qemu/target/arm/cpu.h
<<
>>
Prefs
   1/*
   2 * ARM virtual CPU header
   3 *
   4 *  Copyright (c) 2003 Fabrice Bellard
   5 *
   6 * This library is free software; you can redistribute it and/or
   7 * modify it under the terms of the GNU Lesser General Public
   8 * License as published by the Free Software Foundation; either
   9 * version 2.1 of the License, or (at your option) any later version.
  10 *
  11 * This library is distributed in the hope that it will be useful,
  12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  14 * Lesser General Public License for more details.
  15 *
  16 * You should have received a copy of the GNU Lesser General Public
  17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
  18 */
  19
  20#ifndef ARM_CPU_H
  21#define ARM_CPU_H
  22
  23#include "kvm-consts.h"
  24#include "hw/registerfields.h"
  25#include "cpu-qom.h"
  26#include "exec/cpu-defs.h"
  27#include "qapi/qapi-types-common.h"
  28
  29/* ARM processors have a weak memory model */
  30#define TCG_GUEST_DEFAULT_MO      (0)
  31
  32#ifdef TARGET_AARCH64
  33#define KVM_HAVE_MCE_INJECTION 1
  34#endif
  35
  36#define EXCP_UDEF            1   /* undefined instruction */
  37#define EXCP_SWI             2   /* software interrupt */
  38#define EXCP_PREFETCH_ABORT  3
  39#define EXCP_DATA_ABORT      4
  40#define EXCP_IRQ             5
  41#define EXCP_FIQ             6
  42#define EXCP_BKPT            7
  43#define EXCP_EXCEPTION_EXIT  8   /* Return from v7M exception.  */
  44#define EXCP_KERNEL_TRAP     9   /* Jumped to kernel code page.  */
  45#define EXCP_HVC            11   /* HyperVisor Call */
  46#define EXCP_HYP_TRAP       12
  47#define EXCP_SMC            13   /* Secure Monitor Call */
  48#define EXCP_VIRQ           14
  49#define EXCP_VFIQ           15
  50#define EXCP_SEMIHOST       16   /* semihosting call */
  51#define EXCP_NOCP           17   /* v7M NOCP UsageFault */
  52#define EXCP_INVSTATE       18   /* v7M INVSTATE UsageFault */
  53#define EXCP_STKOF          19   /* v8M STKOF UsageFault */
  54#define EXCP_LAZYFP         20   /* v7M fault during lazy FP stacking */
  55#define EXCP_LSERR          21   /* v8M LSERR SecureFault */
  56#define EXCP_UNALIGNED      22   /* v7M UNALIGNED UsageFault */
  57#define EXCP_DIVBYZERO      23   /* v7M DIVBYZERO UsageFault */
  58/* NB: add new EXCP_ defines to the array in arm_log_exception() too */
  59
  60#define ARMV7M_EXCP_RESET   1
  61#define ARMV7M_EXCP_NMI     2
  62#define ARMV7M_EXCP_HARD    3
  63#define ARMV7M_EXCP_MEM     4
  64#define ARMV7M_EXCP_BUS     5
  65#define ARMV7M_EXCP_USAGE   6
  66#define ARMV7M_EXCP_SECURE  7
  67#define ARMV7M_EXCP_SVC     11
  68#define ARMV7M_EXCP_DEBUG   12
  69#define ARMV7M_EXCP_PENDSV  14
  70#define ARMV7M_EXCP_SYSTICK 15
  71
  72/* For M profile, some registers are banked secure vs non-secure;
  73 * these are represented as a 2-element array where the first element
  74 * is the non-secure copy and the second is the secure copy.
  75 * When the CPU does not have implement the security extension then
  76 * only the first element is used.
  77 * This means that the copy for the current security state can be
  78 * accessed via env->registerfield[env->v7m.secure] (whether the security
  79 * extension is implemented or not).
  80 */
  81enum {
  82    M_REG_NS = 0,
  83    M_REG_S = 1,
  84    M_REG_NUM_BANKS = 2,
  85};
  86
  87/* ARM-specific interrupt pending bits.  */
  88#define CPU_INTERRUPT_FIQ   CPU_INTERRUPT_TGT_EXT_1
  89#define CPU_INTERRUPT_VIRQ  CPU_INTERRUPT_TGT_EXT_2
  90#define CPU_INTERRUPT_VFIQ  CPU_INTERRUPT_TGT_EXT_3
  91
  92/* The usual mapping for an AArch64 system register to its AArch32
  93 * counterpart is for the 32 bit world to have access to the lower
  94 * half only (with writes leaving the upper half untouched). It's
  95 * therefore useful to be able to pass TCG the offset of the least
  96 * significant half of a uint64_t struct member.
  97 */
  98#ifdef HOST_WORDS_BIGENDIAN
  99#define offsetoflow32(S, M) (offsetof(S, M) + sizeof(uint32_t))
 100#define offsetofhigh32(S, M) offsetof(S, M)
 101#else
 102#define offsetoflow32(S, M) offsetof(S, M)
 103#define offsetofhigh32(S, M) (offsetof(S, M) + sizeof(uint32_t))
 104#endif
 105
 106/* Meanings of the ARMCPU object's four inbound GPIO lines */
 107#define ARM_CPU_IRQ 0
 108#define ARM_CPU_FIQ 1
 109#define ARM_CPU_VIRQ 2
 110#define ARM_CPU_VFIQ 3
 111
 112/* ARM-specific extra insn start words:
 113 * 1: Conditional execution bits
 114 * 2: Partial exception syndrome for data aborts
 115 */
 116#define TARGET_INSN_START_EXTRA_WORDS 2
 117
 118/* The 2nd extra word holding syndrome info for data aborts does not use
 119 * the upper 6 bits nor the lower 14 bits. We mask and shift it down to
 120 * help the sleb128 encoder do a better job.
 121 * When restoring the CPU state, we shift it back up.
 122 */
 123#define ARM_INSN_START_WORD2_MASK ((1 << 26) - 1)
 124#define ARM_INSN_START_WORD2_SHIFT 14
 125
 126/* We currently assume float and double are IEEE single and double
 127   precision respectively.
 128   Doing runtime conversions is tricky because VFP registers may contain
 129   integer values (eg. as the result of a FTOSI instruction).
 130   s<2n> maps to the least significant half of d<n>
 131   s<2n+1> maps to the most significant half of d<n>
 132 */
 133
 134/**
 135 * DynamicGDBXMLInfo:
 136 * @desc: Contains the XML descriptions.
 137 * @num: Number of the registers in this XML seen by GDB.
 138 * @data: A union with data specific to the set of registers
 139 *    @cpregs_keys: Array that contains the corresponding Key of
 140 *                  a given cpreg with the same order of the cpreg
 141 *                  in the XML description.
 142 */
 143typedef struct DynamicGDBXMLInfo {
 144    char *desc;
 145    int num;
 146    union {
 147        struct {
 148            uint32_t *keys;
 149        } cpregs;
 150    } data;
 151} DynamicGDBXMLInfo;
 152
 153/* CPU state for each instance of a generic timer (in cp15 c14) */
 154typedef struct ARMGenericTimer {
 155    uint64_t cval; /* Timer CompareValue register */
 156    uint64_t ctl; /* Timer Control register */
 157} ARMGenericTimer;
 158
 159#define GTIMER_PHYS     0
 160#define GTIMER_VIRT     1
 161#define GTIMER_HYP      2
 162#define GTIMER_SEC      3
 163#define GTIMER_HYPVIRT  4
 164#define NUM_GTIMERS     5
 165
 166typedef struct {
 167    uint64_t raw_tcr;
 168    uint32_t mask;
 169    uint32_t base_mask;
 170} TCR;
 171
 172#define VTCR_NSW (1u << 29)
 173#define VTCR_NSA (1u << 30)
 174#define VSTCR_SW VTCR_NSW
 175#define VSTCR_SA VTCR_NSA
 176
 177/* Define a maximum sized vector register.
 178 * For 32-bit, this is a 128-bit NEON/AdvSIMD register.
 179 * For 64-bit, this is a 2048-bit SVE register.
 180 *
 181 * Note that the mapping between S, D, and Q views of the register bank
 182 * differs between AArch64 and AArch32.
 183 * In AArch32:
 184 *  Qn = regs[n].d[1]:regs[n].d[0]
 185 *  Dn = regs[n / 2].d[n & 1]
 186 *  Sn = regs[n / 4].d[n % 4 / 2],
 187 *       bits 31..0 for even n, and bits 63..32 for odd n
 188 *       (and regs[16] to regs[31] are inaccessible)
 189 * In AArch64:
 190 *  Zn = regs[n].d[*]
 191 *  Qn = regs[n].d[1]:regs[n].d[0]
 192 *  Dn = regs[n].d[0]
 193 *  Sn = regs[n].d[0] bits 31..0
 194 *  Hn = regs[n].d[0] bits 15..0
 195 *
 196 * This corresponds to the architecturally defined mapping between
 197 * the two execution states, and means we do not need to explicitly
 198 * map these registers when changing states.
 199 *
 200 * Align the data for use with TCG host vector operations.
 201 */
 202
 203#ifdef TARGET_AARCH64
 204# define ARM_MAX_VQ    16
 205void arm_cpu_sve_finalize(ARMCPU *cpu, Error **errp);
 206void arm_cpu_pauth_finalize(ARMCPU *cpu, Error **errp);
 207#else
 208# define ARM_MAX_VQ    1
 209static inline void arm_cpu_sve_finalize(ARMCPU *cpu, Error **errp) { }
 210static inline void arm_cpu_pauth_finalize(ARMCPU *cpu, Error **errp) { }
 211#endif
 212
 213typedef struct ARMVectorReg {
 214    uint64_t d[2 * ARM_MAX_VQ] QEMU_ALIGNED(16);
 215} ARMVectorReg;
 216
 217#ifdef TARGET_AARCH64
 218/* In AArch32 mode, predicate registers do not exist at all.  */
 219typedef struct ARMPredicateReg {
 220    uint64_t p[DIV_ROUND_UP(2 * ARM_MAX_VQ, 8)] QEMU_ALIGNED(16);
 221} ARMPredicateReg;
 222
 223/* In AArch32 mode, PAC keys do not exist at all.  */
 224typedef struct ARMPACKey {
 225    uint64_t lo, hi;
 226} ARMPACKey;
 227#endif
 228
 229/* See the commentary above the TBFLAG field definitions.  */
 230typedef struct CPUARMTBFlags {
 231    uint32_t flags;
 232    target_ulong flags2;
 233} CPUARMTBFlags;
 234
 235typedef struct CPUARMState {
 236    /* Regs for current mode.  */
 237    uint32_t regs[16];
 238
 239    /* 32/64 switch only happens when taking and returning from
 240     * exceptions so the overlap semantics are taken care of then
 241     * instead of having a complicated union.
 242     */
 243    /* Regs for A64 mode.  */
 244    uint64_t xregs[32];
 245    uint64_t pc;
 246    /* PSTATE isn't an architectural register for ARMv8. However, it is
 247     * convenient for us to assemble the underlying state into a 32 bit format
 248     * identical to the architectural format used for the SPSR. (This is also
 249     * what the Linux kernel's 'pstate' field in signal handlers and KVM's
 250     * 'pstate' register are.) Of the PSTATE bits:
 251     *  NZCV are kept in the split out env->CF/VF/NF/ZF, (which have the same
 252     *    semantics as for AArch32, as described in the comments on each field)
 253     *  nRW (also known as M[4]) is kept, inverted, in env->aarch64
 254     *  DAIF (exception masks) are kept in env->daif
 255     *  BTYPE is kept in env->btype
 256     *  all other bits are stored in their correct places in env->pstate
 257     */
 258    uint32_t pstate;
 259    uint32_t aarch64; /* 1 if CPU is in aarch64 state; inverse of PSTATE.nRW */
 260
 261    /* Cached TBFLAGS state.  See below for which bits are included.  */
 262    CPUARMTBFlags hflags;
 263
 264    /* Frequently accessed CPSR bits are stored separately for efficiency.
 265       This contains all the other bits.  Use cpsr_{read,write} to access
 266       the whole CPSR.  */
 267    uint32_t uncached_cpsr;
 268    uint32_t spsr;
 269
 270    /* Banked registers.  */
 271    uint64_t banked_spsr[8];
 272    uint32_t banked_r13[8];
 273    uint32_t banked_r14[8];
 274
 275    /* These hold r8-r12.  */
 276    uint32_t usr_regs[5];
 277    uint32_t fiq_regs[5];
 278
 279    /* cpsr flag cache for faster execution */
 280    uint32_t CF; /* 0 or 1 */
 281    uint32_t VF; /* V is the bit 31. All other bits are undefined */
 282    uint32_t NF; /* N is bit 31. All other bits are undefined.  */
 283    uint32_t ZF; /* Z set if zero.  */
 284    uint32_t QF; /* 0 or 1 */
 285    uint32_t GE; /* cpsr[19:16] */
 286    uint32_t thumb; /* cpsr[5]. 0 = arm mode, 1 = thumb mode. */
 287    uint32_t condexec_bits; /* IT bits.  cpsr[15:10,26:25].  */
 288    uint32_t btype;  /* BTI branch type.  spsr[11:10].  */
 289    uint64_t daif; /* exception masks, in the bits they are in PSTATE */
 290
 291    uint64_t elr_el[4]; /* AArch64 exception link regs  */
 292    uint64_t sp_el[4]; /* AArch64 banked stack pointers */
 293
 294    /* System control coprocessor (cp15) */
 295    struct {
 296        uint32_t c0_cpuid;
 297        union { /* Cache size selection */
 298            struct {
 299                uint64_t _unused_csselr0;
 300                uint64_t csselr_ns;
 301                uint64_t _unused_csselr1;
 302                uint64_t csselr_s;
 303            };
 304            uint64_t csselr_el[4];
 305        };
 306        union { /* System control register. */
 307            struct {
 308                uint64_t _unused_sctlr;
 309                uint64_t sctlr_ns;
 310                uint64_t hsctlr;
 311                uint64_t sctlr_s;
 312            };
 313            uint64_t sctlr_el[4];
 314        };
 315        uint64_t cpacr_el1; /* Architectural feature access control register */
 316        uint64_t cptr_el[4];  /* ARMv8 feature trap registers */
 317        uint32_t c1_xscaleauxcr; /* XScale auxiliary control register.  */
 318        uint64_t sder; /* Secure debug enable register. */
 319        uint32_t nsacr; /* Non-secure access control register. */
 320        union { /* MMU translation table base 0. */
 321            struct {
 322                uint64_t _unused_ttbr0_0;
 323                uint64_t ttbr0_ns;
 324                uint64_t _unused_ttbr0_1;
 325                uint64_t ttbr0_s;
 326            };
 327            uint64_t ttbr0_el[4];
 328        };
 329        union { /* MMU translation table base 1. */
 330            struct {
 331                uint64_t _unused_ttbr1_0;
 332                uint64_t ttbr1_ns;
 333                uint64_t _unused_ttbr1_1;
 334                uint64_t ttbr1_s;
 335            };
 336            uint64_t ttbr1_el[4];
 337        };
 338        uint64_t vttbr_el2; /* Virtualization Translation Table Base.  */
 339        uint64_t vsttbr_el2; /* Secure Virtualization Translation Table. */
 340        /* MMU translation table base control. */
 341        TCR tcr_el[4];
 342        TCR vtcr_el2; /* Virtualization Translation Control.  */
 343        TCR vstcr_el2; /* Secure Virtualization Translation Control. */
 344        uint32_t c2_data; /* MPU data cacheable bits.  */
 345        uint32_t c2_insn; /* MPU instruction cacheable bits.  */
 346        union { /* MMU domain access control register
 347                 * MPU write buffer control.
 348                 */
 349            struct {
 350                uint64_t dacr_ns;
 351                uint64_t dacr_s;
 352            };
 353            struct {
 354                uint64_t dacr32_el2;
 355            };
 356        };
 357        uint32_t pmsav5_data_ap; /* PMSAv5 MPU data access permissions */
 358        uint32_t pmsav5_insn_ap; /* PMSAv5 MPU insn access permissions */
 359        uint64_t hcr_el2; /* Hypervisor configuration register */
 360        uint64_t scr_el3; /* Secure configuration register.  */
 361        union { /* Fault status registers.  */
 362            struct {
 363                uint64_t ifsr_ns;
 364                uint64_t ifsr_s;
 365            };
 366            struct {
 367                uint64_t ifsr32_el2;
 368            };
 369        };
 370        union {
 371            struct {
 372                uint64_t _unused_dfsr;
 373                uint64_t dfsr_ns;
 374                uint64_t hsr;
 375                uint64_t dfsr_s;
 376            };
 377            uint64_t esr_el[4];
 378        };
 379        uint32_t c6_region[8]; /* MPU base/size registers.  */
 380        union { /* Fault address registers. */
 381            struct {
 382                uint64_t _unused_far0;
 383#ifdef HOST_WORDS_BIGENDIAN
 384                uint32_t ifar_ns;
 385                uint32_t dfar_ns;
 386                uint32_t ifar_s;
 387                uint32_t dfar_s;
 388#else
 389                uint32_t dfar_ns;
 390                uint32_t ifar_ns;
 391                uint32_t dfar_s;
 392                uint32_t ifar_s;
 393#endif
 394                uint64_t _unused_far3;
 395            };
 396            uint64_t far_el[4];
 397        };
 398        uint64_t hpfar_el2;
 399        uint64_t hstr_el2;
 400        union { /* Translation result. */
 401            struct {
 402                uint64_t _unused_par_0;
 403                uint64_t par_ns;
 404                uint64_t _unused_par_1;
 405                uint64_t par_s;
 406            };
 407            uint64_t par_el[4];
 408        };
 409
 410        uint32_t c9_insn; /* Cache lockdown registers.  */
 411        uint32_t c9_data;
 412        uint64_t c9_pmcr; /* performance monitor control register */
 413        uint64_t c9_pmcnten; /* perf monitor counter enables */
 414        uint64_t c9_pmovsr; /* perf monitor overflow status */
 415        uint64_t c9_pmuserenr; /* perf monitor user enable */
 416        uint64_t c9_pmselr; /* perf monitor counter selection register */
 417        uint64_t c9_pminten; /* perf monitor interrupt enables */
 418        union { /* Memory attribute redirection */
 419            struct {
 420#ifdef HOST_WORDS_BIGENDIAN
 421                uint64_t _unused_mair_0;
 422                uint32_t mair1_ns;
 423                uint32_t mair0_ns;
 424                uint64_t _unused_mair_1;
 425                uint32_t mair1_s;
 426                uint32_t mair0_s;
 427#else
 428                uint64_t _unused_mair_0;
 429                uint32_t mair0_ns;
 430                uint32_t mair1_ns;
 431                uint64_t _unused_mair_1;
 432                uint32_t mair0_s;
 433                uint32_t mair1_s;
 434#endif
 435            };
 436            uint64_t mair_el[4];
 437        };
 438        union { /* vector base address register */
 439            struct {
 440                uint64_t _unused_vbar;
 441                uint64_t vbar_ns;
 442                uint64_t hvbar;
 443                uint64_t vbar_s;
 444            };
 445            uint64_t vbar_el[4];
 446        };
 447        uint32_t mvbar; /* (monitor) vector base address register */
 448        struct { /* FCSE PID. */
 449            uint32_t fcseidr_ns;
 450            uint32_t fcseidr_s;
 451        };
 452        union { /* Context ID. */
 453            struct {
 454                uint64_t _unused_contextidr_0;
 455                uint64_t contextidr_ns;
 456                uint64_t _unused_contextidr_1;
 457                uint64_t contextidr_s;
 458            };
 459            uint64_t contextidr_el[4];
 460        };
 461        union { /* User RW Thread register. */
 462            struct {
 463                uint64_t tpidrurw_ns;
 464                uint64_t tpidrprw_ns;
 465                uint64_t htpidr;
 466                uint64_t _tpidr_el3;
 467            };
 468            uint64_t tpidr_el[4];
 469        };
 470        /* The secure banks of these registers don't map anywhere */
 471        uint64_t tpidrurw_s;
 472        uint64_t tpidrprw_s;
 473        uint64_t tpidruro_s;
 474
 475        union { /* User RO Thread register. */
 476            uint64_t tpidruro_ns;
 477            uint64_t tpidrro_el[1];
 478        };
 479        uint64_t c14_cntfrq; /* Counter Frequency register */
 480        uint64_t c14_cntkctl; /* Timer Control register */
 481        uint32_t cnthctl_el2; /* Counter/Timer Hyp Control register */
 482        uint64_t cntvoff_el2; /* Counter Virtual Offset register */
 483        ARMGenericTimer c14_timer[NUM_GTIMERS];
 484        uint32_t c15_cpar; /* XScale Coprocessor Access Register */
 485        uint32_t c15_ticonfig; /* TI925T configuration byte.  */
 486        uint32_t c15_i_max; /* Maximum D-cache dirty line index.  */
 487        uint32_t c15_i_min; /* Minimum D-cache dirty line index.  */
 488        uint32_t c15_threadid; /* TI debugger thread-ID.  */
 489        uint32_t c15_config_base_address; /* SCU base address.  */
 490        uint32_t c15_diagnostic; /* diagnostic register */
 491        uint32_t c15_power_diagnostic;
 492        uint32_t c15_power_control; /* power control */
 493        uint64_t dbgbvr[16]; /* breakpoint value registers */
 494        uint64_t dbgbcr[16]; /* breakpoint control registers */
 495        uint64_t dbgwvr[16]; /* watchpoint value registers */
 496        uint64_t dbgwcr[16]; /* watchpoint control registers */
 497        uint64_t mdscr_el1;
 498        uint64_t oslsr_el1; /* OS Lock Status */
 499        uint64_t mdcr_el2;
 500        uint64_t mdcr_el3;
 501        /* Stores the architectural value of the counter *the last time it was
 502         * updated* by pmccntr_op_start. Accesses should always be surrounded
 503         * by pmccntr_op_start/pmccntr_op_finish to guarantee the latest
 504         * architecturally-correct value is being read/set.
 505         */
 506        uint64_t c15_ccnt;
 507        /* Stores the delta between the architectural value and the underlying
 508         * cycle count during normal operation. It is used to update c15_ccnt
 509         * to be the correct architectural value before accesses. During
 510         * accesses, c15_ccnt_delta contains the underlying count being used
 511         * for the access, after which it reverts to the delta value in
 512         * pmccntr_op_finish.
 513         */
 514        uint64_t c15_ccnt_delta;
 515        uint64_t c14_pmevcntr[31];
 516        uint64_t c14_pmevcntr_delta[31];
 517        uint64_t c14_pmevtyper[31];
 518        uint64_t pmccfiltr_el0; /* Performance Monitor Filter Register */
 519        uint64_t vpidr_el2; /* Virtualization Processor ID Register */
 520        uint64_t vmpidr_el2; /* Virtualization Multiprocessor ID Register */
 521        uint64_t tfsr_el[4]; /* tfsre0_el1 is index 0.  */
 522        uint64_t gcr_el1;
 523        uint64_t rgsr_el1;
 524    } cp15;
 525
 526    struct {
 527        /* M profile has up to 4 stack pointers:
 528         * a Main Stack Pointer and a Process Stack Pointer for each
 529         * of the Secure and Non-Secure states. (If the CPU doesn't support
 530         * the security extension then it has only two SPs.)
 531         * In QEMU we always store the currently active SP in regs[13],
 532         * and the non-active SP for the current security state in
 533         * v7m.other_sp. The stack pointers for the inactive security state
 534         * are stored in other_ss_msp and other_ss_psp.
 535         * switch_v7m_security_state() is responsible for rearranging them
 536         * when we change security state.
 537         */
 538        uint32_t other_sp;
 539        uint32_t other_ss_msp;
 540        uint32_t other_ss_psp;
 541        uint32_t vecbase[M_REG_NUM_BANKS];
 542        uint32_t basepri[M_REG_NUM_BANKS];
 543        uint32_t control[M_REG_NUM_BANKS];
 544        uint32_t ccr[M_REG_NUM_BANKS]; /* Configuration and Control */
 545        uint32_t cfsr[M_REG_NUM_BANKS]; /* Configurable Fault Status */
 546        uint32_t hfsr; /* HardFault Status */
 547        uint32_t dfsr; /* Debug Fault Status Register */
 548        uint32_t sfsr; /* Secure Fault Status Register */
 549        uint32_t mmfar[M_REG_NUM_BANKS]; /* MemManage Fault Address */
 550        uint32_t bfar; /* BusFault Address */
 551        uint32_t sfar; /* Secure Fault Address Register */
 552        unsigned mpu_ctrl[M_REG_NUM_BANKS]; /* MPU_CTRL */
 553        int exception;
 554        uint32_t primask[M_REG_NUM_BANKS];
 555        uint32_t faultmask[M_REG_NUM_BANKS];
 556        uint32_t aircr; /* only holds r/w state if security extn implemented */
 557        uint32_t secure; /* Is CPU in Secure state? (not guest visible) */
 558        uint32_t csselr[M_REG_NUM_BANKS];
 559        uint32_t scr[M_REG_NUM_BANKS];
 560        uint32_t msplim[M_REG_NUM_BANKS];
 561        uint32_t psplim[M_REG_NUM_BANKS];
 562        uint32_t fpcar[M_REG_NUM_BANKS];
 563        uint32_t fpccr[M_REG_NUM_BANKS];
 564        uint32_t fpdscr[M_REG_NUM_BANKS];
 565        uint32_t cpacr[M_REG_NUM_BANKS];
 566        uint32_t nsacr;
 567        uint32_t ltpsize;
 568        uint32_t vpr;
 569    } v7m;
 570
 571    /* Information associated with an exception about to be taken:
 572     * code which raises an exception must set cs->exception_index and
 573     * the relevant parts of this structure; the cpu_do_interrupt function
 574     * will then set the guest-visible registers as part of the exception
 575     * entry process.
 576     */
 577    struct {
 578        uint32_t syndrome; /* AArch64 format syndrome register */
 579        uint32_t fsr; /* AArch32 format fault status register info */
 580        uint64_t vaddress; /* virtual addr associated with exception, if any */
 581        uint32_t target_el; /* EL the exception should be targeted for */
 582        /* If we implement EL2 we will also need to store information
 583         * about the intermediate physical address for stage 2 faults.
 584         */
 585    } exception;
 586
 587    /* Information associated with an SError */
 588    struct {
 589        uint8_t pending;
 590        uint8_t has_esr;
 591        uint64_t esr;
 592    } serror;
 593
 594    uint8_t ext_dabt_raised; /* Tracking/verifying injection of ext DABT */
 595
 596    /* State of our input IRQ/FIQ/VIRQ/VFIQ lines */
 597    uint32_t irq_line_state;
 598
 599    /* Thumb-2 EE state.  */
 600    uint32_t teecr;
 601    uint32_t teehbr;
 602
 603    /* VFP coprocessor state.  */
 604    struct {
 605        ARMVectorReg zregs[32];
 606
 607#ifdef TARGET_AARCH64
 608        /* Store FFR as pregs[16] to make it easier to treat as any other.  */
 609#define FFR_PRED_NUM 16
 610        ARMPredicateReg pregs[17];
 611        /* Scratch space for aa64 sve predicate temporary.  */
 612        ARMPredicateReg preg_tmp;
 613#endif
 614
 615        /* We store these fpcsr fields separately for convenience.  */
 616        uint32_t qc[4] QEMU_ALIGNED(16);
 617        int vec_len;
 618        int vec_stride;
 619
 620        uint32_t xregs[16];
 621
 622        /* Scratch space for aa32 neon expansion.  */
 623        uint32_t scratch[8];
 624
 625        /* There are a number of distinct float control structures:
 626         *
 627         *  fp_status: is the "normal" fp status.
 628         *  fp_status_fp16: used for half-precision calculations
 629         *  standard_fp_status : the ARM "Standard FPSCR Value"
 630         *  standard_fp_status_fp16 : used for half-precision
 631         *       calculations with the ARM "Standard FPSCR Value"
 632         *
 633         * Half-precision operations are governed by a separate
 634         * flush-to-zero control bit in FPSCR:FZ16. We pass a separate
 635         * status structure to control this.
 636         *
 637         * The "Standard FPSCR", ie default-NaN, flush-to-zero,
 638         * round-to-nearest and is used by any operations (generally
 639         * Neon) which the architecture defines as controlled by the
 640         * standard FPSCR value rather than the FPSCR.
 641         *
 642         * The "standard FPSCR but for fp16 ops" is needed because
 643         * the "standard FPSCR" tracks the FPSCR.FZ16 bit rather than
 644         * using a fixed value for it.
 645         *
 646         * To avoid having to transfer exception bits around, we simply
 647         * say that the FPSCR cumulative exception flags are the logical
 648         * OR of the flags in the four fp statuses. This relies on the
 649         * only thing which needs to read the exception flags being
 650         * an explicit FPSCR read.
 651         */
 652        float_status fp_status;
 653        float_status fp_status_f16;
 654        float_status standard_fp_status;
 655        float_status standard_fp_status_f16;
 656
 657        /* ZCR_EL[1-3] */
 658        uint64_t zcr_el[4];
 659    } vfp;
 660    uint64_t exclusive_addr;
 661    uint64_t exclusive_val;
 662    uint64_t exclusive_high;
 663
 664    /* iwMMXt coprocessor state.  */
 665    struct {
 666        uint64_t regs[16];
 667        uint64_t val;
 668
 669        uint32_t cregs[16];
 670    } iwmmxt;
 671
 672#ifdef TARGET_AARCH64
 673    struct {
 674        ARMPACKey apia;
 675        ARMPACKey apib;
 676        ARMPACKey apda;
 677        ARMPACKey apdb;
 678        ARMPACKey apga;
 679    } keys;
 680#endif
 681
 682#if defined(CONFIG_USER_ONLY)
 683    /* For usermode syscall translation.  */
 684    int eabi;
 685#endif
 686
 687    struct CPUBreakpoint *cpu_breakpoint[16];
 688    struct CPUWatchpoint *cpu_watchpoint[16];
 689
 690    /* Fields up to this point are cleared by a CPU reset */
 691    struct {} end_reset_fields;
 692
 693    /* Fields after this point are preserved across CPU reset. */
 694
 695    /* Internal CPU feature flags.  */
 696    uint64_t features;
 697
 698    /* PMSAv7 MPU */
 699    struct {
 700        uint32_t *drbar;
 701        uint32_t *drsr;
 702        uint32_t *dracr;
 703        uint32_t rnr[M_REG_NUM_BANKS];
 704    } pmsav7;
 705
 706    /* PMSAv8 MPU */
 707    struct {
 708        /* The PMSAv8 implementation also shares some PMSAv7 config
 709         * and state:
 710         *  pmsav7.rnr (region number register)
 711         *  pmsav7_dregion (number of configured regions)
 712         */
 713        uint32_t *rbar[M_REG_NUM_BANKS];
 714        uint32_t *rlar[M_REG_NUM_BANKS];
 715        uint32_t mair0[M_REG_NUM_BANKS];
 716        uint32_t mair1[M_REG_NUM_BANKS];
 717    } pmsav8;
 718
 719    /* v8M SAU */
 720    struct {
 721        uint32_t *rbar;
 722        uint32_t *rlar;
 723        uint32_t rnr;
 724        uint32_t ctrl;
 725    } sau;
 726
 727    void *nvic;
 728    const struct arm_boot_info *boot_info;
 729    /* Store GICv3CPUState to access from this struct */
 730    void *gicv3state;
 731
 732#ifdef TARGET_TAGGED_ADDRESSES
 733    /* Linux syscall tagged address support */
 734    bool tagged_addr_enable;
 735#endif
 736} CPUARMState;
 737
 738static inline void set_feature(CPUARMState *env, int feature)
 739{
 740    env->features |= 1ULL << feature;
 741}
 742
 743static inline void unset_feature(CPUARMState *env, int feature)
 744{
 745    env->features &= ~(1ULL << feature);
 746}
 747
 748/**
 749 * ARMELChangeHookFn:
 750 * type of a function which can be registered via arm_register_el_change_hook()
 751 * to get callbacks when the CPU changes its exception level or mode.
 752 */
 753typedef void ARMELChangeHookFn(ARMCPU *cpu, void *opaque);
 754typedef struct ARMELChangeHook ARMELChangeHook;
 755struct ARMELChangeHook {
 756    ARMELChangeHookFn *hook;
 757    void *opaque;
 758    QLIST_ENTRY(ARMELChangeHook) node;
 759};
 760
 761/* These values map onto the return values for
 762 * QEMU_PSCI_0_2_FN_AFFINITY_INFO */
 763typedef enum ARMPSCIState {
 764    PSCI_ON = 0,
 765    PSCI_OFF = 1,
 766    PSCI_ON_PENDING = 2
 767} ARMPSCIState;
 768
 769typedef struct ARMISARegisters ARMISARegisters;
 770
 771/**
 772 * ARMCPU:
 773 * @env: #CPUARMState
 774 *
 775 * An ARM CPU core.
 776 */
 777struct ARMCPU {
 778    /*< private >*/
 779    CPUState parent_obj;
 780    /*< public >*/
 781
 782    CPUNegativeOffsetState neg;
 783    CPUARMState env;
 784
 785    /* Coprocessor information */
 786    GHashTable *cp_regs;
 787    /* For marshalling (mostly coprocessor) register state between the
 788     * kernel and QEMU (for KVM) and between two QEMUs (for migration),
 789     * we use these arrays.
 790     */
 791    /* List of register indexes managed via these arrays; (full KVM style
 792     * 64 bit indexes, not CPRegInfo 32 bit indexes)
 793     */
 794    uint64_t *cpreg_indexes;
 795    /* Values of the registers (cpreg_indexes[i]'s value is cpreg_values[i]) */
 796    uint64_t *cpreg_values;
 797    /* Length of the indexes, values, reset_values arrays */
 798    int32_t cpreg_array_len;
 799    /* These are used only for migration: incoming data arrives in
 800     * these fields and is sanity checked in post_load before copying
 801     * to the working data structures above.
 802     */
 803    uint64_t *cpreg_vmstate_indexes;
 804    uint64_t *cpreg_vmstate_values;
 805    int32_t cpreg_vmstate_array_len;
 806
 807    DynamicGDBXMLInfo dyn_sysreg_xml;
 808    DynamicGDBXMLInfo dyn_svereg_xml;
 809
 810    /* Timers used by the generic (architected) timer */
 811    QEMUTimer *gt_timer[NUM_GTIMERS];
 812    /*
 813     * Timer used by the PMU. Its state is restored after migration by
 814     * pmu_op_finish() - it does not need other handling during migration
 815     */
 816    QEMUTimer *pmu_timer;
 817    /* GPIO outputs for generic timer */
 818    qemu_irq gt_timer_outputs[NUM_GTIMERS];
 819    /* GPIO output for GICv3 maintenance interrupt signal */
 820    qemu_irq gicv3_maintenance_interrupt;
 821    /* GPIO output for the PMU interrupt */
 822    qemu_irq pmu_interrupt;
 823
 824    /* MemoryRegion to use for secure physical accesses */
 825    MemoryRegion *secure_memory;
 826
 827    /* MemoryRegion to use for allocation tag accesses */
 828    MemoryRegion *tag_memory;
 829    MemoryRegion *secure_tag_memory;
 830
 831    /* For v8M, pointer to the IDAU interface provided by board/SoC */
 832    Object *idau;
 833
 834    /* 'compatible' string for this CPU for Linux device trees */
 835    const char *dtb_compatible;
 836
 837    /* PSCI version for this CPU
 838     * Bits[31:16] = Major Version
 839     * Bits[15:0] = Minor Version
 840     */
 841    uint32_t psci_version;
 842
 843    /* Current power state, access guarded by BQL */
 844    ARMPSCIState power_state;
 845
 846    /* CPU has virtualization extension */
 847    bool has_el2;
 848    /* CPU has security extension */
 849    bool has_el3;
 850    /* CPU has PMU (Performance Monitor Unit) */
 851    bool has_pmu;
 852    /* CPU has VFP */
 853    bool has_vfp;
 854    /* CPU has Neon */
 855    bool has_neon;
 856    /* CPU has M-profile DSP extension */
 857    bool has_dsp;
 858
 859    /* CPU has memory protection unit */
 860    bool has_mpu;
 861    /* PMSAv7 MPU number of supported regions */
 862    uint32_t pmsav7_dregion;
 863    /* v8M SAU number of supported regions */
 864    uint32_t sau_sregion;
 865
 866    /* PSCI conduit used to invoke PSCI methods
 867     * 0 - disabled, 1 - smc, 2 - hvc
 868     */
 869    uint32_t psci_conduit;
 870
 871    /* For v8M, initial value of the Secure VTOR */
 872    uint32_t init_svtor;
 873    /* For v8M, initial value of the Non-secure VTOR */
 874    uint32_t init_nsvtor;
 875
 876    /* [QEMU_]KVM_ARM_TARGET_* constant for this CPU, or
 877     * QEMU_KVM_ARM_TARGET_NONE if the kernel doesn't support this CPU type.
 878     */
 879    uint32_t kvm_target;
 880
 881    /* KVM init features for this CPU */
 882    uint32_t kvm_init_features[7];
 883
 884    /* KVM CPU state */
 885
 886    /* KVM virtual time adjustment */
 887    bool kvm_adjvtime;
 888    bool kvm_vtime_dirty;
 889    uint64_t kvm_vtime;
 890
 891    /* KVM steal time */
 892    OnOffAuto kvm_steal_time;
 893
 894    /* Uniprocessor system with MP extensions */
 895    bool mp_is_up;
 896
 897    /* True if we tried kvm_arm_host_cpu_features() during CPU instance_init
 898     * and the probe failed (so we need to report the error in realize)
 899     */
 900    bool host_cpu_probe_failed;
 901
 902    /* Specify the number of cores in this CPU cluster. Used for the L2CTLR
 903     * register.
 904     */
 905    int32_t core_count;
 906
 907    /* The instance init functions for implementation-specific subclasses
 908     * set these fields to specify the implementation-dependent values of
 909     * various constant registers and reset values of non-constant
 910     * registers.
 911     * Some of these might become QOM properties eventually.
 912     * Field names match the official register names as defined in the
 913     * ARMv7AR ARM Architecture Reference Manual. A reset_ prefix
 914     * is used for reset values of non-constant registers; no reset_
 915     * prefix means a constant register.
 916     * Some of these registers are split out into a substructure that
 917     * is shared with the translators to control the ISA.
 918     *
 919     * Note that if you add an ID register to the ARMISARegisters struct
 920     * you need to also update the 32-bit and 64-bit versions of the
 921     * kvm_arm_get_host_cpu_features() function to correctly populate the
 922     * field by reading the value from the KVM vCPU.
 923     */
 924    struct ARMISARegisters {
 925        uint32_t id_isar0;
 926        uint32_t id_isar1;
 927        uint32_t id_isar2;
 928        uint32_t id_isar3;
 929        uint32_t id_isar4;
 930        uint32_t id_isar5;
 931        uint32_t id_isar6;
 932        uint32_t id_mmfr0;
 933        uint32_t id_mmfr1;
 934        uint32_t id_mmfr2;
 935        uint32_t id_mmfr3;
 936        uint32_t id_mmfr4;
 937        uint32_t id_pfr0;
 938        uint32_t id_pfr1;
 939        uint32_t id_pfr2;
 940        uint32_t mvfr0;
 941        uint32_t mvfr1;
 942        uint32_t mvfr2;
 943        uint32_t id_dfr0;
 944        uint32_t dbgdidr;
 945        uint64_t id_aa64isar0;
 946        uint64_t id_aa64isar1;
 947        uint64_t id_aa64pfr0;
 948        uint64_t id_aa64pfr1;
 949        uint64_t id_aa64mmfr0;
 950        uint64_t id_aa64mmfr1;
 951        uint64_t id_aa64mmfr2;
 952        uint64_t id_aa64dfr0;
 953        uint64_t id_aa64dfr1;
 954        uint64_t id_aa64zfr0;
 955    } isar;
 956    uint64_t midr;
 957    uint32_t revidr;
 958    uint32_t reset_fpsid;
 959    uint64_t ctr;
 960    uint32_t reset_sctlr;
 961    uint64_t pmceid0;
 962    uint64_t pmceid1;
 963    uint32_t id_afr0;
 964    uint64_t id_aa64afr0;
 965    uint64_t id_aa64afr1;
 966    uint64_t clidr;
 967    uint64_t mp_affinity; /* MP ID without feature bits */
 968    /* The elements of this array are the CCSIDR values for each cache,
 969     * in the order L1DCache, L1ICache, L2DCache, L2ICache, etc.
 970     */
 971    uint64_t ccsidr[16];
 972    uint64_t reset_cbar;
 973    uint32_t reset_auxcr;
 974    bool reset_hivecs;
 975
 976    /*
 977     * Intermediate values used during property parsing.
 978     * Once finalized, the values should be read from ID_AA64ISAR1.
 979     */
 980    bool prop_pauth;
 981    bool prop_pauth_impdef;
 982
 983    /* DCZ blocksize, in log_2(words), ie low 4 bits of DCZID_EL0 */
 984    uint32_t dcz_blocksize;
 985    uint64_t rvbar;
 986
 987    /* Configurable aspects of GIC cpu interface (which is part of the CPU) */
 988    int gic_num_lrs; /* number of list registers */
 989    int gic_vpribits; /* number of virtual priority bits */
 990    int gic_vprebits; /* number of virtual preemption bits */
 991
 992    /* Whether the cfgend input is high (i.e. this CPU should reset into
 993     * big-endian mode).  This setting isn't used directly: instead it modifies
 994     * the reset_sctlr value to have SCTLR_B or SCTLR_EE set, depending on the
 995     * architecture version.
 996     */
 997    bool cfgend;
 998
 999    QLIST_HEAD(, ARMELChangeHook) pre_el_change_hooks;
1000    QLIST_HEAD(, ARMELChangeHook) el_change_hooks;
1001
1002    int32_t node_id; /* NUMA node this CPU belongs to */
1003
1004    /* Used to synchronize KVM and QEMU in-kernel device levels */
1005    uint8_t device_irq_level;
1006
1007    /* Used to set the maximum vector length the cpu will support.  */
1008    uint32_t sve_max_vq;
1009
1010#ifdef CONFIG_USER_ONLY
1011    /* Used to set the default vector length at process start. */
1012    uint32_t sve_default_vq;
1013#endif
1014
1015    /*
1016     * In sve_vq_map each set bit is a supported vector length of
1017     * (bit-number + 1) * 16 bytes, i.e. each bit number + 1 is the vector
1018     * length in quadwords.
1019     *
1020     * While processing properties during initialization, corresponding
1021     * sve_vq_init bits are set for bits in sve_vq_map that have been
1022     * set by properties.
1023     *
1024     * Bits set in sve_vq_supported represent valid vector lengths for
1025     * the CPU type.
1026     */
1027    DECLARE_BITMAP(sve_vq_map, ARM_MAX_VQ);
1028    DECLARE_BITMAP(sve_vq_init, ARM_MAX_VQ);
1029    DECLARE_BITMAP(sve_vq_supported, ARM_MAX_VQ);
1030
1031    /* Generic timer counter frequency, in Hz */
1032    uint64_t gt_cntfrq_hz;
1033};
1034
1035unsigned int gt_cntfrq_period_ns(ARMCPU *cpu);
1036
1037void arm_cpu_post_init(Object *obj);
1038
1039uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz);
1040
1041#ifndef CONFIG_USER_ONLY
1042extern const VMStateDescription vmstate_arm_cpu;
1043
1044void arm_cpu_do_interrupt(CPUState *cpu);
1045void arm_v7m_cpu_do_interrupt(CPUState *cpu);
1046#endif /* !CONFIG_USER_ONLY */
1047
1048hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cpu, vaddr addr,
1049                                         MemTxAttrs *attrs);
1050
1051int arm_cpu_gdb_read_register(CPUState *cpu, GByteArray *buf, int reg);
1052int arm_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
1053
1054/*
1055 * Helpers to dynamically generates XML descriptions of the sysregs
1056 * and SVE registers. Returns the number of registers in each set.
1057 */
1058int arm_gen_dynamic_sysreg_xml(CPUState *cpu, int base_reg);
1059int arm_gen_dynamic_svereg_xml(CPUState *cpu, int base_reg);
1060
1061/* Returns the dynamically generated XML for the gdb stub.
1062 * Returns a pointer to the XML contents for the specified XML file or NULL
1063 * if the XML name doesn't match the predefined one.
1064 */
1065const char *arm_gdb_get_dynamic_xml(CPUState *cpu, const char *xmlname);
1066
1067int arm_cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cs,
1068                             int cpuid, void *opaque);
1069int arm_cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cs,
1070                             int cpuid, void *opaque);
1071
1072#ifdef TARGET_AARCH64
1073int aarch64_cpu_gdb_read_register(CPUState *cpu, GByteArray *buf, int reg);
1074int aarch64_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
1075void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq);
1076void aarch64_sve_change_el(CPUARMState *env, int old_el,
1077                           int new_el, bool el0_a64);
1078void aarch64_add_sve_properties(Object *obj);
1079
1080/*
1081 * SVE registers are encoded in KVM's memory in an endianness-invariant format.
1082 * The byte at offset i from the start of the in-memory representation contains
1083 * the bits [(7 + 8 * i) : (8 * i)] of the register value. As this means the
1084 * lowest offsets are stored in the lowest memory addresses, then that nearly
1085 * matches QEMU's representation, which is to use an array of host-endian
1086 * uint64_t's, where the lower offsets are at the lower indices. To complete
1087 * the translation we just need to byte swap the uint64_t's on big-endian hosts.
1088 */
1089static inline uint64_t *sve_bswap64(uint64_t *dst, uint64_t *src, int nr)
1090{
1091#ifdef HOST_WORDS_BIGENDIAN
1092    int i;
1093
1094    for (i = 0; i < nr; ++i) {
1095        dst[i] = bswap64(src[i]);
1096    }
1097
1098    return dst;
1099#else
1100    return src;
1101#endif
1102}
1103
1104#else
1105static inline void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq) { }
1106static inline void aarch64_sve_change_el(CPUARMState *env, int o,
1107                                         int n, bool a)
1108{ }
1109static inline void aarch64_add_sve_properties(Object *obj) { }
1110#endif
1111
1112void aarch64_sync_32_to_64(CPUARMState *env);
1113void aarch64_sync_64_to_32(CPUARMState *env);
1114
1115int fp_exception_el(CPUARMState *env, int cur_el);
1116int sve_exception_el(CPUARMState *env, int cur_el);
1117uint32_t sve_zcr_len_for_el(CPUARMState *env, int el);
1118
1119static inline bool is_a64(CPUARMState *env)
1120{
1121    return env->aarch64;
1122}
1123
1124/**
1125 * pmu_op_start/finish
1126 * @env: CPUARMState
1127 *
1128 * Convert all PMU counters between their delta form (the typical mode when
1129 * they are enabled) and the guest-visible values. These two calls must
1130 * surround any action which might affect the counters.
1131 */
1132void pmu_op_start(CPUARMState *env);
1133void pmu_op_finish(CPUARMState *env);
1134
1135/*
1136 * Called when a PMU counter is due to overflow
1137 */
1138void arm_pmu_timer_cb(void *opaque);
1139
1140/**
1141 * Functions to register as EL change hooks for PMU mode filtering
1142 */
1143void pmu_pre_el_change(ARMCPU *cpu, void *ignored);
1144void pmu_post_el_change(ARMCPU *cpu, void *ignored);
1145
1146/*
1147 * pmu_init
1148 * @cpu: ARMCPU
1149 *
1150 * Initialize the CPU's PMCEID[01]_EL0 registers and associated internal state
1151 * for the current configuration
1152 */
1153void pmu_init(ARMCPU *cpu);
1154
1155/* SCTLR bit meanings. Several bits have been reused in newer
1156 * versions of the architecture; in that case we define constants
1157 * for both old and new bit meanings. Code which tests against those
1158 * bits should probably check or otherwise arrange that the CPU
1159 * is the architectural version it expects.
1160 */
1161#define SCTLR_M       (1U << 0)
1162#define SCTLR_A       (1U << 1)
1163#define SCTLR_C       (1U << 2)
1164#define SCTLR_W       (1U << 3) /* up to v6; RAO in v7 */
1165#define SCTLR_nTLSMD_32 (1U << 3) /* v8.2-LSMAOC, AArch32 only */
1166#define SCTLR_SA      (1U << 3) /* AArch64 only */
1167#define SCTLR_P       (1U << 4) /* up to v5; RAO in v6 and v7 */
1168#define SCTLR_LSMAOE_32 (1U << 4) /* v8.2-LSMAOC, AArch32 only */
1169#define SCTLR_SA0     (1U << 4) /* v8 onward, AArch64 only */
1170#define SCTLR_D       (1U << 5) /* up to v5; RAO in v6 */
1171#define SCTLR_CP15BEN (1U << 5) /* v7 onward */
1172#define SCTLR_L       (1U << 6) /* up to v5; RAO in v6 and v7; RAZ in v8 */
1173#define SCTLR_nAA     (1U << 6) /* when v8.4-LSE is implemented */
1174#define SCTLR_B       (1U << 7) /* up to v6; RAZ in v7 */
1175#define SCTLR_ITD     (1U << 7) /* v8 onward */
1176#define SCTLR_S       (1U << 8) /* up to v6; RAZ in v7 */
1177#define SCTLR_SED     (1U << 8) /* v8 onward */
1178#define SCTLR_R       (1U << 9) /* up to v6; RAZ in v7 */
1179#define SCTLR_UMA     (1U << 9) /* v8 onward, AArch64 only */
1180#define SCTLR_F       (1U << 10) /* up to v6 */
1181#define SCTLR_SW      (1U << 10) /* v7 */
1182#define SCTLR_EnRCTX  (1U << 10) /* in v8.0-PredInv */
1183#define SCTLR_Z       (1U << 11) /* in v7, RES1 in v8 */
1184#define SCTLR_EOS     (1U << 11) /* v8.5-ExS */
1185#define SCTLR_I       (1U << 12)
1186#define SCTLR_V       (1U << 13) /* AArch32 only */
1187#define SCTLR_EnDB    (1U << 13) /* v8.3, AArch64 only */
1188#define SCTLR_RR      (1U << 14) /* up to v7 */
1189#define SCTLR_DZE     (1U << 14) /* v8 onward, AArch64 only */
1190#define SCTLR_L4      (1U << 15) /* up to v6; RAZ in v7 */
1191#define SCTLR_UCT     (1U << 15) /* v8 onward, AArch64 only */
1192#define SCTLR_DT      (1U << 16) /* up to ??, RAO in v6 and v7 */
1193#define SCTLR_nTWI    (1U << 16) /* v8 onward */
1194#define SCTLR_HA      (1U << 17) /* up to v7, RES0 in v8 */
1195#define SCTLR_BR      (1U << 17) /* PMSA only */
1196#define SCTLR_IT      (1U << 18) /* up to ??, RAO in v6 and v7 */
1197#define SCTLR_nTWE    (1U << 18) /* v8 onward */
1198#define SCTLR_WXN     (1U << 19)
1199#define SCTLR_ST      (1U << 20) /* up to ??, RAZ in v6 */
1200#define SCTLR_UWXN    (1U << 20) /* v7 onward, AArch32 only */
1201#define SCTLR_FI      (1U << 21) /* up to v7, v8 RES0 */
1202#define SCTLR_IESB    (1U << 21) /* v8.2-IESB, AArch64 only */
1203#define SCTLR_U       (1U << 22) /* up to v6, RAO in v7 */
1204#define SCTLR_EIS     (1U << 22) /* v8.5-ExS */
1205#define SCTLR_XP      (1U << 23) /* up to v6; v7 onward RAO */
1206#define SCTLR_SPAN    (1U << 23) /* v8.1-PAN */
1207#define SCTLR_VE      (1U << 24) /* up to v7 */
1208#define SCTLR_E0E     (1U << 24) /* v8 onward, AArch64 only */
1209#define SCTLR_EE      (1U << 25)
1210#define SCTLR_L2      (1U << 26) /* up to v6, RAZ in v7 */
1211#define SCTLR_UCI     (1U << 26) /* v8 onward, AArch64 only */
1212#define SCTLR_NMFI    (1U << 27) /* up to v7, RAZ in v7VE and v8 */
1213#define SCTLR_EnDA    (1U << 27) /* v8.3, AArch64 only */
1214#define SCTLR_TRE     (1U << 28) /* AArch32 only */
1215#define SCTLR_nTLSMD_64 (1U << 28) /* v8.2-LSMAOC, AArch64 only */
1216#define SCTLR_AFE     (1U << 29) /* AArch32 only */
1217#define SCTLR_LSMAOE_64 (1U << 29) /* v8.2-LSMAOC, AArch64 only */
1218#define SCTLR_TE      (1U << 30) /* AArch32 only */
1219#define SCTLR_EnIB    (1U << 30) /* v8.3, AArch64 only */
1220#define SCTLR_EnIA    (1U << 31) /* v8.3, AArch64 only */
1221#define SCTLR_DSSBS_32 (1U << 31) /* v8.5, AArch32 only */
1222#define SCTLR_BT0     (1ULL << 35) /* v8.5-BTI */
1223#define SCTLR_BT1     (1ULL << 36) /* v8.5-BTI */
1224#define SCTLR_ITFSB   (1ULL << 37) /* v8.5-MemTag */
1225#define SCTLR_TCF0    (3ULL << 38) /* v8.5-MemTag */
1226#define SCTLR_TCF     (3ULL << 40) /* v8.5-MemTag */
1227#define SCTLR_ATA0    (1ULL << 42) /* v8.5-MemTag */
1228#define SCTLR_ATA     (1ULL << 43) /* v8.5-MemTag */
1229#define SCTLR_DSSBS_64 (1ULL << 44) /* v8.5, AArch64 only */
1230
1231#define CPTR_TCPAC    (1U << 31)
1232#define CPTR_TTA      (1U << 20)
1233#define CPTR_TFP      (1U << 10)
1234#define CPTR_TZ       (1U << 8)   /* CPTR_EL2 */
1235#define CPTR_EZ       (1U << 8)   /* CPTR_EL3 */
1236
1237#define MDCR_EPMAD    (1U << 21)
1238#define MDCR_EDAD     (1U << 20)
1239#define MDCR_SPME     (1U << 17)  /* MDCR_EL3 */
1240#define MDCR_HPMD     (1U << 17)  /* MDCR_EL2 */
1241#define MDCR_SDD      (1U << 16)
1242#define MDCR_SPD      (3U << 14)
1243#define MDCR_TDRA     (1U << 11)
1244#define MDCR_TDOSA    (1U << 10)
1245#define MDCR_TDA      (1U << 9)
1246#define MDCR_TDE      (1U << 8)
1247#define MDCR_HPME     (1U << 7)
1248#define MDCR_TPM      (1U << 6)
1249#define MDCR_TPMCR    (1U << 5)
1250#define MDCR_HPMN     (0x1fU)
1251
1252/* Not all of the MDCR_EL3 bits are present in the 32-bit SDCR */
1253#define SDCR_VALID_MASK (MDCR_EPMAD | MDCR_EDAD | MDCR_SPME | MDCR_SPD)
1254
1255#define CPSR_M (0x1fU)
1256#define CPSR_T (1U << 5)
1257#define CPSR_F (1U << 6)
1258#define CPSR_I (1U << 7)
1259#define CPSR_A (1U << 8)
1260#define CPSR_E (1U << 9)
1261#define CPSR_IT_2_7 (0xfc00U)
1262#define CPSR_GE (0xfU << 16)
1263#define CPSR_IL (1U << 20)
1264#define CPSR_DIT (1U << 21)
1265#define CPSR_PAN (1U << 22)
1266#define CPSR_SSBS (1U << 23)
1267#define CPSR_J (1U << 24)
1268#define CPSR_IT_0_1 (3U << 25)
1269#define CPSR_Q (1U << 27)
1270#define CPSR_V (1U << 28)
1271#define CPSR_C (1U << 29)
1272#define CPSR_Z (1U << 30)
1273#define CPSR_N (1U << 31)
1274#define CPSR_NZCV (CPSR_N | CPSR_Z | CPSR_C | CPSR_V)
1275#define CPSR_AIF (CPSR_A | CPSR_I | CPSR_F)
1276
1277#define CPSR_IT (CPSR_IT_0_1 | CPSR_IT_2_7)
1278#define CACHED_CPSR_BITS (CPSR_T | CPSR_AIF | CPSR_GE | CPSR_IT | CPSR_Q \
1279    | CPSR_NZCV)
1280/* Bits writable in user mode.  */
1281#define CPSR_USER (CPSR_NZCV | CPSR_Q | CPSR_GE | CPSR_E)
1282/* Execution state bits.  MRS read as zero, MSR writes ignored.  */
1283#define CPSR_EXEC (CPSR_T | CPSR_IT | CPSR_J | CPSR_IL)
1284
1285/* Bit definitions for M profile XPSR. Most are the same as CPSR. */
1286#define XPSR_EXCP 0x1ffU
1287#define XPSR_SPREALIGN (1U << 9) /* Only set in exception stack frames */
1288#define XPSR_IT_2_7 CPSR_IT_2_7
1289#define XPSR_GE CPSR_GE
1290#define XPSR_SFPA (1U << 20) /* Only set in exception stack frames */
1291#define XPSR_T (1U << 24) /* Not the same as CPSR_T ! */
1292#define XPSR_IT_0_1 CPSR_IT_0_1
1293#define XPSR_Q CPSR_Q
1294#define XPSR_V CPSR_V
1295#define XPSR_C CPSR_C
1296#define XPSR_Z CPSR_Z
1297#define XPSR_N CPSR_N
1298#define XPSR_NZCV CPSR_NZCV
1299#define XPSR_IT CPSR_IT
1300
1301#define TTBCR_N      (7U << 0) /* TTBCR.EAE==0 */
1302#define TTBCR_T0SZ   (7U << 0) /* TTBCR.EAE==1 */
1303#define TTBCR_PD0    (1U << 4)
1304#define TTBCR_PD1    (1U << 5)
1305#define TTBCR_EPD0   (1U << 7)
1306#define TTBCR_IRGN0  (3U << 8)
1307#define TTBCR_ORGN0  (3U << 10)
1308#define TTBCR_SH0    (3U << 12)
1309#define TTBCR_T1SZ   (3U << 16)
1310#define TTBCR_A1     (1U << 22)
1311#define TTBCR_EPD1   (1U << 23)
1312#define TTBCR_IRGN1  (3U << 24)
1313#define TTBCR_ORGN1  (3U << 26)
1314#define TTBCR_SH1    (1U << 28)
1315#define TTBCR_EAE    (1U << 31)
1316
1317/* Bit definitions for ARMv8 SPSR (PSTATE) format.
1318 * Only these are valid when in AArch64 mode; in
1319 * AArch32 mode SPSRs are basically CPSR-format.
1320 */
1321#define PSTATE_SP (1U)
1322#define PSTATE_M (0xFU)
1323#define PSTATE_nRW (1U << 4)
1324#define PSTATE_F (1U << 6)
1325#define PSTATE_I (1U << 7)
1326#define PSTATE_A (1U << 8)
1327#define PSTATE_D (1U << 9)
1328#define PSTATE_BTYPE (3U << 10)
1329#define PSTATE_SSBS (1U << 12)
1330#define PSTATE_IL (1U << 20)
1331#define PSTATE_SS (1U << 21)
1332#define PSTATE_PAN (1U << 22)
1333#define PSTATE_UAO (1U << 23)
1334#define PSTATE_DIT (1U << 24)
1335#define PSTATE_TCO (1U << 25)
1336#define PSTATE_V (1U << 28)
1337#define PSTATE_C (1U << 29)
1338#define PSTATE_Z (1U << 30)
1339#define PSTATE_N (1U << 31)
1340#define PSTATE_NZCV (PSTATE_N | PSTATE_Z | PSTATE_C | PSTATE_V)
1341#define PSTATE_DAIF (PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F)
1342#define CACHED_PSTATE_BITS (PSTATE_NZCV | PSTATE_DAIF | PSTATE_BTYPE)
1343/* Mode values for AArch64 */
1344#define PSTATE_MODE_EL3h 13
1345#define PSTATE_MODE_EL3t 12
1346#define PSTATE_MODE_EL2h 9
1347#define PSTATE_MODE_EL2t 8
1348#define PSTATE_MODE_EL1h 5
1349#define PSTATE_MODE_EL1t 4
1350#define PSTATE_MODE_EL0t 0
1351
1352/* Write a new value to v7m.exception, thus transitioning into or out
1353 * of Handler mode; this may result in a change of active stack pointer.
1354 */
1355void write_v7m_exception(CPUARMState *env, uint32_t new_exc);
1356
1357/* Map EL and handler into a PSTATE_MODE.  */
1358static inline unsigned int aarch64_pstate_mode(unsigned int el, bool handler)
1359{
1360    return (el << 2) | handler;
1361}
1362
1363/* Return the current PSTATE value. For the moment we don't support 32<->64 bit
1364 * interprocessing, so we don't attempt to sync with the cpsr state used by
1365 * the 32 bit decoder.
1366 */
1367static inline uint32_t pstate_read(CPUARMState *env)
1368{
1369    int ZF;
1370
1371    ZF = (env->ZF == 0);
1372    return (env->NF & 0x80000000) | (ZF << 30)
1373        | (env->CF << 29) | ((env->VF & 0x80000000) >> 3)
1374        | env->pstate | env->daif | (env->btype << 10);
1375}
1376
1377static inline void pstate_write(CPUARMState *env, uint32_t val)
1378{
1379    env->ZF = (~val) & PSTATE_Z;
1380    env->NF = val;
1381    env->CF = (val >> 29) & 1;
1382    env->VF = (val << 3) & 0x80000000;
1383    env->daif = val & PSTATE_DAIF;
1384    env->btype = (val >> 10) & 3;
1385    env->pstate = val & ~CACHED_PSTATE_BITS;
1386}
1387
1388/* Return the current CPSR value.  */
1389uint32_t cpsr_read(CPUARMState *env);
1390
1391typedef enum CPSRWriteType {
1392    CPSRWriteByInstr = 0,         /* from guest MSR or CPS */
1393    CPSRWriteExceptionReturn = 1, /* from guest exception return insn */
1394    CPSRWriteRaw = 2,
1395        /* trust values, no reg bank switch, no hflags rebuild */
1396    CPSRWriteByGDBStub = 3,       /* from the GDB stub */
1397} CPSRWriteType;
1398
1399/*
1400 * Set the CPSR.  Note that some bits of mask must be all-set or all-clear.
1401 * This will do an arm_rebuild_hflags() if any of the bits in @mask
1402 * correspond to TB flags bits cached in the hflags, unless @write_type
1403 * is CPSRWriteRaw.
1404 */
1405void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
1406                CPSRWriteType write_type);
1407
1408/* Return the current xPSR value.  */
1409static inline uint32_t xpsr_read(CPUARMState *env)
1410{
1411    int ZF;
1412    ZF = (env->ZF == 0);
1413    return (env->NF & 0x80000000) | (ZF << 30)
1414        | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
1415        | (env->thumb << 24) | ((env->condexec_bits & 3) << 25)
1416        | ((env->condexec_bits & 0xfc) << 8)
1417        | (env->GE << 16)
1418        | env->v7m.exception;
1419}
1420
1421/* Set the xPSR.  Note that some bits of mask must be all-set or all-clear.  */
1422static inline void xpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
1423{
1424    if (mask & XPSR_NZCV) {
1425        env->ZF = (~val) & XPSR_Z;
1426        env->NF = val;
1427        env->CF = (val >> 29) & 1;
1428        env->VF = (val << 3) & 0x80000000;
1429    }
1430    if (mask & XPSR_Q) {
1431        env->QF = ((val & XPSR_Q) != 0);
1432    }
1433    if (mask & XPSR_GE) {
1434        env->GE = (val & XPSR_GE) >> 16;
1435    }
1436#ifndef CONFIG_USER_ONLY
1437    if (mask & XPSR_T) {
1438        env->thumb = ((val & XPSR_T) != 0);
1439    }
1440    if (mask & XPSR_IT_0_1) {
1441        env->condexec_bits &= ~3;
1442        env->condexec_bits |= (val >> 25) & 3;
1443    }
1444    if (mask & XPSR_IT_2_7) {
1445        env->condexec_bits &= 3;
1446        env->condexec_bits |= (val >> 8) & 0xfc;
1447    }
1448    if (mask & XPSR_EXCP) {
1449        /* Note that this only happens on exception exit */
1450        write_v7m_exception(env, val & XPSR_EXCP);
1451    }
1452#endif
1453}
1454
1455#define HCR_VM        (1ULL << 0)
1456#define HCR_SWIO      (1ULL << 1)
1457#define HCR_PTW       (1ULL << 2)
1458#define HCR_FMO       (1ULL << 3)
1459#define HCR_IMO       (1ULL << 4)
1460#define HCR_AMO       (1ULL << 5)
1461#define HCR_VF        (1ULL << 6)
1462#define HCR_VI        (1ULL << 7)
1463#define HCR_VSE       (1ULL << 8)
1464#define HCR_FB        (1ULL << 9)
1465#define HCR_BSU_MASK  (3ULL << 10)
1466#define HCR_DC        (1ULL << 12)
1467#define HCR_TWI       (1ULL << 13)
1468#define HCR_TWE       (1ULL << 14)
1469#define HCR_TID0      (1ULL << 15)
1470#define HCR_TID1      (1ULL << 16)
1471#define HCR_TID2      (1ULL << 17)
1472#define HCR_TID3      (1ULL << 18)
1473#define HCR_TSC       (1ULL << 19)
1474#define HCR_TIDCP     (1ULL << 20)
1475#define HCR_TACR      (1ULL << 21)
1476#define HCR_TSW       (1ULL << 22)
1477#define HCR_TPCP      (1ULL << 23)
1478#define HCR_TPU       (1ULL << 24)
1479#define HCR_TTLB      (1ULL << 25)
1480#define HCR_TVM       (1ULL << 26)
1481#define HCR_TGE       (1ULL << 27)
1482#define HCR_TDZ       (1ULL << 28)
1483#define HCR_HCD       (1ULL << 29)
1484#define HCR_TRVM      (1ULL << 30)
1485#define HCR_RW        (1ULL << 31)
1486#define HCR_CD        (1ULL << 32)
1487#define HCR_ID        (1ULL << 33)
1488#define HCR_E2H       (1ULL << 34)
1489#define HCR_TLOR      (1ULL << 35)
1490#define HCR_TERR      (1ULL << 36)
1491#define HCR_TEA       (1ULL << 37)
1492#define HCR_MIOCNCE   (1ULL << 38)
1493/* RES0 bit 39 */
1494#define HCR_APK       (1ULL << 40)
1495#define HCR_API       (1ULL << 41)
1496#define HCR_NV        (1ULL << 42)
1497#define HCR_NV1       (1ULL << 43)
1498#define HCR_AT        (1ULL << 44)
1499#define HCR_NV2       (1ULL << 45)
1500#define HCR_FWB       (1ULL << 46)
1501#define HCR_FIEN      (1ULL << 47)
1502/* RES0 bit 48 */
1503#define HCR_TID4      (1ULL << 49)
1504#define HCR_TICAB     (1ULL << 50)
1505#define HCR_AMVOFFEN  (1ULL << 51)
1506#define HCR_TOCU      (1ULL << 52)
1507#define HCR_ENSCXT    (1ULL << 53)
1508#define HCR_TTLBIS    (1ULL << 54)
1509#define HCR_TTLBOS    (1ULL << 55)
1510#define HCR_ATA       (1ULL << 56)
1511#define HCR_DCT       (1ULL << 57)
1512#define HCR_TID5      (1ULL << 58)
1513#define HCR_TWEDEN    (1ULL << 59)
1514#define HCR_TWEDEL    MAKE_64BIT_MASK(60, 4)
1515
1516#define HPFAR_NS      (1ULL << 63)
1517
1518#define SCR_NS                (1U << 0)
1519#define SCR_IRQ               (1U << 1)
1520#define SCR_FIQ               (1U << 2)
1521#define SCR_EA                (1U << 3)
1522#define SCR_FW                (1U << 4)
1523#define SCR_AW                (1U << 5)
1524#define SCR_NET               (1U << 6)
1525#define SCR_SMD               (1U << 7)
1526#define SCR_HCE               (1U << 8)
1527#define SCR_SIF               (1U << 9)
1528#define SCR_RW                (1U << 10)
1529#define SCR_ST                (1U << 11)
1530#define SCR_TWI               (1U << 12)
1531#define SCR_TWE               (1U << 13)
1532#define SCR_TLOR              (1U << 14)
1533#define SCR_TERR              (1U << 15)
1534#define SCR_APK               (1U << 16)
1535#define SCR_API               (1U << 17)
1536#define SCR_EEL2              (1U << 18)
1537#define SCR_EASE              (1U << 19)
1538#define SCR_NMEA              (1U << 20)
1539#define SCR_FIEN              (1U << 21)
1540#define SCR_ENSCXT            (1U << 25)
1541#define SCR_ATA               (1U << 26)
1542
1543#define HSTR_TTEE (1 << 16)
1544#define HSTR_TJDBX (1 << 17)
1545
1546/* Return the current FPSCR value.  */
1547uint32_t vfp_get_fpscr(CPUARMState *env);
1548void vfp_set_fpscr(CPUARMState *env, uint32_t val);
1549
1550/* FPCR, Floating Point Control Register
1551 * FPSR, Floating Poiht Status Register
1552 *
1553 * For A64 the FPSCR is split into two logically distinct registers,
1554 * FPCR and FPSR. However since they still use non-overlapping bits
1555 * we store the underlying state in fpscr and just mask on read/write.
1556 */
1557#define FPSR_MASK 0xf800009f
1558#define FPCR_MASK 0x07ff9f00
1559
1560#define FPCR_IOE    (1 << 8)    /* Invalid Operation exception trap enable */
1561#define FPCR_DZE    (1 << 9)    /* Divide by Zero exception trap enable */
1562#define FPCR_OFE    (1 << 10)   /* Overflow exception trap enable */
1563#define FPCR_UFE    (1 << 11)   /* Underflow exception trap enable */
1564#define FPCR_IXE    (1 << 12)   /* Inexact exception trap enable */
1565#define FPCR_IDE    (1 << 15)   /* Input Denormal exception trap enable */
1566#define FPCR_FZ16   (1 << 19)   /* ARMv8.2+, FP16 flush-to-zero */
1567#define FPCR_RMODE_MASK (3 << 22) /* Rounding mode */
1568#define FPCR_FZ     (1 << 24)   /* Flush-to-zero enable bit */
1569#define FPCR_DN     (1 << 25)   /* Default NaN enable bit */
1570#define FPCR_AHP    (1 << 26)   /* Alternative half-precision */
1571#define FPCR_QC     (1 << 27)   /* Cumulative saturation bit */
1572#define FPCR_V      (1 << 28)   /* FP overflow flag */
1573#define FPCR_C      (1 << 29)   /* FP carry flag */
1574#define FPCR_Z      (1 << 30)   /* FP zero flag */
1575#define FPCR_N      (1 << 31)   /* FP negative flag */
1576
1577#define FPCR_LTPSIZE_SHIFT 16   /* LTPSIZE, M-profile only */
1578#define FPCR_LTPSIZE_MASK (7 << FPCR_LTPSIZE_SHIFT)
1579#define FPCR_LTPSIZE_LENGTH 3
1580
1581#define FPCR_NZCV_MASK (FPCR_N | FPCR_Z | FPCR_C | FPCR_V)
1582#define FPCR_NZCVQC_MASK (FPCR_NZCV_MASK | FPCR_QC)
1583
1584static inline uint32_t vfp_get_fpsr(CPUARMState *env)
1585{
1586    return vfp_get_fpscr(env) & FPSR_MASK;
1587}
1588
1589static inline void vfp_set_fpsr(CPUARMState *env, uint32_t val)
1590{
1591    uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPSR_MASK) | (val & FPSR_MASK);
1592    vfp_set_fpscr(env, new_fpscr);
1593}
1594
1595static inline uint32_t vfp_get_fpcr(CPUARMState *env)
1596{
1597    return vfp_get_fpscr(env) & FPCR_MASK;
1598}
1599
1600static inline void vfp_set_fpcr(CPUARMState *env, uint32_t val)
1601{
1602    uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPCR_MASK) | (val & FPCR_MASK);
1603    vfp_set_fpscr(env, new_fpscr);
1604}
1605
1606enum arm_cpu_mode {
1607  ARM_CPU_MODE_USR = 0x10,
1608  ARM_CPU_MODE_FIQ = 0x11,
1609  ARM_CPU_MODE_IRQ = 0x12,
1610  ARM_CPU_MODE_SVC = 0x13,
1611  ARM_CPU_MODE_MON = 0x16,
1612  ARM_CPU_MODE_ABT = 0x17,
1613  ARM_CPU_MODE_HYP = 0x1a,
1614  ARM_CPU_MODE_UND = 0x1b,
1615  ARM_CPU_MODE_SYS = 0x1f
1616};
1617
1618/* VFP system registers.  */
1619#define ARM_VFP_FPSID   0
1620#define ARM_VFP_FPSCR   1
1621#define ARM_VFP_MVFR2   5
1622#define ARM_VFP_MVFR1   6
1623#define ARM_VFP_MVFR0   7
1624#define ARM_VFP_FPEXC   8
1625#define ARM_VFP_FPINST  9
1626#define ARM_VFP_FPINST2 10
1627/* These ones are M-profile only */
1628#define ARM_VFP_FPSCR_NZCVQC 2
1629#define ARM_VFP_VPR 12
1630#define ARM_VFP_P0 13
1631#define ARM_VFP_FPCXT_NS 14
1632#define ARM_VFP_FPCXT_S 15
1633
1634/* QEMU-internal value meaning "FPSCR, but we care only about NZCV" */
1635#define QEMU_VFP_FPSCR_NZCV 0xffff
1636
1637/* iwMMXt coprocessor control registers.  */
1638#define ARM_IWMMXT_wCID  0
1639#define ARM_IWMMXT_wCon  1
1640#define ARM_IWMMXT_wCSSF 2
1641#define ARM_IWMMXT_wCASF 3
1642#define ARM_IWMMXT_wCGR0 8
1643#define ARM_IWMMXT_wCGR1 9
1644#define ARM_IWMMXT_wCGR2 10
1645#define ARM_IWMMXT_wCGR3 11
1646
1647/* V7M CCR bits */
1648FIELD(V7M_CCR, NONBASETHRDENA, 0, 1)
1649FIELD(V7M_CCR, USERSETMPEND, 1, 1)
1650FIELD(V7M_CCR, UNALIGN_TRP, 3, 1)
1651FIELD(V7M_CCR, DIV_0_TRP, 4, 1)
1652FIELD(V7M_CCR, BFHFNMIGN, 8, 1)
1653FIELD(V7M_CCR, STKALIGN, 9, 1)
1654FIELD(V7M_CCR, STKOFHFNMIGN, 10, 1)
1655FIELD(V7M_CCR, DC, 16, 1)
1656FIELD(V7M_CCR, IC, 17, 1)
1657FIELD(V7M_CCR, BP, 18, 1)
1658FIELD(V7M_CCR, LOB, 19, 1)
1659FIELD(V7M_CCR, TRD, 20, 1)
1660
1661/* V7M SCR bits */
1662FIELD(V7M_SCR, SLEEPONEXIT, 1, 1)
1663FIELD(V7M_SCR, SLEEPDEEP, 2, 1)
1664FIELD(V7M_SCR, SLEEPDEEPS, 3, 1)
1665FIELD(V7M_SCR, SEVONPEND, 4, 1)
1666
1667/* V7M AIRCR bits */
1668FIELD(V7M_AIRCR, VECTRESET, 0, 1)
1669FIELD(V7M_AIRCR, VECTCLRACTIVE, 1, 1)
1670FIELD(V7M_AIRCR, SYSRESETREQ, 2, 1)
1671FIELD(V7M_AIRCR, SYSRESETREQS, 3, 1)
1672FIELD(V7M_AIRCR, PRIGROUP, 8, 3)
1673FIELD(V7M_AIRCR, BFHFNMINS, 13, 1)
1674FIELD(V7M_AIRCR, PRIS, 14, 1)
1675FIELD(V7M_AIRCR, ENDIANNESS, 15, 1)
1676FIELD(V7M_AIRCR, VECTKEY, 16, 16)
1677
1678/* V7M CFSR bits for MMFSR */
1679FIELD(V7M_CFSR, IACCVIOL, 0, 1)
1680FIELD(V7M_CFSR, DACCVIOL, 1, 1)
1681FIELD(V7M_CFSR, MUNSTKERR, 3, 1)
1682FIELD(V7M_CFSR, MSTKERR, 4, 1)
1683FIELD(V7M_CFSR, MLSPERR, 5, 1)
1684FIELD(V7M_CFSR, MMARVALID, 7, 1)
1685
1686/* V7M CFSR bits for BFSR */
1687FIELD(V7M_CFSR, IBUSERR, 8 + 0, 1)
1688FIELD(V7M_CFSR, PRECISERR, 8 + 1, 1)
1689FIELD(V7M_CFSR, IMPRECISERR, 8 + 2, 1)
1690FIELD(V7M_CFSR, UNSTKERR, 8 + 3, 1)
1691FIELD(V7M_CFSR, STKERR, 8 + 4, 1)
1692FIELD(V7M_CFSR, LSPERR, 8 + 5, 1)
1693FIELD(V7M_CFSR, BFARVALID, 8 + 7, 1)
1694
1695/* V7M CFSR bits for UFSR */
1696FIELD(V7M_CFSR, UNDEFINSTR, 16 + 0, 1)
1697FIELD(V7M_CFSR, INVSTATE, 16 + 1, 1)
1698FIELD(V7M_CFSR, INVPC, 16 + 2, 1)
1699FIELD(V7M_CFSR, NOCP, 16 + 3, 1)
1700FIELD(V7M_CFSR, STKOF, 16 + 4, 1)
1701FIELD(V7M_CFSR, UNALIGNED, 16 + 8, 1)
1702FIELD(V7M_CFSR, DIVBYZERO, 16 + 9, 1)
1703
1704/* V7M CFSR bit masks covering all of the subregister bits */
1705FIELD(V7M_CFSR, MMFSR, 0, 8)
1706FIELD(V7M_CFSR, BFSR, 8, 8)
1707FIELD(V7M_CFSR, UFSR, 16, 16)
1708
1709/* V7M HFSR bits */
1710FIELD(V7M_HFSR, VECTTBL, 1, 1)
1711FIELD(V7M_HFSR, FORCED, 30, 1)
1712FIELD(V7M_HFSR, DEBUGEVT, 31, 1)
1713
1714/* V7M DFSR bits */
1715FIELD(V7M_DFSR, HALTED, 0, 1)
1716FIELD(V7M_DFSR, BKPT, 1, 1)
1717FIELD(V7M_DFSR, DWTTRAP, 2, 1)
1718FIELD(V7M_DFSR, VCATCH, 3, 1)
1719FIELD(V7M_DFSR, EXTERNAL, 4, 1)
1720
1721/* V7M SFSR bits */
1722FIELD(V7M_SFSR, INVEP, 0, 1)
1723FIELD(V7M_SFSR, INVIS, 1, 1)
1724FIELD(V7M_SFSR, INVER, 2, 1)
1725FIELD(V7M_SFSR, AUVIOL, 3, 1)
1726FIELD(V7M_SFSR, INVTRAN, 4, 1)
1727FIELD(V7M_SFSR, LSPERR, 5, 1)
1728FIELD(V7M_SFSR, SFARVALID, 6, 1)
1729FIELD(V7M_SFSR, LSERR, 7, 1)
1730
1731/* v7M MPU_CTRL bits */
1732FIELD(V7M_MPU_CTRL, ENABLE, 0, 1)
1733FIELD(V7M_MPU_CTRL, HFNMIENA, 1, 1)
1734FIELD(V7M_MPU_CTRL, PRIVDEFENA, 2, 1)
1735
1736/* v7M CLIDR bits */
1737FIELD(V7M_CLIDR, CTYPE_ALL, 0, 21)
1738FIELD(V7M_CLIDR, LOUIS, 21, 3)
1739FIELD(V7M_CLIDR, LOC, 24, 3)
1740FIELD(V7M_CLIDR, LOUU, 27, 3)
1741FIELD(V7M_CLIDR, ICB, 30, 2)
1742
1743FIELD(V7M_CSSELR, IND, 0, 1)
1744FIELD(V7M_CSSELR, LEVEL, 1, 3)
1745/* We use the combination of InD and Level to index into cpu->ccsidr[];
1746 * define a mask for this and check that it doesn't permit running off
1747 * the end of the array.
1748 */
1749FIELD(V7M_CSSELR, INDEX, 0, 4)
1750
1751/* v7M FPCCR bits */
1752FIELD(V7M_FPCCR, LSPACT, 0, 1)
1753FIELD(V7M_FPCCR, USER, 1, 1)
1754FIELD(V7M_FPCCR, S, 2, 1)
1755FIELD(V7M_FPCCR, THREAD, 3, 1)
1756FIELD(V7M_FPCCR, HFRDY, 4, 1)
1757FIELD(V7M_FPCCR, MMRDY, 5, 1)
1758FIELD(V7M_FPCCR, BFRDY, 6, 1)
1759FIELD(V7M_FPCCR, SFRDY, 7, 1)
1760FIELD(V7M_FPCCR, MONRDY, 8, 1)
1761FIELD(V7M_FPCCR, SPLIMVIOL, 9, 1)
1762FIELD(V7M_FPCCR, UFRDY, 10, 1)
1763FIELD(V7M_FPCCR, RES0, 11, 15)
1764FIELD(V7M_FPCCR, TS, 26, 1)
1765FIELD(V7M_FPCCR, CLRONRETS, 27, 1)
1766FIELD(V7M_FPCCR, CLRONRET, 28, 1)
1767FIELD(V7M_FPCCR, LSPENS, 29, 1)
1768FIELD(V7M_FPCCR, LSPEN, 30, 1)
1769FIELD(V7M_FPCCR, ASPEN, 31, 1)
1770/* These bits are banked. Others are non-banked and live in the M_REG_S bank */
1771#define R_V7M_FPCCR_BANKED_MASK                 \
1772    (R_V7M_FPCCR_LSPACT_MASK |                  \
1773     R_V7M_FPCCR_USER_MASK |                    \
1774     R_V7M_FPCCR_THREAD_MASK |                  \
1775     R_V7M_FPCCR_MMRDY_MASK |                   \
1776     R_V7M_FPCCR_SPLIMVIOL_MASK |               \
1777     R_V7M_FPCCR_UFRDY_MASK |                   \
1778     R_V7M_FPCCR_ASPEN_MASK)
1779
1780/* v7M VPR bits */
1781FIELD(V7M_VPR, P0, 0, 16)
1782FIELD(V7M_VPR, MASK01, 16, 4)
1783FIELD(V7M_VPR, MASK23, 20, 4)
1784
1785/*
1786 * System register ID fields.
1787 */
1788FIELD(CLIDR_EL1, CTYPE1, 0, 3)
1789FIELD(CLIDR_EL1, CTYPE2, 3, 3)
1790FIELD(CLIDR_EL1, CTYPE3, 6, 3)
1791FIELD(CLIDR_EL1, CTYPE4, 9, 3)
1792FIELD(CLIDR_EL1, CTYPE5, 12, 3)
1793FIELD(CLIDR_EL1, CTYPE6, 15, 3)
1794FIELD(CLIDR_EL1, CTYPE7, 18, 3)
1795FIELD(CLIDR_EL1, LOUIS, 21, 3)
1796FIELD(CLIDR_EL1, LOC, 24, 3)
1797FIELD(CLIDR_EL1, LOUU, 27, 3)
1798FIELD(CLIDR_EL1, ICB, 30, 3)
1799
1800/* When FEAT_CCIDX is implemented */
1801FIELD(CCSIDR_EL1, CCIDX_LINESIZE, 0, 3)
1802FIELD(CCSIDR_EL1, CCIDX_ASSOCIATIVITY, 3, 21)
1803FIELD(CCSIDR_EL1, CCIDX_NUMSETS, 32, 24)
1804
1805/* When FEAT_CCIDX is not implemented */
1806FIELD(CCSIDR_EL1, LINESIZE, 0, 3)
1807FIELD(CCSIDR_EL1, ASSOCIATIVITY, 3, 10)
1808FIELD(CCSIDR_EL1, NUMSETS, 13, 15)
1809
1810FIELD(CTR_EL0,  IMINLINE, 0, 4)
1811FIELD(CTR_EL0,  L1IP, 14, 2)
1812FIELD(CTR_EL0,  DMINLINE, 16, 4)
1813FIELD(CTR_EL0,  ERG, 20, 4)
1814FIELD(CTR_EL0,  CWG, 24, 4)
1815FIELD(CTR_EL0,  IDC, 28, 1)
1816FIELD(CTR_EL0,  DIC, 29, 1)
1817FIELD(CTR_EL0,  TMINLINE, 32, 6)
1818
1819FIELD(MIDR_EL1, REVISION, 0, 4)
1820FIELD(MIDR_EL1, PARTNUM, 4, 12)
1821FIELD(MIDR_EL1, ARCHITECTURE, 16, 4)
1822FIELD(MIDR_EL1, VARIANT, 20, 4)
1823FIELD(MIDR_EL1, IMPLEMENTER, 24, 8)
1824
1825FIELD(ID_ISAR0, SWAP, 0, 4)
1826FIELD(ID_ISAR0, BITCOUNT, 4, 4)
1827FIELD(ID_ISAR0, BITFIELD, 8, 4)
1828FIELD(ID_ISAR0, CMPBRANCH, 12, 4)
1829FIELD(ID_ISAR0, COPROC, 16, 4)
1830FIELD(ID_ISAR0, DEBUG, 20, 4)
1831FIELD(ID_ISAR0, DIVIDE, 24, 4)
1832
1833FIELD(ID_ISAR1, ENDIAN, 0, 4)
1834FIELD(ID_ISAR1, EXCEPT, 4, 4)
1835FIELD(ID_ISAR1, EXCEPT_AR, 8, 4)
1836FIELD(ID_ISAR1, EXTEND, 12, 4)
1837FIELD(ID_ISAR1, IFTHEN, 16, 4)
1838FIELD(ID_ISAR1, IMMEDIATE, 20, 4)
1839FIELD(ID_ISAR1, INTERWORK, 24, 4)
1840FIELD(ID_ISAR1, JAZELLE, 28, 4)
1841
1842FIELD(ID_ISAR2, LOADSTORE, 0, 4)
1843FIELD(ID_ISAR2, MEMHINT, 4, 4)
1844FIELD(ID_ISAR2, MULTIACCESSINT, 8, 4)
1845FIELD(ID_ISAR2, MULT, 12, 4)
1846FIELD(ID_ISAR2, MULTS, 16, 4)
1847FIELD(ID_ISAR2, MULTU, 20, 4)
1848FIELD(ID_ISAR2, PSR_AR, 24, 4)
1849FIELD(ID_ISAR2, REVERSAL, 28, 4)
1850
1851FIELD(ID_ISAR3, SATURATE, 0, 4)
1852FIELD(ID_ISAR3, SIMD, 4, 4)
1853FIELD(ID_ISAR3, SVC, 8, 4)
1854FIELD(ID_ISAR3, SYNCHPRIM, 12, 4)
1855FIELD(ID_ISAR3, TABBRANCH, 16, 4)
1856FIELD(ID_ISAR3, T32COPY, 20, 4)
1857FIELD(ID_ISAR3, TRUENOP, 24, 4)
1858FIELD(ID_ISAR3, T32EE, 28, 4)
1859
1860FIELD(ID_ISAR4, UNPRIV, 0, 4)
1861FIELD(ID_ISAR4, WITHSHIFTS, 4, 4)
1862FIELD(ID_ISAR4, WRITEBACK, 8, 4)
1863FIELD(ID_ISAR4, SMC, 12, 4)
1864FIELD(ID_ISAR4, BARRIER, 16, 4)
1865FIELD(ID_ISAR4, SYNCHPRIM_FRAC, 20, 4)
1866FIELD(ID_ISAR4, PSR_M, 24, 4)
1867FIELD(ID_ISAR4, SWP_FRAC, 28, 4)
1868
1869FIELD(ID_ISAR5, SEVL, 0, 4)
1870FIELD(ID_ISAR5, AES, 4, 4)
1871FIELD(ID_ISAR5, SHA1, 8, 4)
1872FIELD(ID_ISAR5, SHA2, 12, 4)
1873FIELD(ID_ISAR5, CRC32, 16, 4)
1874FIELD(ID_ISAR5, RDM, 24, 4)
1875FIELD(ID_ISAR5, VCMA, 28, 4)
1876
1877FIELD(ID_ISAR6, JSCVT, 0, 4)
1878FIELD(ID_ISAR6, DP, 4, 4)
1879FIELD(ID_ISAR6, FHM, 8, 4)
1880FIELD(ID_ISAR6, SB, 12, 4)
1881FIELD(ID_ISAR6, SPECRES, 16, 4)
1882FIELD(ID_ISAR6, BF16, 20, 4)
1883FIELD(ID_ISAR6, I8MM, 24, 4)
1884
1885FIELD(ID_MMFR0, VMSA, 0, 4)
1886FIELD(ID_MMFR0, PMSA, 4, 4)
1887FIELD(ID_MMFR0, OUTERSHR, 8, 4)
1888FIELD(ID_MMFR0, SHARELVL, 12, 4)
1889FIELD(ID_MMFR0, TCM, 16, 4)
1890FIELD(ID_MMFR0, AUXREG, 20, 4)
1891FIELD(ID_MMFR0, FCSE, 24, 4)
1892FIELD(ID_MMFR0, INNERSHR, 28, 4)
1893
1894FIELD(ID_MMFR1, L1HVDVA, 0, 4)
1895FIELD(ID_MMFR1, L1UNIVA, 4, 4)
1896FIELD(ID_MMFR1, L1HVDSW, 8, 4)
1897FIELD(ID_MMFR1, L1UNISW, 12, 4)
1898FIELD(ID_MMFR1, L1HVD, 16, 4)
1899FIELD(ID_MMFR1, L1UNI, 20, 4)
1900FIELD(ID_MMFR1, L1TSTCLN, 24, 4)
1901FIELD(ID_MMFR1, BPRED, 28, 4)
1902
1903FIELD(ID_MMFR2, L1HVDFG, 0, 4)
1904FIELD(ID_MMFR2, L1HVDBG, 4, 4)
1905FIELD(ID_MMFR2, L1HVDRNG, 8, 4)
1906FIELD(ID_MMFR2, HVDTLB, 12, 4)
1907FIELD(ID_MMFR2, UNITLB, 16, 4)
1908FIELD(ID_MMFR2, MEMBARR, 20, 4)
1909FIELD(ID_MMFR2, WFISTALL, 24, 4)
1910FIELD(ID_MMFR2, HWACCFLG, 28, 4)
1911
1912FIELD(ID_MMFR3, CMAINTVA, 0, 4)
1913FIELD(ID_MMFR3, CMAINTSW, 4, 4)
1914FIELD(ID_MMFR3, BPMAINT, 8, 4)
1915FIELD(ID_MMFR3, MAINTBCST, 12, 4)
1916FIELD(ID_MMFR3, PAN, 16, 4)
1917FIELD(ID_MMFR3, COHWALK, 20, 4)
1918FIELD(ID_MMFR3, CMEMSZ, 24, 4)
1919FIELD(ID_MMFR3, SUPERSEC, 28, 4)
1920
1921FIELD(ID_MMFR4, SPECSEI, 0, 4)
1922FIELD(ID_MMFR4, AC2, 4, 4)
1923FIELD(ID_MMFR4, XNX, 8, 4)
1924FIELD(ID_MMFR4, CNP, 12, 4)
1925FIELD(ID_MMFR4, HPDS, 16, 4)
1926FIELD(ID_MMFR4, LSM, 20, 4)
1927FIELD(ID_MMFR4, CCIDX, 24, 4)
1928FIELD(ID_MMFR4, EVT, 28, 4)
1929
1930FIELD(ID_MMFR5, ETS, 0, 4)
1931
1932FIELD(ID_PFR0, STATE0, 0, 4)
1933FIELD(ID_PFR0, STATE1, 4, 4)
1934FIELD(ID_PFR0, STATE2, 8, 4)
1935FIELD(ID_PFR0, STATE3, 12, 4)
1936FIELD(ID_PFR0, CSV2, 16, 4)
1937FIELD(ID_PFR0, AMU, 20, 4)
1938FIELD(ID_PFR0, DIT, 24, 4)
1939FIELD(ID_PFR0, RAS, 28, 4)
1940
1941FIELD(ID_PFR1, PROGMOD, 0, 4)
1942FIELD(ID_PFR1, SECURITY, 4, 4)
1943FIELD(ID_PFR1, MPROGMOD, 8, 4)
1944FIELD(ID_PFR1, VIRTUALIZATION, 12, 4)
1945FIELD(ID_PFR1, GENTIMER, 16, 4)
1946FIELD(ID_PFR1, SEC_FRAC, 20, 4)
1947FIELD(ID_PFR1, VIRT_FRAC, 24, 4)
1948FIELD(ID_PFR1, GIC, 28, 4)
1949
1950FIELD(ID_PFR2, CSV3, 0, 4)
1951FIELD(ID_PFR2, SSBS, 4, 4)
1952FIELD(ID_PFR2, RAS_FRAC, 8, 4)
1953
1954FIELD(ID_AA64ISAR0, AES, 4, 4)
1955FIELD(ID_AA64ISAR0, SHA1, 8, 4)
1956FIELD(ID_AA64ISAR0, SHA2, 12, 4)
1957FIELD(ID_AA64ISAR0, CRC32, 16, 4)
1958FIELD(ID_AA64ISAR0, ATOMIC, 20, 4)
1959FIELD(ID_AA64ISAR0, RDM, 28, 4)
1960FIELD(ID_AA64ISAR0, SHA3, 32, 4)
1961FIELD(ID_AA64ISAR0, SM3, 36, 4)
1962FIELD(ID_AA64ISAR0, SM4, 40, 4)
1963FIELD(ID_AA64ISAR0, DP, 44, 4)
1964FIELD(ID_AA64ISAR0, FHM, 48, 4)
1965FIELD(ID_AA64ISAR0, TS, 52, 4)
1966FIELD(ID_AA64ISAR0, TLB, 56, 4)
1967FIELD(ID_AA64ISAR0, RNDR, 60, 4)
1968
1969FIELD(ID_AA64ISAR1, DPB, 0, 4)
1970FIELD(ID_AA64ISAR1, APA, 4, 4)
1971FIELD(ID_AA64ISAR1, API, 8, 4)
1972FIELD(ID_AA64ISAR1, JSCVT, 12, 4)
1973FIELD(ID_AA64ISAR1, FCMA, 16, 4)
1974FIELD(ID_AA64ISAR1, LRCPC, 20, 4)
1975FIELD(ID_AA64ISAR1, GPA, 24, 4)
1976FIELD(ID_AA64ISAR1, GPI, 28, 4)
1977FIELD(ID_AA64ISAR1, FRINTTS, 32, 4)
1978FIELD(ID_AA64ISAR1, SB, 36, 4)
1979FIELD(ID_AA64ISAR1, SPECRES, 40, 4)
1980FIELD(ID_AA64ISAR1, BF16, 44, 4)
1981FIELD(ID_AA64ISAR1, DGH, 48, 4)
1982FIELD(ID_AA64ISAR1, I8MM, 52, 4)
1983
1984FIELD(ID_AA64PFR0, EL0, 0, 4)
1985FIELD(ID_AA64PFR0, EL1, 4, 4)
1986FIELD(ID_AA64PFR0, EL2, 8, 4)
1987FIELD(ID_AA64PFR0, EL3, 12, 4)
1988FIELD(ID_AA64PFR0, FP, 16, 4)
1989FIELD(ID_AA64PFR0, ADVSIMD, 20, 4)
1990FIELD(ID_AA64PFR0, GIC, 24, 4)
1991FIELD(ID_AA64PFR0, RAS, 28, 4)
1992FIELD(ID_AA64PFR0, SVE, 32, 4)
1993FIELD(ID_AA64PFR0, SEL2, 36, 4)
1994FIELD(ID_AA64PFR0, MPAM, 40, 4)
1995FIELD(ID_AA64PFR0, AMU, 44, 4)
1996FIELD(ID_AA64PFR0, DIT, 48, 4)
1997FIELD(ID_AA64PFR0, CSV2, 56, 4)
1998FIELD(ID_AA64PFR0, CSV3, 60, 4)
1999
2000FIELD(ID_AA64PFR1, BT, 0, 4)
2001FIELD(ID_AA64PFR1, SSBS, 4, 4)
2002FIELD(ID_AA64PFR1, MTE, 8, 4)
2003FIELD(ID_AA64PFR1, RAS_FRAC, 12, 4)
2004FIELD(ID_AA64PFR1, MPAM_FRAC, 16, 4)
2005
2006FIELD(ID_AA64MMFR0, PARANGE, 0, 4)
2007FIELD(ID_AA64MMFR0, ASIDBITS, 4, 4)
2008FIELD(ID_AA64MMFR0, BIGEND, 8, 4)
2009FIELD(ID_AA64MMFR0, SNSMEM, 12, 4)
2010FIELD(ID_AA64MMFR0, BIGENDEL0, 16, 4)
2011FIELD(ID_AA64MMFR0, TGRAN16, 20, 4)
2012FIELD(ID_AA64MMFR0, TGRAN64, 24, 4)
2013FIELD(ID_AA64MMFR0, TGRAN4, 28, 4)
2014FIELD(ID_AA64MMFR0, TGRAN16_2, 32, 4)
2015FIELD(ID_AA64MMFR0, TGRAN64_2, 36, 4)
2016FIELD(ID_AA64MMFR0, TGRAN4_2, 40, 4)
2017FIELD(ID_AA64MMFR0, EXS, 44, 4)
2018FIELD(ID_AA64MMFR0, FGT, 56, 4)
2019FIELD(ID_AA64MMFR0, ECV, 60, 4)
2020
2021FIELD(ID_AA64MMFR1, HAFDBS, 0, 4)
2022FIELD(ID_AA64MMFR1, VMIDBITS, 4, 4)
2023FIELD(ID_AA64MMFR1, VH, 8, 4)
2024FIELD(ID_AA64MMFR1, HPDS, 12, 4)
2025FIELD(ID_AA64MMFR1, LO, 16, 4)
2026FIELD(ID_AA64MMFR1, PAN, 20, 4)
2027FIELD(ID_AA64MMFR1, SPECSEI, 24, 4)
2028FIELD(ID_AA64MMFR1, XNX, 28, 4)
2029FIELD(ID_AA64MMFR1, TWED, 32, 4)
2030FIELD(ID_AA64MMFR1, ETS, 36, 4)
2031
2032FIELD(ID_AA64MMFR2, CNP, 0, 4)
2033FIELD(ID_AA64MMFR2, UAO, 4, 4)
2034FIELD(ID_AA64MMFR2, LSM, 8, 4)
2035FIELD(ID_AA64MMFR2, IESB, 12, 4)
2036FIELD(ID_AA64MMFR2, VARANGE, 16, 4)
2037FIELD(ID_AA64MMFR2, CCIDX, 20, 4)
2038FIELD(ID_AA64MMFR2, NV, 24, 4)
2039FIELD(ID_AA64MMFR2, ST, 28, 4)
2040FIELD(ID_AA64MMFR2, AT, 32, 4)
2041FIELD(ID_AA64MMFR2, IDS, 36, 4)
2042FIELD(ID_AA64MMFR2, FWB, 40, 4)
2043FIELD(ID_AA64MMFR2, TTL, 48, 4)
2044FIELD(ID_AA64MMFR2, BBM, 52, 4)
2045FIELD(ID_AA64MMFR2, EVT, 56, 4)
2046FIELD(ID_AA64MMFR2, E0PD, 60, 4)
2047
2048FIELD(ID_AA64DFR0, DEBUGVER, 0, 4)
2049FIELD(ID_AA64DFR0, TRACEVER, 4, 4)
2050FIELD(ID_AA64DFR0, PMUVER, 8, 4)
2051FIELD(ID_AA64DFR0, BRPS, 12, 4)
2052FIELD(ID_AA64DFR0, WRPS, 20, 4)
2053FIELD(ID_AA64DFR0, CTX_CMPS, 28, 4)
2054FIELD(ID_AA64DFR0, PMSVER, 32, 4)
2055FIELD(ID_AA64DFR0, DOUBLELOCK, 36, 4)
2056FIELD(ID_AA64DFR0, TRACEFILT, 40, 4)
2057FIELD(ID_AA64DFR0, MTPMU, 48, 4)
2058
2059FIELD(ID_AA64ZFR0, SVEVER, 0, 4)
2060FIELD(ID_AA64ZFR0, AES, 4, 4)
2061FIELD(ID_AA64ZFR0, BITPERM, 16, 4)
2062FIELD(ID_AA64ZFR0, BFLOAT16, 20, 4)
2063FIELD(ID_AA64ZFR0, SHA3, 32, 4)
2064FIELD(ID_AA64ZFR0, SM4, 40, 4)
2065FIELD(ID_AA64ZFR0, I8MM, 44, 4)
2066FIELD(ID_AA64ZFR0, F32MM, 52, 4)
2067FIELD(ID_AA64ZFR0, F64MM, 56, 4)
2068
2069FIELD(ID_DFR0, COPDBG, 0, 4)
2070FIELD(ID_DFR0, COPSDBG, 4, 4)
2071FIELD(ID_DFR0, MMAPDBG, 8, 4)
2072FIELD(ID_DFR0, COPTRC, 12, 4)
2073FIELD(ID_DFR0, MMAPTRC, 16, 4)
2074FIELD(ID_DFR0, MPROFDBG, 20, 4)
2075FIELD(ID_DFR0, PERFMON, 24, 4)
2076FIELD(ID_DFR0, TRACEFILT, 28, 4)
2077
2078FIELD(ID_DFR1, MTPMU, 0, 4)
2079
2080FIELD(DBGDIDR, SE_IMP, 12, 1)
2081FIELD(DBGDIDR, NSUHD_IMP, 14, 1)
2082FIELD(DBGDIDR, VERSION, 16, 4)
2083FIELD(DBGDIDR, CTX_CMPS, 20, 4)
2084FIELD(DBGDIDR, BRPS, 24, 4)
2085FIELD(DBGDIDR, WRPS, 28, 4)
2086
2087FIELD(MVFR0, SIMDREG, 0, 4)
2088FIELD(MVFR0, FPSP, 4, 4)
2089FIELD(MVFR0, FPDP, 8, 4)
2090FIELD(MVFR0, FPTRAP, 12, 4)
2091FIELD(MVFR0, FPDIVIDE, 16, 4)
2092FIELD(MVFR0, FPSQRT, 20, 4)
2093FIELD(MVFR0, FPSHVEC, 24, 4)
2094FIELD(MVFR0, FPROUND, 28, 4)
2095
2096FIELD(MVFR1, FPFTZ, 0, 4)
2097FIELD(MVFR1, FPDNAN, 4, 4)
2098FIELD(MVFR1, SIMDLS, 8, 4) /* A-profile only */
2099FIELD(MVFR1, SIMDINT, 12, 4) /* A-profile only */
2100FIELD(MVFR1, SIMDSP, 16, 4) /* A-profile only */
2101FIELD(MVFR1, SIMDHP, 20, 4) /* A-profile only */
2102FIELD(MVFR1, MVE, 8, 4) /* M-profile only */
2103FIELD(MVFR1, FP16, 20, 4) /* M-profile only */
2104FIELD(MVFR1, FPHP, 24, 4)
2105FIELD(MVFR1, SIMDFMAC, 28, 4)
2106
2107FIELD(MVFR2, SIMDMISC, 0, 4)
2108FIELD(MVFR2, FPMISC, 4, 4)
2109
2110QEMU_BUILD_BUG_ON(ARRAY_SIZE(((ARMCPU *)0)->ccsidr) <= R_V7M_CSSELR_INDEX_MASK);
2111
2112/* If adding a feature bit which corresponds to a Linux ELF
2113 * HWCAP bit, remember to update the feature-bit-to-hwcap
2114 * mapping in linux-user/elfload.c:get_elf_hwcap().
2115 */
2116enum arm_features {
2117    ARM_FEATURE_AUXCR,  /* ARM1026 Auxiliary control register.  */
2118    ARM_FEATURE_XSCALE, /* Intel XScale extensions.  */
2119    ARM_FEATURE_IWMMXT, /* Intel iwMMXt extension.  */
2120    ARM_FEATURE_V6,
2121    ARM_FEATURE_V6K,
2122    ARM_FEATURE_V7,
2123    ARM_FEATURE_THUMB2,
2124    ARM_FEATURE_PMSA,   /* no MMU; may have Memory Protection Unit */
2125    ARM_FEATURE_NEON,
2126    ARM_FEATURE_M, /* Microcontroller profile.  */
2127    ARM_FEATURE_OMAPCP, /* OMAP specific CP15 ops handling.  */
2128    ARM_FEATURE_THUMB2EE,
2129    ARM_FEATURE_V7MP,    /* v7 Multiprocessing Extensions */
2130    ARM_FEATURE_V7VE, /* v7 Virtualization Extensions (non-EL2 parts) */
2131    ARM_FEATURE_V4T,
2132    ARM_FEATURE_V5,
2133    ARM_FEATURE_STRONGARM,
2134    ARM_FEATURE_VAPA, /* cp15 VA to PA lookups */
2135    ARM_FEATURE_GENERIC_TIMER,
2136    ARM_FEATURE_MVFR, /* Media and VFP Feature Registers 0 and 1 */
2137    ARM_FEATURE_DUMMY_C15_REGS, /* RAZ/WI all of cp15 crn=15 */
2138    ARM_FEATURE_CACHE_TEST_CLEAN, /* 926/1026 style test-and-clean ops */
2139    ARM_FEATURE_CACHE_DIRTY_REG, /* 1136/1176 cache dirty status register */
2140    ARM_FEATURE_CACHE_BLOCK_OPS, /* v6 optional cache block operations */
2141    ARM_FEATURE_MPIDR, /* has cp15 MPIDR */
2142    ARM_FEATURE_LPAE, /* has Large Physical Address Extension */
2143    ARM_FEATURE_V8,
2144    ARM_FEATURE_AARCH64, /* supports 64 bit mode */
2145    ARM_FEATURE_CBAR, /* has cp15 CBAR */
2146    ARM_FEATURE_CBAR_RO, /* has cp15 CBAR and it is read-only */
2147    ARM_FEATURE_EL2, /* has EL2 Virtualization support */
2148    ARM_FEATURE_EL3, /* has EL3 Secure monitor support */
2149    ARM_FEATURE_THUMB_DSP, /* DSP insns supported in the Thumb encodings */
2150    ARM_FEATURE_PMU, /* has PMU support */
2151    ARM_FEATURE_VBAR, /* has cp15 VBAR */
2152    ARM_FEATURE_M_SECURITY, /* M profile Security Extension */
2153    ARM_FEATURE_M_MAIN, /* M profile Main Extension */
2154    ARM_FEATURE_V8_1M, /* M profile extras only in v8.1M and later */
2155};
2156
2157static inline int arm_feature(CPUARMState *env, int feature)
2158{
2159    return (env->features & (1ULL << feature)) != 0;
2160}
2161
2162void arm_cpu_finalize_features(ARMCPU *cpu, Error **errp);
2163
2164#if !defined(CONFIG_USER_ONLY)
2165/* Return true if exception levels below EL3 are in secure state,
2166 * or would be following an exception return to that level.
2167 * Unlike arm_is_secure() (which is always a question about the
2168 * _current_ state of the CPU) this doesn't care about the current
2169 * EL or mode.
2170 */
2171static inline bool arm_is_secure_below_el3(CPUARMState *env)
2172{
2173    if (arm_feature(env, ARM_FEATURE_EL3)) {
2174        return !(env->cp15.scr_el3 & SCR_NS);
2175    } else {
2176        /* If EL3 is not supported then the secure state is implementation
2177         * defined, in which case QEMU defaults to non-secure.
2178         */
2179        return false;
2180    }
2181}
2182
2183/* Return true if the CPU is AArch64 EL3 or AArch32 Mon */
2184static inline bool arm_is_el3_or_mon(CPUARMState *env)
2185{
2186    if (arm_feature(env, ARM_FEATURE_EL3)) {
2187        if (is_a64(env) && extract32(env->pstate, 2, 2) == 3) {
2188            /* CPU currently in AArch64 state and EL3 */
2189            return true;
2190        } else if (!is_a64(env) &&
2191                (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
2192            /* CPU currently in AArch32 state and monitor mode */
2193            return true;
2194        }
2195    }
2196    return false;
2197}
2198
2199/* Return true if the processor is in secure state */
2200static inline bool arm_is_secure(CPUARMState *env)
2201{
2202    if (arm_is_el3_or_mon(env)) {
2203        return true;
2204    }
2205    return arm_is_secure_below_el3(env);
2206}
2207
2208/*
2209 * Return true if the current security state has AArch64 EL2 or AArch32 Hyp.
2210 * This corresponds to the pseudocode EL2Enabled()
2211 */
2212static inline bool arm_is_el2_enabled(CPUARMState *env)
2213{
2214    if (arm_feature(env, ARM_FEATURE_EL2)) {
2215        if (arm_is_secure_below_el3(env)) {
2216            return (env->cp15.scr_el3 & SCR_EEL2) != 0;
2217        }
2218        return true;
2219    }
2220    return false;
2221}
2222
2223#else
2224static inline bool arm_is_secure_below_el3(CPUARMState *env)
2225{
2226    return false;
2227}
2228
2229static inline bool arm_is_secure(CPUARMState *env)
2230{
2231    return false;
2232}
2233
2234static inline bool arm_is_el2_enabled(CPUARMState *env)
2235{
2236    return false;
2237}
2238#endif
2239
2240/**
2241 * arm_hcr_el2_eff(): Return the effective value of HCR_EL2.
2242 * E.g. when in secure state, fields in HCR_EL2 are suppressed,
2243 * "for all purposes other than a direct read or write access of HCR_EL2."
2244 * Not included here is HCR_RW.
2245 */
2246uint64_t arm_hcr_el2_eff(CPUARMState *env);
2247
2248/* Return true if the specified exception level is running in AArch64 state. */
2249static inline bool arm_el_is_aa64(CPUARMState *env, int el)
2250{
2251    /* This isn't valid for EL0 (if we're in EL0, is_a64() is what you want,
2252     * and if we're not in EL0 then the state of EL0 isn't well defined.)
2253     */
2254    assert(el >= 1 && el <= 3);
2255    bool aa64 = arm_feature(env, ARM_FEATURE_AARCH64);
2256
2257    /* The highest exception level is always at the maximum supported
2258     * register width, and then lower levels have a register width controlled
2259     * by bits in the SCR or HCR registers.
2260     */
2261    if (el == 3) {
2262        return aa64;
2263    }
2264
2265    if (arm_feature(env, ARM_FEATURE_EL3) &&
2266        ((env->cp15.scr_el3 & SCR_NS) || !(env->cp15.scr_el3 & SCR_EEL2))) {
2267        aa64 = aa64 && (env->cp15.scr_el3 & SCR_RW);
2268    }
2269
2270    if (el == 2) {
2271        return aa64;
2272    }
2273
2274    if (arm_is_el2_enabled(env)) {
2275        aa64 = aa64 && (env->cp15.hcr_el2 & HCR_RW);
2276    }
2277
2278    return aa64;
2279}
2280
2281/* Function for determing whether guest cp register reads and writes should
2282 * access the secure or non-secure bank of a cp register.  When EL3 is
2283 * operating in AArch32 state, the NS-bit determines whether the secure
2284 * instance of a cp register should be used. When EL3 is AArch64 (or if
2285 * it doesn't exist at all) then there is no register banking, and all
2286 * accesses are to the non-secure version.
2287 */
2288static inline bool access_secure_reg(CPUARMState *env)
2289{
2290    bool ret = (arm_feature(env, ARM_FEATURE_EL3) &&
2291                !arm_el_is_aa64(env, 3) &&
2292                !(env->cp15.scr_el3 & SCR_NS));
2293
2294    return ret;
2295}
2296
2297/* Macros for accessing a specified CP register bank */
2298#define A32_BANKED_REG_GET(_env, _regname, _secure)    \
2299    ((_secure) ? (_env)->cp15._regname##_s : (_env)->cp15._regname##_ns)
2300
2301#define A32_BANKED_REG_SET(_env, _regname, _secure, _val)   \
2302    do {                                                \
2303        if (_secure) {                                   \
2304            (_env)->cp15._regname##_s = (_val);            \
2305        } else {                                        \
2306            (_env)->cp15._regname##_ns = (_val);           \
2307        }                                               \
2308    } while (0)
2309
2310/* Macros for automatically accessing a specific CP register bank depending on
2311 * the current secure state of the system.  These macros are not intended for
2312 * supporting instruction translation reads/writes as these are dependent
2313 * solely on the SCR.NS bit and not the mode.
2314 */
2315#define A32_BANKED_CURRENT_REG_GET(_env, _regname)        \
2316    A32_BANKED_REG_GET((_env), _regname,                \
2317                       (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)))
2318
2319#define A32_BANKED_CURRENT_REG_SET(_env, _regname, _val)                       \
2320    A32_BANKED_REG_SET((_env), _regname,                                    \
2321                       (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)), \
2322                       (_val))
2323
2324void arm_cpu_list(void);
2325uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
2326                                 uint32_t cur_el, bool secure);
2327
2328/* Interface between CPU and Interrupt controller.  */
2329#ifndef CONFIG_USER_ONLY
2330bool armv7m_nvic_can_take_pending_exception(void *opaque);
2331#else
2332static inline bool armv7m_nvic_can_take_pending_exception(void *opaque)
2333{
2334    return true;
2335}
2336#endif
2337/**
2338 * armv7m_nvic_set_pending: mark the specified exception as pending
2339 * @opaque: the NVIC
2340 * @irq: the exception number to mark pending
2341 * @secure: false for non-banked exceptions or for the nonsecure
2342 * version of a banked exception, true for the secure version of a banked
2343 * exception.
2344 *
2345 * Marks the specified exception as pending. Note that we will assert()
2346 * if @secure is true and @irq does not specify one of the fixed set
2347 * of architecturally banked exceptions.
2348 */
2349void armv7m_nvic_set_pending(void *opaque, int irq, bool secure);
2350/**
2351 * armv7m_nvic_set_pending_derived: mark this derived exception as pending
2352 * @opaque: the NVIC
2353 * @irq: the exception number to mark pending
2354 * @secure: false for non-banked exceptions or for the nonsecure
2355 * version of a banked exception, true for the secure version of a banked
2356 * exception.
2357 *
2358 * Similar to armv7m_nvic_set_pending(), but specifically for derived
2359 * exceptions (exceptions generated in the course of trying to take
2360 * a different exception).
2361 */
2362void armv7m_nvic_set_pending_derived(void *opaque, int irq, bool secure);
2363/**
2364 * armv7m_nvic_set_pending_lazyfp: mark this lazy FP exception as pending
2365 * @opaque: the NVIC
2366 * @irq: the exception number to mark pending
2367 * @secure: false for non-banked exceptions or for the nonsecure
2368 * version of a banked exception, true for the secure version of a banked
2369 * exception.
2370 *
2371 * Similar to armv7m_nvic_set_pending(), but specifically for exceptions
2372 * generated in the course of lazy stacking of FP registers.
2373 */
2374void armv7m_nvic_set_pending_lazyfp(void *opaque, int irq, bool secure);
2375/**
2376 * armv7m_nvic_get_pending_irq_info: return highest priority pending
2377 *    exception, and whether it targets Secure state
2378 * @opaque: the NVIC
2379 * @pirq: set to pending exception number
2380 * @ptargets_secure: set to whether pending exception targets Secure
2381 *
2382 * This function writes the number of the highest priority pending
2383 * exception (the one which would be made active by
2384 * armv7m_nvic_acknowledge_irq()) to @pirq, and sets @ptargets_secure
2385 * to true if the current highest priority pending exception should
2386 * be taken to Secure state, false for NS.
2387 */
2388void armv7m_nvic_get_pending_irq_info(void *opaque, int *pirq,
2389                                      bool *ptargets_secure);
2390/**
2391 * armv7m_nvic_acknowledge_irq: make highest priority pending exception active
2392 * @opaque: the NVIC
2393 *
2394 * Move the current highest priority pending exception from the pending
2395 * state to the active state, and update v7m.exception to indicate that
2396 * it is the exception currently being handled.
2397 */
2398void armv7m_nvic_acknowledge_irq(void *opaque);
2399/**
2400 * armv7m_nvic_complete_irq: complete specified interrupt or exception
2401 * @opaque: the NVIC
2402 * @irq: the exception number to complete
2403 * @secure: true if this exception was secure
2404 *
2405 * Returns: -1 if the irq was not active
2406 *           1 if completing this irq brought us back to base (no active irqs)
2407 *           0 if there is still an irq active after this one was completed
2408 * (Ignoring -1, this is the same as the RETTOBASE value before completion.)
2409 */
2410int armv7m_nvic_complete_irq(void *opaque, int irq, bool secure);
2411/**
2412 * armv7m_nvic_get_ready_status(void *opaque, int irq, bool secure)
2413 * @opaque: the NVIC
2414 * @irq: the exception number to mark pending
2415 * @secure: false for non-banked exceptions or for the nonsecure
2416 * version of a banked exception, true for the secure version of a banked
2417 * exception.
2418 *
2419 * Return whether an exception is "ready", i.e. whether the exception is
2420 * enabled and is configured at a priority which would allow it to
2421 * interrupt the current execution priority. This controls whether the
2422 * RDY bit for it in the FPCCR is set.
2423 */
2424bool armv7m_nvic_get_ready_status(void *opaque, int irq, bool secure);
2425/**
2426 * armv7m_nvic_raw_execution_priority: return the raw execution priority
2427 * @opaque: the NVIC
2428 *
2429 * Returns: the raw execution priority as defined by the v8M architecture.
2430 * This is the execution priority minus the effects of AIRCR.PRIS,
2431 * and minus any PRIMASK/FAULTMASK/BASEPRI priority boosting.
2432 * (v8M ARM ARM I_PKLD.)
2433 */
2434int armv7m_nvic_raw_execution_priority(void *opaque);
2435/**
2436 * armv7m_nvic_neg_prio_requested: return true if the requested execution
2437 * priority is negative for the specified security state.
2438 * @opaque: the NVIC
2439 * @secure: the security state to test
2440 * This corresponds to the pseudocode IsReqExecPriNeg().
2441 */
2442#ifndef CONFIG_USER_ONLY
2443bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure);
2444#else
2445static inline bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure)
2446{
2447    return false;
2448}
2449#endif
2450
2451/* Interface for defining coprocessor registers.
2452 * Registers are defined in tables of arm_cp_reginfo structs
2453 * which are passed to define_arm_cp_regs().
2454 */
2455
2456/* When looking up a coprocessor register we look for it
2457 * via an integer which encodes all of:
2458 *  coprocessor number
2459 *  Crn, Crm, opc1, opc2 fields
2460 *  32 or 64 bit register (ie is it accessed via MRC/MCR
2461 *    or via MRRC/MCRR?)
2462 *  non-secure/secure bank (AArch32 only)
2463 * We allow 4 bits for opc1 because MRRC/MCRR have a 4 bit field.
2464 * (In this case crn and opc2 should be zero.)
2465 * For AArch64, there is no 32/64 bit size distinction;
2466 * instead all registers have a 2 bit op0, 3 bit op1 and op2,
2467 * and 4 bit CRn and CRm. The encoding patterns are chosen
2468 * to be easy to convert to and from the KVM encodings, and also
2469 * so that the hashtable can contain both AArch32 and AArch64
2470 * registers (to allow for interprocessing where we might run
2471 * 32 bit code on a 64 bit core).
2472 */
2473/* This bit is private to our hashtable cpreg; in KVM register
2474 * IDs the AArch64/32 distinction is the KVM_REG_ARM/ARM64
2475 * in the upper bits of the 64 bit ID.
2476 */
2477#define CP_REG_AA64_SHIFT 28
2478#define CP_REG_AA64_MASK (1 << CP_REG_AA64_SHIFT)
2479
2480/* To enable banking of coprocessor registers depending on ns-bit we
2481 * add a bit to distinguish between secure and non-secure cpregs in the
2482 * hashtable.
2483 */
2484#define CP_REG_NS_SHIFT 29
2485#define CP_REG_NS_MASK (1 << CP_REG_NS_SHIFT)
2486
2487#define ENCODE_CP_REG(cp, is64, ns, crn, crm, opc1, opc2)   \
2488    ((ns) << CP_REG_NS_SHIFT | ((cp) << 16) | ((is64) << 15) |   \
2489     ((crn) << 11) | ((crm) << 7) | ((opc1) << 3) | (opc2))
2490
2491#define ENCODE_AA64_CP_REG(cp, crn, crm, op0, op1, op2) \
2492    (CP_REG_AA64_MASK |                                 \
2493     ((cp) << CP_REG_ARM_COPROC_SHIFT) |                \
2494     ((op0) << CP_REG_ARM64_SYSREG_OP0_SHIFT) |         \
2495     ((op1) << CP_REG_ARM64_SYSREG_OP1_SHIFT) |         \
2496     ((crn) << CP_REG_ARM64_SYSREG_CRN_SHIFT) |         \
2497     ((crm) << CP_REG_ARM64_SYSREG_CRM_SHIFT) |         \
2498     ((op2) << CP_REG_ARM64_SYSREG_OP2_SHIFT))
2499
2500/* Convert a full 64 bit KVM register ID to the truncated 32 bit
2501 * version used as a key for the coprocessor register hashtable
2502 */
2503static inline uint32_t kvm_to_cpreg_id(uint64_t kvmid)
2504{
2505    uint32_t cpregid = kvmid;
2506    if ((kvmid & CP_REG_ARCH_MASK) == CP_REG_ARM64) {
2507        cpregid |= CP_REG_AA64_MASK;
2508    } else {
2509        if ((kvmid & CP_REG_SIZE_MASK) == CP_REG_SIZE_U64) {
2510            cpregid |= (1 << 15);
2511        }
2512
2513        /* KVM is always non-secure so add the NS flag on AArch32 register
2514         * entries.
2515         */
2516         cpregid |= 1 << CP_REG_NS_SHIFT;
2517    }
2518    return cpregid;
2519}
2520
2521/* Convert a truncated 32 bit hashtable key into the full
2522 * 64 bit KVM register ID.
2523 */
2524static inline uint64_t cpreg_to_kvm_id(uint32_t cpregid)
2525{
2526    uint64_t kvmid;
2527
2528    if (cpregid & CP_REG_AA64_MASK) {
2529        kvmid = cpregid & ~CP_REG_AA64_MASK;
2530        kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM64;
2531    } else {
2532        kvmid = cpregid & ~(1 << 15);
2533        if (cpregid & (1 << 15)) {
2534            kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM;
2535        } else {
2536            kvmid |= CP_REG_SIZE_U32 | CP_REG_ARM;
2537        }
2538    }
2539    return kvmid;
2540}
2541
2542/* ARMCPRegInfo type field bits. If the SPECIAL bit is set this is a
2543 * special-behaviour cp reg and bits [11..8] indicate what behaviour
2544 * it has. Otherwise it is a simple cp reg, where CONST indicates that
2545 * TCG can assume the value to be constant (ie load at translate time)
2546 * and 64BIT indicates a 64 bit wide coprocessor register. SUPPRESS_TB_END
2547 * indicates that the TB should not be ended after a write to this register
2548 * (the default is that the TB ends after cp writes). OVERRIDE permits
2549 * a register definition to override a previous definition for the
2550 * same (cp, is64, crn, crm, opc1, opc2) tuple: either the new or the
2551 * old must have the OVERRIDE bit set.
2552 * ALIAS indicates that this register is an alias view of some underlying
2553 * state which is also visible via another register, and that the other
2554 * register is handling migration and reset; registers marked ALIAS will not be
2555 * migrated but may have their state set by syncing of register state from KVM.
2556 * NO_RAW indicates that this register has no underlying state and does not
2557 * support raw access for state saving/loading; it will not be used for either
2558 * migration or KVM state synchronization. (Typically this is for "registers"
2559 * which are actually used as instructions for cache maintenance and so on.)
2560 * IO indicates that this register does I/O and therefore its accesses
2561 * need to be marked with gen_io_start() and also end the TB. In particular,
2562 * registers which implement clocks or timers require this.
2563 * RAISES_EXC is for when the read or write hook might raise an exception;
2564 * the generated code will synchronize the CPU state before calling the hook
2565 * so that it is safe for the hook to call raise_exception().
2566 * NEWEL is for writes to registers that might change the exception
2567 * level - typically on older ARM chips. For those cases we need to
2568 * re-read the new el when recomputing the translation flags.
2569 */
2570#define ARM_CP_SPECIAL           0x0001
2571#define ARM_CP_CONST             0x0002
2572#define ARM_CP_64BIT             0x0004
2573#define ARM_CP_SUPPRESS_TB_END   0x0008
2574#define ARM_CP_OVERRIDE          0x0010
2575#define ARM_CP_ALIAS             0x0020
2576#define ARM_CP_IO                0x0040
2577#define ARM_CP_NO_RAW            0x0080
2578#define ARM_CP_NOP               (ARM_CP_SPECIAL | 0x0100)
2579#define ARM_CP_WFI               (ARM_CP_SPECIAL | 0x0200)
2580#define ARM_CP_NZCV              (ARM_CP_SPECIAL | 0x0300)
2581#define ARM_CP_CURRENTEL         (ARM_CP_SPECIAL | 0x0400)
2582#define ARM_CP_DC_ZVA            (ARM_CP_SPECIAL | 0x0500)
2583#define ARM_CP_DC_GVA            (ARM_CP_SPECIAL | 0x0600)
2584#define ARM_CP_DC_GZVA           (ARM_CP_SPECIAL | 0x0700)
2585#define ARM_LAST_SPECIAL         ARM_CP_DC_GZVA
2586#define ARM_CP_FPU               0x1000
2587#define ARM_CP_SVE               0x2000
2588#define ARM_CP_NO_GDB            0x4000
2589#define ARM_CP_RAISES_EXC        0x8000
2590#define ARM_CP_NEWEL             0x10000
2591/* Used only as a terminator for ARMCPRegInfo lists */
2592#define ARM_CP_SENTINEL          0xfffff
2593/* Mask of only the flag bits in a type field */
2594#define ARM_CP_FLAG_MASK         0x1f0ff
2595
2596/* Valid values for ARMCPRegInfo state field, indicating which of
2597 * the AArch32 and AArch64 execution states this register is visible in.
2598 * If the reginfo doesn't explicitly specify then it is AArch32 only.
2599 * If the reginfo is declared to be visible in both states then a second
2600 * reginfo is synthesised for the AArch32 view of the AArch64 register,
2601 * such that the AArch32 view is the lower 32 bits of the AArch64 one.
2602 * Note that we rely on the values of these enums as we iterate through
2603 * the various states in some places.
2604 */
2605enum {
2606    ARM_CP_STATE_AA32 = 0,
2607    ARM_CP_STATE_AA64 = 1,
2608    ARM_CP_STATE_BOTH = 2,
2609};
2610
2611/* ARM CP register secure state flags.  These flags identify security state
2612 * attributes for a given CP register entry.
2613 * The existence of both or neither secure and non-secure flags indicates that
2614 * the register has both a secure and non-secure hash entry.  A single one of
2615 * these flags causes the register to only be hashed for the specified
2616 * security state.
2617 * Although definitions may have any combination of the S/NS bits, each
2618 * registered entry will only have one to identify whether the entry is secure
2619 * or non-secure.
2620 */
2621enum {
2622    ARM_CP_SECSTATE_S =   (1 << 0), /* bit[0]: Secure state register */
2623    ARM_CP_SECSTATE_NS =  (1 << 1), /* bit[1]: Non-secure state register */
2624};
2625
2626/* Return true if cptype is a valid type field. This is used to try to
2627 * catch errors where the sentinel has been accidentally left off the end
2628 * of a list of registers.
2629 */
2630static inline bool cptype_valid(int cptype)
2631{
2632    return ((cptype & ~ARM_CP_FLAG_MASK) == 0)
2633        || ((cptype & ARM_CP_SPECIAL) &&
2634            ((cptype & ~ARM_CP_FLAG_MASK) <= ARM_LAST_SPECIAL));
2635}
2636
2637/* Access rights:
2638 * We define bits for Read and Write access for what rev C of the v7-AR ARM ARM
2639 * defines as PL0 (user), PL1 (fiq/irq/svc/abt/und/sys, ie privileged), and
2640 * PL2 (hyp). The other level which has Read and Write bits is Secure PL1
2641 * (ie any of the privileged modes in Secure state, or Monitor mode).
2642 * If a register is accessible in one privilege level it's always accessible
2643 * in higher privilege levels too. Since "Secure PL1" also follows this rule
2644 * (ie anything visible in PL2 is visible in S-PL1, some things are only
2645 * visible in S-PL1) but "Secure PL1" is a bit of a mouthful, we bend the
2646 * terminology a little and call this PL3.
2647 * In AArch64 things are somewhat simpler as the PLx bits line up exactly
2648 * with the ELx exception levels.
2649 *
2650 * If access permissions for a register are more complex than can be
2651 * described with these bits, then use a laxer set of restrictions, and
2652 * do the more restrictive/complex check inside a helper function.
2653 */
2654#define PL3_R 0x80
2655#define PL3_W 0x40
2656#define PL2_R (0x20 | PL3_R)
2657#define PL2_W (0x10 | PL3_W)
2658#define PL1_R (0x08 | PL2_R)
2659#define PL1_W (0x04 | PL2_W)
2660#define PL0_R (0x02 | PL1_R)
2661#define PL0_W (0x01 | PL1_W)
2662
2663/*
2664 * For user-mode some registers are accessible to EL0 via a kernel
2665 * trap-and-emulate ABI. In this case we define the read permissions
2666 * as actually being PL0_R. However some bits of any given register
2667 * may still be masked.
2668 */
2669#ifdef CONFIG_USER_ONLY
2670#define PL0U_R PL0_R
2671#else
2672#define PL0U_R PL1_R
2673#endif
2674
2675#define PL3_RW (PL3_R | PL3_W)
2676#define PL2_RW (PL2_R | PL2_W)
2677#define PL1_RW (PL1_R | PL1_W)
2678#define PL0_RW (PL0_R | PL0_W)
2679
2680/* Return the highest implemented Exception Level */
2681static inline int arm_highest_el(CPUARMState *env)
2682{
2683    if (arm_feature(env, ARM_FEATURE_EL3)) {
2684        return 3;
2685    }
2686    if (arm_feature(env, ARM_FEATURE_EL2)) {
2687        return 2;
2688    }
2689    return 1;
2690}
2691
2692/* Return true if a v7M CPU is in Handler mode */
2693static inline bool arm_v7m_is_handler_mode(CPUARMState *env)
2694{
2695    return env->v7m.exception != 0;
2696}
2697
2698/* Return the current Exception Level (as per ARMv8; note that this differs
2699 * from the ARMv7 Privilege Level).
2700 */
2701static inline int arm_current_el(CPUARMState *env)
2702{
2703    if (arm_feature(env, ARM_FEATURE_M)) {
2704        return arm_v7m_is_handler_mode(env) ||
2705            !(env->v7m.control[env->v7m.secure] & 1);
2706    }
2707
2708    if (is_a64(env)) {
2709        return extract32(env->pstate, 2, 2);
2710    }
2711
2712    switch (env->uncached_cpsr & 0x1f) {
2713    case ARM_CPU_MODE_USR:
2714        return 0;
2715    case ARM_CPU_MODE_HYP:
2716        return 2;
2717    case ARM_CPU_MODE_MON:
2718        return 3;
2719    default:
2720        if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
2721            /* If EL3 is 32-bit then all secure privileged modes run in
2722             * EL3
2723             */
2724            return 3;
2725        }
2726
2727        return 1;
2728    }
2729}
2730
2731typedef struct ARMCPRegInfo ARMCPRegInfo;
2732
2733typedef enum CPAccessResult {
2734    /* Access is permitted */
2735    CP_ACCESS_OK = 0,
2736    /* Access fails due to a configurable trap or enable which would
2737     * result in a categorized exception syndrome giving information about
2738     * the failing instruction (ie syndrome category 0x3, 0x4, 0x5, 0x6,
2739     * 0xc or 0x18). The exception is taken to the usual target EL (EL1 or
2740     * PL1 if in EL0, otherwise to the current EL).
2741     */
2742    CP_ACCESS_TRAP = 1,
2743    /* Access fails and results in an exception syndrome 0x0 ("uncategorized").
2744     * Note that this is not a catch-all case -- the set of cases which may
2745     * result in this failure is specifically defined by the architecture.
2746     */
2747    CP_ACCESS_TRAP_UNCATEGORIZED = 2,
2748    /* As CP_ACCESS_TRAP, but for traps directly to EL2 or EL3 */
2749    CP_ACCESS_TRAP_EL2 = 3,
2750    CP_ACCESS_TRAP_EL3 = 4,
2751    /* As CP_ACCESS_UNCATEGORIZED, but for traps directly to EL2 or EL3 */
2752    CP_ACCESS_TRAP_UNCATEGORIZED_EL2 = 5,
2753    CP_ACCESS_TRAP_UNCATEGORIZED_EL3 = 6,
2754    /* Access fails and results in an exception syndrome for an FP access,
2755     * trapped directly to EL2 or EL3
2756     */
2757    CP_ACCESS_TRAP_FP_EL2 = 7,
2758    CP_ACCESS_TRAP_FP_EL3 = 8,
2759} CPAccessResult;
2760
2761/* Access functions for coprocessor registers. These cannot fail and
2762 * may not raise exceptions.
2763 */
2764typedef uint64_t CPReadFn(CPUARMState *env, const ARMCPRegInfo *opaque);
2765typedef void CPWriteFn(CPUARMState *env, const ARMCPRegInfo *opaque,
2766                       uint64_t value);
2767/* Access permission check functions for coprocessor registers. */
2768typedef CPAccessResult CPAccessFn(CPUARMState *env,
2769                                  const ARMCPRegInfo *opaque,
2770                                  bool isread);
2771/* Hook function for register reset */
2772typedef void CPResetFn(CPUARMState *env, const ARMCPRegInfo *opaque);
2773
2774#define CP_ANY 0xff
2775
2776/* Definition of an ARM coprocessor register */
2777struct ARMCPRegInfo {
2778    /* Name of register (useful mainly for debugging, need not be unique) */
2779    const char *name;
2780    /* Location of register: coprocessor number and (crn,crm,opc1,opc2)
2781     * tuple. Any of crm, opc1 and opc2 may be CP_ANY to indicate a
2782     * 'wildcard' field -- any value of that field in the MRC/MCR insn
2783     * will be decoded to this register. The register read and write
2784     * callbacks will be passed an ARMCPRegInfo with the crn/crm/opc1/opc2
2785     * used by the program, so it is possible to register a wildcard and
2786     * then behave differently on read/write if necessary.
2787     * For 64 bit registers, only crm and opc1 are relevant; crn and opc2
2788     * must both be zero.
2789     * For AArch64-visible registers, opc0 is also used.
2790     * Since there are no "coprocessors" in AArch64, cp is purely used as a
2791     * way to distinguish (for KVM's benefit) guest-visible system registers
2792     * from demuxed ones provided to preserve the "no side effects on
2793     * KVM register read/write from QEMU" semantics. cp==0x13 is guest
2794     * visible (to match KVM's encoding); cp==0 will be converted to
2795     * cp==0x13 when the ARMCPRegInfo is registered, for convenience.
2796     */
2797    uint8_t cp;
2798    uint8_t crn;
2799    uint8_t crm;
2800    uint8_t opc0;
2801    uint8_t opc1;
2802    uint8_t opc2;
2803    /* Execution state in which this register is visible: ARM_CP_STATE_* */
2804    int state;
2805    /* Register type: ARM_CP_* bits/values */
2806    int type;
2807    /* Access rights: PL*_[RW] */
2808    int access;
2809    /* Security state: ARM_CP_SECSTATE_* bits/values */
2810    int secure;
2811    /* The opaque pointer passed to define_arm_cp_regs_with_opaque() when
2812     * this register was defined: can be used to hand data through to the
2813     * register read/write functions, since they are passed the ARMCPRegInfo*.
2814     */
2815    void *opaque;
2816    /* Value of this register, if it is ARM_CP_CONST. Otherwise, if
2817     * fieldoffset is non-zero, the reset value of the register.
2818     */
2819    uint64_t resetvalue;
2820    /* Offset of the field in CPUARMState for this register.
2821     *
2822     * This is not needed if either:
2823     *  1. type is ARM_CP_CONST or one of the ARM_CP_SPECIALs
2824     *  2. both readfn and writefn are specified
2825     */
2826    ptrdiff_t fieldoffset; /* offsetof(CPUARMState, field) */
2827
2828    /* Offsets of the secure and non-secure fields in CPUARMState for the
2829     * register if it is banked.  These fields are only used during the static
2830     * registration of a register.  During hashing the bank associated
2831     * with a given security state is copied to fieldoffset which is used from
2832     * there on out.
2833     *
2834     * It is expected that register definitions use either fieldoffset or
2835     * bank_fieldoffsets in the definition but not both.  It is also expected
2836     * that both bank offsets are set when defining a banked register.  This
2837     * use indicates that a register is banked.
2838     */
2839    ptrdiff_t bank_fieldoffsets[2];
2840
2841    /* Function for making any access checks for this register in addition to
2842     * those specified by the 'access' permissions bits. If NULL, no extra
2843     * checks required. The access check is performed at runtime, not at
2844     * translate time.
2845     */
2846    CPAccessFn *accessfn;
2847    /* Function for handling reads of this register. If NULL, then reads
2848     * will be done by loading from the offset into CPUARMState specified
2849     * by fieldoffset.
2850     */
2851    CPReadFn *readfn;
2852    /* Function for handling writes of this register. If NULL, then writes
2853     * will be done by writing to the offset into CPUARMState specified
2854     * by fieldoffset.
2855     */
2856    CPWriteFn *writefn;
2857    /* Function for doing a "raw" read; used when we need to copy
2858     * coprocessor state to the kernel for KVM or out for
2859     * migration. This only needs to be provided if there is also a
2860     * readfn and it has side effects (for instance clear-on-read bits).
2861     */
2862    CPReadFn *raw_readfn;
2863    /* Function for doing a "raw" write; used when we need to copy KVM
2864     * kernel coprocessor state into userspace, or for inbound
2865     * migration. This only needs to be provided if there is also a
2866     * writefn and it masks out "unwritable" bits or has write-one-to-clear
2867     * or similar behaviour.
2868     */
2869    CPWriteFn *raw_writefn;
2870    /* Function for resetting the register. If NULL, then reset will be done
2871     * by writing resetvalue to the field specified in fieldoffset. If
2872     * fieldoffset is 0 then no reset will be done.
2873     */
2874    CPResetFn *resetfn;
2875
2876    /*
2877     * "Original" writefn and readfn.
2878     * For ARMv8.1-VHE register aliases, we overwrite the read/write
2879     * accessor functions of various EL1/EL0 to perform the runtime
2880     * check for which sysreg should actually be modified, and then
2881     * forwards the operation.  Before overwriting the accessors,
2882     * the original function is copied here, so that accesses that
2883     * really do go to the EL1/EL0 version proceed normally.
2884     * (The corresponding EL2 register is linked via opaque.)
2885     */
2886    CPReadFn *orig_readfn;
2887    CPWriteFn *orig_writefn;
2888};
2889
2890/* Macros which are lvalues for the field in CPUARMState for the
2891 * ARMCPRegInfo *ri.
2892 */
2893#define CPREG_FIELD32(env, ri) \
2894    (*(uint32_t *)((char *)(env) + (ri)->fieldoffset))
2895#define CPREG_FIELD64(env, ri) \
2896    (*(uint64_t *)((char *)(env) + (ri)->fieldoffset))
2897
2898#define REGINFO_SENTINEL { .type = ARM_CP_SENTINEL }
2899
2900void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
2901                                    const ARMCPRegInfo *regs, void *opaque);
2902void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
2903                                       const ARMCPRegInfo *regs, void *opaque);
2904static inline void define_arm_cp_regs(ARMCPU *cpu, const ARMCPRegInfo *regs)
2905{
2906    define_arm_cp_regs_with_opaque(cpu, regs, 0);
2907}
2908static inline void define_one_arm_cp_reg(ARMCPU *cpu, const ARMCPRegInfo *regs)
2909{
2910    define_one_arm_cp_reg_with_opaque(cpu, regs, 0);
2911}
2912const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp);
2913
2914/*
2915 * Definition of an ARM co-processor register as viewed from
2916 * userspace. This is used for presenting sanitised versions of
2917 * registers to userspace when emulating the Linux AArch64 CPU
2918 * ID/feature ABI (advertised as HWCAP_CPUID).
2919 */
2920typedef struct ARMCPRegUserSpaceInfo {
2921    /* Name of register */
2922    const char *name;
2923
2924    /* Is the name actually a glob pattern */
2925    bool is_glob;
2926
2927    /* Only some bits are exported to user space */
2928    uint64_t exported_bits;
2929
2930    /* Fixed bits are applied after the mask */
2931    uint64_t fixed_bits;
2932} ARMCPRegUserSpaceInfo;
2933
2934#define REGUSERINFO_SENTINEL { .name = NULL }
2935
2936void modify_arm_cp_regs(ARMCPRegInfo *regs, const ARMCPRegUserSpaceInfo *mods);
2937
2938/* CPWriteFn that can be used to implement writes-ignored behaviour */
2939void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
2940                         uint64_t value);
2941/* CPReadFn that can be used for read-as-zero behaviour */
2942uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri);
2943
2944/* CPResetFn that does nothing, for use if no reset is required even
2945 * if fieldoffset is non zero.
2946 */
2947void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque);
2948
2949/* Return true if this reginfo struct's field in the cpu state struct
2950 * is 64 bits wide.
2951 */
2952static inline bool cpreg_field_is_64bit(const ARMCPRegInfo *ri)
2953{
2954    return (ri->state == ARM_CP_STATE_AA64) || (ri->type & ARM_CP_64BIT);
2955}
2956
2957static inline bool cp_access_ok(int current_el,
2958                                const ARMCPRegInfo *ri, int isread)
2959{
2960    return (ri->access >> ((current_el * 2) + isread)) & 1;
2961}
2962
2963/* Raw read of a coprocessor register (as needed for migration, etc) */
2964uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri);
2965
2966/**
2967 * write_list_to_cpustate
2968 * @cpu: ARMCPU
2969 *
2970 * For each register listed in the ARMCPU cpreg_indexes list, write
2971 * its value from the cpreg_values list into the ARMCPUState structure.
2972 * This updates TCG's working data structures from KVM data or
2973 * from incoming migration state.
2974 *
2975 * Returns: true if all register values were updated correctly,
2976 * false if some register was unknown or could not be written.
2977 * Note that we do not stop early on failure -- we will attempt
2978 * writing all registers in the list.
2979 */
2980bool write_list_to_cpustate(ARMCPU *cpu);
2981
2982/**
2983 * write_cpustate_to_list:
2984 * @cpu: ARMCPU
2985 * @kvm_sync: true if this is for syncing back to KVM
2986 *
2987 * For each register listed in the ARMCPU cpreg_indexes list, write
2988 * its value from the ARMCPUState structure into the cpreg_values list.
2989 * This is used to copy info from TCG's working data structures into
2990 * KVM or for outbound migration.
2991 *
2992 * @kvm_sync is true if we are doing this in order to sync the
2993 * register state back to KVM. In this case we will only update
2994 * values in the list if the previous list->cpustate sync actually
2995 * successfully wrote the CPU state. Otherwise we will keep the value
2996 * that is in the list.
2997 *
2998 * Returns: true if all register values were read correctly,
2999 * false if some register was unknown or could not be read.
3000 * Note that we do not stop early on failure -- we will attempt
3001 * reading all registers in the list.
3002 */
3003bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync);
3004
3005#define ARM_CPUID_TI915T      0x54029152
3006#define ARM_CPUID_TI925T      0x54029252
3007
3008#define ARM_CPU_TYPE_SUFFIX "-" TYPE_ARM_CPU
3009#define ARM_CPU_TYPE_NAME(name) (name ARM_CPU_TYPE_SUFFIX)
3010#define CPU_RESOLVING_TYPE TYPE_ARM_CPU
3011
3012#define TYPE_ARM_HOST_CPU "host-" TYPE_ARM_CPU
3013
3014#define cpu_list arm_cpu_list
3015
3016/* ARM has the following "translation regimes" (as the ARM ARM calls them):
3017 *
3018 * If EL3 is 64-bit:
3019 *  + NonSecure EL1 & 0 stage 1
3020 *  + NonSecure EL1 & 0 stage 2
3021 *  + NonSecure EL2
3022 *  + NonSecure EL2 & 0   (ARMv8.1-VHE)
3023 *  + Secure EL1 & 0
3024 *  + Secure EL3
3025 * If EL3 is 32-bit:
3026 *  + NonSecure PL1 & 0 stage 1
3027 *  + NonSecure PL1 & 0 stage 2
3028 *  + NonSecure PL2
3029 *  + Secure PL0
3030 *  + Secure PL1
3031 * (reminder: for 32 bit EL3, Secure PL1 is *EL3*, not EL1.)
3032 *
3033 * For QEMU, an mmu_idx is not quite the same as a translation regime because:
3034 *  1. we need to split the "EL1 & 0" and "EL2 & 0" regimes into two mmu_idxes,
3035 *     because they may differ in access permissions even if the VA->PA map is
3036 *     the same
3037 *  2. we want to cache in our TLB the full VA->IPA->PA lookup for a stage 1+2
3038 *     translation, which means that we have one mmu_idx that deals with two
3039 *     concatenated translation regimes [this sort of combined s1+2 TLB is
3040 *     architecturally permitted]
3041 *  3. we don't need to allocate an mmu_idx to translations that we won't be
3042 *     handling via the TLB. The only way to do a stage 1 translation without
3043 *     the immediate stage 2 translation is via the ATS or AT system insns,
3044 *     which can be slow-pathed and always do a page table walk.
3045 *     The only use of stage 2 translations is either as part of an s1+2
3046 *     lookup or when loading the descriptors during a stage 1 page table walk,
3047 *     and in both those cases we don't use the TLB.
3048 *  4. we can also safely fold together the "32 bit EL3" and "64 bit EL3"
3049 *     translation regimes, because they map reasonably well to each other
3050 *     and they can't both be active at the same time.
3051 *  5. we want to be able to use the TLB for accesses done as part of a
3052 *     stage1 page table walk, rather than having to walk the stage2 page
3053 *     table over and over.
3054 *  6. we need separate EL1/EL2 mmu_idx for handling the Privileged Access
3055 *     Never (PAN) bit within PSTATE.
3056 *
3057 * This gives us the following list of cases:
3058 *
3059 * NS EL0 EL1&0 stage 1+2 (aka NS PL0)
3060 * NS EL1 EL1&0 stage 1+2 (aka NS PL1)
3061 * NS EL1 EL1&0 stage 1+2 +PAN
3062 * NS EL0 EL2&0
3063 * NS EL2 EL2&0
3064 * NS EL2 EL2&0 +PAN
3065 * NS EL2 (aka NS PL2)
3066 * S EL0 EL1&0 (aka S PL0)
3067 * S EL1 EL1&0 (not used if EL3 is 32 bit)
3068 * S EL1 EL1&0 +PAN
3069 * S EL3 (aka S PL1)
3070 *
3071 * for a total of 11 different mmu_idx.
3072 *
3073 * R profile CPUs have an MPU, but can use the same set of MMU indexes
3074 * as A profile. They only need to distinguish NS EL0 and NS EL1 (and
3075 * NS EL2 if we ever model a Cortex-R52).
3076 *
3077 * M profile CPUs are rather different as they do not have a true MMU.
3078 * They have the following different MMU indexes:
3079 *  User
3080 *  Privileged
3081 *  User, execution priority negative (ie the MPU HFNMIENA bit may apply)
3082 *  Privileged, execution priority negative (ditto)
3083 * If the CPU supports the v8M Security Extension then there are also:
3084 *  Secure User
3085 *  Secure Privileged
3086 *  Secure User, execution priority negative
3087 *  Secure Privileged, execution priority negative
3088 *
3089 * The ARMMMUIdx and the mmu index value used by the core QEMU TLB code
3090 * are not quite the same -- different CPU types (most notably M profile
3091 * vs A/R profile) would like to use MMU indexes with different semantics,
3092 * but since we don't ever need to use all of those in a single CPU we
3093 * can avoid having to set NB_MMU_MODES to "total number of A profile MMU
3094 * modes + total number of M profile MMU modes". The lower bits of
3095 * ARMMMUIdx are the core TLB mmu index, and the higher bits are always
3096 * the same for any particular CPU.
3097 * Variables of type ARMMUIdx are always full values, and the core
3098 * index values are in variables of type 'int'.
3099 *
3100 * Our enumeration includes at the end some entries which are not "true"
3101 * mmu_idx values in that they don't have corresponding TLBs and are only
3102 * valid for doing slow path page table walks.
3103 *
3104 * The constant names here are patterned after the general style of the names
3105 * of the AT/ATS operations.
3106 * The values used are carefully arranged to make mmu_idx => EL lookup easy.
3107 * For M profile we arrange them to have a bit for priv, a bit for negpri
3108 * and a bit for secure.
3109 */
3110#define ARM_MMU_IDX_A     0x10  /* A profile */
3111#define ARM_MMU_IDX_NOTLB 0x20  /* does not have a TLB */
3112#define ARM_MMU_IDX_M     0x40  /* M profile */
3113
3114/* Meanings of the bits for A profile mmu idx values */
3115#define ARM_MMU_IDX_A_NS     0x8
3116
3117/* Meanings of the bits for M profile mmu idx values */
3118#define ARM_MMU_IDX_M_PRIV   0x1
3119#define ARM_MMU_IDX_M_NEGPRI 0x2
3120#define ARM_MMU_IDX_M_S      0x4  /* Secure */
3121
3122#define ARM_MMU_IDX_TYPE_MASK \
3123    (ARM_MMU_IDX_A | ARM_MMU_IDX_M | ARM_MMU_IDX_NOTLB)
3124#define ARM_MMU_IDX_COREIDX_MASK 0xf
3125
3126typedef enum ARMMMUIdx {
3127    /*
3128     * A-profile.
3129     */
3130    ARMMMUIdx_SE10_0     =  0 | ARM_MMU_IDX_A,
3131    ARMMMUIdx_SE20_0     =  1 | ARM_MMU_IDX_A,
3132    ARMMMUIdx_SE10_1     =  2 | ARM_MMU_IDX_A,
3133    ARMMMUIdx_SE20_2     =  3 | ARM_MMU_IDX_A,
3134    ARMMMUIdx_SE10_1_PAN =  4 | ARM_MMU_IDX_A,
3135    ARMMMUIdx_SE20_2_PAN =  5 | ARM_MMU_IDX_A,
3136    ARMMMUIdx_SE2        =  6 | ARM_MMU_IDX_A,
3137    ARMMMUIdx_SE3        =  7 | ARM_MMU_IDX_A,
3138
3139    ARMMMUIdx_E10_0     = ARMMMUIdx_SE10_0 | ARM_MMU_IDX_A_NS,
3140    ARMMMUIdx_E20_0     = ARMMMUIdx_SE20_0 | ARM_MMU_IDX_A_NS,
3141    ARMMMUIdx_E10_1     = ARMMMUIdx_SE10_1 | ARM_MMU_IDX_A_NS,
3142    ARMMMUIdx_E20_2     = ARMMMUIdx_SE20_2 | ARM_MMU_IDX_A_NS,
3143    ARMMMUIdx_E10_1_PAN = ARMMMUIdx_SE10_1_PAN | ARM_MMU_IDX_A_NS,
3144    ARMMMUIdx_E20_2_PAN = ARMMMUIdx_SE20_2_PAN | ARM_MMU_IDX_A_NS,
3145    ARMMMUIdx_E2        = ARMMMUIdx_SE2 | ARM_MMU_IDX_A_NS,
3146
3147    /*
3148     * These are not allocated TLBs and are used only for AT system
3149     * instructions or for the first stage of an S12 page table walk.
3150     */
3151    ARMMMUIdx_Stage1_E0 = 0 | ARM_MMU_IDX_NOTLB,
3152    ARMMMUIdx_Stage1_E1 = 1 | ARM_MMU_IDX_NOTLB,
3153    ARMMMUIdx_Stage1_E1_PAN = 2 | ARM_MMU_IDX_NOTLB,
3154    ARMMMUIdx_Stage1_SE0 = 3 | ARM_MMU_IDX_NOTLB,
3155    ARMMMUIdx_Stage1_SE1 = 4 | ARM_MMU_IDX_NOTLB,
3156    ARMMMUIdx_Stage1_SE1_PAN = 5 | ARM_MMU_IDX_NOTLB,
3157    /*
3158     * Not allocated a TLB: used only for second stage of an S12 page
3159     * table walk, or for descriptor loads during first stage of an S1
3160     * page table walk. Note that if we ever want to have a TLB for this
3161     * then various TLB flush insns which currently are no-ops or flush
3162     * only stage 1 MMU indexes will need to change to flush stage 2.
3163     */
3164    ARMMMUIdx_Stage2     = 6 | ARM_MMU_IDX_NOTLB,
3165    ARMMMUIdx_Stage2_S   = 7 | ARM_MMU_IDX_NOTLB,
3166
3167    /*
3168     * M-profile.
3169     */
3170    ARMMMUIdx_MUser = ARM_MMU_IDX_M,
3171    ARMMMUIdx_MPriv = ARM_MMU_IDX_M | ARM_MMU_IDX_M_PRIV,
3172    ARMMMUIdx_MUserNegPri = ARMMMUIdx_MUser | ARM_MMU_IDX_M_NEGPRI,
3173    ARMMMUIdx_MPrivNegPri = ARMMMUIdx_MPriv | ARM_MMU_IDX_M_NEGPRI,
3174    ARMMMUIdx_MSUser = ARMMMUIdx_MUser | ARM_MMU_IDX_M_S,
3175    ARMMMUIdx_MSPriv = ARMMMUIdx_MPriv | ARM_MMU_IDX_M_S,
3176    ARMMMUIdx_MSUserNegPri = ARMMMUIdx_MUserNegPri | ARM_MMU_IDX_M_S,
3177    ARMMMUIdx_MSPrivNegPri = ARMMMUIdx_MPrivNegPri | ARM_MMU_IDX_M_S,
3178} ARMMMUIdx;
3179
3180/*
3181 * Bit macros for the core-mmu-index values for each index,
3182 * for use when calling tlb_flush_by_mmuidx() and friends.
3183 */
3184#define TO_CORE_BIT(NAME) \
3185    ARMMMUIdxBit_##NAME = 1 << (ARMMMUIdx_##NAME & ARM_MMU_IDX_COREIDX_MASK)
3186
3187typedef enum ARMMMUIdxBit {
3188    TO_CORE_BIT(E10_0),
3189    TO_CORE_BIT(E20_0),
3190    TO_CORE_BIT(E10_1),
3191    TO_CORE_BIT(E10_1_PAN),
3192    TO_CORE_BIT(E2),
3193    TO_CORE_BIT(E20_2),
3194    TO_CORE_BIT(E20_2_PAN),
3195    TO_CORE_BIT(SE10_0),
3196    TO_CORE_BIT(SE20_0),
3197    TO_CORE_BIT(SE10_1),
3198    TO_CORE_BIT(SE20_2),
3199    TO_CORE_BIT(SE10_1_PAN),
3200    TO_CORE_BIT(SE20_2_PAN),
3201    TO_CORE_BIT(SE2),
3202    TO_CORE_BIT(SE3),
3203
3204    TO_CORE_BIT(MUser),
3205    TO_CORE_BIT(MPriv),
3206    TO_CORE_BIT(MUserNegPri),
3207    TO_CORE_BIT(MPrivNegPri),
3208    TO_CORE_BIT(MSUser),
3209    TO_CORE_BIT(MSPriv),
3210    TO_CORE_BIT(MSUserNegPri),
3211    TO_CORE_BIT(MSPrivNegPri),
3212} ARMMMUIdxBit;
3213
3214#undef TO_CORE_BIT
3215
3216#define MMU_USER_IDX 0
3217
3218/* Indexes used when registering address spaces with cpu_address_space_init */
3219typedef enum ARMASIdx {
3220    ARMASIdx_NS = 0,
3221    ARMASIdx_S = 1,
3222    ARMASIdx_TagNS = 2,
3223    ARMASIdx_TagS = 3,
3224} ARMASIdx;
3225
3226/* Return the Exception Level targeted by debug exceptions. */
3227static inline int arm_debug_target_el(CPUARMState *env)
3228{
3229    bool secure = arm_is_secure(env);
3230    bool route_to_el2 = false;
3231
3232    if (arm_is_el2_enabled(env)) {
3233        route_to_el2 = env->cp15.hcr_el2 & HCR_TGE ||
3234                       env->cp15.mdcr_el2 & MDCR_TDE;
3235    }
3236
3237    if (route_to_el2) {
3238        return 2;
3239    } else if (arm_feature(env, ARM_FEATURE_EL3) &&
3240               !arm_el_is_aa64(env, 3) && secure) {
3241        return 3;
3242    } else {
3243        return 1;
3244    }
3245}
3246
3247static inline bool arm_v7m_csselr_razwi(ARMCPU *cpu)
3248{
3249    /* If all the CLIDR.Ctypem bits are 0 there are no caches, and
3250     * CSSELR is RAZ/WI.
3251     */
3252    return (cpu->clidr & R_V7M_CLIDR_CTYPE_ALL_MASK) != 0;
3253}
3254
3255/* See AArch64.GenerateDebugExceptionsFrom() in ARM ARM pseudocode */
3256static inline bool aa64_generate_debug_exceptions(CPUARMState *env)
3257{
3258    int cur_el = arm_current_el(env);
3259    int debug_el;
3260
3261    if (cur_el == 3) {
3262        return false;
3263    }
3264
3265    /* MDCR_EL3.SDD disables debug events from Secure state */
3266    if (arm_is_secure_below_el3(env)
3267        && extract32(env->cp15.mdcr_el3, 16, 1)) {
3268        return false;
3269    }
3270
3271    /*
3272     * Same EL to same EL debug exceptions need MDSCR_KDE enabled
3273     * while not masking the (D)ebug bit in DAIF.
3274     */
3275    debug_el = arm_debug_target_el(env);
3276
3277    if (cur_el == debug_el) {
3278        return extract32(env->cp15.mdscr_el1, 13, 1)
3279            && !(env->daif & PSTATE_D);
3280    }
3281
3282    /* Otherwise the debug target needs to be a higher EL */
3283    return debug_el > cur_el;
3284}
3285
3286static inline bool aa32_generate_debug_exceptions(CPUARMState *env)
3287{
3288    int el = arm_current_el(env);
3289
3290    if (el == 0 && arm_el_is_aa64(env, 1)) {
3291        return aa64_generate_debug_exceptions(env);
3292    }
3293
3294    if (arm_is_secure(env)) {
3295        int spd;
3296
3297        if (el == 0 && (env->cp15.sder & 1)) {
3298            /* SDER.SUIDEN means debug exceptions from Secure EL0
3299             * are always enabled. Otherwise they are controlled by
3300             * SDCR.SPD like those from other Secure ELs.
3301             */
3302            return true;
3303        }
3304
3305        spd = extract32(env->cp15.mdcr_el3, 14, 2);
3306        switch (spd) {
3307        case 1:
3308            /* SPD == 0b01 is reserved, but behaves as 0b00. */
3309        case 0:
3310            /* For 0b00 we return true if external secure invasive debug
3311             * is enabled. On real hardware this is controlled by external
3312             * signals to the core. QEMU always permits debug, and behaves
3313             * as if DBGEN, SPIDEN, NIDEN and SPNIDEN are all tied high.
3314             */
3315            return true;
3316        case 2:
3317            return false;
3318        case 3:
3319            return true;
3320        }
3321    }
3322
3323    return el != 2;
3324}
3325
3326/* Return true if debugging exceptions are currently enabled.
3327 * This corresponds to what in ARM ARM pseudocode would be
3328 *    if UsingAArch32() then
3329 *        return AArch32.GenerateDebugExceptions()
3330 *    else
3331 *        return AArch64.GenerateDebugExceptions()
3332 * We choose to push the if() down into this function for clarity,
3333 * since the pseudocode has it at all callsites except for the one in
3334 * CheckSoftwareStep(), where it is elided because both branches would
3335 * always return the same value.
3336 */
3337static inline bool arm_generate_debug_exceptions(CPUARMState *env)
3338{
3339    if (env->aarch64) {
3340        return aa64_generate_debug_exceptions(env);
3341    } else {
3342        return aa32_generate_debug_exceptions(env);
3343    }
3344}
3345
3346/* Is single-stepping active? (Note that the "is EL_D AArch64?" check
3347 * implicitly means this always returns false in pre-v8 CPUs.)
3348 */
3349static inline bool arm_singlestep_active(CPUARMState *env)
3350{
3351    return extract32(env->cp15.mdscr_el1, 0, 1)
3352        && arm_el_is_aa64(env, arm_debug_target_el(env))
3353        && arm_generate_debug_exceptions(env);
3354}
3355
3356static inline bool arm_sctlr_b(CPUARMState *env)
3357{
3358    return
3359        /* We need not implement SCTLR.ITD in user-mode emulation, so
3360         * let linux-user ignore the fact that it conflicts with SCTLR_B.
3361         * This lets people run BE32 binaries with "-cpu any".
3362         */
3363#ifndef CONFIG_USER_ONLY
3364        !arm_feature(env, ARM_FEATURE_V7) &&
3365#endif
3366        (env->cp15.sctlr_el[1] & SCTLR_B) != 0;
3367}
3368
3369uint64_t arm_sctlr(CPUARMState *env, int el);
3370
3371static inline bool arm_cpu_data_is_big_endian_a32(CPUARMState *env,
3372                                                  bool sctlr_b)
3373{
3374#ifdef CONFIG_USER_ONLY
3375    /*
3376     * In system mode, BE32 is modelled in line with the
3377     * architecture (as word-invariant big-endianness), where loads
3378     * and stores are done little endian but from addresses which
3379     * are adjusted by XORing with the appropriate constant. So the
3380     * endianness to use for the raw data access is not affected by
3381     * SCTLR.B.
3382     * In user mode, however, we model BE32 as byte-invariant
3383     * big-endianness (because user-only code cannot tell the
3384     * difference), and so we need to use a data access endianness
3385     * that depends on SCTLR.B.
3386     */
3387    if (sctlr_b) {
3388        return true;
3389    }
3390#endif
3391    /* In 32bit endianness is determined by looking at CPSR's E bit */
3392    return env->uncached_cpsr & CPSR_E;
3393}
3394
3395static inline bool arm_cpu_data_is_big_endian_a64(int el, uint64_t sctlr)
3396{
3397    return sctlr & (el ? SCTLR_EE : SCTLR_E0E);
3398}
3399
3400/* Return true if the processor is in big-endian mode. */
3401static inline bool arm_cpu_data_is_big_endian(CPUARMState *env)
3402{
3403    if (!is_a64(env)) {
3404        return arm_cpu_data_is_big_endian_a32(env, arm_sctlr_b(env));
3405    } else {
3406        int cur_el = arm_current_el(env);
3407        uint64_t sctlr = arm_sctlr(env, cur_el);
3408        return arm_cpu_data_is_big_endian_a64(cur_el, sctlr);
3409    }
3410}
3411
3412typedef CPUARMState CPUArchState;
3413typedef ARMCPU ArchCPU;
3414
3415#include "exec/cpu-all.h"
3416
3417/*
3418 * We have more than 32-bits worth of state per TB, so we split the data
3419 * between tb->flags and tb->cs_base, which is otherwise unused for ARM.
3420 * We collect these two parts in CPUARMTBFlags where they are named
3421 * flags and flags2 respectively.
3422 *
3423 * The flags that are shared between all execution modes, TBFLAG_ANY,
3424 * are stored in flags.  The flags that are specific to a given mode
3425 * are stores in flags2.  Since cs_base is sized on the configured
3426 * address size, flags2 always has 64-bits for A64, and a minimum of
3427 * 32-bits for A32 and M32.
3428 *
3429 * The bits for 32-bit A-profile and M-profile partially overlap:
3430 *
3431 *  31         23         11 10             0
3432 * +-------------+----------+----------------+
3433 * |             |          |   TBFLAG_A32   |
3434 * | TBFLAG_AM32 |          +-----+----------+
3435 * |             |                |TBFLAG_M32|
3436 * +-------------+----------------+----------+
3437 *  31         23                6 5        0
3438 *
3439 * Unless otherwise noted, these bits are cached in env->hflags.
3440 */
3441FIELD(TBFLAG_ANY, AARCH64_STATE, 0, 1)
3442FIELD(TBFLAG_ANY, SS_ACTIVE, 1, 1)
3443FIELD(TBFLAG_ANY, PSTATE__SS, 2, 1)      /* Not cached. */
3444FIELD(TBFLAG_ANY, BE_DATA, 3, 1)
3445FIELD(TBFLAG_ANY, MMUIDX, 4, 4)
3446/* Target EL if we take a floating-point-disabled exception */
3447FIELD(TBFLAG_ANY, FPEXC_EL, 8, 2)
3448/* For A-profile only, target EL for debug exceptions.  */
3449FIELD(TBFLAG_ANY, DEBUG_TARGET_EL, 10, 2)
3450/* Memory operations require alignment: SCTLR_ELx.A or CCR.UNALIGN_TRP */
3451FIELD(TBFLAG_ANY, ALIGN_MEM, 12, 1)
3452FIELD(TBFLAG_ANY, PSTATE__IL, 13, 1)
3453
3454/*
3455 * Bit usage when in AArch32 state, both A- and M-profile.
3456 */
3457FIELD(TBFLAG_AM32, CONDEXEC, 24, 8)      /* Not cached. */
3458FIELD(TBFLAG_AM32, THUMB, 23, 1)         /* Not cached. */
3459
3460/*
3461 * Bit usage when in AArch32 state, for A-profile only.
3462 */
3463FIELD(TBFLAG_A32, VECLEN, 0, 3)         /* Not cached. */
3464FIELD(TBFLAG_A32, VECSTRIDE, 3, 2)     /* Not cached. */
3465/*
3466 * We store the bottom two bits of the CPAR as TB flags and handle
3467 * checks on the other bits at runtime. This shares the same bits as
3468 * VECSTRIDE, which is OK as no XScale CPU has VFP.
3469 * Not cached, because VECLEN+VECSTRIDE are not cached.
3470 */
3471FIELD(TBFLAG_A32, XSCALE_CPAR, 5, 2)
3472FIELD(TBFLAG_A32, VFPEN, 7, 1)         /* Partially cached, minus FPEXC. */
3473FIELD(TBFLAG_A32, SCTLR__B, 8, 1)      /* Cannot overlap with SCTLR_B */
3474FIELD(TBFLAG_A32, HSTR_ACTIVE, 9, 1)
3475/*
3476 * Indicates whether cp register reads and writes by guest code should access
3477 * the secure or nonsecure bank of banked registers; note that this is not
3478 * the same thing as the current security state of the processor!
3479 */
3480FIELD(TBFLAG_A32, NS, 10, 1)
3481
3482/*
3483 * Bit usage when in AArch32 state, for M-profile only.
3484 */
3485/* Handler (ie not Thread) mode */
3486FIELD(TBFLAG_M32, HANDLER, 0, 1)
3487/* Whether we should generate stack-limit checks */
3488FIELD(TBFLAG_M32, STACKCHECK, 1, 1)
3489/* Set if FPCCR.LSPACT is set */
3490FIELD(TBFLAG_M32, LSPACT, 2, 1)                 /* Not cached. */
3491/* Set if we must create a new FP context */
3492FIELD(TBFLAG_M32, NEW_FP_CTXT_NEEDED, 3, 1)     /* Not cached. */
3493/* Set if FPCCR.S does not match current security state */
3494FIELD(TBFLAG_M32, FPCCR_S_WRONG, 4, 1)          /* Not cached. */
3495/* Set if MVE insns are definitely not predicated by VPR or LTPSIZE */
3496FIELD(TBFLAG_M32, MVE_NO_PRED, 5, 1)            /* Not cached. */
3497
3498/*
3499 * Bit usage when in AArch64 state
3500 */
3501FIELD(TBFLAG_A64, TBII, 0, 2)
3502FIELD(TBFLAG_A64, SVEEXC_EL, 2, 2)
3503FIELD(TBFLAG_A64, ZCR_LEN, 4, 4)
3504FIELD(TBFLAG_A64, PAUTH_ACTIVE, 8, 1)
3505FIELD(TBFLAG_A64, BT, 9, 1)
3506FIELD(TBFLAG_A64, BTYPE, 10, 2)         /* Not cached. */
3507FIELD(TBFLAG_A64, TBID, 12, 2)
3508FIELD(TBFLAG_A64, UNPRIV, 14, 1)
3509FIELD(TBFLAG_A64, ATA, 15, 1)
3510FIELD(TBFLAG_A64, TCMA, 16, 2)
3511FIELD(TBFLAG_A64, MTE_ACTIVE, 18, 1)
3512FIELD(TBFLAG_A64, MTE0_ACTIVE, 19, 1)
3513
3514/*
3515 * Helpers for using the above.
3516 */
3517#define DP_TBFLAG_ANY(DST, WHICH, VAL) \
3518    (DST.flags = FIELD_DP32(DST.flags, TBFLAG_ANY, WHICH, VAL))
3519#define DP_TBFLAG_A64(DST, WHICH, VAL) \
3520    (DST.flags2 = FIELD_DP32(DST.flags2, TBFLAG_A64, WHICH, VAL))
3521#define DP_TBFLAG_A32(DST, WHICH, VAL) \
3522    (DST.flags2 = FIELD_DP32(DST.flags2, TBFLAG_A32, WHICH, VAL))
3523#define DP_TBFLAG_M32(DST, WHICH, VAL) \
3524    (DST.flags2 = FIELD_DP32(DST.flags2, TBFLAG_M32, WHICH, VAL))
3525#define DP_TBFLAG_AM32(DST, WHICH, VAL) \
3526    (DST.flags2 = FIELD_DP32(DST.flags2, TBFLAG_AM32, WHICH, VAL))
3527
3528#define EX_TBFLAG_ANY(IN, WHICH)   FIELD_EX32(IN.flags, TBFLAG_ANY, WHICH)
3529#define EX_TBFLAG_A64(IN, WHICH)   FIELD_EX32(IN.flags2, TBFLAG_A64, WHICH)
3530#define EX_TBFLAG_A32(IN, WHICH)   FIELD_EX32(IN.flags2, TBFLAG_A32, WHICH)
3531#define EX_TBFLAG_M32(IN, WHICH)   FIELD_EX32(IN.flags2, TBFLAG_M32, WHICH)
3532#define EX_TBFLAG_AM32(IN, WHICH)  FIELD_EX32(IN.flags2, TBFLAG_AM32, WHICH)
3533
3534/**
3535 * cpu_mmu_index:
3536 * @env: The cpu environment
3537 * @ifetch: True for code access, false for data access.
3538 *
3539 * Return the core mmu index for the current translation regime.
3540 * This function is used by generic TCG code paths.
3541 */
3542static inline int cpu_mmu_index(CPUARMState *env, bool ifetch)
3543{
3544    return EX_TBFLAG_ANY(env->hflags, MMUIDX);
3545}
3546
3547static inline bool bswap_code(bool sctlr_b)
3548{
3549#ifdef CONFIG_USER_ONLY
3550    /* BE8 (SCTLR.B = 0, TARGET_WORDS_BIGENDIAN = 1) is mixed endian.
3551     * The invalid combination SCTLR.B=1/CPSR.E=1/TARGET_WORDS_BIGENDIAN=0
3552     * would also end up as a mixed-endian mode with BE code, LE data.
3553     */
3554    return
3555#ifdef TARGET_WORDS_BIGENDIAN
3556        1 ^
3557#endif
3558        sctlr_b;
3559#else
3560    /* All code access in ARM is little endian, and there are no loaders
3561     * doing swaps that need to be reversed
3562     */
3563    return 0;
3564#endif
3565}
3566
3567#ifdef CONFIG_USER_ONLY
3568static inline bool arm_cpu_bswap_data(CPUARMState *env)
3569{
3570    return
3571#ifdef TARGET_WORDS_BIGENDIAN
3572       1 ^
3573#endif
3574       arm_cpu_data_is_big_endian(env);
3575}
3576#endif
3577
3578void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
3579                          target_ulong *cs_base, uint32_t *flags);
3580
3581enum {
3582    QEMU_PSCI_CONDUIT_DISABLED = 0,
3583    QEMU_PSCI_CONDUIT_SMC = 1,
3584    QEMU_PSCI_CONDUIT_HVC = 2,
3585};
3586
3587#ifndef CONFIG_USER_ONLY
3588/* Return the address space index to use for a memory access */
3589static inline int arm_asidx_from_attrs(CPUState *cs, MemTxAttrs attrs)
3590{
3591    return attrs.secure ? ARMASIdx_S : ARMASIdx_NS;
3592}
3593
3594/* Return the AddressSpace to use for a memory access
3595 * (which depends on whether the access is S or NS, and whether
3596 * the board gave us a separate AddressSpace for S accesses).
3597 */
3598static inline AddressSpace *arm_addressspace(CPUState *cs, MemTxAttrs attrs)
3599{
3600    return cpu_get_address_space(cs, arm_asidx_from_attrs(cs, attrs));
3601}
3602#endif
3603
3604/**
3605 * arm_register_pre_el_change_hook:
3606 * Register a hook function which will be called immediately before this
3607 * CPU changes exception level or mode. The hook function will be
3608 * passed a pointer to the ARMCPU and the opaque data pointer passed
3609 * to this function when the hook was registered.
3610 *
3611 * Note that if a pre-change hook is called, any registered post-change hooks
3612 * are guaranteed to subsequently be called.
3613 */
3614void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
3615                                 void *opaque);
3616/**
3617 * arm_register_el_change_hook:
3618 * Register a hook function which will be called immediately after this
3619 * CPU changes exception level or mode. The hook function will be
3620 * passed a pointer to the ARMCPU and the opaque data pointer passed
3621 * to this function when the hook was registered.
3622 *
3623 * Note that any registered hooks registered here are guaranteed to be called
3624 * if pre-change hooks have been.
3625 */
3626void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook, void
3627        *opaque);
3628
3629/**
3630 * arm_rebuild_hflags:
3631 * Rebuild the cached TBFLAGS for arbitrary changed processor state.
3632 */
3633void arm_rebuild_hflags(CPUARMState *env);
3634
3635/**
3636 * aa32_vfp_dreg:
3637 * Return a pointer to the Dn register within env in 32-bit mode.
3638 */
3639static inline uint64_t *aa32_vfp_dreg(CPUARMState *env, unsigned regno)
3640{
3641    return &env->vfp.zregs[regno >> 1].d[regno & 1];
3642}
3643
3644/**
3645 * aa32_vfp_qreg:
3646 * Return a pointer to the Qn register within env in 32-bit mode.
3647 */
3648static inline uint64_t *aa32_vfp_qreg(CPUARMState *env, unsigned regno)
3649{
3650    return &env->vfp.zregs[regno].d[0];
3651}
3652
3653/**
3654 * aa64_vfp_qreg:
3655 * Return a pointer to the Qn register within env in 64-bit mode.
3656 */
3657static inline uint64_t *aa64_vfp_qreg(CPUARMState *env, unsigned regno)
3658{
3659    return &env->vfp.zregs[regno].d[0];
3660}
3661
3662/* Shared between translate-sve.c and sve_helper.c.  */
3663extern const uint64_t pred_esz_masks[4];
3664
3665/* Helper for the macros below, validating the argument type. */
3666static inline MemTxAttrs *typecheck_memtxattrs(MemTxAttrs *x)
3667{
3668    return x;
3669}
3670
3671/*
3672 * Lvalue macros for ARM TLB bits that we must cache in the TCG TLB.
3673 * Using these should be a bit more self-documenting than using the
3674 * generic target bits directly.
3675 */
3676#define arm_tlb_bti_gp(x) (typecheck_memtxattrs(x)->target_tlb_bit0)
3677#define arm_tlb_mte_tagged(x) (typecheck_memtxattrs(x)->target_tlb_bit1)
3678
3679/*
3680 * AArch64 usage of the PAGE_TARGET_* bits for linux-user.
3681 */
3682#define PAGE_BTI  PAGE_TARGET_1
3683#define PAGE_MTE  PAGE_TARGET_2
3684
3685#ifdef TARGET_TAGGED_ADDRESSES
3686/**
3687 * cpu_untagged_addr:
3688 * @cs: CPU context
3689 * @x: tagged address
3690 *
3691 * Remove any address tag from @x.  This is explicitly related to the
3692 * linux syscall TIF_TAGGED_ADDR setting, not TBI in general.
3693 *
3694 * There should be a better place to put this, but we need this in
3695 * include/exec/cpu_ldst.h, and not some place linux-user specific.
3696 */
3697static inline target_ulong cpu_untagged_addr(CPUState *cs, target_ulong x)
3698{
3699    ARMCPU *cpu = ARM_CPU(cs);
3700    if (cpu->env.tagged_addr_enable) {
3701        /*
3702         * TBI is enabled for userspace but not kernelspace addresses.
3703         * Only clear the tag if bit 55 is clear.
3704         */
3705        x &= sextract64(x, 0, 56);
3706    }
3707    return x;
3708}
3709#endif
3710
3711/*
3712 * Naming convention for isar_feature functions:
3713 * Functions which test 32-bit ID registers should have _aa32_ in
3714 * their name. Functions which test 64-bit ID registers should have
3715 * _aa64_ in their name. These must only be used in code where we
3716 * know for certain that the CPU has AArch32 or AArch64 respectively
3717 * or where the correct answer for a CPU which doesn't implement that
3718 * CPU state is "false" (eg when generating A32 or A64 code, if adding
3719 * system registers that are specific to that CPU state, for "should
3720 * we let this system register bit be set" tests where the 32-bit
3721 * flavour of the register doesn't have the bit, and so on).
3722 * Functions which simply ask "does this feature exist at all" have
3723 * _any_ in their name, and always return the logical OR of the _aa64_
3724 * and the _aa32_ function.
3725 */
3726
3727/*
3728 * 32-bit feature tests via id registers.
3729 */
3730static inline bool isar_feature_aa32_thumb_div(const ARMISARegisters *id)
3731{
3732    return FIELD_EX32(id->id_isar0, ID_ISAR0, DIVIDE) != 0;
3733}
3734
3735static inline bool isar_feature_aa32_arm_div(const ARMISARegisters *id)
3736{
3737    return FIELD_EX32(id->id_isar0, ID_ISAR0, DIVIDE) > 1;
3738}
3739
3740static inline bool isar_feature_aa32_lob(const ARMISARegisters *id)
3741{
3742    /* (M-profile) low-overhead loops and branch future */
3743    return FIELD_EX32(id->id_isar0, ID_ISAR0, CMPBRANCH) >= 3;
3744}
3745
3746static inline bool isar_feature_aa32_jazelle(const ARMISARegisters *id)
3747{
3748    return FIELD_EX32(id->id_isar1, ID_ISAR1, JAZELLE) != 0;
3749}
3750
3751static inline bool isar_feature_aa32_aes(const ARMISARegisters *id)
3752{
3753    return FIELD_EX32(id->id_isar5, ID_ISAR5, AES) != 0;
3754}
3755
3756static inline bool isar_feature_aa32_pmull(const ARMISARegisters *id)
3757{
3758    return FIELD_EX32(id->id_isar5, ID_ISAR5, AES) > 1;
3759}
3760
3761static inline bool isar_feature_aa32_sha1(const ARMISARegisters *id)
3762{
3763    return FIELD_EX32(id->id_isar5, ID_ISAR5, SHA1) != 0;
3764}
3765
3766static inline bool isar_feature_aa32_sha2(const ARMISARegisters *id)
3767{
3768    return FIELD_EX32(id->id_isar5, ID_ISAR5, SHA2) != 0;
3769}
3770
3771static inline bool isar_feature_aa32_crc32(const ARMISARegisters *id)
3772{
3773    return FIELD_EX32(id->id_isar5, ID_ISAR5, CRC32) != 0;
3774}
3775
3776static inline bool isar_feature_aa32_rdm(const ARMISARegisters *id)
3777{
3778    return FIELD_EX32(id->id_isar5, ID_ISAR5, RDM) != 0;
3779}
3780
3781static inline bool isar_feature_aa32_vcma(const ARMISARegisters *id)
3782{
3783    return FIELD_EX32(id->id_isar5, ID_ISAR5, VCMA) != 0;
3784}
3785
3786static inline bool isar_feature_aa32_jscvt(const ARMISARegisters *id)
3787{
3788    return FIELD_EX32(id->id_isar6, ID_ISAR6, JSCVT) != 0;
3789}
3790
3791static inline bool isar_feature_aa32_dp(const ARMISARegisters *id)
3792{
3793    return FIELD_EX32(id->id_isar6, ID_ISAR6, DP) != 0;
3794}
3795
3796static inline bool isar_feature_aa32_fhm(const ARMISARegisters *id)
3797{
3798    return FIELD_EX32(id->id_isar6, ID_ISAR6, FHM) != 0;
3799}
3800
3801static inline bool isar_feature_aa32_sb(const ARMISARegisters *id)
3802{
3803    return FIELD_EX32(id->id_isar6, ID_ISAR6, SB) != 0;
3804}
3805
3806static inline bool isar_feature_aa32_predinv(const ARMISARegisters *id)
3807{
3808    return FIELD_EX32(id->id_isar6, ID_ISAR6, SPECRES) != 0;
3809}
3810
3811static inline bool isar_feature_aa32_bf16(const ARMISARegisters *id)
3812{
3813    return FIELD_EX32(id->id_isar6, ID_ISAR6, BF16) != 0;
3814}
3815
3816static inline bool isar_feature_aa32_i8mm(const ARMISARegisters *id)
3817{
3818    return FIELD_EX32(id->id_isar6, ID_ISAR6, I8MM) != 0;
3819}
3820
3821static inline bool isar_feature_aa32_ras(const ARMISARegisters *id)
3822{
3823    return FIELD_EX32(id->id_pfr0, ID_PFR0, RAS) != 0;
3824}
3825
3826static inline bool isar_feature_aa32_mprofile(const ARMISARegisters *id)
3827{
3828    return FIELD_EX32(id->id_pfr1, ID_PFR1, MPROGMOD) != 0;
3829}
3830
3831static inline bool isar_feature_aa32_m_sec_state(const ARMISARegisters *id)
3832{
3833    /*
3834     * Return true if M-profile state handling insns
3835     * (VSCCLRM, CLRM, FPCTX access insns) are implemented
3836     */
3837    return FIELD_EX32(id->id_pfr1, ID_PFR1, SECURITY) >= 3;
3838}
3839
3840static inline bool isar_feature_aa32_fp16_arith(const ARMISARegisters *id)
3841{
3842    /* Sadly this is encoded differently for A-profile and M-profile */
3843    if (isar_feature_aa32_mprofile(id)) {
3844        return FIELD_EX32(id->mvfr1, MVFR1, FP16) > 0;
3845    } else {
3846        return FIELD_EX32(id->mvfr1, MVFR1, FPHP) >= 3;
3847    }
3848}
3849
3850static inline bool isar_feature_aa32_mve(const ARMISARegisters *id)
3851{
3852    /*
3853     * Return true if MVE is supported (either integer or floating point).
3854     * We must check for M-profile as the MVFR1 field means something
3855     * else for A-profile.
3856     */
3857    return isar_feature_aa32_mprofile(id) &&
3858        FIELD_EX32(id->mvfr1, MVFR1, MVE) > 0;
3859}
3860
3861static inline bool isar_feature_aa32_mve_fp(const ARMISARegisters *id)
3862{
3863    /*
3864     * Return true if MVE is supported (either integer or floating point).
3865     * We must check for M-profile as the MVFR1 field means something
3866     * else for A-profile.
3867     */
3868    return isar_feature_aa32_mprofile(id) &&
3869        FIELD_EX32(id->mvfr1, MVFR1, MVE) >= 2;
3870}
3871
3872static inline bool isar_feature_aa32_vfp_simd(const ARMISARegisters *id)
3873{
3874    /*
3875     * Return true if either VFP or SIMD is implemented.
3876     * In this case, a minimum of VFP w/ D0-D15.
3877     */
3878    return FIELD_EX32(id->mvfr0, MVFR0, SIMDREG) > 0;
3879}
3880
3881static inline bool isar_feature_aa32_simd_r32(const ARMISARegisters *id)
3882{
3883    /* Return true if D16-D31 are implemented */
3884    return FIELD_EX32(id->mvfr0, MVFR0, SIMDREG) >= 2;
3885}
3886
3887static inline bool isar_feature_aa32_fpshvec(const ARMISARegisters *id)
3888{
3889    return FIELD_EX32(id->mvfr0, MVFR0, FPSHVEC) > 0;
3890}
3891
3892static inline bool isar_feature_aa32_fpsp_v2(const ARMISARegisters *id)
3893{
3894    /* Return true if CPU supports single precision floating point, VFPv2 */
3895    return FIELD_EX32(id->mvfr0, MVFR0, FPSP) > 0;
3896}
3897
3898static inline bool isar_feature_aa32_fpsp_v3(const ARMISARegisters *id)
3899{
3900    /* Return true if CPU supports single precision floating point, VFPv3 */
3901    return FIELD_EX32(id->mvfr0, MVFR0, FPSP) >= 2;
3902}
3903
3904static inline bool isar_feature_aa32_fpdp_v2(const ARMISARegisters *id)
3905{
3906    /* Return true if CPU supports double precision floating point, VFPv2 */
3907    return FIELD_EX32(id->mvfr0, MVFR0, FPDP) > 0;
3908}
3909
3910static inline bool isar_feature_aa32_fpdp_v3(const ARMISARegisters *id)
3911{
3912    /* Return true if CPU supports double precision floating point, VFPv3 */
3913    return FIELD_EX32(id->mvfr0, MVFR0, FPDP) >= 2;
3914}
3915
3916static inline bool isar_feature_aa32_vfp(const ARMISARegisters *id)
3917{
3918    return isar_feature_aa32_fpsp_v2(id) || isar_feature_aa32_fpdp_v2(id);
3919}
3920
3921/*
3922 * We always set the FP and SIMD FP16 fields to indicate identical
3923 * levels of support (assuming SIMD is implemented at all), so
3924 * we only need one set of accessors.
3925 */
3926static inline bool isar_feature_aa32_fp16_spconv(const ARMISARegisters *id)
3927{
3928    return FIELD_EX32(id->mvfr1, MVFR1, FPHP) > 0;
3929}
3930
3931static inline bool isar_feature_aa32_fp16_dpconv(const ARMISARegisters *id)
3932{
3933    return FIELD_EX32(id->mvfr1, MVFR1, FPHP) > 1;
3934}
3935
3936/*
3937 * Note that this ID register field covers both VFP and Neon FMAC,
3938 * so should usually be tested in combination with some other
3939 * check that confirms the presence of whichever of VFP or Neon is
3940 * relevant, to avoid accidentally enabling a Neon feature on
3941 * a VFP-no-Neon core or vice-versa.
3942 */
3943static inline bool isar_feature_aa32_simdfmac(const ARMISARegisters *id)
3944{
3945    return FIELD_EX32(id->mvfr1, MVFR1, SIMDFMAC) != 0;
3946}
3947
3948static inline bool isar_feature_aa32_vsel(const ARMISARegisters *id)
3949{
3950    return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 1;
3951}
3952
3953static inline bool isar_feature_aa32_vcvt_dr(const ARMISARegisters *id)
3954{
3955    return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 2;
3956}
3957
3958static inline bool isar_feature_aa32_vrint(const ARMISARegisters *id)
3959{
3960    return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 3;
3961}
3962
3963static inline bool isar_feature_aa32_vminmaxnm(const ARMISARegisters *id)
3964{
3965    return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 4;
3966}
3967
3968static inline bool isar_feature_aa32_pxn(const ARMISARegisters *id)
3969{
3970    return FIELD_EX32(id->id_mmfr0, ID_MMFR0, VMSA) >= 4;
3971}
3972
3973static inline bool isar_feature_aa32_pan(const ARMISARegisters *id)
3974{
3975    return FIELD_EX32(id->id_mmfr3, ID_MMFR3, PAN) != 0;
3976}
3977
3978static inline bool isar_feature_aa32_ats1e1(const ARMISARegisters *id)
3979{
3980    return FIELD_EX32(id->id_mmfr3, ID_MMFR3, PAN) >= 2;
3981}
3982
3983static inline bool isar_feature_aa32_pmu_8_1(const ARMISARegisters *id)
3984{
3985    /* 0xf means "non-standard IMPDEF PMU" */
3986    return FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) >= 4 &&
3987        FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) != 0xf;
3988}
3989
3990static inline bool isar_feature_aa32_pmu_8_4(const ARMISARegisters *id)
3991{
3992    /* 0xf means "non-standard IMPDEF PMU" */
3993    return FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) >= 5 &&
3994        FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) != 0xf;
3995}
3996
3997static inline bool isar_feature_aa32_hpd(const ARMISARegisters *id)
3998{
3999    return FIELD_EX32(id->id_mmfr4, ID_MMFR4, HPDS) != 0;
4000}
4001
4002static inline bool isar_feature_aa32_ac2(const ARMISARegisters *id)
4003{
4004    return FIELD_EX32(id->id_mmfr4, ID_MMFR4, AC2) != 0;
4005}
4006
4007static inline bool isar_feature_aa32_ccidx(const ARMISARegisters *id)
4008{
4009    return FIELD_EX32(id->id_mmfr4, ID_MMFR4, CCIDX) != 0;
4010}
4011
4012static inline bool isar_feature_aa32_tts2uxn(const ARMISARegisters *id)
4013{
4014    return FIELD_EX32(id->id_mmfr4, ID_MMFR4, XNX) != 0;
4015}
4016
4017static inline bool isar_feature_aa32_dit(const ARMISARegisters *id)
4018{
4019    return FIELD_EX32(id->id_pfr0, ID_PFR0, DIT) != 0;
4020}
4021
4022static inline bool isar_feature_aa32_ssbs(const ARMISARegisters *id)
4023{
4024    return FIELD_EX32(id->id_pfr2, ID_PFR2, SSBS) != 0;
4025}
4026
4027/*
4028 * 64-bit feature tests via id registers.
4029 */
4030static inline bool isar_feature_aa64_aes(const ARMISARegisters *id)
4031{
4032    return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, AES) != 0;
4033}
4034
4035static inline bool isar_feature_aa64_pmull(const ARMISARegisters *id)
4036{
4037    return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, AES) > 1;
4038}
4039
4040static inline bool isar_feature_aa64_sha1(const ARMISARegisters *id)
4041{
4042    return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA1) != 0;
4043}
4044
4045static inline bool isar_feature_aa64_sha256(const ARMISARegisters *id)
4046{
4047    return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA2) != 0;
4048}
4049
4050static inline bool isar_feature_aa64_sha512(const ARMISARegisters *id)
4051{
4052    return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA2) > 1;
4053}
4054
4055static inline bool isar_feature_aa64_crc32(const ARMISARegisters *id)
4056{
4057    return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, CRC32) != 0;
4058}
4059
4060static inline bool isar_feature_aa64_atomics(const ARMISARegisters *id)
4061{
4062    return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, ATOMIC) != 0;
4063}
4064
4065static inline bool isar_feature_aa64_rdm(const ARMISARegisters *id)
4066{
4067    return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, RDM) != 0;
4068}
4069
4070static inline bool isar_feature_aa64_sha3(const ARMISARegisters *id)
4071{
4072    return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA3) != 0;
4073}
4074
4075static inline bool isar_feature_aa64_sm3(const ARMISARegisters *id)
4076{
4077    return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SM3) != 0;
4078}
4079
4080static inline bool isar_feature_aa64_sm4(const ARMISARegisters *id)
4081{
4082    return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SM4) != 0;
4083}
4084
4085static inline bool isar_feature_aa64_dp(const ARMISARegisters *id)
4086{
4087    return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, DP) != 0;
4088}
4089
4090static inline bool isar_feature_aa64_fhm(const ARMISARegisters *id)
4091{
4092    return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, FHM) != 0;
4093}
4094
4095static inline bool isar_feature_aa64_condm_4(const ARMISARegisters *id)
4096{
4097    return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TS) != 0;
4098}
4099
4100static inline bool isar_feature_aa64_condm_5(const ARMISARegisters *id)
4101{
4102    return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TS) >= 2;
4103}
4104
4105static inline bool isar_feature_aa64_rndr(const ARMISARegisters *id)
4106{
4107    return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, RNDR) != 0;
4108}
4109
4110static inline bool isar_feature_aa64_jscvt(const ARMISARegisters *id)
4111{
4112    return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, JSCVT) != 0;
4113}
4114
4115static inline bool isar_feature_aa64_fcma(const ARMISARegisters *id)
4116{
4117    return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, FCMA) != 0;
4118}
4119
4120static inline bool isar_feature_aa64_pauth(const ARMISARegisters *id)
4121{
4122    /*
4123     * Return true if any form of pauth is enabled, as this
4124     * predicate controls migration of the 128-bit keys.
4125     */
4126    return (id->id_aa64isar1 &
4127            (FIELD_DP64(0, ID_AA64ISAR1, APA, 0xf) |
4128             FIELD_DP64(0, ID_AA64ISAR1, API, 0xf) |
4129             FIELD_DP64(0, ID_AA64ISAR1, GPA, 0xf) |
4130             FIELD_DP64(0, ID_AA64ISAR1, GPI, 0xf))) != 0;
4131}
4132
4133static inline bool isar_feature_aa64_pauth_arch(const ARMISARegisters *id)
4134{
4135    /*
4136     * Return true if pauth is enabled with the architected QARMA algorithm.
4137     * QEMU will always set APA+GPA to the same value.
4138     */
4139    return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, APA) != 0;
4140}
4141
4142static inline bool isar_feature_aa64_tlbirange(const ARMISARegisters *id)
4143{
4144    return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TLB) == 2;
4145}
4146
4147static inline bool isar_feature_aa64_tlbios(const ARMISARegisters *id)
4148{
4149    return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TLB) != 0;
4150}
4151
4152static inline bool isar_feature_aa64_sb(const ARMISARegisters *id)
4153{
4154    return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, SB) != 0;
4155}
4156
4157static inline bool isar_feature_aa64_predinv(const ARMISARegisters *id)
4158{
4159    return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, SPECRES) != 0;
4160}
4161
4162static inline bool isar_feature_aa64_frint(const ARMISARegisters *id)
4163{
4164    return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, FRINTTS) != 0;
4165}
4166
4167static inline bool isar_feature_aa64_dcpop(const ARMISARegisters *id)
4168{
4169    return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, DPB) != 0;
4170}
4171
4172static inline bool isar_feature_aa64_dcpodp(const ARMISARegisters *id)
4173{
4174    return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, DPB) >= 2;
4175}
4176
4177static inline bool isar_feature_aa64_bf16(const ARMISARegisters *id)
4178{
4179    return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, BF16) != 0;
4180}
4181
4182static inline bool isar_feature_aa64_fp_simd(const ARMISARegisters *id)
4183{
4184    /* We always set the AdvSIMD and FP fields identically.  */
4185    return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, FP) != 0xf;
4186}
4187
4188static inline bool isar_feature_aa64_fp16(const ARMISARegisters *id)
4189{
4190    /* We always set the AdvSIMD and FP fields identically wrt FP16.  */
4191    return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, FP) == 1;
4192}
4193
4194static inline bool isar_feature_aa64_aa32(const ARMISARegisters *id)
4195{
4196    return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, EL0) >= 2;
4197}
4198
4199static inline bool isar_feature_aa64_aa32_el1(const ARMISARegisters *id)
4200{
4201    return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, EL1) >= 2;
4202}
4203
4204static inline bool isar_feature_aa64_sve(const ARMISARegisters *id)
4205{
4206    return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, SVE) != 0;
4207}
4208
4209static inline bool isar_feature_aa64_sel2(const ARMISARegisters *id)
4210{
4211    return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, SEL2) != 0;
4212}
4213
4214static inline bool isar_feature_aa64_vh(const ARMISARegisters *id)
4215{
4216    return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, VH) != 0;
4217}
4218
4219static inline bool isar_feature_aa64_lor(const ARMISARegisters *id)
4220{
4221    return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, LO) != 0;
4222}
4223
4224static inline bool isar_feature_aa64_pan(const ARMISARegisters *id)
4225{
4226    return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, PAN) != 0;
4227}
4228
4229static inline bool isar_feature_aa64_ats1e1(const ARMISARegisters *id)
4230{
4231    return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, PAN) >= 2;
4232}
4233
4234static inline bool isar_feature_aa64_uao(const ARMISARegisters *id)
4235{
4236    return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, UAO) != 0;
4237}
4238
4239static inline bool isar_feature_aa64_st(const ARMISARegisters *id)
4240{
4241    return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, ST) != 0;
4242}
4243
4244static inline bool isar_feature_aa64_bti(const ARMISARegisters *id)
4245{
4246    return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, BT) != 0;
4247}
4248
4249static inline bool isar_feature_aa64_mte_insn_reg(const ARMISARegisters *id)
4250{
4251    return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, MTE) != 0;
4252}
4253
4254static inline bool isar_feature_aa64_mte(const ARMISARegisters *id)
4255{
4256    return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, MTE) >= 2;
4257}
4258
4259static inline bool isar_feature_aa64_pmu_8_1(const ARMISARegisters *id)
4260{
4261    return FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) >= 4 &&
4262        FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) != 0xf;
4263}
4264
4265static inline bool isar_feature_aa64_pmu_8_4(const ARMISARegisters *id)
4266{
4267    return FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) >= 5 &&
4268        FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) != 0xf;
4269}
4270
4271static inline bool isar_feature_aa64_rcpc_8_3(const ARMISARegisters *id)
4272{
4273    return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, LRCPC) != 0;
4274}
4275
4276static inline bool isar_feature_aa64_rcpc_8_4(const ARMISARegisters *id)
4277{
4278    return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, LRCPC) >= 2;
4279}
4280
4281static inline bool isar_feature_aa64_i8mm(const ARMISARegisters *id)
4282{
4283    return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, I8MM) != 0;
4284}
4285
4286static inline bool isar_feature_aa64_ccidx(const ARMISARegisters *id)
4287{
4288    return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, CCIDX) != 0;
4289}
4290
4291static inline bool isar_feature_aa64_tts2uxn(const ARMISARegisters *id)
4292{
4293    return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, XNX) != 0;
4294}
4295
4296static inline bool isar_feature_aa64_dit(const ARMISARegisters *id)
4297{
4298    return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, DIT) != 0;
4299}
4300
4301static inline bool isar_feature_aa64_ssbs(const ARMISARegisters *id)
4302{
4303    return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, SSBS) != 0;
4304}
4305
4306static inline bool isar_feature_aa64_sve2(const ARMISARegisters *id)
4307{
4308    return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, SVEVER) != 0;
4309}
4310
4311static inline bool isar_feature_aa64_sve2_aes(const ARMISARegisters *id)
4312{
4313    return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, AES) != 0;
4314}
4315
4316static inline bool isar_feature_aa64_sve2_pmull128(const ARMISARegisters *id)
4317{
4318    return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, AES) >= 2;
4319}
4320
4321static inline bool isar_feature_aa64_sve2_bitperm(const ARMISARegisters *id)
4322{
4323    return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, BITPERM) != 0;
4324}
4325
4326static inline bool isar_feature_aa64_sve_bf16(const ARMISARegisters *id)
4327{
4328    return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, BFLOAT16) != 0;
4329}
4330
4331static inline bool isar_feature_aa64_sve2_sha3(const ARMISARegisters *id)
4332{
4333    return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, SHA3) != 0;
4334}
4335
4336static inline bool isar_feature_aa64_sve2_sm4(const ARMISARegisters *id)
4337{
4338    return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, SM4) != 0;
4339}
4340
4341static inline bool isar_feature_aa64_sve_i8mm(const ARMISARegisters *id)
4342{
4343    return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, I8MM) != 0;
4344}
4345
4346static inline bool isar_feature_aa64_sve_f32mm(const ARMISARegisters *id)
4347{
4348    return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, F32MM) != 0;
4349}
4350
4351static inline bool isar_feature_aa64_sve_f64mm(const ARMISARegisters *id)
4352{
4353    return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, F64MM) != 0;
4354}
4355
4356/*
4357 * Feature tests for "does this exist in either 32-bit or 64-bit?"
4358 */
4359static inline bool isar_feature_any_fp16(const ARMISARegisters *id)
4360{
4361    return isar_feature_aa64_fp16(id) || isar_feature_aa32_fp16_arith(id);
4362}
4363
4364static inline bool isar_feature_any_predinv(const ARMISARegisters *id)
4365{
4366    return isar_feature_aa64_predinv(id) || isar_feature_aa32_predinv(id);
4367}
4368
4369static inline bool isar_feature_any_pmu_8_1(const ARMISARegisters *id)
4370{
4371    return isar_feature_aa64_pmu_8_1(id) || isar_feature_aa32_pmu_8_1(id);
4372}
4373
4374static inline bool isar_feature_any_pmu_8_4(const ARMISARegisters *id)
4375{
4376    return isar_feature_aa64_pmu_8_4(id) || isar_feature_aa32_pmu_8_4(id);
4377}
4378
4379static inline bool isar_feature_any_ccidx(const ARMISARegisters *id)
4380{
4381    return isar_feature_aa64_ccidx(id) || isar_feature_aa32_ccidx(id);
4382}
4383
4384static inline bool isar_feature_any_tts2uxn(const ARMISARegisters *id)
4385{
4386    return isar_feature_aa64_tts2uxn(id) || isar_feature_aa32_tts2uxn(id);
4387}
4388
4389/*
4390 * Forward to the above feature tests given an ARMCPU pointer.
4391 */
4392#define cpu_isar_feature(name, cpu) \
4393    ({ ARMCPU *cpu_ = (cpu); isar_feature_##name(&cpu_->isar); })
4394
4395#endif
4396