
1975    cpuname = g_strsplit(cpu_model, ",", 1);
1976    cpunamestr = cpuname[0];
1977#ifdef CONFIG_USER_ONLY
1978    /* For backwards compatibility usermode emulation allows "-cpu any",
1979     * which has the same semantics as "-cpu max".
1980     */
1981    if (!strcmp(cpunamestr, "any")) {
1982        cpunamestr = "max";
1983    }
1984#endif
1985    typename = g_strdup_printf(ARM_CPU_TYPE_NAME("%s"), cpunamestr);
1986    oc = object_class_by_name(typename);
1987    g_strfreev(cpuname);
1988    g_free(typename);
1989    if (!oc || !object_class_dynamic_cast(oc, TYPE_ARM_CPU) ||
1990        object_class_is_abstract(oc)) {
1991        return NULL;
1992    }
1993    return oc;
1994}
1995
1996static Property arm_cpu_properties[] = {
1997    DEFINE_PROP_UINT32("psci-conduit", ARMCPU, psci_conduit, 0),
1998    DEFINE_PROP_UINT64("midr", ARMCPU, midr, 0),
1999    DEFINE_PROP_UINT64("mp-affinity", ARMCPU,
2000                        mp_affinity, ARM64_AFFINITY_INVALID),
2001    DEFINE_PROP_INT32("node-id", ARMCPU, node_id, CPU_UNSET_NUMA_NODE_ID),
2002    DEFINE_PROP_INT32("core-count", ARMCPU, core_count, -1),
2003    DEFINE_PROP_END_OF_LIST()
2004};
2005
2006static gchar *arm_gdb_arch_name(CPUState *cs)
2007{
2008    ARMCPU *cpu = ARM_CPU(cs);
2009    CPUARMState *env = &cpu->env;
2010
2011    if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
2012        return g_strdup("iwmmxt");
2013    }
2014    return g_strdup("arm");
2015}
2016
2017#ifndef CONFIG_USER_ONLY
2018#include "hw/core/sysemu-cpu-ops.h"
2019
2020static const struct SysemuCPUOps arm_sysemu_ops = {
2021    .get_phys_page_attrs_debug = arm_cpu_get_phys_page_attrs_debug,
2022    .asidx_from_attrs = arm_asidx_from_attrs,
2023    .write_elf32_note = arm_cpu_write_elf32_note,
2024    .write_elf64_note = arm_cpu_write_elf64_note,
2025    .virtio_is_big_endian = arm_cpu_virtio_is_big_endian,
2026    .legacy_vmsd = &vmstate_arm_cpu,
2027};
2028#endif
2029
2030#ifdef CONFIG_TCG
2031static const struct TCGCPUOps arm_tcg_ops = {
2032    .initialize = arm_translate_init,
2033    .synchronize_from_tb = arm_cpu_synchronize_from_tb,
2034    .debug_excp_handler = arm_debug_excp_handler,
2035
2036#ifdef CONFIG_USER_ONLY
2037    .record_sigsegv = arm_cpu_record_sigsegv,
2038    .record_sigbus = arm_cpu_record_sigbus,
2039#else
2040    .tlb_fill = arm_cpu_tlb_fill,
2041    .cpu_exec_interrupt = arm_cpu_exec_interrupt,
2042    .do_interrupt = arm_cpu_do_interrupt,
2043    .do_transaction_failed = arm_cpu_do_transaction_failed,
2044    .do_unaligned_access = arm_cpu_do_unaligned_access,
2045    .adjust_watchpoint_address = arm_adjust_watchpoint_address,
2046    .debug_check_watchpoint = arm_debug_check_watchpoint,
2047    .debug_check_breakpoint = arm_debug_check_breakpoint,
2048#endif /* !CONFIG_USER_ONLY */
2049};
2050#endif /* CONFIG_TCG */
2051
2052static void arm_cpu_class_init(ObjectClass *oc, void *data)
2053{
2054    ARMCPUClass *acc = ARM_CPU_CLASS(oc);
2055    CPUClass *cc = CPU_CLASS(acc);
2056    DeviceClass *dc = DEVICE_CLASS(oc);
2057
2058    device_class_set_parent_realize(dc, arm_cpu_realizefn,
2059                                    &acc->parent_realize);
2060
2061    device_class_set_props(dc, arm_cpu_properties);
2062    device_class_set_parent_reset(dc, arm_cpu_reset, &acc->parent_reset);
2063
2064    cc->class_by_name = arm_cpu_class_by_name;
2065    cc->has_work = arm_cpu_has_work;
2066    cc->dump_state = arm_cpu_dump_state;
2067    cc->set_pc = arm_cpu_set_pc;
2068    cc->gdb_read_register = arm_cpu_gdb_read_register;
2069    cc->gdb_write_register = arm_cpu_gdb_write_register;
2070#ifndef CONFIG_USER_ONLY
2071    cc->sysemu_ops = &arm_sysemu_ops;
2072#endif
2073    cc->gdb_num_core_regs = 26;
2074    cc->gdb_core_xml_file = "arm-core.xml";
2075    cc->gdb_arch_name = arm_gdb_arch_name;
2076    cc->gdb_get_dynamic_xml = arm_gdb_get_dynamic_xml;
2077    cc->gdb_stop_before_watchpoint = true;
2078    cc->disas_set_info = arm_disas_set_info;
2079
2080#ifdef CONFIG_TCG
2081    cc->tcg_ops = &arm_tcg_ops;
2082#endif /* CONFIG_TCG */
2083}
2084
2085#if defined(CONFIG_KVM) || defined(CONFIG_HVF)
2086static void arm_host_initfn(Object *obj)
2087{
2088    ARMCPU *cpu = ARM_CPU(obj);
2089
2090#ifdef CONFIG_KVM
2091    kvm_arm_set_cpu_features_from_host(cpu);
2092    if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
2093        aarch64_add_sve_properties(obj);
2094    }
2095#else
2096    hvf_arm_set_cpu_features_from_host(cpu);
2097#endif
2098    arm_cpu_post_init(obj);
2099}
2100
2101static const TypeInfo host_arm_cpu_type_info = {
2102    .name = TYPE_ARM_HOST_CPU,
2103    .parent = TYPE_AARCH64_CPU,
2104    .instance_init = arm_host_initfn,
2105};
2106
2107#endif
2108
2109static void arm_cpu_instance_init(Object *obj)
2110{
2111    ARMCPUClass *acc = ARM_CPU_GET_CLASS(obj);
2112
2113    acc->info->initfn(obj);
2114    arm_cpu_post_init(obj);
2115}
2116
2117static void cpu_register_class_init(ObjectClass *oc, void *data)
2118{
2119    ARMCPUClass *acc = ARM_CPU_CLASS(oc);
2120
2121    acc->info = data;
2122}
2123
2124void arm_cpu_register(const ARMCPUInfo *info)
2125{
2126    TypeInfo type_info = {
2127        .parent = TYPE_ARM_CPU,
2128        .instance_size = sizeof(ARMCPU),
2129        .instance_align = __alignof__(ARMCPU),
2130        .instance_init = arm_cpu_instance_init,
2131        .class_size = sizeof(ARMCPUClass),
2132        .class_init = info->class_init ?: cpu_register_class_init,
2133        .class_data = (void *)info,
2134    };
2135
2136    type_info.name = g_strdup_printf("%s-" TYPE_ARM_CPU, info->name);
2137    type_register(&type_info);
2138    g_free((void *)type_info.name);
2139}
2140
2141static const TypeInfo arm_cpu_type_info = {
2142    .name = TYPE_ARM_CPU,
2143    .parent = TYPE_CPU,
2144    .instance_size = sizeof(ARMCPU),
2145    .instance_align = __alignof__(ARMCPU),
2146    .instance_init = arm_cpu_initfn,
2147    .instance_finalize = arm_cpu_finalizefn,
2148    .abstract = true,
2149    .class_size = sizeof(ARMCPUClass),
2150    .class_init = arm_cpu_class_init,
2151};
2152
2153static void arm_cpu_register_types(void)
2154{
2155    type_register_static(&arm_cpu_type_info);
2156
2157#if defined(CONFIG_KVM) || defined(CONFIG_HVF)
2158    type_register_static(&host_arm_cpu_type_info);
2159#endif
2160}
2161
2162type_init(arm_cpu_register_types)
2163