qemu/target/arm/helper.c
<<
>>
Prefs
   1/*
   2 * ARM generic helpers.
   3 *
   4 * This code is licensed under the GNU GPL v2 or later.
   5 *
   6 * SPDX-License-Identifier: GPL-2.0-or-later
   7 */
   8
   9#include "qemu/osdep.h"
  10#include "qemu/units.h"
  11#include "target/arm/idau.h"
  12#include "trace.h"
  13#include "cpu.h"
  14#include "internals.h"
  15#include "exec/helper-proto.h"
  16#include "qemu/host-utils.h"
  17#include "qemu/main-loop.h"
  18#include "qemu/bitops.h"
  19#include "qemu/crc32c.h"
  20#include "qemu/qemu-print.h"
  21#include "exec/exec-all.h"
  22#include <zlib.h> /* For crc32 */
  23#include "hw/irq.h"
  24#include "semihosting/semihost.h"
  25#include "sysemu/cpus.h"
  26#include "sysemu/cpu-timers.h"
  27#include "sysemu/kvm.h"
  28#include "sysemu/tcg.h"
  29#include "qemu/range.h"
  30#include "qapi/qapi-commands-machine-target.h"
  31#include "qapi/error.h"
  32#include "qemu/guest-random.h"
  33#ifdef CONFIG_TCG
  34#include "arm_ldst.h"
  35#include "exec/cpu_ldst.h"
  36#include "semihosting/common-semi.h"
  37#endif
  38
  39#define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */
  40#define PMCR_NUM_COUNTERS 4 /* QEMU IMPDEF choice */
  41
  42#ifndef CONFIG_USER_ONLY
  43
  44static bool get_phys_addr_lpae(CPUARMState *env, uint64_t address,
  45                               MMUAccessType access_type, ARMMMUIdx mmu_idx,
  46                               bool s1_is_el0,
  47                               hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot,
  48                               target_ulong *page_size_ptr,
  49                               ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs)
  50    __attribute__((nonnull));
  51#endif
  52
  53static void switch_mode(CPUARMState *env, int mode);
  54static int aa64_va_parameter_tbi(uint64_t tcr, ARMMMUIdx mmu_idx);
  55
  56static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri)
  57{
  58    assert(ri->fieldoffset);
  59    if (cpreg_field_is_64bit(ri)) {
  60        return CPREG_FIELD64(env, ri);
  61    } else {
  62        return CPREG_FIELD32(env, ri);
  63    }
  64}
  65
  66static void raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
  67                      uint64_t value)
  68{
  69    assert(ri->fieldoffset);
  70    if (cpreg_field_is_64bit(ri)) {
  71        CPREG_FIELD64(env, ri) = value;
  72    } else {
  73        CPREG_FIELD32(env, ri) = value;
  74    }
  75}
  76
  77static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri)
  78{
  79    return (char *)env + ri->fieldoffset;
  80}
  81
  82uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri)
  83{
  84    /* Raw read of a coprocessor register (as needed for migration, etc). */
  85    if (ri->type & ARM_CP_CONST) {
  86        return ri->resetvalue;
  87    } else if (ri->raw_readfn) {
  88        return ri->raw_readfn(env, ri);
  89    } else if (ri->readfn) {
  90        return ri->readfn(env, ri);
  91    } else {
  92        return raw_read(env, ri);
  93    }
  94}
  95
  96static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri,
  97                             uint64_t v)
  98{
  99    /* Raw write of a coprocessor register (as needed for migration, etc).
 100     * Note that constant registers are treated as write-ignored; the
 101     * caller should check for success by whether a readback gives the
 102     * value written.
 103     */
 104    if (ri->type & ARM_CP_CONST) {
 105        return;
 106    } else if (ri->raw_writefn) {
 107        ri->raw_writefn(env, ri, v);
 108    } else if (ri->writefn) {
 109        ri->writefn(env, ri, v);
 110    } else {
 111        raw_write(env, ri, v);
 112    }
 113}
 114
 115static bool raw_accessors_invalid(const ARMCPRegInfo *ri)
 116{
 117   /* Return true if the regdef would cause an assertion if you called
 118    * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a
 119    * program bug for it not to have the NO_RAW flag).
 120    * NB that returning false here doesn't necessarily mean that calling
 121    * read/write_raw_cp_reg() is safe, because we can't distinguish "has
 122    * read/write access functions which are safe for raw use" from "has
 123    * read/write access functions which have side effects but has forgotten
 124    * to provide raw access functions".
 125    * The tests here line up with the conditions in read/write_raw_cp_reg()
 126    * and assertions in raw_read()/raw_write().
 127    */
 128    if ((ri->type & ARM_CP_CONST) ||
 129        ri->fieldoffset ||
 130        ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) {
 131        return false;
 132    }
 133    return true;
 134}
 135
 136bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync)
 137{
 138    /* Write the coprocessor state from cpu->env to the (index,value) list. */
 139    int i;
 140    bool ok = true;
 141
 142    for (i = 0; i < cpu->cpreg_array_len; i++) {
 143        uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
 144        const ARMCPRegInfo *ri;
 145        uint64_t newval;
 146
 147        ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
 148        if (!ri) {
 149            ok = false;
 150            continue;
 151        }
 152        if (ri->type & ARM_CP_NO_RAW) {
 153            continue;
 154        }
 155
 156        newval = read_raw_cp_reg(&cpu->env, ri);
 157        if (kvm_sync) {
 158            /*
 159             * Only sync if the previous list->cpustate sync succeeded.
 160             * Rather than tracking the success/failure state for every
 161             * item in the list, we just recheck "does the raw write we must
 162             * have made in write_list_to_cpustate() read back OK" here.
 163             */
 164            uint64_t oldval = cpu->cpreg_values[i];
 165
 166            if (oldval == newval) {
 167                continue;
 168            }
 169
 170            write_raw_cp_reg(&cpu->env, ri, oldval);
 171            if (read_raw_cp_reg(&cpu->env, ri) != oldval) {
 172                continue;
 173            }
 174
 175            write_raw_cp_reg(&cpu->env, ri, newval);
 176        }
 177        cpu->cpreg_values[i] = newval;
 178    }
 179    return ok;
 180}
 181
 182bool write_list_to_cpustate(ARMCPU *cpu)
 183{
 184    int i;
 185    bool ok = true;
 186
 187    for (i = 0; i < cpu->cpreg_array_len; i++) {
 188        uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
 189        uint64_t v = cpu->cpreg_values[i];
 190        const ARMCPRegInfo *ri;
 191
 192        ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
 193        if (!ri) {
 194            ok = false;
 195            continue;
 196        }
 197        if (ri->type & ARM_CP_NO_RAW) {
 198            continue;
 199        }
 200        /* Write value and confirm it reads back as written
 201         * (to catch read-only registers and partially read-only
 202         * registers where the incoming migration value doesn't match)
 203         */
 204        write_raw_cp_reg(&cpu->env, ri, v);
 205        if (read_raw_cp_reg(&cpu->env, ri) != v) {
 206            ok = false;
 207        }
 208    }
 209    return ok;
 210}
 211
 212static void add_cpreg_to_list(gpointer key, gpointer opaque)
 213{
 214    ARMCPU *cpu = opaque;
 215    uint64_t regidx;
 216    const ARMCPRegInfo *ri;
 217
 218    regidx = *(uint32_t *)key;
 219    ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
 220
 221    if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) {
 222        cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx);
 223        /* The value array need not be initialized at this point */
 224        cpu->cpreg_array_len++;
 225    }
 226}
 227
 228static void count_cpreg(gpointer key, gpointer opaque)
 229{
 230    ARMCPU *cpu = opaque;
 231    uint64_t regidx;
 232    const ARMCPRegInfo *ri;
 233
 234    regidx = *(uint32_t *)key;
 235    ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
 236
 237    if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) {
 238        cpu->cpreg_array_len++;
 239    }
 240}
 241
 242static gint cpreg_key_compare(gconstpointer a, gconstpointer b)
 243{
 244    uint64_t aidx = cpreg_to_kvm_id(*(uint32_t *)a);
 245    uint64_t bidx = cpreg_to_kvm_id(*(uint32_t *)b);
 246
 247    if (aidx > bidx) {
 248        return 1;
 249    }
 250    if (aidx < bidx) {
 251        return -1;
 252    }
 253    return 0;
 254}
 255
 256void init_cpreg_list(ARMCPU *cpu)
 257{
 258    /* Initialise the cpreg_tuples[] array based on the cp_regs hash.
 259     * Note that we require cpreg_tuples[] to be sorted by key ID.
 260     */
 261    GList *keys;
 262    int arraylen;
 263
 264    keys = g_hash_table_get_keys(cpu->cp_regs);
 265    keys = g_list_sort(keys, cpreg_key_compare);
 266
 267    cpu->cpreg_array_len = 0;
 268
 269    g_list_foreach(keys, count_cpreg, cpu);
 270
 271    arraylen = cpu->cpreg_array_len;
 272    cpu->cpreg_indexes = g_new(uint64_t, arraylen);
 273    cpu->cpreg_values = g_new(uint64_t, arraylen);
 274    cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen);
 275    cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen);
 276    cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len;
 277    cpu->cpreg_array_len = 0;
 278
 279    g_list_foreach(keys, add_cpreg_to_list, cpu);
 280
 281    assert(cpu->cpreg_array_len == arraylen);
 282
 283    g_list_free(keys);
 284}
 285
 286/*
 287 * Some registers are not accessible from AArch32 EL3 if SCR.NS == 0.
 288 */
 289static CPAccessResult access_el3_aa32ns(CPUARMState *env,
 290                                        const ARMCPRegInfo *ri,
 291                                        bool isread)
 292{
 293    if (!is_a64(env) && arm_current_el(env) == 3 &&
 294        arm_is_secure_below_el3(env)) {
 295        return CP_ACCESS_TRAP_UNCATEGORIZED;
 296    }
 297    return CP_ACCESS_OK;
 298}
 299
 300/* Some secure-only AArch32 registers trap to EL3 if used from
 301 * Secure EL1 (but are just ordinary UNDEF in other non-EL3 contexts).
 302 * Note that an access from Secure EL1 can only happen if EL3 is AArch64.
 303 * We assume that the .access field is set to PL1_RW.
 304 */
 305static CPAccessResult access_trap_aa32s_el1(CPUARMState *env,
 306                                            const ARMCPRegInfo *ri,
 307                                            bool isread)
 308{
 309    if (arm_current_el(env) == 3) {
 310        return CP_ACCESS_OK;
 311    }
 312    if (arm_is_secure_below_el3(env)) {
 313        if (env->cp15.scr_el3 & SCR_EEL2) {
 314            return CP_ACCESS_TRAP_EL2;
 315        }
 316        return CP_ACCESS_TRAP_EL3;
 317    }
 318    /* This will be EL1 NS and EL2 NS, which just UNDEF */
 319    return CP_ACCESS_TRAP_UNCATEGORIZED;
 320}
 321
 322static uint64_t arm_mdcr_el2_eff(CPUARMState *env)
 323{
 324    return arm_is_el2_enabled(env) ? env->cp15.mdcr_el2 : 0;
 325}
 326
 327/* Check for traps to "powerdown debug" registers, which are controlled
 328 * by MDCR.TDOSA
 329 */
 330static CPAccessResult access_tdosa(CPUARMState *env, const ARMCPRegInfo *ri,
 331                                   bool isread)
 332{
 333    int el = arm_current_el(env);
 334    uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
 335    bool mdcr_el2_tdosa = (mdcr_el2 & MDCR_TDOSA) || (mdcr_el2 & MDCR_TDE) ||
 336        (arm_hcr_el2_eff(env) & HCR_TGE);
 337
 338    if (el < 2 && mdcr_el2_tdosa) {
 339        return CP_ACCESS_TRAP_EL2;
 340    }
 341    if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDOSA)) {
 342        return CP_ACCESS_TRAP_EL3;
 343    }
 344    return CP_ACCESS_OK;
 345}
 346
 347/* Check for traps to "debug ROM" registers, which are controlled
 348 * by MDCR_EL2.TDRA for EL2 but by the more general MDCR_EL3.TDA for EL3.
 349 */
 350static CPAccessResult access_tdra(CPUARMState *env, const ARMCPRegInfo *ri,
 351                                  bool isread)
 352{
 353    int el = arm_current_el(env);
 354    uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
 355    bool mdcr_el2_tdra = (mdcr_el2 & MDCR_TDRA) || (mdcr_el2 & MDCR_TDE) ||
 356        (arm_hcr_el2_eff(env) & HCR_TGE);
 357
 358    if (el < 2 && mdcr_el2_tdra) {
 359        return CP_ACCESS_TRAP_EL2;
 360    }
 361    if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) {
 362        return CP_ACCESS_TRAP_EL3;
 363    }
 364    return CP_ACCESS_OK;
 365}
 366
 367/* Check for traps to general debug registers, which are controlled
 368 * by MDCR_EL2.TDA for EL2 and MDCR_EL3.TDA for EL3.
 369 */
 370static CPAccessResult access_tda(CPUARMState *env, const ARMCPRegInfo *ri,
 371                                  bool isread)
 372{
 373    int el = arm_current_el(env);
 374    uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
 375    bool mdcr_el2_tda = (mdcr_el2 & MDCR_TDA) || (mdcr_el2 & MDCR_TDE) ||
 376        (arm_hcr_el2_eff(env) & HCR_TGE);
 377
 378    if (el < 2 && mdcr_el2_tda) {
 379        return CP_ACCESS_TRAP_EL2;
 380    }
 381    if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) {
 382        return CP_ACCESS_TRAP_EL3;
 383    }
 384    return CP_ACCESS_OK;
 385}
 386
 387/* Check for traps to performance monitor registers, which are controlled
 388 * by MDCR_EL2.TPM for EL2 and MDCR_EL3.TPM for EL3.
 389 */
 390static CPAccessResult access_tpm(CPUARMState *env, const ARMCPRegInfo *ri,
 391                                 bool isread)
 392{
 393    int el = arm_current_el(env);
 394    uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
 395
 396    if (el < 2 && (mdcr_el2 & MDCR_TPM)) {
 397        return CP_ACCESS_TRAP_EL2;
 398    }
 399    if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
 400        return CP_ACCESS_TRAP_EL3;
 401    }
 402    return CP_ACCESS_OK;
 403}
 404
 405/* Check for traps from EL1 due to HCR_EL2.TVM and HCR_EL2.TRVM.  */
 406static CPAccessResult access_tvm_trvm(CPUARMState *env, const ARMCPRegInfo *ri,
 407                                      bool isread)
 408{
 409    if (arm_current_el(env) == 1) {
 410        uint64_t trap = isread ? HCR_TRVM : HCR_TVM;
 411        if (arm_hcr_el2_eff(env) & trap) {
 412            return CP_ACCESS_TRAP_EL2;
 413        }
 414    }
 415    return CP_ACCESS_OK;
 416}
 417
 418/* Check for traps from EL1 due to HCR_EL2.TSW.  */
 419static CPAccessResult access_tsw(CPUARMState *env, const ARMCPRegInfo *ri,
 420                                 bool isread)
 421{
 422    if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TSW)) {
 423        return CP_ACCESS_TRAP_EL2;
 424    }
 425    return CP_ACCESS_OK;
 426}
 427
 428/* Check for traps from EL1 due to HCR_EL2.TACR.  */
 429static CPAccessResult access_tacr(CPUARMState *env, const ARMCPRegInfo *ri,
 430                                  bool isread)
 431{
 432    if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TACR)) {
 433        return CP_ACCESS_TRAP_EL2;
 434    }
 435    return CP_ACCESS_OK;
 436}
 437
 438/* Check for traps from EL1 due to HCR_EL2.TTLB. */
 439static CPAccessResult access_ttlb(CPUARMState *env, const ARMCPRegInfo *ri,
 440                                  bool isread)
 441{
 442    if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TTLB)) {
 443        return CP_ACCESS_TRAP_EL2;
 444    }
 445    return CP_ACCESS_OK;
 446}
 447
 448static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
 449{
 450    ARMCPU *cpu = env_archcpu(env);
 451
 452    raw_write(env, ri, value);
 453    tlb_flush(CPU(cpu)); /* Flush TLB as domain not tracked in TLB */
 454}
 455
 456static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
 457{
 458    ARMCPU *cpu = env_archcpu(env);
 459
 460    if (raw_read(env, ri) != value) {
 461        /* Unlike real hardware the qemu TLB uses virtual addresses,
 462         * not modified virtual addresses, so this causes a TLB flush.
 463         */
 464        tlb_flush(CPU(cpu));
 465        raw_write(env, ri, value);
 466    }
 467}
 468
 469static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri,
 470                             uint64_t value)
 471{
 472    ARMCPU *cpu = env_archcpu(env);
 473
 474    if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_PMSA)
 475        && !extended_addresses_enabled(env)) {
 476        /* For VMSA (when not using the LPAE long descriptor page table
 477         * format) this register includes the ASID, so do a TLB flush.
 478         * For PMSA it is purely a process ID and no action is needed.
 479         */
 480        tlb_flush(CPU(cpu));
 481    }
 482    raw_write(env, ri, value);
 483}
 484
 485/* IS variants of TLB operations must affect all cores */
 486static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
 487                             uint64_t value)
 488{
 489    CPUState *cs = env_cpu(env);
 490
 491    tlb_flush_all_cpus_synced(cs);
 492}
 493
 494static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
 495                             uint64_t value)
 496{
 497    CPUState *cs = env_cpu(env);
 498
 499    tlb_flush_all_cpus_synced(cs);
 500}
 501
 502static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
 503                             uint64_t value)
 504{
 505    CPUState *cs = env_cpu(env);
 506
 507    tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK);
 508}
 509
 510static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
 511                             uint64_t value)
 512{
 513    CPUState *cs = env_cpu(env);
 514
 515    tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK);
 516}
 517
 518/*
 519 * Non-IS variants of TLB operations are upgraded to
 520 * IS versions if we are at EL1 and HCR_EL2.FB is effectively set to
 521 * force broadcast of these operations.
 522 */
 523static bool tlb_force_broadcast(CPUARMState *env)
 524{
 525    return arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_FB);
 526}
 527
 528static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri,
 529                          uint64_t value)
 530{
 531    /* Invalidate all (TLBIALL) */
 532    CPUState *cs = env_cpu(env);
 533
 534    if (tlb_force_broadcast(env)) {
 535        tlb_flush_all_cpus_synced(cs);
 536    } else {
 537        tlb_flush(cs);
 538    }
 539}
 540
 541static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri,
 542                          uint64_t value)
 543{
 544    /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */
 545    CPUState *cs = env_cpu(env);
 546
 547    value &= TARGET_PAGE_MASK;
 548    if (tlb_force_broadcast(env)) {
 549        tlb_flush_page_all_cpus_synced(cs, value);
 550    } else {
 551        tlb_flush_page(cs, value);
 552    }
 553}
 554
 555static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri,
 556                           uint64_t value)
 557{
 558    /* Invalidate by ASID (TLBIASID) */
 559    CPUState *cs = env_cpu(env);
 560
 561    if (tlb_force_broadcast(env)) {
 562        tlb_flush_all_cpus_synced(cs);
 563    } else {
 564        tlb_flush(cs);
 565    }
 566}
 567
 568static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri,
 569                           uint64_t value)
 570{
 571    /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */
 572    CPUState *cs = env_cpu(env);
 573
 574    value &= TARGET_PAGE_MASK;
 575    if (tlb_force_broadcast(env)) {
 576        tlb_flush_page_all_cpus_synced(cs, value);
 577    } else {
 578        tlb_flush_page(cs, value);
 579    }
 580}
 581
 582static void tlbiall_nsnh_write(CPUARMState *env, const ARMCPRegInfo *ri,
 583                               uint64_t value)
 584{
 585    CPUState *cs = env_cpu(env);
 586
 587    tlb_flush_by_mmuidx(cs,
 588                        ARMMMUIdxBit_E10_1 |
 589                        ARMMMUIdxBit_E10_1_PAN |
 590                        ARMMMUIdxBit_E10_0);
 591}
 592
 593static void tlbiall_nsnh_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
 594                                  uint64_t value)
 595{
 596    CPUState *cs = env_cpu(env);
 597
 598    tlb_flush_by_mmuidx_all_cpus_synced(cs,
 599                                        ARMMMUIdxBit_E10_1 |
 600                                        ARMMMUIdxBit_E10_1_PAN |
 601                                        ARMMMUIdxBit_E10_0);
 602}
 603
 604
 605static void tlbiall_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
 606                              uint64_t value)
 607{
 608    CPUState *cs = env_cpu(env);
 609
 610    tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_E2);
 611}
 612
 613static void tlbiall_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
 614                                 uint64_t value)
 615{
 616    CPUState *cs = env_cpu(env);
 617
 618    tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_E2);
 619}
 620
 621static void tlbimva_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
 622                              uint64_t value)
 623{
 624    CPUState *cs = env_cpu(env);
 625    uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
 626
 627    tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_E2);
 628}
 629
 630static void tlbimva_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
 631                                 uint64_t value)
 632{
 633    CPUState *cs = env_cpu(env);
 634    uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
 635
 636    tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
 637                                             ARMMMUIdxBit_E2);
 638}
 639
 640static const ARMCPRegInfo cp_reginfo[] = {
 641    /* Define the secure and non-secure FCSE identifier CP registers
 642     * separately because there is no secure bank in V8 (no _EL3).  This allows
 643     * the secure register to be properly reset and migrated. There is also no
 644     * v8 EL1 version of the register so the non-secure instance stands alone.
 645     */
 646    { .name = "FCSEIDR",
 647      .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
 648      .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS,
 649      .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns),
 650      .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
 651    { .name = "FCSEIDR_S",
 652      .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
 653      .access = PL1_RW, .secure = ARM_CP_SECSTATE_S,
 654      .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s),
 655      .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
 656    /* Define the secure and non-secure context identifier CP registers
 657     * separately because there is no secure bank in V8 (no _EL3).  This allows
 658     * the secure register to be properly reset and migrated.  In the
 659     * non-secure case, the 32-bit register will have reset and migration
 660     * disabled during registration as it is handled by the 64-bit instance.
 661     */
 662    { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH,
 663      .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
 664      .access = PL1_RW, .accessfn = access_tvm_trvm,
 665      .secure = ARM_CP_SECSTATE_NS,
 666      .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]),
 667      .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
 668    { .name = "CONTEXTIDR_S", .state = ARM_CP_STATE_AA32,
 669      .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
 670      .access = PL1_RW, .accessfn = access_tvm_trvm,
 671      .secure = ARM_CP_SECSTATE_S,
 672      .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s),
 673      .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
 674    REGINFO_SENTINEL
 675};
 676
 677static const ARMCPRegInfo not_v8_cp_reginfo[] = {
 678    /* NB: Some of these registers exist in v8 but with more precise
 679     * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]).
 680     */
 681    /* MMU Domain access control / MPU write buffer control */
 682    { .name = "DACR",
 683      .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY,
 684      .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
 685      .writefn = dacr_write, .raw_writefn = raw_write,
 686      .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
 687                             offsetoflow32(CPUARMState, cp15.dacr_ns) } },
 688    /* ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs.
 689     * For v6 and v5, these mappings are overly broad.
 690     */
 691    { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0,
 692      .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
 693    { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1,
 694      .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
 695    { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4,
 696      .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
 697    { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8,
 698      .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
 699    /* Cache maintenance ops; some of this space may be overridden later. */
 700    { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
 701      .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
 702      .type = ARM_CP_NOP | ARM_CP_OVERRIDE },
 703    REGINFO_SENTINEL
 704};
 705
 706static const ARMCPRegInfo not_v6_cp_reginfo[] = {
 707    /* Not all pre-v6 cores implemented this WFI, so this is slightly
 708     * over-broad.
 709     */
 710    { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2,
 711      .access = PL1_W, .type = ARM_CP_WFI },
 712    REGINFO_SENTINEL
 713};
 714
 715static const ARMCPRegInfo not_v7_cp_reginfo[] = {
 716    /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which
 717     * is UNPREDICTABLE; we choose to NOP as most implementations do).
 718     */
 719    { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
 720      .access = PL1_W, .type = ARM_CP_WFI },
 721    /* L1 cache lockdown. Not architectural in v6 and earlier but in practice
 722     * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and
 723     * OMAPCP will override this space.
 724     */
 725    { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0,
 726      .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data),
 727      .resetvalue = 0 },
 728    { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1,
 729      .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn),
 730      .resetvalue = 0 },
 731    /* v6 doesn't have the cache ID registers but Linux reads them anyway */
 732    { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY,
 733      .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
 734      .resetvalue = 0 },
 735    /* We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR;
 736     * implementing it as RAZ means the "debug architecture version" bits
 737     * will read as a reserved value, which should cause Linux to not try
 738     * to use the debug hardware.
 739     */
 740    { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
 741      .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
 742    /* MMU TLB control. Note that the wildcarding means we cover not just
 743     * the unified TLB ops but also the dside/iside/inner-shareable variants.
 744     */
 745    { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY,
 746      .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write,
 747      .type = ARM_CP_NO_RAW },
 748    { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY,
 749      .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write,
 750      .type = ARM_CP_NO_RAW },
 751    { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY,
 752      .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write,
 753      .type = ARM_CP_NO_RAW },
 754    { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY,
 755      .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write,
 756      .type = ARM_CP_NO_RAW },
 757    { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2,
 758      .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP },
 759    { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2,
 760      .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP },
 761    REGINFO_SENTINEL
 762};
 763
 764static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri,
 765                        uint64_t value)
 766{
 767    uint32_t mask = 0;
 768
 769    /* In ARMv8 most bits of CPACR_EL1 are RES0. */
 770    if (!arm_feature(env, ARM_FEATURE_V8)) {
 771        /* ARMv7 defines bits for unimplemented coprocessors as RAZ/WI.
 772         * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP.
 773         * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell.
 774         */
 775        if (cpu_isar_feature(aa32_vfp_simd, env_archcpu(env))) {
 776            /* VFP coprocessor: cp10 & cp11 [23:20] */
 777            mask |= (1 << 31) | (1 << 30) | (0xf << 20);
 778
 779            if (!arm_feature(env, ARM_FEATURE_NEON)) {
 780                /* ASEDIS [31] bit is RAO/WI */
 781                value |= (1 << 31);
 782            }
 783
 784            /* VFPv3 and upwards with NEON implement 32 double precision
 785             * registers (D0-D31).
 786             */
 787            if (!cpu_isar_feature(aa32_simd_r32, env_archcpu(env))) {
 788                /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */
 789                value |= (1 << 30);
 790            }
 791        }
 792        value &= mask;
 793    }
 794
 795    /*
 796     * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10
 797     * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00.
 798     */
 799    if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
 800        !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
 801        value &= ~(0xf << 20);
 802        value |= env->cp15.cpacr_el1 & (0xf << 20);
 803    }
 804
 805    env->cp15.cpacr_el1 = value;
 806}
 807
 808static uint64_t cpacr_read(CPUARMState *env, const ARMCPRegInfo *ri)
 809{
 810    /*
 811     * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10
 812     * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00.
 813     */
 814    uint64_t value = env->cp15.cpacr_el1;
 815
 816    if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
 817        !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
 818        value &= ~(0xf << 20);
 819    }
 820    return value;
 821}
 822
 823
 824static void cpacr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
 825{
 826    /* Call cpacr_write() so that we reset with the correct RAO bits set
 827     * for our CPU features.
 828     */
 829    cpacr_write(env, ri, 0);
 830}
 831
 832static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
 833                                   bool isread)
 834{
 835    if (arm_feature(env, ARM_FEATURE_V8)) {
 836        /* Check if CPACR accesses are to be trapped to EL2 */
 837        if (arm_current_el(env) == 1 && arm_is_el2_enabled(env) &&
 838            (env->cp15.cptr_el[2] & CPTR_TCPAC)) {
 839            return CP_ACCESS_TRAP_EL2;
 840        /* Check if CPACR accesses are to be trapped to EL3 */
 841        } else if (arm_current_el(env) < 3 &&
 842                   (env->cp15.cptr_el[3] & CPTR_TCPAC)) {
 843            return CP_ACCESS_TRAP_EL3;
 844        }
 845    }
 846
 847    return CP_ACCESS_OK;
 848}
 849
 850static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri,
 851                                  bool isread)
 852{
 853    /* Check if CPTR accesses are set to trap to EL3 */
 854    if (arm_current_el(env) == 2 && (env->cp15.cptr_el[3] & CPTR_TCPAC)) {
 855        return CP_ACCESS_TRAP_EL3;
 856    }
 857
 858    return CP_ACCESS_OK;
 859}
 860
 861static const ARMCPRegInfo v6_cp_reginfo[] = {
 862    /* prefetch by MVA in v6, NOP in v7 */
 863    { .name = "MVA_prefetch",
 864      .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1,
 865      .access = PL1_W, .type = ARM_CP_NOP },
 866    /* We need to break the TB after ISB to execute self-modifying code
 867     * correctly and also to take any pending interrupts immediately.
 868     * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag.
 869     */
 870    { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4,
 871      .access = PL0_W, .type = ARM_CP_NO_RAW, .writefn = arm_cp_write_ignore },
 872    { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4,
 873      .access = PL0_W, .type = ARM_CP_NOP },
 874    { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5,
 875      .access = PL0_W, .type = ARM_CP_NOP },
 876    { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2,
 877      .access = PL1_RW, .accessfn = access_tvm_trvm,
 878      .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s),
 879                             offsetof(CPUARMState, cp15.ifar_ns) },
 880      .resetvalue = 0, },
 881    /* Watchpoint Fault Address Register : should actually only be present
 882     * for 1136, 1176, 11MPCore.
 883     */
 884    { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
 885      .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, },
 886    { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3,
 887      .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access,
 888      .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1),
 889      .resetfn = cpacr_reset, .writefn = cpacr_write, .readfn = cpacr_read },
 890    REGINFO_SENTINEL
 891};
 892
 893typedef struct pm_event {
 894    uint16_t number; /* PMEVTYPER.evtCount is 16 bits wide */
 895    /* If the event is supported on this CPU (used to generate PMCEID[01]) */
 896    bool (*supported)(CPUARMState *);
 897    /*
 898     * Retrieve the current count of the underlying event. The programmed
 899     * counters hold a difference from the return value from this function
 900     */
 901    uint64_t (*get_count)(CPUARMState *);
 902    /*
 903     * Return how many nanoseconds it will take (at a minimum) for count events
 904     * to occur. A negative value indicates the counter will never overflow, or
 905     * that the counter has otherwise arranged for the overflow bit to be set
 906     * and the PMU interrupt to be raised on overflow.
 907     */
 908    int64_t (*ns_per_count)(uint64_t);
 909} pm_event;
 910
 911static bool event_always_supported(CPUARMState *env)
 912{
 913    return true;
 914}
 915
 916static uint64_t swinc_get_count(CPUARMState *env)
 917{
 918    /*
 919     * SW_INCR events are written directly to the pmevcntr's by writes to
 920     * PMSWINC, so there is no underlying count maintained by the PMU itself
 921     */
 922    return 0;
 923}
 924
 925static int64_t swinc_ns_per(uint64_t ignored)
 926{
 927    return -1;
 928}
 929
 930/*
 931 * Return the underlying cycle count for the PMU cycle counters. If we're in
 932 * usermode, simply return 0.
 933 */
 934static uint64_t cycles_get_count(CPUARMState *env)
 935{
 936#ifndef CONFIG_USER_ONLY
 937    return muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
 938                   ARM_CPU_FREQ, NANOSECONDS_PER_SECOND);
 939#else
 940    return cpu_get_host_ticks();
 941#endif
 942}
 943
 944#ifndef CONFIG_USER_ONLY
 945static int64_t cycles_ns_per(uint64_t cycles)
 946{
 947    return (ARM_CPU_FREQ / NANOSECONDS_PER_SECOND) * cycles;
 948}
 949
 950static bool instructions_supported(CPUARMState *env)
 951{
 952    return icount_enabled() == 1; /* Precise instruction counting */
 953}
 954
 955static uint64_t instructions_get_count(CPUARMState *env)
 956{
 957    return (uint64_t)icount_get_raw();
 958}
 959
 960static int64_t instructions_ns_per(uint64_t icount)
 961{
 962    return icount_to_ns((int64_t)icount);
 963}
 964#endif
 965
 966static bool pmu_8_1_events_supported(CPUARMState *env)
 967{
 968    /* For events which are supported in any v8.1 PMU */
 969    return cpu_isar_feature(any_pmu_8_1, env_archcpu(env));
 970}
 971
 972static bool pmu_8_4_events_supported(CPUARMState *env)
 973{
 974    /* For events which are supported in any v8.1 PMU */
 975    return cpu_isar_feature(any_pmu_8_4, env_archcpu(env));
 976}
 977
 978static uint64_t zero_event_get_count(CPUARMState *env)
 979{
 980    /* For events which on QEMU never fire, so their count is always zero */
 981    return 0;
 982}
 983
 984static int64_t zero_event_ns_per(uint64_t cycles)
 985{
 986    /* An event which never fires can never overflow */
 987    return -1;
 988}
 989
 990static const pm_event pm_events[] = {
 991    { .number = 0x000, /* SW_INCR */
 992      .supported = event_always_supported,
 993      .get_count = swinc_get_count,
 994      .ns_per_count = swinc_ns_per,
 995    },
 996#ifndef CONFIG_USER_ONLY
 997    { .number = 0x008, /* INST_RETIRED, Instruction architecturally executed */
 998      .supported = instructions_supported,
 999      .get_count = instructions_get_count,
1000      .ns_per_count = instructions_ns_per,
1001    },
1002    { .number = 0x011, /* CPU_CYCLES, Cycle */
1003      .supported = event_always_supported,
1004      .get_count = cycles_get_count,
1005      .ns_per_count = cycles_ns_per,
1006    },
1007#endif
1008    { .number = 0x023, /* STALL_FRONTEND */
1009      .supported = pmu_8_1_events_supported,
1010      .get_count = zero_event_get_count,
1011      .ns_per_count = zero_event_ns_per,
1012    },
1013    { .number = 0x024, /* STALL_BACKEND */
1014      .supported = pmu_8_1_events_supported,
1015      .get_count = zero_event_get_count,
1016      .ns_per_count = zero_event_ns_per,
1017    },
1018    { .number = 0x03c, /* STALL */
1019      .supported = pmu_8_4_events_supported,
1020      .get_count = zero_event_get_count,
1021      .ns_per_count = zero_event_ns_per,
1022    },
1023};
1024
1025/*
1026 * Note: Before increasing MAX_EVENT_ID beyond 0x3f into the 0x40xx range of
1027 * events (i.e. the statistical profiling extension), this implementation
1028 * should first be updated to something sparse instead of the current
1029 * supported_event_map[] array.
1030 */
1031#define MAX_EVENT_ID 0x3c
1032#define UNSUPPORTED_EVENT UINT16_MAX
1033static uint16_t supported_event_map[MAX_EVENT_ID + 1];
1034
1035/*
1036 * Called upon CPU initialization to initialize PMCEID[01]_EL0 and build a map
1037 * of ARM event numbers to indices in our pm_events array.
1038 *
1039 * Note: Events in the 0x40XX range are not currently supported.
1040 */
1041void pmu_init(ARMCPU *cpu)
1042{
1043    unsigned int i;
1044
1045    /*
1046     * Empty supported_event_map and cpu->pmceid[01] before adding supported
1047     * events to them
1048     */
1049    for (i = 0; i < ARRAY_SIZE(supported_event_map); i++) {
1050        supported_event_map[i] = UNSUPPORTED_EVENT;
1051    }
1052    cpu->pmceid0 = 0;
1053    cpu->pmceid1 = 0;
1054
1055    for (i = 0; i < ARRAY_SIZE(pm_events); i++) {
1056        const pm_event *cnt = &pm_events[i];
1057        assert(cnt->number <= MAX_EVENT_ID);
1058        /* We do not currently support events in the 0x40xx range */
1059        assert(cnt->number <= 0x3f);
1060
1061        if (cnt->supported(&cpu->env)) {
1062            supported_event_map[cnt->number] = i;
1063            uint64_t event_mask = 1ULL << (cnt->number & 0x1f);
1064            if (cnt->number & 0x20) {
1065                cpu->pmceid1 |= event_mask;
1066            } else {
1067                cpu->pmceid0 |= event_mask;
1068            }
1069        }
1070    }
1071}
1072
1073/*
1074 * Check at runtime whether a PMU event is supported for the current machine
1075 */
1076static bool event_supported(uint16_t number)
1077{
1078    if (number > MAX_EVENT_ID) {
1079        return false;
1080    }
1081    return supported_event_map[number] != UNSUPPORTED_EVENT;
1082}
1083
1084static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri,
1085                                   bool isread)
1086{
1087    /* Performance monitor registers user accessibility is controlled
1088     * by PMUSERENR. MDCR_EL2.TPM and MDCR_EL3.TPM allow configurable
1089     * trapping to EL2 or EL3 for other accesses.
1090     */
1091    int el = arm_current_el(env);
1092    uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
1093
1094    if (el == 0 && !(env->cp15.c9_pmuserenr & 1)) {
1095        return CP_ACCESS_TRAP;
1096    }
1097    if (el < 2 && (mdcr_el2 & MDCR_TPM)) {
1098        return CP_ACCESS_TRAP_EL2;
1099    }
1100    if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
1101        return CP_ACCESS_TRAP_EL3;
1102    }
1103
1104    return CP_ACCESS_OK;
1105}
1106
1107static CPAccessResult pmreg_access_xevcntr(CPUARMState *env,
1108                                           const ARMCPRegInfo *ri,
1109                                           bool isread)
1110{
1111    /* ER: event counter read trap control */
1112    if (arm_feature(env, ARM_FEATURE_V8)
1113        && arm_current_el(env) == 0
1114        && (env->cp15.c9_pmuserenr & (1 << 3)) != 0
1115        && isread) {
1116        return CP_ACCESS_OK;
1117    }
1118
1119    return pmreg_access(env, ri, isread);
1120}
1121
1122static CPAccessResult pmreg_access_swinc(CPUARMState *env,
1123                                         const ARMCPRegInfo *ri,
1124                                         bool isread)
1125{
1126    /* SW: software increment write trap control */
1127    if (arm_feature(env, ARM_FEATURE_V8)
1128        && arm_current_el(env) == 0
1129        && (env->cp15.c9_pmuserenr & (1 << 1)) != 0
1130        && !isread) {
1131        return CP_ACCESS_OK;
1132    }
1133
1134    return pmreg_access(env, ri, isread);
1135}
1136
1137static CPAccessResult pmreg_access_selr(CPUARMState *env,
1138                                        const ARMCPRegInfo *ri,
1139                                        bool isread)
1140{
1141    /* ER: event counter read trap control */
1142    if (arm_feature(env, ARM_FEATURE_V8)
1143        && arm_current_el(env) == 0
1144        && (env->cp15.c9_pmuserenr & (1 << 3)) != 0) {
1145        return CP_ACCESS_OK;
1146    }
1147
1148    return pmreg_access(env, ri, isread);
1149}
1150
1151static CPAccessResult pmreg_access_ccntr(CPUARMState *env,
1152                                         const ARMCPRegInfo *ri,
1153                                         bool isread)
1154{
1155    /* CR: cycle counter read trap control */
1156    if (arm_feature(env, ARM_FEATURE_V8)
1157        && arm_current_el(env) == 0
1158        && (env->cp15.c9_pmuserenr & (1 << 2)) != 0
1159        && isread) {
1160        return CP_ACCESS_OK;
1161    }
1162
1163    return pmreg_access(env, ri, isread);
1164}
1165
1166/* Returns true if the counter (pass 31 for PMCCNTR) should count events using
1167 * the current EL, security state, and register configuration.
1168 */
1169static bool pmu_counter_enabled(CPUARMState *env, uint8_t counter)
1170{
1171    uint64_t filter;
1172    bool e, p, u, nsk, nsu, nsh, m;
1173    bool enabled, prohibited, filtered;
1174    bool secure = arm_is_secure(env);
1175    int el = arm_current_el(env);
1176    uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
1177    uint8_t hpmn = mdcr_el2 & MDCR_HPMN;
1178
1179    if (!arm_feature(env, ARM_FEATURE_PMU)) {
1180        return false;
1181    }
1182
1183    if (!arm_feature(env, ARM_FEATURE_EL2) ||
1184            (counter < hpmn || counter == 31)) {
1185        e = env->cp15.c9_pmcr & PMCRE;
1186    } else {
1187        e = mdcr_el2 & MDCR_HPME;
1188    }
1189    enabled = e && (env->cp15.c9_pmcnten & (1 << counter));
1190
1191    if (!secure) {
1192        if (el == 2 && (counter < hpmn || counter == 31)) {
1193            prohibited = mdcr_el2 & MDCR_HPMD;
1194        } else {
1195            prohibited = false;
1196        }
1197    } else {
1198        prohibited = arm_feature(env, ARM_FEATURE_EL3) &&
1199           !(env->cp15.mdcr_el3 & MDCR_SPME);
1200    }
1201
1202    if (prohibited && counter == 31) {
1203        prohibited = env->cp15.c9_pmcr & PMCRDP;
1204    }
1205
1206    if (counter == 31) {
1207        filter = env->cp15.pmccfiltr_el0;
1208    } else {
1209        filter = env->cp15.c14_pmevtyper[counter];
1210    }
1211
1212    p   = filter & PMXEVTYPER_P;
1213    u   = filter & PMXEVTYPER_U;
1214    nsk = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSK);
1215    nsu = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSU);
1216    nsh = arm_feature(env, ARM_FEATURE_EL2) && (filter & PMXEVTYPER_NSH);
1217    m   = arm_el_is_aa64(env, 1) &&
1218              arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_M);
1219
1220    if (el == 0) {
1221        filtered = secure ? u : u != nsu;
1222    } else if (el == 1) {
1223        filtered = secure ? p : p != nsk;
1224    } else if (el == 2) {
1225        filtered = !nsh;
1226    } else { /* EL3 */
1227        filtered = m != p;
1228    }
1229
1230    if (counter != 31) {
1231        /*
1232         * If not checking PMCCNTR, ensure the counter is setup to an event we
1233         * support
1234         */
1235        uint16_t event = filter & PMXEVTYPER_EVTCOUNT;
1236        if (!event_supported(event)) {
1237            return false;
1238        }
1239    }
1240
1241    return enabled && !prohibited && !filtered;
1242}
1243
1244static void pmu_update_irq(CPUARMState *env)
1245{
1246    ARMCPU *cpu = env_archcpu(env);
1247    qemu_set_irq(cpu->pmu_interrupt, (env->cp15.c9_pmcr & PMCRE) &&
1248            (env->cp15.c9_pminten & env->cp15.c9_pmovsr));
1249}
1250
1251/*
1252 * Ensure c15_ccnt is the guest-visible count so that operations such as
1253 * enabling/disabling the counter or filtering, modifying the count itself,
1254 * etc. can be done logically. This is essentially a no-op if the counter is
1255 * not enabled at the time of the call.
1256 */
1257static void pmccntr_op_start(CPUARMState *env)
1258{
1259    uint64_t cycles = cycles_get_count(env);
1260
1261    if (pmu_counter_enabled(env, 31)) {
1262        uint64_t eff_cycles = cycles;
1263        if (env->cp15.c9_pmcr & PMCRD) {
1264            /* Increment once every 64 processor clock cycles */
1265            eff_cycles /= 64;
1266        }
1267
1268        uint64_t new_pmccntr = eff_cycles - env->cp15.c15_ccnt_delta;
1269
1270        uint64_t overflow_mask = env->cp15.c9_pmcr & PMCRLC ? \
1271                                 1ull << 63 : 1ull << 31;
1272        if (env->cp15.c15_ccnt & ~new_pmccntr & overflow_mask) {
1273            env->cp15.c9_pmovsr |= (1 << 31);
1274            pmu_update_irq(env);
1275        }
1276
1277        env->cp15.c15_ccnt = new_pmccntr;
1278    }
1279    env->cp15.c15_ccnt_delta = cycles;
1280}
1281
1282/*
1283 * If PMCCNTR is enabled, recalculate the delta between the clock and the
1284 * guest-visible count. A call to pmccntr_op_finish should follow every call to
1285 * pmccntr_op_start.
1286 */
1287static void pmccntr_op_finish(CPUARMState *env)
1288{
1289    if (pmu_counter_enabled(env, 31)) {
1290#ifndef CONFIG_USER_ONLY
1291        /* Calculate when the counter will next overflow */
1292        uint64_t remaining_cycles = -env->cp15.c15_ccnt;
1293        if (!(env->cp15.c9_pmcr & PMCRLC)) {
1294            remaining_cycles = (uint32_t)remaining_cycles;
1295        }
1296        int64_t overflow_in = cycles_ns_per(remaining_cycles);
1297
1298        if (overflow_in > 0) {
1299            int64_t overflow_at = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
1300                overflow_in;
1301            ARMCPU *cpu = env_archcpu(env);
1302            timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at);
1303        }
1304#endif
1305
1306        uint64_t prev_cycles = env->cp15.c15_ccnt_delta;
1307        if (env->cp15.c9_pmcr & PMCRD) {
1308            /* Increment once every 64 processor clock cycles */
1309            prev_cycles /= 64;
1310        }
1311        env->cp15.c15_ccnt_delta = prev_cycles - env->cp15.c15_ccnt;
1312    }
1313}
1314
1315static void pmevcntr_op_start(CPUARMState *env, uint8_t counter)
1316{
1317
1318    uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT;
1319    uint64_t count = 0;
1320    if (event_supported(event)) {
1321        uint16_t event_idx = supported_event_map[event];
1322        count = pm_events[event_idx].get_count(env);
1323    }
1324
1325    if (pmu_counter_enabled(env, counter)) {
1326        uint32_t new_pmevcntr = count - env->cp15.c14_pmevcntr_delta[counter];
1327
1328        if (env->cp15.c14_pmevcntr[counter] & ~new_pmevcntr & INT32_MIN) {
1329            env->cp15.c9_pmovsr |= (1 << counter);
1330            pmu_update_irq(env);
1331        }
1332        env->cp15.c14_pmevcntr[counter] = new_pmevcntr;
1333    }
1334    env->cp15.c14_pmevcntr_delta[counter] = count;
1335}
1336
1337static void pmevcntr_op_finish(CPUARMState *env, uint8_t counter)
1338{
1339    if (pmu_counter_enabled(env, counter)) {
1340#ifndef CONFIG_USER_ONLY
1341        uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT;
1342        uint16_t event_idx = supported_event_map[event];
1343        uint64_t delta = UINT32_MAX -
1344            (uint32_t)env->cp15.c14_pmevcntr[counter] + 1;
1345        int64_t overflow_in = pm_events[event_idx].ns_per_count(delta);
1346
1347        if (overflow_in > 0) {
1348            int64_t overflow_at = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
1349                overflow_in;
1350            ARMCPU *cpu = env_archcpu(env);
1351            timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at);
1352        }
1353#endif
1354
1355        env->cp15.c14_pmevcntr_delta[counter] -=
1356            env->cp15.c14_pmevcntr[counter];
1357    }
1358}
1359
1360void pmu_op_start(CPUARMState *env)
1361{
1362    unsigned int i;
1363    pmccntr_op_start(env);
1364    for (i = 0; i < pmu_num_counters(env); i++) {
1365        pmevcntr_op_start(env, i);
1366    }
1367}
1368
1369void pmu_op_finish(CPUARMState *env)
1370{
1371    unsigned int i;
1372    pmccntr_op_finish(env);
1373    for (i = 0; i < pmu_num_counters(env); i++) {
1374        pmevcntr_op_finish(env, i);
1375    }
1376}
1377
1378void pmu_pre_el_change(ARMCPU *cpu, void *ignored)
1379{
1380    pmu_op_start(&cpu->env);
1381}
1382
1383void pmu_post_el_change(ARMCPU *cpu, void *ignored)
1384{
1385    pmu_op_finish(&cpu->env);
1386}
1387
1388void arm_pmu_timer_cb(void *opaque)
1389{
1390    ARMCPU *cpu = opaque;
1391
1392    /*
1393     * Update all the counter values based on the current underlying counts,
1394     * triggering interrupts to be raised, if necessary. pmu_op_finish() also
1395     * has the effect of setting the cpu->pmu_timer to the next earliest time a
1396     * counter may expire.
1397     */
1398    pmu_op_start(&cpu->env);
1399    pmu_op_finish(&cpu->env);
1400}
1401
1402static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1403                       uint64_t value)
1404{
1405    pmu_op_start(env);
1406
1407    if (value & PMCRC) {
1408        /* The counter has been reset */
1409        env->cp15.c15_ccnt = 0;
1410    }
1411
1412    if (value & PMCRP) {
1413        unsigned int i;
1414        for (i = 0; i < pmu_num_counters(env); i++) {
1415            env->cp15.c14_pmevcntr[i] = 0;
1416        }
1417    }
1418
1419    env->cp15.c9_pmcr &= ~PMCR_WRITEABLE_MASK;
1420    env->cp15.c9_pmcr |= (value & PMCR_WRITEABLE_MASK);
1421
1422    pmu_op_finish(env);
1423}
1424
1425static void pmswinc_write(CPUARMState *env, const ARMCPRegInfo *ri,
1426                          uint64_t value)
1427{
1428    unsigned int i;
1429    for (i = 0; i < pmu_num_counters(env); i++) {
1430        /* Increment a counter's count iff: */
1431        if ((value & (1 << i)) && /* counter's bit is set */
1432                /* counter is enabled and not filtered */
1433                pmu_counter_enabled(env, i) &&
1434                /* counter is SW_INCR */
1435                (env->cp15.c14_pmevtyper[i] & PMXEVTYPER_EVTCOUNT) == 0x0) {
1436            pmevcntr_op_start(env, i);
1437
1438            /*
1439             * Detect if this write causes an overflow since we can't predict
1440             * PMSWINC overflows like we can for other events
1441             */
1442            uint32_t new_pmswinc = env->cp15.c14_pmevcntr[i] + 1;
1443
1444            if (env->cp15.c14_pmevcntr[i] & ~new_pmswinc & INT32_MIN) {
1445                env->cp15.c9_pmovsr |= (1 << i);
1446                pmu_update_irq(env);
1447            }
1448
1449            env->cp15.c14_pmevcntr[i] = new_pmswinc;
1450
1451            pmevcntr_op_finish(env, i);
1452        }
1453    }
1454}
1455
1456static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1457{
1458    uint64_t ret;
1459    pmccntr_op_start(env);
1460    ret = env->cp15.c15_ccnt;
1461    pmccntr_op_finish(env);
1462    return ret;
1463}
1464
1465static void pmselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1466                         uint64_t value)
1467{
1468    /* The value of PMSELR.SEL affects the behavior of PMXEVTYPER and
1469     * PMXEVCNTR. We allow [0..31] to be written to PMSELR here; in the
1470     * meanwhile, we check PMSELR.SEL when PMXEVTYPER and PMXEVCNTR are
1471     * accessed.
1472     */
1473    env->cp15.c9_pmselr = value & 0x1f;
1474}
1475
1476static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1477                        uint64_t value)
1478{
1479    pmccntr_op_start(env);
1480    env->cp15.c15_ccnt = value;
1481    pmccntr_op_finish(env);
1482}
1483
1484static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri,
1485                            uint64_t value)
1486{
1487    uint64_t cur_val = pmccntr_read(env, NULL);
1488
1489    pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value));
1490}
1491
1492static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1493                            uint64_t value)
1494{
1495    pmccntr_op_start(env);
1496    env->cp15.pmccfiltr_el0 = value & PMCCFILTR_EL0;
1497    pmccntr_op_finish(env);
1498}
1499
1500static void pmccfiltr_write_a32(CPUARMState *env, const ARMCPRegInfo *ri,
1501                            uint64_t value)
1502{
1503    pmccntr_op_start(env);
1504    /* M is not accessible from AArch32 */
1505    env->cp15.pmccfiltr_el0 = (env->cp15.pmccfiltr_el0 & PMCCFILTR_M) |
1506        (value & PMCCFILTR);
1507    pmccntr_op_finish(env);
1508}
1509
1510static uint64_t pmccfiltr_read_a32(CPUARMState *env, const ARMCPRegInfo *ri)
1511{
1512    /* M is not visible in AArch32 */
1513    return env->cp15.pmccfiltr_el0 & PMCCFILTR;
1514}
1515
1516static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1517                            uint64_t value)
1518{
1519    value &= pmu_counter_mask(env);
1520    env->cp15.c9_pmcnten |= value;
1521}
1522
1523static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1524                             uint64_t value)
1525{
1526    value &= pmu_counter_mask(env);
1527    env->cp15.c9_pmcnten &= ~value;
1528}
1529
1530static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1531                         uint64_t value)
1532{
1533    value &= pmu_counter_mask(env);
1534    env->cp15.c9_pmovsr &= ~value;
1535    pmu_update_irq(env);
1536}
1537
1538static void pmovsset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1539                         uint64_t value)
1540{
1541    value &= pmu_counter_mask(env);
1542    env->cp15.c9_pmovsr |= value;
1543    pmu_update_irq(env);
1544}
1545
1546static void pmevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
1547                             uint64_t value, const uint8_t counter)
1548{
1549    if (counter == 31) {
1550        pmccfiltr_write(env, ri, value);
1551    } else if (counter < pmu_num_counters(env)) {
1552        pmevcntr_op_start(env, counter);
1553
1554        /*
1555         * If this counter's event type is changing, store the current
1556         * underlying count for the new type in c14_pmevcntr_delta[counter] so
1557         * pmevcntr_op_finish has the correct baseline when it converts back to
1558         * a delta.
1559         */
1560        uint16_t old_event = env->cp15.c14_pmevtyper[counter] &
1561            PMXEVTYPER_EVTCOUNT;
1562        uint16_t new_event = value & PMXEVTYPER_EVTCOUNT;
1563        if (old_event != new_event) {
1564            uint64_t count = 0;
1565            if (event_supported(new_event)) {
1566                uint16_t event_idx = supported_event_map[new_event];
1567                count = pm_events[event_idx].get_count(env);
1568            }
1569            env->cp15.c14_pmevcntr_delta[counter] = count;
1570        }
1571
1572        env->cp15.c14_pmevtyper[counter] = value & PMXEVTYPER_MASK;
1573        pmevcntr_op_finish(env, counter);
1574    }
1575    /* Attempts to access PMXEVTYPER are CONSTRAINED UNPREDICTABLE when
1576     * PMSELR value is equal to or greater than the number of implemented
1577     * counters, but not equal to 0x1f. We opt to behave as a RAZ/WI.
1578     */
1579}
1580
1581static uint64_t pmevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri,
1582                               const uint8_t counter)
1583{
1584    if (counter == 31) {
1585        return env->cp15.pmccfiltr_el0;
1586    } else if (counter < pmu_num_counters(env)) {
1587        return env->cp15.c14_pmevtyper[counter];
1588    } else {
1589      /*
1590       * We opt to behave as a RAZ/WI when attempts to access PMXEVTYPER
1591       * are CONSTRAINED UNPREDICTABLE. See comments in pmevtyper_write().
1592       */
1593        return 0;
1594    }
1595}
1596
1597static void pmevtyper_writefn(CPUARMState *env, const ARMCPRegInfo *ri,
1598                              uint64_t value)
1599{
1600    uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1601    pmevtyper_write(env, ri, value, counter);
1602}
1603
1604static void pmevtyper_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri,
1605                               uint64_t value)
1606{
1607    uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1608    env->cp15.c14_pmevtyper[counter] = value;
1609
1610    /*
1611     * pmevtyper_rawwrite is called between a pair of pmu_op_start and
1612     * pmu_op_finish calls when loading saved state for a migration. Because
1613     * we're potentially updating the type of event here, the value written to
1614     * c14_pmevcntr_delta by the preceeding pmu_op_start call may be for a
1615     * different counter type. Therefore, we need to set this value to the
1616     * current count for the counter type we're writing so that pmu_op_finish
1617     * has the correct count for its calculation.
1618     */
1619    uint16_t event = value & PMXEVTYPER_EVTCOUNT;
1620    if (event_supported(event)) {
1621        uint16_t event_idx = supported_event_map[event];
1622        env->cp15.c14_pmevcntr_delta[counter] =
1623            pm_events[event_idx].get_count(env);
1624    }
1625}
1626
1627static uint64_t pmevtyper_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
1628{
1629    uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1630    return pmevtyper_read(env, ri, counter);
1631}
1632
1633static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
1634                             uint64_t value)
1635{
1636    pmevtyper_write(env, ri, value, env->cp15.c9_pmselr & 31);
1637}
1638
1639static uint64_t pmxevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri)
1640{
1641    return pmevtyper_read(env, ri, env->cp15.c9_pmselr & 31);
1642}
1643
1644static void pmevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1645                             uint64_t value, uint8_t counter)
1646{
1647    if (counter < pmu_num_counters(env)) {
1648        pmevcntr_op_start(env, counter);
1649        env->cp15.c14_pmevcntr[counter] = value;
1650        pmevcntr_op_finish(env, counter);
1651    }
1652    /*
1653     * We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR
1654     * are CONSTRAINED UNPREDICTABLE.
1655     */
1656}
1657
1658static uint64_t pmevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri,
1659                              uint8_t counter)
1660{
1661    if (counter < pmu_num_counters(env)) {
1662        uint64_t ret;
1663        pmevcntr_op_start(env, counter);
1664        ret = env->cp15.c14_pmevcntr[counter];
1665        pmevcntr_op_finish(env, counter);
1666        return ret;
1667    } else {
1668      /* We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR
1669       * are CONSTRAINED UNPREDICTABLE. */
1670        return 0;
1671    }
1672}
1673
1674static void pmevcntr_writefn(CPUARMState *env, const ARMCPRegInfo *ri,
1675                             uint64_t value)
1676{
1677    uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1678    pmevcntr_write(env, ri, value, counter);
1679}
1680
1681static uint64_t pmevcntr_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
1682{
1683    uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1684    return pmevcntr_read(env, ri, counter);
1685}
1686
1687static void pmevcntr_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri,
1688                             uint64_t value)
1689{
1690    uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1691    assert(counter < pmu_num_counters(env));
1692    env->cp15.c14_pmevcntr[counter] = value;
1693    pmevcntr_write(env, ri, value, counter);
1694}
1695
1696static uint64_t pmevcntr_rawread(CPUARMState *env, const ARMCPRegInfo *ri)
1697{
1698    uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1699    assert(counter < pmu_num_counters(env));
1700    return env->cp15.c14_pmevcntr[counter];
1701}
1702
1703static void pmxevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1704                             uint64_t value)
1705{
1706    pmevcntr_write(env, ri, value, env->cp15.c9_pmselr & 31);
1707}
1708
1709static uint64_t pmxevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1710{
1711    return pmevcntr_read(env, ri, env->cp15.c9_pmselr & 31);
1712}
1713
1714static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1715                            uint64_t value)
1716{
1717    if (arm_feature(env, ARM_FEATURE_V8)) {
1718        env->cp15.c9_pmuserenr = value & 0xf;
1719    } else {
1720        env->cp15.c9_pmuserenr = value & 1;
1721    }
1722}
1723
1724static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1725                             uint64_t value)
1726{
1727    /* We have no event counters so only the C bit can be changed */
1728    value &= pmu_counter_mask(env);
1729    env->cp15.c9_pminten |= value;
1730    pmu_update_irq(env);
1731}
1732
1733static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1734                             uint64_t value)
1735{
1736    value &= pmu_counter_mask(env);
1737    env->cp15.c9_pminten &= ~value;
1738    pmu_update_irq(env);
1739}
1740
1741static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri,
1742                       uint64_t value)
1743{
1744    /* Note that even though the AArch64 view of this register has bits
1745     * [10:0] all RES0 we can only mask the bottom 5, to comply with the
1746     * architectural requirements for bits which are RES0 only in some
1747     * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7
1748     * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.)
1749     */
1750    raw_write(env, ri, value & ~0x1FULL);
1751}
1752
1753static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
1754{
1755    /* Begin with base v8.0 state.  */
1756    uint32_t valid_mask = 0x3fff;
1757    ARMCPU *cpu = env_archcpu(env);
1758
1759    if (ri->state == ARM_CP_STATE_AA64) {
1760        if (arm_feature(env, ARM_FEATURE_AARCH64) &&
1761            !cpu_isar_feature(aa64_aa32_el1, cpu)) {
1762                value |= SCR_FW | SCR_AW;   /* these two bits are RES1.  */
1763        }
1764        valid_mask &= ~SCR_NET;
1765
1766        if (cpu_isar_feature(aa64_lor, cpu)) {
1767            valid_mask |= SCR_TLOR;
1768        }
1769        if (cpu_isar_feature(aa64_pauth, cpu)) {
1770            valid_mask |= SCR_API | SCR_APK;
1771        }
1772        if (cpu_isar_feature(aa64_sel2, cpu)) {
1773            valid_mask |= SCR_EEL2;
1774        }
1775        if (cpu_isar_feature(aa64_mte, cpu)) {
1776            valid_mask |= SCR_ATA;
1777        }
1778    } else {
1779        valid_mask &= ~(SCR_RW | SCR_ST);
1780    }
1781
1782    if (!arm_feature(env, ARM_FEATURE_EL2)) {
1783        valid_mask &= ~SCR_HCE;
1784
1785        /* On ARMv7, SMD (or SCD as it is called in v7) is only
1786         * supported if EL2 exists. The bit is UNK/SBZP when
1787         * EL2 is unavailable. In QEMU ARMv7, we force it to always zero
1788         * when EL2 is unavailable.
1789         * On ARMv8, this bit is always available.
1790         */
1791        if (arm_feature(env, ARM_FEATURE_V7) &&
1792            !arm_feature(env, ARM_FEATURE_V8)) {
1793            valid_mask &= ~SCR_SMD;
1794        }
1795    }
1796
1797    /* Clear all-context RES0 bits.  */
1798    value &= valid_mask;
1799    raw_write(env, ri, value);
1800}
1801
1802static void scr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1803{
1804    /*
1805     * scr_write will set the RES1 bits on an AArch64-only CPU.
1806     * The reset value will be 0x30 on an AArch64-only CPU and 0 otherwise.
1807     */
1808    scr_write(env, ri, 0);
1809}
1810
1811static CPAccessResult access_aa64_tid2(CPUARMState *env,
1812                                       const ARMCPRegInfo *ri,
1813                                       bool isread)
1814{
1815    if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID2)) {
1816        return CP_ACCESS_TRAP_EL2;
1817    }
1818
1819    return CP_ACCESS_OK;
1820}
1821
1822static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1823{
1824    ARMCPU *cpu = env_archcpu(env);
1825
1826    /* Acquire the CSSELR index from the bank corresponding to the CCSIDR
1827     * bank
1828     */
1829    uint32_t index = A32_BANKED_REG_GET(env, csselr,
1830                                        ri->secure & ARM_CP_SECSTATE_S);
1831
1832    return cpu->ccsidr[index];
1833}
1834
1835static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1836                         uint64_t value)
1837{
1838    raw_write(env, ri, value & 0xf);
1839}
1840
1841static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1842{
1843    CPUState *cs = env_cpu(env);
1844    bool el1 = arm_current_el(env) == 1;
1845    uint64_t hcr_el2 = el1 ? arm_hcr_el2_eff(env) : 0;
1846    uint64_t ret = 0;
1847
1848    if (hcr_el2 & HCR_IMO) {
1849        if (cs->interrupt_request & CPU_INTERRUPT_VIRQ) {
1850            ret |= CPSR_I;
1851        }
1852    } else {
1853        if (cs->interrupt_request & CPU_INTERRUPT_HARD) {
1854            ret |= CPSR_I;
1855        }
1856    }
1857
1858    if (hcr_el2 & HCR_FMO) {
1859        if (cs->interrupt_request & CPU_INTERRUPT_VFIQ) {
1860            ret |= CPSR_F;
1861        }
1862    } else {
1863        if (cs->interrupt_request & CPU_INTERRUPT_FIQ) {
1864            ret |= CPSR_F;
1865        }
1866    }
1867
1868    /* External aborts are not possible in QEMU so A bit is always clear */
1869    return ret;
1870}
1871
1872static CPAccessResult access_aa64_tid1(CPUARMState *env, const ARMCPRegInfo *ri,
1873                                       bool isread)
1874{
1875    if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID1)) {
1876        return CP_ACCESS_TRAP_EL2;
1877    }
1878
1879    return CP_ACCESS_OK;
1880}
1881
1882static CPAccessResult access_aa32_tid1(CPUARMState *env, const ARMCPRegInfo *ri,
1883                                       bool isread)
1884{
1885    if (arm_feature(env, ARM_FEATURE_V8)) {
1886        return access_aa64_tid1(env, ri, isread);
1887    }
1888
1889    return CP_ACCESS_OK;
1890}
1891
1892static const ARMCPRegInfo v7_cp_reginfo[] = {
1893    /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */
1894    { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
1895      .access = PL1_W, .type = ARM_CP_NOP },
1896    /* Performance monitors are implementation defined in v7,
1897     * but with an ARM recommended set of registers, which we
1898     * follow.
1899     *
1900     * Performance registers fall into three categories:
1901     *  (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR)
1902     *  (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR)
1903     *  (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others)
1904     * For the cases controlled by PMUSERENR we must set .access to PL0_RW
1905     * or PL0_RO as appropriate and then check PMUSERENR in the helper fn.
1906     */
1907    { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1,
1908      .access = PL0_RW, .type = ARM_CP_ALIAS,
1909      .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
1910      .writefn = pmcntenset_write,
1911      .accessfn = pmreg_access,
1912      .raw_writefn = raw_write },
1913    { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64,
1914      .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1,
1915      .access = PL0_RW, .accessfn = pmreg_access,
1916      .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0,
1917      .writefn = pmcntenset_write, .raw_writefn = raw_write },
1918    { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2,
1919      .access = PL0_RW,
1920      .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
1921      .accessfn = pmreg_access,
1922      .writefn = pmcntenclr_write,
1923      .type = ARM_CP_ALIAS },
1924    { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64,
1925      .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2,
1926      .access = PL0_RW, .accessfn = pmreg_access,
1927      .type = ARM_CP_ALIAS,
1928      .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten),
1929      .writefn = pmcntenclr_write },
1930    { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3,
1931      .access = PL0_RW, .type = ARM_CP_IO,
1932      .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr),
1933      .accessfn = pmreg_access,
1934      .writefn = pmovsr_write,
1935      .raw_writefn = raw_write },
1936    { .name = "PMOVSCLR_EL0", .state = ARM_CP_STATE_AA64,
1937      .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 3,
1938      .access = PL0_RW, .accessfn = pmreg_access,
1939      .type = ARM_CP_ALIAS | ARM_CP_IO,
1940      .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
1941      .writefn = pmovsr_write,
1942      .raw_writefn = raw_write },
1943    { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4,
1944      .access = PL0_W, .accessfn = pmreg_access_swinc,
1945      .type = ARM_CP_NO_RAW | ARM_CP_IO,
1946      .writefn = pmswinc_write },
1947    { .name = "PMSWINC_EL0", .state = ARM_CP_STATE_AA64,
1948      .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 4,
1949      .access = PL0_W, .accessfn = pmreg_access_swinc,
1950      .type = ARM_CP_NO_RAW | ARM_CP_IO,
1951      .writefn = pmswinc_write },
1952    { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5,
1953      .access = PL0_RW, .type = ARM_CP_ALIAS,
1954      .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmselr),
1955      .accessfn = pmreg_access_selr, .writefn = pmselr_write,
1956      .raw_writefn = raw_write},
1957    { .name = "PMSELR_EL0", .state = ARM_CP_STATE_AA64,
1958      .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 5,
1959      .access = PL0_RW, .accessfn = pmreg_access_selr,
1960      .fieldoffset = offsetof(CPUARMState, cp15.c9_pmselr),
1961      .writefn = pmselr_write, .raw_writefn = raw_write, },
1962    { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0,
1963      .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_ALIAS | ARM_CP_IO,
1964      .readfn = pmccntr_read, .writefn = pmccntr_write32,
1965      .accessfn = pmreg_access_ccntr },
1966    { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64,
1967      .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0,
1968      .access = PL0_RW, .accessfn = pmreg_access_ccntr,
1969      .type = ARM_CP_IO,
1970      .fieldoffset = offsetof(CPUARMState, cp15.c15_ccnt),
1971      .readfn = pmccntr_read, .writefn = pmccntr_write,
1972      .raw_readfn = raw_read, .raw_writefn = raw_write, },
1973    { .name = "PMCCFILTR", .cp = 15, .opc1 = 0, .crn = 14, .crm = 15, .opc2 = 7,
1974      .writefn = pmccfiltr_write_a32, .readfn = pmccfiltr_read_a32,
1975      .access = PL0_RW, .accessfn = pmreg_access,
1976      .type = ARM_CP_ALIAS | ARM_CP_IO,
1977      .resetvalue = 0, },
1978    { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64,
1979      .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7,
1980      .writefn = pmccfiltr_write, .raw_writefn = raw_write,
1981      .access = PL0_RW, .accessfn = pmreg_access,
1982      .type = ARM_CP_IO,
1983      .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0),
1984      .resetvalue = 0, },
1985    { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1,
1986      .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
1987      .accessfn = pmreg_access,
1988      .writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
1989    { .name = "PMXEVTYPER_EL0", .state = ARM_CP_STATE_AA64,
1990      .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 1,
1991      .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
1992      .accessfn = pmreg_access,
1993      .writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
1994    { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2,
1995      .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
1996      .accessfn = pmreg_access_xevcntr,
1997      .writefn = pmxevcntr_write, .readfn = pmxevcntr_read },
1998    { .name = "PMXEVCNTR_EL0", .state = ARM_CP_STATE_AA64,
1999      .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 2,
2000      .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2001      .accessfn = pmreg_access_xevcntr,
2002      .writefn = pmxevcntr_write, .readfn = pmxevcntr_read },
2003    { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0,
2004      .access = PL0_R | PL1_RW, .accessfn = access_tpm,
2005      .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmuserenr),
2006      .resetvalue = 0,
2007      .writefn = pmuserenr_write, .raw_writefn = raw_write },
2008    { .name = "PMUSERENR_EL0", .state = ARM_CP_STATE_AA64,
2009      .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 0,
2010      .access = PL0_R | PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS,
2011      .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr),
2012      .resetvalue = 0,
2013      .writefn = pmuserenr_write, .raw_writefn = raw_write },
2014    { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1,
2015      .access = PL1_RW, .accessfn = access_tpm,
2016      .type = ARM_CP_ALIAS | ARM_CP_IO,
2017      .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pminten),
2018      .resetvalue = 0,
2019      .writefn = pmintenset_write, .raw_writefn = raw_write },
2020    { .name = "PMINTENSET_EL1", .state = ARM_CP_STATE_AA64,
2021      .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 1,
2022      .access = PL1_RW, .accessfn = access_tpm,
2023      .type = ARM_CP_IO,
2024      .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
2025      .writefn = pmintenset_write, .raw_writefn = raw_write,
2026      .resetvalue = 0x0 },
2027    { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2,
2028      .access = PL1_RW, .accessfn = access_tpm,
2029      .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW,
2030      .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
2031      .writefn = pmintenclr_write, },
2032    { .name = "PMINTENCLR_EL1", .state = ARM_CP_STATE_AA64,
2033      .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 2,
2034      .access = PL1_RW, .accessfn = access_tpm,
2035      .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW,
2036      .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
2037      .writefn = pmintenclr_write },
2038    { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH,
2039      .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0,
2040      .access = PL1_R,
2041      .accessfn = access_aa64_tid2,
2042      .readfn = ccsidr_read, .type = ARM_CP_NO_RAW },
2043    { .name = "CSSELR", .state = ARM_CP_STATE_BOTH,
2044      .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0,
2045      .access = PL1_RW,
2046      .accessfn = access_aa64_tid2,
2047      .writefn = csselr_write, .resetvalue = 0,
2048      .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s),
2049                             offsetof(CPUARMState, cp15.csselr_ns) } },
2050    /* Auxiliary ID register: this actually has an IMPDEF value but for now
2051     * just RAZ for all cores:
2052     */
2053    { .name = "AIDR", .state = ARM_CP_STATE_BOTH,
2054      .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7,
2055      .access = PL1_R, .type = ARM_CP_CONST,
2056      .accessfn = access_aa64_tid1,
2057      .resetvalue = 0 },
2058    /* Auxiliary fault status registers: these also are IMPDEF, and we
2059     * choose to RAZ/WI for all cores.
2060     */
2061    { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH,
2062      .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0,
2063      .access = PL1_RW, .accessfn = access_tvm_trvm,
2064      .type = ARM_CP_CONST, .resetvalue = 0 },
2065    { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH,
2066      .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1,
2067      .access = PL1_RW, .accessfn = access_tvm_trvm,
2068      .type = ARM_CP_CONST, .resetvalue = 0 },
2069    /* MAIR can just read-as-written because we don't implement caches
2070     * and so don't need to care about memory attributes.
2071     */
2072    { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64,
2073      .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0,
2074      .access = PL1_RW, .accessfn = access_tvm_trvm,
2075      .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]),
2076      .resetvalue = 0 },
2077    { .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64,
2078      .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0,
2079      .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]),
2080      .resetvalue = 0 },
2081    /* For non-long-descriptor page tables these are PRRR and NMRR;
2082     * regardless they still act as reads-as-written for QEMU.
2083     */
2084     /* MAIR0/1 are defined separately from their 64-bit counterpart which
2085      * allows them to assign the correct fieldoffset based on the endianness
2086      * handled in the field definitions.
2087      */
2088    { .name = "MAIR0", .state = ARM_CP_STATE_AA32,
2089      .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0,
2090      .access = PL1_RW, .accessfn = access_tvm_trvm,
2091      .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s),
2092                             offsetof(CPUARMState, cp15.mair0_ns) },
2093      .resetfn = arm_cp_reset_ignore },
2094    { .name = "MAIR1", .state = ARM_CP_STATE_AA32,
2095      .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1,
2096      .access = PL1_RW, .accessfn = access_tvm_trvm,
2097      .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s),
2098                             offsetof(CPUARMState, cp15.mair1_ns) },
2099      .resetfn = arm_cp_reset_ignore },
2100    { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH,
2101      .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0,
2102      .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read },
2103    /* 32 bit ITLB invalidates */
2104    { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0,
2105      .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2106      .writefn = tlbiall_write },
2107    { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1,
2108      .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2109      .writefn = tlbimva_write },
2110    { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2,
2111      .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2112      .writefn = tlbiasid_write },
2113    /* 32 bit DTLB invalidates */
2114    { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0,
2115      .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2116      .writefn = tlbiall_write },
2117    { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1,
2118      .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2119      .writefn = tlbimva_write },
2120    { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2,
2121      .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2122      .writefn = tlbiasid_write },
2123    /* 32 bit TLB invalidates */
2124    { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
2125      .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2126      .writefn = tlbiall_write },
2127    { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
2128      .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2129      .writefn = tlbimva_write },
2130    { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
2131      .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2132      .writefn = tlbiasid_write },
2133    { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
2134      .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2135      .writefn = tlbimvaa_write },
2136    REGINFO_SENTINEL
2137};
2138
2139static const ARMCPRegInfo v7mp_cp_reginfo[] = {
2140    /* 32 bit TLB invalidates, Inner Shareable */
2141    { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
2142      .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2143      .writefn = tlbiall_is_write },
2144    { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
2145      .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2146      .writefn = tlbimva_is_write },
2147    { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
2148      .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2149      .writefn = tlbiasid_is_write },
2150    { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
2151      .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2152      .writefn = tlbimvaa_is_write },
2153    REGINFO_SENTINEL
2154};
2155
2156static const ARMCPRegInfo pmovsset_cp_reginfo[] = {
2157    /* PMOVSSET is not implemented in v7 before v7ve */
2158    { .name = "PMOVSSET", .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 3,
2159      .access = PL0_RW, .accessfn = pmreg_access,
2160      .type = ARM_CP_ALIAS | ARM_CP_IO,
2161      .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr),
2162      .writefn = pmovsset_write,
2163      .raw_writefn = raw_write },
2164    { .name = "PMOVSSET_EL0", .state = ARM_CP_STATE_AA64,
2165      .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 3,
2166      .access = PL0_RW, .accessfn = pmreg_access,
2167      .type = ARM_CP_ALIAS | ARM_CP_IO,
2168      .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
2169      .writefn = pmovsset_write,
2170      .raw_writefn = raw_write },
2171    REGINFO_SENTINEL
2172};
2173
2174static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2175                        uint64_t value)
2176{
2177    value &= 1;
2178    env->teecr = value;
2179}
2180
2181static CPAccessResult teecr_access(CPUARMState *env, const ARMCPRegInfo *ri,
2182                                   bool isread)
2183{
2184    /*
2185     * HSTR.TTEE only exists in v7A, not v8A, but v8A doesn't have T2EE
2186     * at all, so we don't need to check whether we're v8A.
2187     */
2188    if (arm_current_el(env) < 2 && !arm_is_secure_below_el3(env) &&
2189        (env->cp15.hstr_el2 & HSTR_TTEE)) {
2190        return CP_ACCESS_TRAP_EL2;
2191    }
2192    return CP_ACCESS_OK;
2193}
2194
2195static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri,
2196                                    bool isread)
2197{
2198    if (arm_current_el(env) == 0 && (env->teecr & 1)) {
2199        return CP_ACCESS_TRAP;
2200    }
2201    return teecr_access(env, ri, isread);
2202}
2203
2204static const ARMCPRegInfo t2ee_cp_reginfo[] = {
2205    { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0,
2206      .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr),
2207      .resetvalue = 0,
2208      .writefn = teecr_write, .accessfn = teecr_access },
2209    { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0,
2210      .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr),
2211      .accessfn = teehbr_access, .resetvalue = 0 },
2212    REGINFO_SENTINEL
2213};
2214
2215static const ARMCPRegInfo v6k_cp_reginfo[] = {
2216    { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64,
2217      .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0,
2218      .access = PL0_RW,
2219      .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 },
2220    { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2,
2221      .access = PL0_RW,
2222      .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s),
2223                             offsetoflow32(CPUARMState, cp15.tpidrurw_ns) },
2224      .resetfn = arm_cp_reset_ignore },
2225    { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64,
2226      .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0,
2227      .access = PL0_R|PL1_W,
2228      .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]),
2229      .resetvalue = 0},
2230    { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3,
2231      .access = PL0_R|PL1_W,
2232      .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s),
2233                             offsetoflow32(CPUARMState, cp15.tpidruro_ns) },
2234      .resetfn = arm_cp_reset_ignore },
2235    { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64,
2236      .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0,
2237      .access = PL1_RW,
2238      .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 },
2239    { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4,
2240      .access = PL1_RW,
2241      .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s),
2242                             offsetoflow32(CPUARMState, cp15.tpidrprw_ns) },
2243      .resetvalue = 0 },
2244    REGINFO_SENTINEL
2245};
2246
2247#ifndef CONFIG_USER_ONLY
2248
2249static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri,
2250                                       bool isread)
2251{
2252    /* CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero.
2253     * Writable only at the highest implemented exception level.
2254     */
2255    int el = arm_current_el(env);
2256    uint64_t hcr;
2257    uint32_t cntkctl;
2258
2259    switch (el) {
2260    case 0:
2261        hcr = arm_hcr_el2_eff(env);
2262        if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2263            cntkctl = env->cp15.cnthctl_el2;
2264        } else {
2265            cntkctl = env->cp15.c14_cntkctl;
2266        }
2267        if (!extract32(cntkctl, 0, 2)) {
2268            return CP_ACCESS_TRAP;
2269        }
2270        break;
2271    case 1:
2272        if (!isread && ri->state == ARM_CP_STATE_AA32 &&
2273            arm_is_secure_below_el3(env)) {
2274            /* Accesses from 32-bit Secure EL1 UNDEF (*not* trap to EL3!) */
2275            return CP_ACCESS_TRAP_UNCATEGORIZED;
2276        }
2277        break;
2278    case 2:
2279    case 3:
2280        break;
2281    }
2282
2283    if (!isread && el < arm_highest_el(env)) {
2284        return CP_ACCESS_TRAP_UNCATEGORIZED;
2285    }
2286
2287    return CP_ACCESS_OK;
2288}
2289
2290static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx,
2291                                        bool isread)
2292{
2293    unsigned int cur_el = arm_current_el(env);
2294    bool has_el2 = arm_is_el2_enabled(env);
2295    uint64_t hcr = arm_hcr_el2_eff(env);
2296
2297    switch (cur_el) {
2298    case 0:
2299        /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]CTEN. */
2300        if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2301            return (extract32(env->cp15.cnthctl_el2, timeridx, 1)
2302                    ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2);
2303        }
2304
2305        /* CNT[PV]CT: not visible from PL0 if EL0[PV]CTEN is zero */
2306        if (!extract32(env->cp15.c14_cntkctl, timeridx, 1)) {
2307            return CP_ACCESS_TRAP;
2308        }
2309
2310        /* If HCR_EL2.<E2H,TGE> == '10': check CNTHCTL_EL2.EL1PCTEN. */
2311        if (hcr & HCR_E2H) {
2312            if (timeridx == GTIMER_PHYS &&
2313                !extract32(env->cp15.cnthctl_el2, 10, 1)) {
2314                return CP_ACCESS_TRAP_EL2;
2315            }
2316        } else {
2317            /* If HCR_EL2.<E2H> == 0: check CNTHCTL_EL2.EL1PCEN. */
2318            if (has_el2 && timeridx == GTIMER_PHYS &&
2319                !extract32(env->cp15.cnthctl_el2, 1, 1)) {
2320                return CP_ACCESS_TRAP_EL2;
2321            }
2322        }
2323        break;
2324
2325    case 1:
2326        /* Check CNTHCTL_EL2.EL1PCTEN, which changes location based on E2H. */
2327        if (has_el2 && timeridx == GTIMER_PHYS &&
2328            (hcr & HCR_E2H
2329             ? !extract32(env->cp15.cnthctl_el2, 10, 1)
2330             : !extract32(env->cp15.cnthctl_el2, 0, 1))) {
2331            return CP_ACCESS_TRAP_EL2;
2332        }
2333        break;
2334    }
2335    return CP_ACCESS_OK;
2336}
2337
2338static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx,
2339                                      bool isread)
2340{
2341    unsigned int cur_el = arm_current_el(env);
2342    bool has_el2 = arm_is_el2_enabled(env);
2343    uint64_t hcr = arm_hcr_el2_eff(env);
2344
2345    switch (cur_el) {
2346    case 0:
2347        if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2348            /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]TEN. */
2349            return (extract32(env->cp15.cnthctl_el2, 9 - timeridx, 1)
2350                    ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2);
2351        }
2352
2353        /*
2354         * CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from
2355         * EL0 if EL0[PV]TEN is zero.
2356         */
2357        if (!extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) {
2358            return CP_ACCESS_TRAP;
2359        }
2360        /* fall through */
2361
2362    case 1:
2363        if (has_el2 && timeridx == GTIMER_PHYS) {
2364            if (hcr & HCR_E2H) {
2365                /* If HCR_EL2.<E2H,TGE> == '10': check CNTHCTL_EL2.EL1PTEN. */
2366                if (!extract32(env->cp15.cnthctl_el2, 11, 1)) {
2367                    return CP_ACCESS_TRAP_EL2;
2368                }
2369            } else {
2370                /* If HCR_EL2.<E2H> == 0: check CNTHCTL_EL2.EL1PCEN. */
2371                if (!extract32(env->cp15.cnthctl_el2, 1, 1)) {
2372                    return CP_ACCESS_TRAP_EL2;
2373                }
2374            }
2375        }
2376        break;
2377    }
2378    return CP_ACCESS_OK;
2379}
2380
2381static CPAccessResult gt_pct_access(CPUARMState *env,
2382                                    const ARMCPRegInfo *ri,
2383                                    bool isread)
2384{
2385    return gt_counter_access(env, GTIMER_PHYS, isread);
2386}
2387
2388static CPAccessResult gt_vct_access(CPUARMState *env,
2389                                    const ARMCPRegInfo *ri,
2390                                    bool isread)
2391{
2392    return gt_counter_access(env, GTIMER_VIRT, isread);
2393}
2394
2395static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
2396                                       bool isread)
2397{
2398    return gt_timer_access(env, GTIMER_PHYS, isread);
2399}
2400
2401static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
2402                                       bool isread)
2403{
2404    return gt_timer_access(env, GTIMER_VIRT, isread);
2405}
2406
2407static CPAccessResult gt_stimer_access(CPUARMState *env,
2408                                       const ARMCPRegInfo *ri,
2409                                       bool isread)
2410{
2411    /* The AArch64 register view of the secure physical timer is
2412     * always accessible from EL3, and configurably accessible from
2413     * Secure EL1.
2414     */
2415    switch (arm_current_el(env)) {
2416    case 1:
2417        if (!arm_is_secure(env)) {
2418            return CP_ACCESS_TRAP;
2419        }
2420        if (!(env->cp15.scr_el3 & SCR_ST)) {
2421            return CP_ACCESS_TRAP_EL3;
2422        }
2423        return CP_ACCESS_OK;
2424    case 0:
2425    case 2:
2426        return CP_ACCESS_TRAP;
2427    case 3:
2428        return CP_ACCESS_OK;
2429    default:
2430        g_assert_not_reached();
2431    }
2432}
2433
2434static uint64_t gt_get_countervalue(CPUARMState *env)
2435{
2436    ARMCPU *cpu = env_archcpu(env);
2437
2438    return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / gt_cntfrq_period_ns(cpu);
2439}
2440
2441static void gt_recalc_timer(ARMCPU *cpu, int timeridx)
2442{
2443    ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx];
2444
2445    if (gt->ctl & 1) {
2446        /* Timer enabled: calculate and set current ISTATUS, irq, and
2447         * reset timer to when ISTATUS next has to change
2448         */
2449        uint64_t offset = timeridx == GTIMER_VIRT ?
2450                                      cpu->env.cp15.cntvoff_el2 : 0;
2451        uint64_t count = gt_get_countervalue(&cpu->env);
2452        /* Note that this must be unsigned 64 bit arithmetic: */
2453        int istatus = count - offset >= gt->cval;
2454        uint64_t nexttick;
2455        int irqstate;
2456
2457        gt->ctl = deposit32(gt->ctl, 2, 1, istatus);
2458
2459        irqstate = (istatus && !(gt->ctl & 2));
2460        qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate);
2461
2462        if (istatus) {
2463            /* Next transition is when count rolls back over to zero */
2464            nexttick = UINT64_MAX;
2465        } else {
2466            /* Next transition is when we hit cval */
2467            nexttick = gt->cval + offset;
2468        }
2469        /* Note that the desired next expiry time might be beyond the
2470         * signed-64-bit range of a QEMUTimer -- in this case we just
2471         * set the timer for as far in the future as possible. When the
2472         * timer expires we will reset the timer for any remaining period.
2473         */
2474        if (nexttick > INT64_MAX / gt_cntfrq_period_ns(cpu)) {
2475            timer_mod_ns(cpu->gt_timer[timeridx], INT64_MAX);
2476        } else {
2477            timer_mod(cpu->gt_timer[timeridx], nexttick);
2478        }
2479        trace_arm_gt_recalc(timeridx, irqstate, nexttick);
2480    } else {
2481        /* Timer disabled: ISTATUS and timer output always clear */
2482        gt->ctl &= ~4;
2483        qemu_set_irq(cpu->gt_timer_outputs[timeridx], 0);
2484        timer_del(cpu->gt_timer[timeridx]);
2485        trace_arm_gt_recalc_disabled(timeridx);
2486    }
2487}
2488
2489static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri,
2490                           int timeridx)
2491{
2492    ARMCPU *cpu = env_archcpu(env);
2493
2494    timer_del(cpu->gt_timer[timeridx]);
2495}
2496
2497static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
2498{
2499    return gt_get_countervalue(env);
2500}
2501
2502static uint64_t gt_virt_cnt_offset(CPUARMState *env)
2503{
2504    uint64_t hcr;
2505
2506    switch (arm_current_el(env)) {
2507    case 2:
2508        hcr = arm_hcr_el2_eff(env);
2509        if (hcr & HCR_E2H) {
2510            return 0;
2511        }
2512        break;
2513    case 0:
2514        hcr = arm_hcr_el2_eff(env);
2515        if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2516            return 0;
2517        }
2518        break;
2519    }
2520
2521    return env->cp15.cntvoff_el2;
2522}
2523
2524static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
2525{
2526    return gt_get_countervalue(env) - gt_virt_cnt_offset(env);
2527}
2528
2529static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2530                          int timeridx,
2531                          uint64_t value)
2532{
2533    trace_arm_gt_cval_write(timeridx, value);
2534    env->cp15.c14_timer[timeridx].cval = value;
2535    gt_recalc_timer(env_archcpu(env), timeridx);
2536}
2537
2538static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri,
2539                             int timeridx)
2540{
2541    uint64_t offset = 0;
2542
2543    switch (timeridx) {
2544    case GTIMER_VIRT:
2545    case GTIMER_HYPVIRT:
2546        offset = gt_virt_cnt_offset(env);
2547        break;
2548    }
2549
2550    return (uint32_t)(env->cp15.c14_timer[timeridx].cval -
2551                      (gt_get_countervalue(env) - offset));
2552}
2553
2554static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2555                          int timeridx,
2556                          uint64_t value)
2557{
2558    uint64_t offset = 0;
2559
2560    switch (timeridx) {
2561    case GTIMER_VIRT:
2562    case GTIMER_HYPVIRT:
2563        offset = gt_virt_cnt_offset(env);
2564        break;
2565    }
2566
2567    trace_arm_gt_tval_write(timeridx, value);
2568    env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset +
2569                                         sextract64(value, 0, 32);
2570    gt_recalc_timer(env_archcpu(env), timeridx);
2571}
2572
2573static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2574                         int timeridx,
2575                         uint64_t value)
2576{
2577    ARMCPU *cpu = env_archcpu(env);
2578    uint32_t oldval = env->cp15.c14_timer[timeridx].ctl;
2579
2580    trace_arm_gt_ctl_write(timeridx, value);
2581    env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value);
2582    if ((oldval ^ value) & 1) {
2583        /* Enable toggled */
2584        gt_recalc_timer(cpu, timeridx);
2585    } else if ((oldval ^ value) & 2) {
2586        /* IMASK toggled: don't need to recalculate,
2587         * just set the interrupt line based on ISTATUS
2588         */
2589        int irqstate = (oldval & 4) && !(value & 2);
2590
2591        trace_arm_gt_imask_toggle(timeridx, irqstate);
2592        qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate);
2593    }
2594}
2595
2596static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2597{
2598    gt_timer_reset(env, ri, GTIMER_PHYS);
2599}
2600
2601static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2602                               uint64_t value)
2603{
2604    gt_cval_write(env, ri, GTIMER_PHYS, value);
2605}
2606
2607static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2608{
2609    return gt_tval_read(env, ri, GTIMER_PHYS);
2610}
2611
2612static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2613                               uint64_t value)
2614{
2615    gt_tval_write(env, ri, GTIMER_PHYS, value);
2616}
2617
2618static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2619                              uint64_t value)
2620{
2621    gt_ctl_write(env, ri, GTIMER_PHYS, value);
2622}
2623
2624static int gt_phys_redir_timeridx(CPUARMState *env)
2625{
2626    switch (arm_mmu_idx(env)) {
2627    case ARMMMUIdx_E20_0:
2628    case ARMMMUIdx_E20_2:
2629    case ARMMMUIdx_E20_2_PAN:
2630    case ARMMMUIdx_SE20_0:
2631    case ARMMMUIdx_SE20_2:
2632    case ARMMMUIdx_SE20_2_PAN:
2633        return GTIMER_HYP;
2634    default:
2635        return GTIMER_PHYS;
2636    }
2637}
2638
2639static int gt_virt_redir_timeridx(CPUARMState *env)
2640{
2641    switch (arm_mmu_idx(env)) {
2642    case ARMMMUIdx_E20_0:
2643    case ARMMMUIdx_E20_2:
2644    case ARMMMUIdx_E20_2_PAN:
2645    case ARMMMUIdx_SE20_0:
2646    case ARMMMUIdx_SE20_2:
2647    case ARMMMUIdx_SE20_2_PAN:
2648        return GTIMER_HYPVIRT;
2649    default:
2650        return GTIMER_VIRT;
2651    }
2652}
2653
2654static uint64_t gt_phys_redir_cval_read(CPUARMState *env,
2655                                        const ARMCPRegInfo *ri)
2656{
2657    int timeridx = gt_phys_redir_timeridx(env);
2658    return env->cp15.c14_timer[timeridx].cval;
2659}
2660
2661static void gt_phys_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2662                                     uint64_t value)
2663{
2664    int timeridx = gt_phys_redir_timeridx(env);
2665    gt_cval_write(env, ri, timeridx, value);
2666}
2667
2668static uint64_t gt_phys_redir_tval_read(CPUARMState *env,
2669                                        const ARMCPRegInfo *ri)
2670{
2671    int timeridx = gt_phys_redir_timeridx(env);
2672    return gt_tval_read(env, ri, timeridx);
2673}
2674
2675static void gt_phys_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2676                                     uint64_t value)
2677{
2678    int timeridx = gt_phys_redir_timeridx(env);
2679    gt_tval_write(env, ri, timeridx, value);
2680}
2681
2682static uint64_t gt_phys_redir_ctl_read(CPUARMState *env,
2683                                       const ARMCPRegInfo *ri)
2684{
2685    int timeridx = gt_phys_redir_timeridx(env);
2686    return env->cp15.c14_timer[timeridx].ctl;
2687}
2688
2689static void gt_phys_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2690                                    uint64_t value)
2691{
2692    int timeridx = gt_phys_redir_timeridx(env);
2693    gt_ctl_write(env, ri, timeridx, value);
2694}
2695
2696static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2697{
2698    gt_timer_reset(env, ri, GTIMER_VIRT);
2699}
2700
2701static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2702                               uint64_t value)
2703{
2704    gt_cval_write(env, ri, GTIMER_VIRT, value);
2705}
2706
2707static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2708{
2709    return gt_tval_read(env, ri, GTIMER_VIRT);
2710}
2711
2712static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2713                               uint64_t value)
2714{
2715    gt_tval_write(env, ri, GTIMER_VIRT, value);
2716}
2717
2718static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2719                              uint64_t value)
2720{
2721    gt_ctl_write(env, ri, GTIMER_VIRT, value);
2722}
2723
2724static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri,
2725                              uint64_t value)
2726{
2727    ARMCPU *cpu = env_archcpu(env);
2728
2729    trace_arm_gt_cntvoff_write(value);
2730    raw_write(env, ri, value);
2731    gt_recalc_timer(cpu, GTIMER_VIRT);
2732}
2733
2734static uint64_t gt_virt_redir_cval_read(CPUARMState *env,
2735                                        const ARMCPRegInfo *ri)
2736{
2737    int timeridx = gt_virt_redir_timeridx(env);
2738    return env->cp15.c14_timer[timeridx].cval;
2739}
2740
2741static void gt_virt_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2742                                     uint64_t value)
2743{
2744    int timeridx = gt_virt_redir_timeridx(env);
2745    gt_cval_write(env, ri, timeridx, value);
2746}
2747
2748static uint64_t gt_virt_redir_tval_read(CPUARMState *env,
2749                                        const ARMCPRegInfo *ri)
2750{
2751    int timeridx = gt_virt_redir_timeridx(env);
2752    return gt_tval_read(env, ri, timeridx);
2753}
2754
2755static void gt_virt_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2756                                     uint64_t value)
2757{
2758    int timeridx = gt_virt_redir_timeridx(env);
2759    gt_tval_write(env, ri, timeridx, value);
2760}
2761
2762static uint64_t gt_virt_redir_ctl_read(CPUARMState *env,
2763                                       const ARMCPRegInfo *ri)
2764{
2765    int timeridx = gt_virt_redir_timeridx(env);
2766    return env->cp15.c14_timer[timeridx].ctl;
2767}
2768
2769static void gt_virt_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2770                                    uint64_t value)
2771{
2772    int timeridx = gt_virt_redir_timeridx(env);
2773    gt_ctl_write(env, ri, timeridx, value);
2774}
2775
2776static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2777{
2778    gt_timer_reset(env, ri, GTIMER_HYP);
2779}
2780
2781static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2782                              uint64_t value)
2783{
2784    gt_cval_write(env, ri, GTIMER_HYP, value);
2785}
2786
2787static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2788{
2789    return gt_tval_read(env, ri, GTIMER_HYP);
2790}
2791
2792static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2793                              uint64_t value)
2794{
2795    gt_tval_write(env, ri, GTIMER_HYP, value);
2796}
2797
2798static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2799                              uint64_t value)
2800{
2801    gt_ctl_write(env, ri, GTIMER_HYP, value);
2802}
2803
2804static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2805{
2806    gt_timer_reset(env, ri, GTIMER_SEC);
2807}
2808
2809static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2810                              uint64_t value)
2811{
2812    gt_cval_write(env, ri, GTIMER_SEC, value);
2813}
2814
2815static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2816{
2817    return gt_tval_read(env, ri, GTIMER_SEC);
2818}
2819
2820static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2821                              uint64_t value)
2822{
2823    gt_tval_write(env, ri, GTIMER_SEC, value);
2824}
2825
2826static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2827                              uint64_t value)
2828{
2829    gt_ctl_write(env, ri, GTIMER_SEC, value);
2830}
2831
2832static void gt_hv_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2833{
2834    gt_timer_reset(env, ri, GTIMER_HYPVIRT);
2835}
2836
2837static void gt_hv_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2838                             uint64_t value)
2839{
2840    gt_cval_write(env, ri, GTIMER_HYPVIRT, value);
2841}
2842
2843static uint64_t gt_hv_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2844{
2845    return gt_tval_read(env, ri, GTIMER_HYPVIRT);
2846}
2847
2848static void gt_hv_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2849                             uint64_t value)
2850{
2851    gt_tval_write(env, ri, GTIMER_HYPVIRT, value);
2852}
2853
2854static void gt_hv_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2855                            uint64_t value)
2856{
2857    gt_ctl_write(env, ri, GTIMER_HYPVIRT, value);
2858}
2859
2860void arm_gt_ptimer_cb(void *opaque)
2861{
2862    ARMCPU *cpu = opaque;
2863
2864    gt_recalc_timer(cpu, GTIMER_PHYS);
2865}
2866
2867void arm_gt_vtimer_cb(void *opaque)
2868{
2869    ARMCPU *cpu = opaque;
2870
2871    gt_recalc_timer(cpu, GTIMER_VIRT);
2872}
2873
2874void arm_gt_htimer_cb(void *opaque)
2875{
2876    ARMCPU *cpu = opaque;
2877
2878    gt_recalc_timer(cpu, GTIMER_HYP);
2879}
2880
2881void arm_gt_stimer_cb(void *opaque)
2882{
2883    ARMCPU *cpu = opaque;
2884
2885    gt_recalc_timer(cpu, GTIMER_SEC);
2886}
2887
2888void arm_gt_hvtimer_cb(void *opaque)
2889{
2890    ARMCPU *cpu = opaque;
2891
2892    gt_recalc_timer(cpu, GTIMER_HYPVIRT);
2893}
2894
2895static void arm_gt_cntfrq_reset(CPUARMState *env, const ARMCPRegInfo *opaque)
2896{
2897    ARMCPU *cpu = env_archcpu(env);
2898
2899    cpu->env.cp15.c14_cntfrq = cpu->gt_cntfrq_hz;
2900}
2901
2902static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
2903    /* Note that CNTFRQ is purely reads-as-written for the benefit
2904     * of software; writing it doesn't actually change the timer frequency.
2905     * Our reset value matches the fixed frequency we implement the timer at.
2906     */
2907    { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0,
2908      .type = ARM_CP_ALIAS,
2909      .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
2910      .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq),
2911    },
2912    { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
2913      .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
2914      .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
2915      .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
2916      .resetfn = arm_gt_cntfrq_reset,
2917    },
2918    /* overall control: mostly access permissions */
2919    { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH,
2920      .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0,
2921      .access = PL1_RW,
2922      .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl),
2923      .resetvalue = 0,
2924    },
2925    /* per-timer control */
2926    { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
2927      .secure = ARM_CP_SECSTATE_NS,
2928      .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
2929      .accessfn = gt_ptimer_access,
2930      .fieldoffset = offsetoflow32(CPUARMState,
2931                                   cp15.c14_timer[GTIMER_PHYS].ctl),
2932      .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read,
2933      .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write,
2934    },
2935    { .name = "CNTP_CTL_S",
2936      .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
2937      .secure = ARM_CP_SECSTATE_S,
2938      .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
2939      .accessfn = gt_ptimer_access,
2940      .fieldoffset = offsetoflow32(CPUARMState,
2941                                   cp15.c14_timer[GTIMER_SEC].ctl),
2942      .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
2943    },
2944    { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64,
2945      .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1,
2946      .type = ARM_CP_IO, .access = PL0_RW,
2947      .accessfn = gt_ptimer_access,
2948      .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl),
2949      .resetvalue = 0,
2950      .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read,
2951      .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write,
2952    },
2953    { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1,
2954      .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
2955      .accessfn = gt_vtimer_access,
2956      .fieldoffset = offsetoflow32(CPUARMState,
2957                                   cp15.c14_timer[GTIMER_VIRT].ctl),
2958      .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read,
2959      .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write,
2960    },
2961    { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64,
2962      .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1,
2963      .type = ARM_CP_IO, .access = PL0_RW,
2964      .accessfn = gt_vtimer_access,
2965      .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl),
2966      .resetvalue = 0,
2967      .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read,
2968      .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write,
2969    },
2970    /* TimerValue views: a 32 bit downcounting view of the underlying state */
2971    { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
2972      .secure = ARM_CP_SECSTATE_NS,
2973      .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
2974      .accessfn = gt_ptimer_access,
2975      .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write,
2976    },
2977    { .name = "CNTP_TVAL_S",
2978      .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
2979      .secure = ARM_CP_SECSTATE_S,
2980      .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
2981      .accessfn = gt_ptimer_access,
2982      .readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write,
2983    },
2984    { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64,
2985      .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0,
2986      .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
2987      .accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset,
2988      .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write,
2989    },
2990    { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0,
2991      .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
2992      .accessfn = gt_vtimer_access,
2993      .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write,
2994    },
2995    { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64,
2996      .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0,
2997      .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
2998      .accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset,
2999      .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write,
3000    },
3001    /* The counter itself */
3002    { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0,
3003      .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
3004      .accessfn = gt_pct_access,
3005      .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore,
3006    },
3007    { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64,
3008      .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1,
3009      .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
3010      .accessfn = gt_pct_access, .readfn = gt_cnt_read,
3011    },
3012    { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1,
3013      .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
3014      .accessfn = gt_vct_access,
3015      .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore,
3016    },
3017    { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
3018      .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
3019      .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
3020      .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read,
3021    },
3022    /* Comparison value, indicating when the timer goes off */
3023    { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2,
3024      .secure = ARM_CP_SECSTATE_NS,
3025      .access = PL0_RW,
3026      .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
3027      .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
3028      .accessfn = gt_ptimer_access,
3029      .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read,
3030      .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write,
3031    },
3032    { .name = "CNTP_CVAL_S", .cp = 15, .crm = 14, .opc1 = 2,
3033      .secure = ARM_CP_SECSTATE_S,
3034      .access = PL0_RW,
3035      .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
3036      .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
3037      .accessfn = gt_ptimer_access,
3038      .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
3039    },
3040    { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64,
3041      .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2,
3042      .access = PL0_RW,
3043      .type = ARM_CP_IO,
3044      .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
3045      .resetvalue = 0, .accessfn = gt_ptimer_access,
3046      .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read,
3047      .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write,
3048    },
3049    { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3,
3050      .access = PL0_RW,
3051      .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
3052      .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
3053      .accessfn = gt_vtimer_access,
3054      .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read,
3055      .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write,
3056    },
3057    { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64,
3058      .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2,
3059      .access = PL0_RW,
3060      .type = ARM_CP_IO,
3061      .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
3062      .resetvalue = 0, .accessfn = gt_vtimer_access,
3063      .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read,
3064      .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write,
3065    },
3066    /* Secure timer -- this is actually restricted to only EL3
3067     * and configurably Secure-EL1 via the accessfn.
3068     */
3069    { .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64,
3070      .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0,
3071      .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW,
3072      .accessfn = gt_stimer_access,
3073      .readfn = gt_sec_tval_read,
3074      .writefn = gt_sec_tval_write,
3075      .resetfn = gt_sec_timer_reset,
3076    },
3077    { .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64,
3078      .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1,
3079      .type = ARM_CP_IO, .access = PL1_RW,
3080      .accessfn = gt_stimer_access,
3081      .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl),
3082      .resetvalue = 0,
3083      .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
3084    },
3085    { .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64,
3086      .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2,
3087      .type = ARM_CP_IO, .access = PL1_RW,
3088      .accessfn = gt_stimer_access,
3089      .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
3090      .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
3091    },
3092    REGINFO_SENTINEL
3093};
3094
3095static CPAccessResult e2h_access(CPUARMState *env, const ARMCPRegInfo *ri,
3096                                 bool isread)
3097{
3098    if (!(arm_hcr_el2_eff(env) & HCR_E2H)) {
3099        return CP_ACCESS_TRAP;
3100    }
3101    return CP_ACCESS_OK;
3102}
3103
3104#else
3105
3106/* In user-mode most of the generic timer registers are inaccessible
3107 * however modern kernels (4.12+) allow access to cntvct_el0
3108 */
3109
3110static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
3111{
3112    ARMCPU *cpu = env_archcpu(env);
3113
3114    /* Currently we have no support for QEMUTimer in linux-user so we
3115     * can't call gt_get_countervalue(env), instead we directly
3116     * call the lower level functions.
3117     */
3118    return cpu_get_clock() / gt_cntfrq_period_ns(cpu);
3119}
3120
3121static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
3122    { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
3123      .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
3124      .type = ARM_CP_CONST, .access = PL0_R /* no PL1_RW in linux-user */,
3125      .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
3126      .resetvalue = NANOSECONDS_PER_SECOND / GTIMER_SCALE,
3127    },
3128    { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
3129      .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
3130      .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
3131      .readfn = gt_virt_cnt_read,
3132    },
3133    REGINFO_SENTINEL
3134};
3135
3136#endif
3137
3138static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
3139{
3140    if (arm_feature(env, ARM_FEATURE_LPAE)) {
3141        raw_write(env, ri, value);
3142    } else if (arm_feature(env, ARM_FEATURE_V7)) {
3143        raw_write(env, ri, value & 0xfffff6ff);
3144    } else {
3145        raw_write(env, ri, value & 0xfffff1ff);
3146    }
3147}
3148
3149#ifndef CONFIG_USER_ONLY
3150/* get_phys_addr() isn't present for user-mode-only targets */
3151
3152static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri,
3153                                 bool isread)
3154{
3155    if (ri->opc2 & 4) {
3156        /* The ATS12NSO* operations must trap to EL3 or EL2 if executed in
3157         * Secure EL1 (which can only happen if EL3 is AArch64).
3158         * They are simply UNDEF if executed from NS EL1.
3159         * They function normally from EL2 or EL3.
3160         */
3161        if (arm_current_el(env) == 1) {
3162            if (arm_is_secure_below_el3(env)) {
3163                if (env->cp15.scr_el3 & SCR_EEL2) {
3164                    return CP_ACCESS_TRAP_UNCATEGORIZED_EL2;
3165                }
3166                return CP_ACCESS_TRAP_UNCATEGORIZED_EL3;
3167            }
3168            return CP_ACCESS_TRAP_UNCATEGORIZED;
3169        }
3170    }
3171    return CP_ACCESS_OK;
3172}
3173
3174#ifdef CONFIG_TCG
3175static uint64_t do_ats_write(CPUARMState *env, uint64_t value,
3176                             MMUAccessType access_type, ARMMMUIdx mmu_idx)
3177{
3178    hwaddr phys_addr;
3179    target_ulong page_size;
3180    int prot;
3181    bool ret;
3182    uint64_t par64;
3183    bool format64 = false;
3184    MemTxAttrs attrs = {};
3185    ARMMMUFaultInfo fi = {};
3186    ARMCacheAttrs cacheattrs = {};
3187
3188    ret = get_phys_addr(env, value, access_type, mmu_idx, &phys_addr, &attrs,
3189                        &prot, &page_size, &fi, &cacheattrs);
3190
3191    if (ret) {
3192        /*
3193         * Some kinds of translation fault must cause exceptions rather
3194         * than being reported in the PAR.
3195         */
3196        int current_el = arm_current_el(env);
3197        int target_el;
3198        uint32_t syn, fsr, fsc;
3199        bool take_exc = false;
3200
3201        if (fi.s1ptw && current_el == 1
3202            && arm_mmu_idx_is_stage1_of_2(mmu_idx)) {
3203            /*
3204             * Synchronous stage 2 fault on an access made as part of the
3205             * translation table walk for AT S1E0* or AT S1E1* insn
3206             * executed from NS EL1. If this is a synchronous external abort
3207             * and SCR_EL3.EA == 1, then we take a synchronous external abort
3208             * to EL3. Otherwise the fault is taken as an exception to EL2,
3209             * and HPFAR_EL2 holds the faulting IPA.
3210             */
3211            if (fi.type == ARMFault_SyncExternalOnWalk &&
3212                (env->cp15.scr_el3 & SCR_EA)) {
3213                target_el = 3;
3214            } else {
3215                env->cp15.hpfar_el2 = extract64(fi.s2addr, 12, 47) << 4;
3216                if (arm_is_secure_below_el3(env) && fi.s1ns) {
3217                    env->cp15.hpfar_el2 |= HPFAR_NS;
3218                }
3219                target_el = 2;
3220            }
3221            take_exc = true;
3222        } else if (fi.type == ARMFault_SyncExternalOnWalk) {
3223            /*
3224             * Synchronous external aborts during a translation table walk
3225             * are taken as Data Abort exceptions.
3226             */
3227            if (fi.stage2) {
3228                if (current_el == 3) {
3229                    target_el = 3;
3230                } else {
3231                    target_el = 2;
3232                }
3233            } else {
3234                target_el = exception_target_el(env);
3235            }
3236            take_exc = true;
3237        }
3238
3239        if (take_exc) {
3240            /* Construct FSR and FSC using same logic as arm_deliver_fault() */
3241            if (target_el == 2 || arm_el_is_aa64(env, target_el) ||
3242                arm_s1_regime_using_lpae_format(env, mmu_idx)) {
3243                fsr = arm_fi_to_lfsc(&fi);
3244                fsc = extract32(fsr, 0, 6);
3245            } else {
3246                fsr = arm_fi_to_sfsc(&fi);
3247                fsc = 0x3f;
3248            }
3249            /*
3250             * Report exception with ESR indicating a fault due to a
3251             * translation table walk for a cache maintenance instruction.
3252             */
3253            syn = syn_data_abort_no_iss(current_el == target_el, 0,
3254                                        fi.ea, 1, fi.s1ptw, 1, fsc);
3255            env->exception.vaddress = value;
3256            env->exception.fsr = fsr;
3257            raise_exception(env, EXCP_DATA_ABORT, syn, target_el);
3258        }
3259    }
3260
3261    if (is_a64(env)) {
3262        format64 = true;
3263    } else if (arm_feature(env, ARM_FEATURE_LPAE)) {
3264        /*
3265         * ATS1Cxx:
3266         * * TTBCR.EAE determines whether the result is returned using the
3267         *   32-bit or the 64-bit PAR format
3268         * * Instructions executed in Hyp mode always use the 64bit format
3269         *
3270         * ATS1S2NSOxx uses the 64bit format if any of the following is true:
3271         * * The Non-secure TTBCR.EAE bit is set to 1
3272         * * The implementation includes EL2, and the value of HCR.VM is 1
3273         *
3274         * (Note that HCR.DC makes HCR.VM behave as if it is 1.)
3275         *
3276         * ATS1Hx always uses the 64bit format.
3277         */
3278        format64 = arm_s1_regime_using_lpae_format(env, mmu_idx);
3279
3280        if (arm_feature(env, ARM_FEATURE_EL2)) {
3281            if (mmu_idx == ARMMMUIdx_E10_0 ||
3282                mmu_idx == ARMMMUIdx_E10_1 ||
3283                mmu_idx == ARMMMUIdx_E10_1_PAN) {
3284                format64 |= env->cp15.hcr_el2 & (HCR_VM | HCR_DC);
3285            } else {
3286                format64 |= arm_current_el(env) == 2;
3287            }
3288        }
3289    }
3290
3291    if (format64) {
3292        /* Create a 64-bit PAR */
3293        par64 = (1 << 11); /* LPAE bit always set */
3294        if (!ret) {
3295            par64 |= phys_addr & ~0xfffULL;
3296            if (!attrs.secure) {
3297                par64 |= (1 << 9); /* NS */
3298            }
3299            par64 |= (uint64_t)cacheattrs.attrs << 56; /* ATTR */
3300            par64 |= cacheattrs.shareability << 7; /* SH */
3301        } else {
3302            uint32_t fsr = arm_fi_to_lfsc(&fi);
3303
3304            par64 |= 1; /* F */
3305            par64 |= (fsr & 0x3f) << 1; /* FS */
3306            if (fi.stage2) {
3307                par64 |= (1 << 9); /* S */
3308            }
3309            if (fi.s1ptw) {
3310                par64 |= (1 << 8); /* PTW */
3311            }
3312        }
3313    } else {
3314        /* fsr is a DFSR/IFSR value for the short descriptor
3315         * translation table format (with WnR always clear).
3316         * Convert it to a 32-bit PAR.
3317         */
3318        if (!ret) {
3319            /* We do not set any attribute bits in the PAR */
3320            if (page_size == (1 << 24)
3321                && arm_feature(env, ARM_FEATURE_V7)) {
3322                par64 = (phys_addr & 0xff000000) | (1 << 1);
3323            } else {
3324                par64 = phys_addr & 0xfffff000;
3325            }
3326            if (!attrs.secure) {
3327                par64 |= (1 << 9); /* NS */
3328            }
3329        } else {
3330            uint32_t fsr = arm_fi_to_sfsc(&fi);
3331
3332            par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) |
3333                    ((fsr & 0xf) << 1) | 1;
3334        }
3335    }
3336    return par64;
3337}
3338#endif /* CONFIG_TCG */
3339
3340static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
3341{
3342#ifdef CONFIG_TCG
3343    MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
3344    uint64_t par64;
3345    ARMMMUIdx mmu_idx;
3346    int el = arm_current_el(env);
3347    bool secure = arm_is_secure_below_el3(env);
3348
3349    switch (ri->opc2 & 6) {
3350    case 0:
3351        /* stage 1 current state PL1: ATS1CPR, ATS1CPW, ATS1CPRP, ATS1CPWP */
3352        switch (el) {
3353        case 3:
3354            mmu_idx = ARMMMUIdx_SE3;
3355            break;
3356        case 2:
3357            g_assert(!secure);  /* ARMv8.4-SecEL2 is 64-bit only */
3358            /* fall through */
3359        case 1:
3360            if (ri->crm == 9 && (env->uncached_cpsr & CPSR_PAN)) {
3361                mmu_idx = (secure ? ARMMMUIdx_Stage1_SE1_PAN
3362                           : ARMMMUIdx_Stage1_E1_PAN);
3363            } else {
3364                mmu_idx = secure ? ARMMMUIdx_Stage1_SE1 : ARMMMUIdx_Stage1_E1;
3365            }
3366            break;
3367        default:
3368            g_assert_not_reached();
3369        }
3370        break;
3371    case 2:
3372        /* stage 1 current state PL0: ATS1CUR, ATS1CUW */
3373        switch (el) {
3374        case 3:
3375            mmu_idx = ARMMMUIdx_SE10_0;
3376            break;
3377        case 2:
3378            g_assert(!secure);  /* ARMv8.4-SecEL2 is 64-bit only */
3379            mmu_idx = ARMMMUIdx_Stage1_E0;
3380            break;
3381        case 1:
3382            mmu_idx = secure ? ARMMMUIdx_Stage1_SE0 : ARMMMUIdx_Stage1_E0;
3383            break;
3384        default:
3385            g_assert_not_reached();
3386        }
3387        break;
3388    case 4:
3389        /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */
3390        mmu_idx = ARMMMUIdx_E10_1;
3391        break;
3392    case 6:
3393        /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */
3394        mmu_idx = ARMMMUIdx_E10_0;
3395        break;
3396    default:
3397        g_assert_not_reached();
3398    }
3399
3400    par64 = do_ats_write(env, value, access_type, mmu_idx);
3401
3402    A32_BANKED_CURRENT_REG_SET(env, par, par64);
3403#else
3404    /* Handled by hardware accelerator. */
3405    g_assert_not_reached();
3406#endif /* CONFIG_TCG */
3407}
3408
3409static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri,
3410                        uint64_t value)
3411{
3412#ifdef CONFIG_TCG
3413    MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
3414    uint64_t par64;
3415
3416    par64 = do_ats_write(env, value, access_type, ARMMMUIdx_E2);
3417
3418    A32_BANKED_CURRENT_REG_SET(env, par, par64);
3419#else
3420    /* Handled by hardware accelerator. */
3421    g_assert_not_reached();
3422#endif /* CONFIG_TCG */
3423}
3424
3425static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri,
3426                                     bool isread)
3427{
3428    if (arm_current_el(env) == 3 &&
3429        !(env->cp15.scr_el3 & (SCR_NS | SCR_EEL2))) {
3430        return CP_ACCESS_TRAP;
3431    }
3432    return CP_ACCESS_OK;
3433}
3434
3435static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri,
3436                        uint64_t value)
3437{
3438#ifdef CONFIG_TCG
3439    MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
3440    ARMMMUIdx mmu_idx;
3441    int secure = arm_is_secure_below_el3(env);
3442
3443    switch (ri->opc2 & 6) {
3444    case 0:
3445        switch (ri->opc1) {
3446        case 0: /* AT S1E1R, AT S1E1W, AT S1E1RP, AT S1E1WP */
3447            if (ri->crm == 9 && (env->pstate & PSTATE_PAN)) {
3448                mmu_idx = (secure ? ARMMMUIdx_Stage1_SE1_PAN
3449                           : ARMMMUIdx_Stage1_E1_PAN);
3450            } else {
3451                mmu_idx = secure ? ARMMMUIdx_Stage1_SE1 : ARMMMUIdx_Stage1_E1;
3452            }
3453            break;
3454        case 4: /* AT S1E2R, AT S1E2W */
3455            mmu_idx = secure ? ARMMMUIdx_SE2 : ARMMMUIdx_E2;
3456            break;
3457        case 6: /* AT S1E3R, AT S1E3W */
3458            mmu_idx = ARMMMUIdx_SE3;
3459            break;
3460        default:
3461            g_assert_not_reached();
3462        }
3463        break;
3464    case 2: /* AT S1E0R, AT S1E0W */
3465        mmu_idx = secure ? ARMMMUIdx_Stage1_SE0 : ARMMMUIdx_Stage1_E0;
3466        break;
3467    case 4: /* AT S12E1R, AT S12E1W */
3468        mmu_idx = secure ? ARMMMUIdx_SE10_1 : ARMMMUIdx_E10_1;
3469        break;
3470    case 6: /* AT S12E0R, AT S12E0W */
3471        mmu_idx = secure ? ARMMMUIdx_SE10_0 : ARMMMUIdx_E10_0;
3472        break;
3473    default:
3474        g_assert_not_reached();
3475    }
3476
3477    env->cp15.par_el[1] = do_ats_write(env, value, access_type, mmu_idx);
3478#else
3479    /* Handled by hardware accelerator. */
3480    g_assert_not_reached();
3481#endif /* CONFIG_TCG */
3482}
3483#endif
3484
3485static const ARMCPRegInfo vapa_cp_reginfo[] = {
3486    { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0,
3487      .access = PL1_RW, .resetvalue = 0,
3488      .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s),
3489                             offsetoflow32(CPUARMState, cp15.par_ns) },
3490      .writefn = par_write },
3491#ifndef CONFIG_USER_ONLY
3492    /* This underdecoding is safe because the reginfo is NO_RAW. */
3493    { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY,
3494      .access = PL1_W, .accessfn = ats_access,
3495      .writefn = ats_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC },
3496#endif
3497    REGINFO_SENTINEL
3498};
3499
3500/* Return basic MPU access permission bits.  */
3501static uint32_t simple_mpu_ap_bits(uint32_t val)
3502{
3503    uint32_t ret;
3504    uint32_t mask;
3505    int i;
3506    ret = 0;
3507    mask = 3;
3508    for (i = 0; i < 16; i += 2) {
3509        ret |= (val >> i) & mask;
3510        mask <<= 2;
3511    }
3512    return ret;
3513}
3514
3515/* Pad basic MPU access permission bits to extended format.  */
3516static uint32_t extended_mpu_ap_bits(uint32_t val)
3517{
3518    uint32_t ret;
3519    uint32_t mask;
3520    int i;
3521    ret = 0;
3522    mask = 3;
3523    for (i = 0; i < 16; i += 2) {
3524        ret |= (val & mask) << i;
3525        mask <<= 2;
3526    }
3527    return ret;
3528}
3529
3530static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
3531                                 uint64_t value)
3532{
3533    env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value);
3534}
3535
3536static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
3537{
3538    return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap);
3539}
3540
3541static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
3542                                 uint64_t value)
3543{
3544    env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value);
3545}
3546
3547static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
3548{
3549    return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap);
3550}
3551
3552static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri)
3553{
3554    uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
3555
3556    if (!u32p) {
3557        return 0;
3558    }
3559
3560    u32p += env->pmsav7.rnr[M_REG_NS];
3561    return *u32p;
3562}
3563
3564static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri,
3565                         uint64_t value)
3566{
3567    ARMCPU *cpu = env_archcpu(env);
3568    uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
3569
3570    if (!u32p) {
3571        return;
3572    }
3573
3574    u32p += env->pmsav7.rnr[M_REG_NS];
3575    tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
3576    *u32p = value;
3577}
3578
3579static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3580                              uint64_t value)
3581{
3582    ARMCPU *cpu = env_archcpu(env);
3583    uint32_t nrgs = cpu->pmsav7_dregion;
3584
3585    if (value >= nrgs) {
3586        qemu_log_mask(LOG_GUEST_ERROR,
3587                      "PMSAv7 RGNR write >= # supported regions, %" PRIu32
3588                      " > %" PRIu32 "\n", (uint32_t)value, nrgs);
3589        return;
3590    }
3591
3592    raw_write(env, ri, value);
3593}
3594
3595static const ARMCPRegInfo pmsav7_cp_reginfo[] = {
3596    /* Reset for all these registers is handled in arm_cpu_reset(),
3597     * because the PMSAv7 is also used by M-profile CPUs, which do
3598     * not register cpregs but still need the state to be reset.
3599     */
3600    { .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0,
3601      .access = PL1_RW, .type = ARM_CP_NO_RAW,
3602      .fieldoffset = offsetof(CPUARMState, pmsav7.drbar),
3603      .readfn = pmsav7_read, .writefn = pmsav7_write,
3604      .resetfn = arm_cp_reset_ignore },
3605    { .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2,
3606      .access = PL1_RW, .type = ARM_CP_NO_RAW,
3607      .fieldoffset = offsetof(CPUARMState, pmsav7.drsr),
3608      .readfn = pmsav7_read, .writefn = pmsav7_write,
3609      .resetfn = arm_cp_reset_ignore },
3610    { .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4,
3611      .access = PL1_RW, .type = ARM_CP_NO_RAW,
3612      .fieldoffset = offsetof(CPUARMState, pmsav7.dracr),
3613      .readfn = pmsav7_read, .writefn = pmsav7_write,
3614      .resetfn = arm_cp_reset_ignore },
3615    { .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0,
3616      .access = PL1_RW,
3617      .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]),
3618      .writefn = pmsav7_rgnr_write,
3619      .resetfn = arm_cp_reset_ignore },
3620    REGINFO_SENTINEL
3621};
3622
3623static const ARMCPRegInfo pmsav5_cp_reginfo[] = {
3624    { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
3625      .access = PL1_RW, .type = ARM_CP_ALIAS,
3626      .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
3627      .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, },
3628    { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
3629      .access = PL1_RW, .type = ARM_CP_ALIAS,
3630      .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
3631      .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, },
3632    { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2,
3633      .access = PL1_RW,
3634      .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
3635      .resetvalue = 0, },
3636    { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3,
3637      .access = PL1_RW,
3638      .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
3639      .resetvalue = 0, },
3640    { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
3641      .access = PL1_RW,
3642      .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, },
3643    { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1,
3644      .access = PL1_RW,
3645      .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, },
3646    /* Protection region base and size registers */
3647    { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0,
3648      .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3649      .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) },
3650    { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0,
3651      .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3652      .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) },
3653    { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0,
3654      .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3655      .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) },
3656    { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0,
3657      .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3658      .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) },
3659    { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0,
3660      .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3661      .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) },
3662    { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0,
3663      .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3664      .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) },
3665    { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0,
3666      .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3667      .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) },
3668    { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0,
3669      .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3670      .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) },
3671    REGINFO_SENTINEL
3672};
3673
3674static void vmsa_ttbcr_raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
3675                                 uint64_t value)
3676{
3677    TCR *tcr = raw_ptr(env, ri);
3678    int maskshift = extract32(value, 0, 3);
3679
3680    if (!arm_feature(env, ARM_FEATURE_V8)) {
3681        if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) {
3682            /* Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when
3683             * using Long-desciptor translation table format */
3684            value &= ~((7 << 19) | (3 << 14) | (0xf << 3));
3685        } else if (arm_feature(env, ARM_FEATURE_EL3)) {
3686            /* In an implementation that includes the Security Extensions
3687             * TTBCR has additional fields PD0 [4] and PD1 [5] for
3688             * Short-descriptor translation table format.
3689             */
3690            value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N;
3691        } else {
3692            value &= TTBCR_N;
3693        }
3694    }
3695
3696    /* Update the masks corresponding to the TCR bank being written
3697     * Note that we always calculate mask and base_mask, but
3698     * they are only used for short-descriptor tables (ie if EAE is 0);
3699     * for long-descriptor tables the TCR fields are used differently
3700     * and the mask and base_mask values are meaningless.
3701     */
3702    tcr->raw_tcr = value;
3703    tcr->mask = ~(((uint32_t)0xffffffffu) >> maskshift);
3704    tcr->base_mask = ~((uint32_t)0x3fffu >> maskshift);
3705}
3706
3707static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3708                             uint64_t value)
3709{
3710    ARMCPU *cpu = env_archcpu(env);
3711    TCR *tcr = raw_ptr(env, ri);
3712
3713    if (arm_feature(env, ARM_FEATURE_LPAE)) {
3714        /* With LPAE the TTBCR could result in a change of ASID
3715         * via the TTBCR.A1 bit, so do a TLB flush.
3716         */
3717        tlb_flush(CPU(cpu));
3718    }
3719    /* Preserve the high half of TCR_EL1, set via TTBCR2.  */
3720    value = deposit64(tcr->raw_tcr, 0, 32, value);
3721    vmsa_ttbcr_raw_write(env, ri, value);
3722}
3723
3724static void vmsa_ttbcr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
3725{
3726    TCR *tcr = raw_ptr(env, ri);
3727
3728    /* Reset both the TCR as well as the masks corresponding to the bank of
3729     * the TCR being reset.
3730     */
3731    tcr->raw_tcr = 0;
3732    tcr->mask = 0;
3733    tcr->base_mask = 0xffffc000u;
3734}
3735
3736static void vmsa_tcr_el12_write(CPUARMState *env, const ARMCPRegInfo *ri,
3737                               uint64_t value)
3738{
3739    ARMCPU *cpu = env_archcpu(env);
3740    TCR *tcr = raw_ptr(env, ri);
3741
3742    /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */
3743    tlb_flush(CPU(cpu));
3744    tcr->raw_tcr = value;
3745}
3746
3747static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3748                            uint64_t value)
3749{
3750    /* If the ASID changes (with a 64-bit write), we must flush the TLB.  */
3751    if (cpreg_field_is_64bit(ri) &&
3752        extract64(raw_read(env, ri) ^ value, 48, 16) != 0) {
3753        ARMCPU *cpu = env_archcpu(env);
3754        tlb_flush(CPU(cpu));
3755    }
3756    raw_write(env, ri, value);
3757}
3758
3759static void vmsa_tcr_ttbr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri,
3760                                    uint64_t value)
3761{
3762    /*
3763     * If we are running with E2&0 regime, then an ASID is active.
3764     * Flush if that might be changing.  Note we're not checking
3765     * TCR_EL2.A1 to know if this is really the TTBRx_EL2 that
3766     * holds the active ASID, only checking the field that might.
3767     */
3768    if (extract64(raw_read(env, ri) ^ value, 48, 16) &&
3769        (arm_hcr_el2_eff(env) & HCR_E2H)) {
3770        uint16_t mask = ARMMMUIdxBit_E20_2 |
3771                        ARMMMUIdxBit_E20_2_PAN |
3772                        ARMMMUIdxBit_E20_0;
3773
3774        if (arm_is_secure_below_el3(env)) {
3775            mask >>= ARM_MMU_IDX_A_NS;
3776        }
3777
3778        tlb_flush_by_mmuidx(env_cpu(env), mask);
3779    }
3780    raw_write(env, ri, value);
3781}
3782
3783static void vttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3784                        uint64_t value)
3785{
3786    ARMCPU *cpu = env_archcpu(env);
3787    CPUState *cs = CPU(cpu);
3788
3789    /*
3790     * A change in VMID to the stage2 page table (Stage2) invalidates
3791     * the combined stage 1&2 tlbs (EL10_1 and EL10_0).
3792     */
3793    if (raw_read(env, ri) != value) {
3794        uint16_t mask = ARMMMUIdxBit_E10_1 |
3795                        ARMMMUIdxBit_E10_1_PAN |
3796                        ARMMMUIdxBit_E10_0;
3797
3798        if (arm_is_secure_below_el3(env)) {
3799            mask >>= ARM_MMU_IDX_A_NS;
3800        }
3801
3802        tlb_flush_by_mmuidx(cs, mask);
3803        raw_write(env, ri, value);
3804    }
3805}
3806
3807static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = {
3808    { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
3809      .access = PL1_RW, .accessfn = access_tvm_trvm, .type = ARM_CP_ALIAS,
3810      .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s),
3811                             offsetoflow32(CPUARMState, cp15.dfsr_ns) }, },
3812    { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
3813      .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
3814      .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s),
3815                             offsetoflow32(CPUARMState, cp15.ifsr_ns) } },
3816    { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0,
3817      .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
3818      .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s),
3819                             offsetof(CPUARMState, cp15.dfar_ns) } },
3820    { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64,
3821      .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0,
3822      .access = PL1_RW, .accessfn = access_tvm_trvm,
3823      .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]),
3824      .resetvalue = 0, },
3825    REGINFO_SENTINEL
3826};
3827
3828static const ARMCPRegInfo vmsa_cp_reginfo[] = {
3829    { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64,
3830      .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0,
3831      .access = PL1_RW, .accessfn = access_tvm_trvm,
3832      .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, },
3833    { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH,
3834      .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0,
3835      .access = PL1_RW, .accessfn = access_tvm_trvm,
3836      .writefn = vmsa_ttbr_write, .resetvalue = 0,
3837      .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
3838                             offsetof(CPUARMState, cp15.ttbr0_ns) } },
3839    { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH,
3840      .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1,
3841      .access = PL1_RW, .accessfn = access_tvm_trvm,
3842      .writefn = vmsa_ttbr_write, .resetvalue = 0,
3843      .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
3844                             offsetof(CPUARMState, cp15.ttbr1_ns) } },
3845    { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64,
3846      .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
3847      .access = PL1_RW, .accessfn = access_tvm_trvm,
3848      .writefn = vmsa_tcr_el12_write,
3849      .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write,
3850      .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) },
3851    { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
3852      .access = PL1_RW, .accessfn = access_tvm_trvm,
3853      .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write,
3854      .raw_writefn = vmsa_ttbcr_raw_write,
3855      /* No offsetoflow32 -- pass the entire TCR to writefn/raw_writefn. */
3856      .bank_fieldoffsets = { offsetof(CPUARMState, cp15.tcr_el[3]),
3857                             offsetof(CPUARMState, cp15.tcr_el[1])} },
3858    REGINFO_SENTINEL
3859};
3860
3861/* Note that unlike TTBCR, writing to TTBCR2 does not require flushing
3862 * qemu tlbs nor adjusting cached masks.
3863 */
3864static const ARMCPRegInfo ttbcr2_reginfo = {
3865    .name = "TTBCR2", .cp = 15, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 3,
3866    .access = PL1_RW, .accessfn = access_tvm_trvm,
3867    .type = ARM_CP_ALIAS,
3868    .bank_fieldoffsets = {
3869        offsetofhigh32(CPUARMState, cp15.tcr_el[3].raw_tcr),
3870        offsetofhigh32(CPUARMState, cp15.tcr_el[1].raw_tcr),
3871    },
3872};
3873
3874static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri,
3875                                uint64_t value)
3876{
3877    env->cp15.c15_ticonfig = value & 0xe7;
3878    /* The OS_TYPE bit in this register changes the reported CPUID! */
3879    env->cp15.c0_cpuid = (value & (1 << 5)) ?
3880        ARM_CPUID_TI915T : ARM_CPUID_TI925T;
3881}
3882
3883static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri,
3884                                uint64_t value)
3885{
3886    env->cp15.c15_threadid = value & 0xffff;
3887}
3888
3889static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri,
3890                           uint64_t value)
3891{
3892    /* Wait-for-interrupt (deprecated) */
3893    cpu_interrupt(env_cpu(env), CPU_INTERRUPT_HALT);
3894}
3895
3896static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri,
3897                                  uint64_t value)
3898{
3899    /* On OMAP there are registers indicating the max/min index of dcache lines
3900     * containing a dirty line; cache flush operations have to reset these.
3901     */
3902    env->cp15.c15_i_max = 0x000;
3903    env->cp15.c15_i_min = 0xff0;
3904}
3905
3906static const ARMCPRegInfo omap_cp_reginfo[] = {
3907    { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY,
3908      .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE,
3909      .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]),
3910      .resetvalue = 0, },
3911    { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
3912      .access = PL1_RW, .type = ARM_CP_NOP },
3913    { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
3914      .access = PL1_RW,
3915      .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0,
3916      .writefn = omap_ticonfig_write },
3917    { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0,
3918      .access = PL1_RW,
3919      .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, },
3920    { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0,
3921      .access = PL1_RW, .resetvalue = 0xff0,
3922      .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) },
3923    { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0,
3924      .access = PL1_RW,
3925      .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0,
3926      .writefn = omap_threadid_write },
3927    { .name = "TI925T_STATUS", .cp = 15, .crn = 15,
3928      .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
3929      .type = ARM_CP_NO_RAW,
3930      .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, },
3931    /* TODO: Peripheral port remap register:
3932     * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller
3933     * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff),
3934     * when MMU is off.
3935     */
3936    { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
3937      .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
3938      .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW,
3939      .writefn = omap_cachemaint_write },
3940    { .name = "C9", .cp = 15, .crn = 9,
3941      .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW,
3942      .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 },
3943    REGINFO_SENTINEL
3944};
3945
3946static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri,
3947                              uint64_t value)
3948{
3949    env->cp15.c15_cpar = value & 0x3fff;
3950}
3951
3952static const ARMCPRegInfo xscale_cp_reginfo[] = {
3953    { .name = "XSCALE_CPAR",
3954      .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
3955      .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0,
3956      .writefn = xscale_cpar_write, },
3957    { .name = "XSCALE_AUXCR",
3958      .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW,
3959      .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr),
3960      .resetvalue = 0, },
3961    /* XScale specific cache-lockdown: since we have no cache we NOP these
3962     * and hope the guest does not really rely on cache behaviour.
3963     */
3964    { .name = "XSCALE_LOCK_ICACHE_LINE",
3965      .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0,
3966      .access = PL1_W, .type = ARM_CP_NOP },
3967    { .name = "XSCALE_UNLOCK_ICACHE",
3968      .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1,
3969      .access = PL1_W, .type = ARM_CP_NOP },
3970    { .name = "XSCALE_DCACHE_LOCK",
3971      .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0,
3972      .access = PL1_RW, .type = ARM_CP_NOP },
3973    { .name = "XSCALE_UNLOCK_DCACHE",
3974      .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1,
3975      .access = PL1_W, .type = ARM_CP_NOP },
3976    REGINFO_SENTINEL
3977};
3978
3979static const ARMCPRegInfo dummy_c15_cp_reginfo[] = {
3980    /* RAZ/WI the whole crn=15 space, when we don't have a more specific
3981     * implementation of this implementation-defined space.
3982     * Ideally this should eventually disappear in favour of actually
3983     * implementing the correct behaviour for all cores.
3984     */
3985    { .name = "C15_IMPDEF", .cp = 15, .crn = 15,
3986      .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
3987      .access = PL1_RW,
3988      .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE,
3989      .resetvalue = 0 },
3990    REGINFO_SENTINEL
3991};
3992
3993static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = {
3994    /* Cache status: RAZ because we have no cache so it's always clean */
3995    { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6,
3996      .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
3997      .resetvalue = 0 },
3998    REGINFO_SENTINEL
3999};
4000
4001static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = {
4002    /* We never have a a block transfer operation in progress */
4003    { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4,
4004      .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
4005      .resetvalue = 0 },
4006    /* The cache ops themselves: these all NOP for QEMU */
4007    { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0,
4008      .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
4009    { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0,
4010      .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
4011    { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0,
4012      .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
4013    { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1,
4014      .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
4015    { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2,
4016      .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
4017    { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0,
4018      .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
4019    REGINFO_SENTINEL
4020};
4021
4022static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = {
4023    /* The cache test-and-clean instructions always return (1 << 30)
4024     * to indicate that there are no dirty cache lines.
4025     */
4026    { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3,
4027      .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
4028      .resetvalue = (1 << 30) },
4029    { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3,
4030      .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
4031      .resetvalue = (1 << 30) },
4032    REGINFO_SENTINEL
4033};
4034
4035static const ARMCPRegInfo strongarm_cp_reginfo[] = {
4036    /* Ignore ReadBuffer accesses */
4037    { .name = "C9_READBUFFER", .cp = 15, .crn = 9,
4038      .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
4039      .access = PL1_RW, .resetvalue = 0,
4040      .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW },
4041    REGINFO_SENTINEL
4042};
4043
4044static uint64_t midr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4045{
4046    unsigned int cur_el = arm_current_el(env);
4047
4048    if (arm_is_el2_enabled(env) && cur_el == 1) {
4049        return env->cp15.vpidr_el2;
4050    }
4051    return raw_read(env, ri);
4052}
4053
4054static uint64_t mpidr_read_val(CPUARMState *env)
4055{
4056    ARMCPU *cpu = env_archcpu(env);
4057    uint64_t mpidr = cpu->mp_affinity;
4058
4059    if (arm_feature(env, ARM_FEATURE_V7MP)) {
4060        mpidr |= (1U << 31);
4061        /* Cores which are uniprocessor (non-coherent)
4062         * but still implement the MP extensions set
4063         * bit 30. (For instance, Cortex-R5).
4064         */
4065        if (cpu->mp_is_up) {
4066            mpidr |= (1u << 30);
4067        }
4068    }
4069    return mpidr;
4070}
4071
4072static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4073{
4074    unsigned int cur_el = arm_current_el(env);
4075
4076    if (arm_is_el2_enabled(env) && cur_el == 1) {
4077        return env->cp15.vmpidr_el2;
4078    }
4079    return mpidr_read_val(env);
4080}
4081
4082static const ARMCPRegInfo lpae_cp_reginfo[] = {
4083    /* NOP AMAIR0/1 */
4084    { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH,
4085      .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0,
4086      .access = PL1_RW, .accessfn = access_tvm_trvm,
4087      .type = ARM_CP_CONST, .resetvalue = 0 },
4088    /* AMAIR1 is mapped to AMAIR_EL1[63:32] */
4089    { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1,
4090      .access = PL1_RW, .accessfn = access_tvm_trvm,
4091      .type = ARM_CP_CONST, .resetvalue = 0 },
4092    { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0,
4093      .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0,
4094      .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s),
4095                             offsetof(CPUARMState, cp15.par_ns)} },
4096    { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0,
4097      .access = PL1_RW, .accessfn = access_tvm_trvm,
4098      .type = ARM_CP_64BIT | ARM_CP_ALIAS,
4099      .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
4100                             offsetof(CPUARMState, cp15.ttbr0_ns) },
4101      .writefn = vmsa_ttbr_write, },
4102    { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1,
4103      .access = PL1_RW, .accessfn = access_tvm_trvm,
4104      .type = ARM_CP_64BIT | ARM_CP_ALIAS,
4105      .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
4106                             offsetof(CPUARMState, cp15.ttbr1_ns) },
4107      .writefn = vmsa_ttbr_write, },
4108    REGINFO_SENTINEL
4109};
4110
4111static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4112{
4113    return vfp_get_fpcr(env);
4114}
4115
4116static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4117                            uint64_t value)
4118{
4119    vfp_set_fpcr(env, value);
4120}
4121
4122static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4123{
4124    return vfp_get_fpsr(env);
4125}
4126
4127static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4128                            uint64_t value)
4129{
4130    vfp_set_fpsr(env, value);
4131}
4132
4133static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri,
4134                                       bool isread)
4135{
4136    if (arm_current_el(env) == 0 && !(arm_sctlr(env, 0) & SCTLR_UMA)) {
4137        return CP_ACCESS_TRAP;
4138    }
4139    return CP_ACCESS_OK;
4140}
4141
4142static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri,
4143                            uint64_t value)
4144{
4145    env->daif = value & PSTATE_DAIF;
4146}
4147
4148static uint64_t aa64_pan_read(CPUARMState *env, const ARMCPRegInfo *ri)
4149{
4150    return env->pstate & PSTATE_PAN;
4151}
4152
4153static void aa64_pan_write(CPUARMState *env, const ARMCPRegInfo *ri,
4154                           uint64_t value)
4155{
4156    env->pstate = (env->pstate & ~PSTATE_PAN) | (value & PSTATE_PAN);
4157}
4158
4159static const ARMCPRegInfo pan_reginfo = {
4160    .name = "PAN", .state = ARM_CP_STATE_AA64,
4161    .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 3,
4162    .type = ARM_CP_NO_RAW, .access = PL1_RW,
4163    .readfn = aa64_pan_read, .writefn = aa64_pan_write
4164};
4165
4166static uint64_t aa64_uao_read(CPUARMState *env, const ARMCPRegInfo *ri)
4167{
4168    return env->pstate & PSTATE_UAO;
4169}
4170
4171static void aa64_uao_write(CPUARMState *env, const ARMCPRegInfo *ri,
4172                           uint64_t value)
4173{
4174    env->pstate = (env->pstate & ~PSTATE_UAO) | (value & PSTATE_UAO);
4175}
4176
4177static const ARMCPRegInfo uao_reginfo = {
4178    .name = "UAO", .state = ARM_CP_STATE_AA64,
4179    .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 4,
4180    .type = ARM_CP_NO_RAW, .access = PL1_RW,
4181    .readfn = aa64_uao_read, .writefn = aa64_uao_write
4182};
4183
4184static uint64_t aa64_dit_read(CPUARMState *env, const ARMCPRegInfo *ri)
4185{
4186    return env->pstate & PSTATE_DIT;
4187}
4188
4189static void aa64_dit_write(CPUARMState *env, const ARMCPRegInfo *ri,
4190                           uint64_t value)
4191{
4192    env->pstate = (env->pstate & ~PSTATE_DIT) | (value & PSTATE_DIT);
4193}
4194
4195static const ARMCPRegInfo dit_reginfo = {
4196    .name = "DIT", .state = ARM_CP_STATE_AA64,
4197    .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 5,
4198    .type = ARM_CP_NO_RAW, .access = PL0_RW,
4199    .readfn = aa64_dit_read, .writefn = aa64_dit_write
4200};
4201
4202static uint64_t aa64_ssbs_read(CPUARMState *env, const ARMCPRegInfo *ri)
4203{
4204    return env->pstate & PSTATE_SSBS;
4205}
4206
4207static void aa64_ssbs_write(CPUARMState *env, const ARMCPRegInfo *ri,
4208                           uint64_t value)
4209{
4210    env->pstate = (env->pstate & ~PSTATE_SSBS) | (value & PSTATE_SSBS);
4211}
4212
4213static const ARMCPRegInfo ssbs_reginfo = {
4214    .name = "SSBS", .state = ARM_CP_STATE_AA64,
4215    .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 6,
4216    .type = ARM_CP_NO_RAW, .access = PL0_RW,
4217    .readfn = aa64_ssbs_read, .writefn = aa64_ssbs_write
4218};
4219
4220static CPAccessResult aa64_cacheop_poc_access(CPUARMState *env,
4221                                              const ARMCPRegInfo *ri,
4222                                              bool isread)
4223{
4224    /* Cache invalidate/clean to Point of Coherency or Persistence...  */
4225    switch (arm_current_el(env)) {
4226    case 0:
4227        /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set.  */
4228        if (!(arm_sctlr(env, 0) & SCTLR_UCI)) {
4229            return CP_ACCESS_TRAP;
4230        }
4231        /* fall through */
4232    case 1:
4233        /* ... EL1 must trap to EL2 if HCR_EL2.TPCP is set.  */
4234        if (arm_hcr_el2_eff(env) & HCR_TPCP) {
4235            return CP_ACCESS_TRAP_EL2;
4236        }
4237        break;
4238    }
4239    return CP_ACCESS_OK;
4240}
4241
4242static CPAccessResult aa64_cacheop_pou_access(CPUARMState *env,
4243                                              const ARMCPRegInfo *ri,
4244                                              bool isread)
4245{
4246    /* Cache invalidate/clean to Point of Unification... */
4247    switch (arm_current_el(env)) {
4248    case 0:
4249        /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set.  */
4250        if (!(arm_sctlr(env, 0) & SCTLR_UCI)) {
4251            return CP_ACCESS_TRAP;
4252        }
4253        /* fall through */
4254    case 1:
4255        /* ... EL1 must trap to EL2 if HCR_EL2.TPU is set.  */
4256        if (arm_hcr_el2_eff(env) & HCR_TPU) {
4257            return CP_ACCESS_TRAP_EL2;
4258        }
4259        break;
4260    }
4261    return CP_ACCESS_OK;
4262}
4263
4264/* See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions
4265 * Page D4-1736 (DDI0487A.b)
4266 */
4267
4268static int vae1_tlbmask(CPUARMState *env)
4269{
4270    uint64_t hcr = arm_hcr_el2_eff(env);
4271    uint16_t mask;
4272
4273    if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
4274        mask = ARMMMUIdxBit_E20_2 |
4275               ARMMMUIdxBit_E20_2_PAN |
4276               ARMMMUIdxBit_E20_0;
4277    } else {
4278        mask = ARMMMUIdxBit_E10_1 |
4279               ARMMMUIdxBit_E10_1_PAN |
4280               ARMMMUIdxBit_E10_0;
4281    }
4282
4283    if (arm_is_secure_below_el3(env)) {
4284        mask >>= ARM_MMU_IDX_A_NS;
4285    }
4286
4287    return mask;
4288}
4289
4290/* Return 56 if TBI is enabled, 64 otherwise. */
4291static int tlbbits_for_regime(CPUARMState *env, ARMMMUIdx mmu_idx,
4292                              uint64_t addr)
4293{
4294    uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr;
4295    int tbi = aa64_va_parameter_tbi(tcr, mmu_idx);
4296    int select = extract64(addr, 55, 1);
4297
4298    return (tbi >> select) & 1 ? 56 : 64;
4299}
4300
4301static int vae1_tlbbits(CPUARMState *env, uint64_t addr)
4302{
4303    uint64_t hcr = arm_hcr_el2_eff(env);
4304    ARMMMUIdx mmu_idx;
4305
4306    /* Only the regime of the mmu_idx below is significant. */
4307    if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
4308        mmu_idx = ARMMMUIdx_E20_0;
4309    } else {
4310        mmu_idx = ARMMMUIdx_E10_0;
4311    }
4312
4313    if (arm_is_secure_below_el3(env)) {
4314        mmu_idx &= ~ARM_MMU_IDX_A_NS;
4315    }
4316
4317    return tlbbits_for_regime(env, mmu_idx, addr);
4318}
4319
4320static void tlbi_aa64_vmalle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4321                                      uint64_t value)
4322{
4323    CPUState *cs = env_cpu(env);
4324    int mask = vae1_tlbmask(env);
4325
4326    tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
4327}
4328
4329static void tlbi_aa64_vmalle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
4330                                    uint64_t value)
4331{
4332    CPUState *cs = env_cpu(env);
4333    int mask = vae1_tlbmask(env);
4334
4335    if (tlb_force_broadcast(env)) {
4336        tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
4337    } else {
4338        tlb_flush_by_mmuidx(cs, mask);
4339    }
4340}
4341
4342static int alle1_tlbmask(CPUARMState *env)
4343{
4344    /*
4345     * Note that the 'ALL' scope must invalidate both stage 1 and
4346     * stage 2 translations, whereas most other scopes only invalidate
4347     * stage 1 translations.
4348     */
4349    if (arm_is_secure_below_el3(env)) {
4350        return ARMMMUIdxBit_SE10_1 |
4351               ARMMMUIdxBit_SE10_1_PAN |
4352               ARMMMUIdxBit_SE10_0;
4353    } else {
4354        return ARMMMUIdxBit_E10_1 |
4355               ARMMMUIdxBit_E10_1_PAN |
4356               ARMMMUIdxBit_E10_0;
4357    }
4358}
4359
4360static int e2_tlbmask(CPUARMState *env)
4361{
4362    if (arm_is_secure_below_el3(env)) {
4363        return ARMMMUIdxBit_SE20_0 |
4364               ARMMMUIdxBit_SE20_2 |
4365               ARMMMUIdxBit_SE20_2_PAN |
4366               ARMMMUIdxBit_SE2;
4367    } else {
4368        return ARMMMUIdxBit_E20_0 |
4369               ARMMMUIdxBit_E20_2 |
4370               ARMMMUIdxBit_E20_2_PAN |
4371               ARMMMUIdxBit_E2;
4372    }
4373}
4374
4375static void tlbi_aa64_alle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
4376                                  uint64_t value)
4377{
4378    CPUState *cs = env_cpu(env);
4379    int mask = alle1_tlbmask(env);
4380
4381    tlb_flush_by_mmuidx(cs, mask);
4382}
4383
4384static void tlbi_aa64_alle2_write(CPUARMState *env, const ARMCPRegInfo *ri,
4385                                  uint64_t value)
4386{
4387    CPUState *cs = env_cpu(env);
4388    int mask = e2_tlbmask(env);
4389
4390    tlb_flush_by_mmuidx(cs, mask);
4391}
4392
4393static void tlbi_aa64_alle3_write(CPUARMState *env, const ARMCPRegInfo *ri,
4394                                  uint64_t value)
4395{
4396    ARMCPU *cpu = env_archcpu(env);
4397    CPUState *cs = CPU(cpu);
4398
4399    tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_SE3);
4400}
4401
4402static void tlbi_aa64_alle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4403                                    uint64_t value)
4404{
4405    CPUState *cs = env_cpu(env);
4406    int mask = alle1_tlbmask(env);
4407
4408    tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
4409}
4410
4411static void tlbi_aa64_alle2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4412                                    uint64_t value)
4413{
4414    CPUState *cs = env_cpu(env);
4415    int mask = e2_tlbmask(env);
4416
4417    tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
4418}
4419
4420static void tlbi_aa64_alle3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4421                                    uint64_t value)
4422{
4423    CPUState *cs = env_cpu(env);
4424
4425    tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_SE3);
4426}
4427
4428static void tlbi_aa64_vae2_write(CPUARMState *env, const ARMCPRegInfo *ri,
4429                                 uint64_t value)
4430{
4431    /* Invalidate by VA, EL2
4432     * Currently handles both VAE2 and VALE2, since we don't support
4433     * flush-last-level-only.
4434     */
4435    CPUState *cs = env_cpu(env);
4436    int mask = e2_tlbmask(env);
4437    uint64_t pageaddr = sextract64(value << 12, 0, 56);
4438
4439    tlb_flush_page_by_mmuidx(cs, pageaddr, mask);
4440}
4441
4442static void tlbi_aa64_vae3_write(CPUARMState *env, const ARMCPRegInfo *ri,
4443                                 uint64_t value)
4444{
4445    /* Invalidate by VA, EL3
4446     * Currently handles both VAE3 and VALE3, since we don't support
4447     * flush-last-level-only.
4448     */
4449    ARMCPU *cpu = env_archcpu(env);
4450    CPUState *cs = CPU(cpu);
4451    uint64_t pageaddr = sextract64(value << 12, 0, 56);
4452
4453    tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_SE3);
4454}
4455
4456static void tlbi_aa64_vae1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4457                                   uint64_t value)
4458{
4459    CPUState *cs = env_cpu(env);
4460    int mask = vae1_tlbmask(env);
4461    uint64_t pageaddr = sextract64(value << 12, 0, 56);
4462    int bits = vae1_tlbbits(env, pageaddr);
4463
4464    tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits);
4465}
4466
4467static void tlbi_aa64_vae1_write(CPUARMState *env, const ARMCPRegInfo *ri,
4468                                 uint64_t value)
4469{
4470    /* Invalidate by VA, EL1&0 (AArch64 version).
4471     * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1,
4472     * since we don't support flush-for-specific-ASID-only or
4473     * flush-last-level-only.
4474     */
4475    CPUState *cs = env_cpu(env);
4476    int mask = vae1_tlbmask(env);
4477    uint64_t pageaddr = sextract64(value << 12, 0, 56);
4478    int bits = vae1_tlbbits(env, pageaddr);
4479
4480    if (tlb_force_broadcast(env)) {
4481        tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits);
4482    } else {
4483        tlb_flush_page_bits_by_mmuidx(cs, pageaddr, mask, bits);
4484    }
4485}
4486
4487static void tlbi_aa64_vae2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4488                                   uint64_t value)
4489{
4490    CPUState *cs = env_cpu(env);
4491    uint64_t pageaddr = sextract64(value << 12, 0, 56);
4492    bool secure = arm_is_secure_below_el3(env);
4493    int mask = secure ? ARMMMUIdxBit_SE2 : ARMMMUIdxBit_E2;
4494    int bits = tlbbits_for_regime(env, secure ? ARMMMUIdx_SE2 : ARMMMUIdx_E2,
4495                                  pageaddr);
4496
4497    tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits);
4498}
4499
4500static void tlbi_aa64_vae3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4501                                   uint64_t value)
4502{
4503    CPUState *cs = env_cpu(env);
4504    uint64_t pageaddr = sextract64(value << 12, 0, 56);
4505    int bits = tlbbits_for_regime(env, ARMMMUIdx_SE3, pageaddr);
4506
4507    tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr,
4508                                                  ARMMMUIdxBit_SE3, bits);
4509}
4510
4511#ifdef TARGET_AARCH64
4512static uint64_t tlbi_aa64_range_get_length(CPUARMState *env,
4513                                           uint64_t value)
4514{
4515    unsigned int page_shift;
4516    unsigned int page_size_granule;
4517    uint64_t num;
4518    uint64_t scale;
4519    uint64_t exponent;
4520    uint64_t length;
4521
4522    num = extract64(value, 39, 4);
4523    scale = extract64(value, 44, 2);
4524    page_size_granule = extract64(value, 46, 2);
4525
4526    page_shift = page_size_granule * 2 + 12;
4527
4528    if (page_size_granule == 0) {
4529        qemu_log_mask(LOG_GUEST_ERROR, "Invalid page size granule %d\n",
4530                      page_size_granule);
4531        return 0;
4532    }
4533
4534    exponent = (5 * scale) + 1;
4535    length = (num + 1) << (exponent + page_shift);
4536
4537    return length;
4538}
4539
4540static uint64_t tlbi_aa64_range_get_base(CPUARMState *env, uint64_t value,
4541                                        bool two_ranges)
4542{
4543    /* TODO: ARMv8.7 FEAT_LPA2 */
4544    uint64_t pageaddr;
4545
4546    if (two_ranges) {
4547        pageaddr = sextract64(value, 0, 37) << TARGET_PAGE_BITS;
4548    } else {
4549        pageaddr = extract64(value, 0, 37) << TARGET_PAGE_BITS;
4550    }
4551
4552    return pageaddr;
4553}
4554
4555static void do_rvae_write(CPUARMState *env, uint64_t value,
4556                          int idxmap, bool synced)
4557{
4558    ARMMMUIdx one_idx = ARM_MMU_IDX_A | ctz32(idxmap);
4559    bool two_ranges = regime_has_2_ranges(one_idx);
4560    uint64_t baseaddr, length;
4561    int bits;
4562
4563    baseaddr = tlbi_aa64_range_get_base(env, value, two_ranges);
4564    length = tlbi_aa64_range_get_length(env, value);
4565    bits = tlbbits_for_regime(env, one_idx, baseaddr);
4566
4567    if (synced) {
4568        tlb_flush_range_by_mmuidx_all_cpus_synced(env_cpu(env),
4569                                                  baseaddr,
4570                                                  length,
4571                                                  idxmap,
4572                                                  bits);
4573    } else {
4574        tlb_flush_range_by_mmuidx(env_cpu(env), baseaddr,
4575                                  length, idxmap, bits);
4576    }
4577}
4578
4579static void tlbi_aa64_rvae1_write(CPUARMState *env,
4580                                  const ARMCPRegInfo *ri,
4581                                  uint64_t value)
4582{
4583    /*
4584     * Invalidate by VA range, EL1&0.
4585     * Currently handles all of RVAE1, RVAAE1, RVAALE1 and RVALE1,
4586     * since we don't support flush-for-specific-ASID-only or
4587     * flush-last-level-only.
4588     */
4589
4590    do_rvae_write(env, value, vae1_tlbmask(env),
4591                  tlb_force_broadcast(env));
4592}
4593
4594static void tlbi_aa64_rvae1is_write(CPUARMState *env,
4595                                    const ARMCPRegInfo *ri,
4596                                    uint64_t value)
4597{
4598    /*
4599     * Invalidate by VA range, Inner/Outer Shareable EL1&0.
4600     * Currently handles all of RVAE1IS, RVAE1OS, RVAAE1IS, RVAAE1OS,
4601     * RVAALE1IS, RVAALE1OS, RVALE1IS and RVALE1OS, since we don't support
4602     * flush-for-specific-ASID-only, flush-last-level-only or inner/outer
4603     * shareable specific flushes.
4604     */
4605
4606    do_rvae_write(env, value, vae1_tlbmask(env), true);
4607}
4608
4609static int vae2_tlbmask(CPUARMState *env)
4610{
4611    return (arm_is_secure_below_el3(env)
4612            ? ARMMMUIdxBit_SE2 : ARMMMUIdxBit_E2);
4613}
4614
4615static void tlbi_aa64_rvae2_write(CPUARMState *env,
4616                                  const ARMCPRegInfo *ri,
4617                                  uint64_t value)
4618{
4619    /*
4620     * Invalidate by VA range, EL2.
4621     * Currently handles all of RVAE2 and RVALE2,
4622     * since we don't support flush-for-specific-ASID-only or
4623     * flush-last-level-only.
4624     */
4625
4626    do_rvae_write(env, value, vae2_tlbmask(env),
4627                  tlb_force_broadcast(env));
4628
4629
4630}
4631
4632static void tlbi_aa64_rvae2is_write(CPUARMState *env,
4633                                    const ARMCPRegInfo *ri,
4634                                    uint64_t value)
4635{
4636    /*
4637     * Invalidate by VA range, Inner/Outer Shareable, EL2.
4638     * Currently handles all of RVAE2IS, RVAE2OS, RVALE2IS and RVALE2OS,
4639     * since we don't support flush-for-specific-ASID-only,
4640     * flush-last-level-only or inner/outer shareable specific flushes.
4641     */
4642
4643    do_rvae_write(env, value, vae2_tlbmask(env), true);
4644
4645}
4646
4647static void tlbi_aa64_rvae3_write(CPUARMState *env,
4648                                  const ARMCPRegInfo *ri,
4649                                  uint64_t value)
4650{
4651    /*
4652     * Invalidate by VA range, EL3.
4653     * Currently handles all of RVAE3 and RVALE3,
4654     * since we don't support flush-for-specific-ASID-only or
4655     * flush-last-level-only.
4656     */
4657
4658    do_rvae_write(env, value, ARMMMUIdxBit_SE3,
4659                  tlb_force_broadcast(env));
4660}
4661
4662static void tlbi_aa64_rvae3is_write(CPUARMState *env,
4663                                    const ARMCPRegInfo *ri,
4664                                    uint64_t value)
4665{
4666    /*
4667     * Invalidate by VA range, EL3, Inner/Outer Shareable.
4668     * Currently handles all of RVAE3IS, RVAE3OS, RVALE3IS and RVALE3OS,
4669     * since we don't support flush-for-specific-ASID-only,
4670     * flush-last-level-only or inner/outer specific flushes.
4671     */
4672
4673    do_rvae_write(env, value, ARMMMUIdxBit_SE3, true);
4674}
4675#endif
4676
4677static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri,
4678                                      bool isread)
4679{
4680    int cur_el = arm_current_el(env);
4681
4682    if (cur_el < 2) {
4683        uint64_t hcr = arm_hcr_el2_eff(env);
4684
4685        if (cur_el == 0) {
4686            if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
4687                if (!(env->cp15.sctlr_el[2] & SCTLR_DZE)) {
4688                    return CP_ACCESS_TRAP_EL2;
4689                }
4690            } else {
4691                if (!(env->cp15.sctlr_el[1] & SCTLR_DZE)) {
4692                    return CP_ACCESS_TRAP;
4693                }
4694                if (hcr & HCR_TDZ) {
4695                    return CP_ACCESS_TRAP_EL2;
4696                }
4697            }
4698        } else if (hcr & HCR_TDZ) {
4699            return CP_ACCESS_TRAP_EL2;
4700        }
4701    }
4702    return CP_ACCESS_OK;
4703}
4704
4705static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri)
4706{
4707    ARMCPU *cpu = env_archcpu(env);
4708    int dzp_bit = 1 << 4;
4709
4710    /* DZP indicates whether DC ZVA access is allowed */
4711    if (aa64_zva_access(env, NULL, false) == CP_ACCESS_OK) {
4712        dzp_bit = 0;
4713    }
4714    return cpu->dcz_blocksize | dzp_bit;
4715}
4716
4717static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
4718                                    bool isread)
4719{
4720    if (!(env->pstate & PSTATE_SP)) {
4721        /* Access to SP_EL0 is undefined if it's being used as
4722         * the stack pointer.
4723         */
4724        return CP_ACCESS_TRAP_UNCATEGORIZED;
4725    }
4726    return CP_ACCESS_OK;
4727}
4728
4729static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri)
4730{
4731    return env->pstate & PSTATE_SP;
4732}
4733
4734static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
4735{
4736    update_spsel(env, val);
4737}
4738
4739static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4740                        uint64_t value)
4741{
4742    ARMCPU *cpu = env_archcpu(env);
4743
4744    if (arm_feature(env, ARM_FEATURE_PMSA) && !cpu->has_mpu) {
4745        /* M bit is RAZ/WI for PMSA with no MPU implemented */
4746        value &= ~SCTLR_M;
4747    }
4748
4749    /* ??? Lots of these bits are not implemented.  */
4750
4751    if (ri->state == ARM_CP_STATE_AA64 && !cpu_isar_feature(aa64_mte, cpu)) {
4752        if (ri->opc1 == 6) { /* SCTLR_EL3 */
4753            value &= ~(SCTLR_ITFSB | SCTLR_TCF | SCTLR_ATA);
4754        } else {
4755            value &= ~(SCTLR_ITFSB | SCTLR_TCF0 | SCTLR_TCF |
4756                       SCTLR_ATA0 | SCTLR_ATA);
4757        }
4758    }
4759
4760    if (raw_read(env, ri) == value) {
4761        /* Skip the TLB flush if nothing actually changed; Linux likes
4762         * to do a lot of pointless SCTLR writes.
4763         */
4764        return;
4765    }
4766
4767    raw_write(env, ri, value);
4768
4769    /* This may enable/disable the MMU, so do a TLB flush.  */
4770    tlb_flush(CPU(cpu));
4771
4772    if (ri->type & ARM_CP_SUPPRESS_TB_END) {
4773        /*
4774         * Normally we would always end the TB on an SCTLR write; see the
4775         * comment in ARMCPRegInfo sctlr initialization below for why Xscale
4776         * is special.  Setting ARM_CP_SUPPRESS_TB_END also stops the rebuild
4777         * of hflags from the translator, so do it here.
4778         */
4779        arm_rebuild_hflags(env);
4780    }
4781}
4782
4783static CPAccessResult fpexc32_access(CPUARMState *env, const ARMCPRegInfo *ri,
4784                                     bool isread)
4785{
4786    if ((env->cp15.cptr_el[2] & CPTR_TFP) && arm_current_el(env) == 2) {
4787        return CP_ACCESS_TRAP_FP_EL2;
4788    }
4789    if (env->cp15.cptr_el[3] & CPTR_TFP) {
4790        return CP_ACCESS_TRAP_FP_EL3;
4791    }
4792    return CP_ACCESS_OK;
4793}
4794
4795static void sdcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4796                       uint64_t value)
4797{
4798    env->cp15.mdcr_el3 = value & SDCR_VALID_MASK;
4799}
4800
4801static const ARMCPRegInfo v8_cp_reginfo[] = {
4802    /* Minimal set of EL0-visible registers. This will need to be expanded
4803     * significantly for system emulation of AArch64 CPUs.
4804     */
4805    { .name = "NZCV", .state = ARM_CP_STATE_AA64,
4806      .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2,
4807      .access = PL0_RW, .type = ARM_CP_NZCV },
4808    { .name = "DAIF", .state = ARM_CP_STATE_AA64,
4809      .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2,
4810      .type = ARM_CP_NO_RAW,
4811      .access = PL0_RW, .accessfn = aa64_daif_access,
4812      .fieldoffset = offsetof(CPUARMState, daif),
4813      .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore },
4814    { .name = "FPCR", .state = ARM_CP_STATE_AA64,
4815      .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4,
4816      .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END,
4817      .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write },
4818    { .name = "FPSR", .state = ARM_CP_STATE_AA64,
4819      .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4,
4820      .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END,
4821      .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write },
4822    { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64,
4823      .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0,
4824      .access = PL0_R, .type = ARM_CP_NO_RAW,
4825      .readfn = aa64_dczid_read },
4826    { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64,
4827      .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1,
4828      .access = PL0_W, .type = ARM_CP_DC_ZVA,
4829#ifndef CONFIG_USER_ONLY
4830      /* Avoid overhead of an access check that always passes in user-mode */
4831      .accessfn = aa64_zva_access,
4832#endif
4833    },
4834    { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64,
4835      .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2,
4836      .access = PL1_R, .type = ARM_CP_CURRENTEL },
4837    /* Cache ops: all NOPs since we don't emulate caches */
4838    { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64,
4839      .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
4840      .access = PL1_W, .type = ARM_CP_NOP,
4841      .accessfn = aa64_cacheop_pou_access },
4842    { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64,
4843      .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
4844      .access = PL1_W, .type = ARM_CP_NOP,
4845      .accessfn = aa64_cacheop_pou_access },
4846    { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64,
4847      .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1,
4848      .access = PL0_W, .type = ARM_CP_NOP,
4849      .accessfn = aa64_cacheop_pou_access },
4850    { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64,
4851      .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
4852      .access = PL1_W, .accessfn = aa64_cacheop_poc_access,
4853      .type = ARM_CP_NOP },
4854    { .name = "DC_ISW", .state = ARM_CP_STATE_AA64,
4855      .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
4856      .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP },
4857    { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64,
4858      .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1,
4859      .access = PL0_W, .type = ARM_CP_NOP,
4860      .accessfn = aa64_cacheop_poc_access },
4861    { .name = "DC_CSW", .state = ARM_CP_STATE_AA64,
4862      .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
4863      .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP },
4864    { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64,
4865      .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1,
4866      .access = PL0_W, .type = ARM_CP_NOP,
4867      .accessfn = aa64_cacheop_pou_access },
4868    { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64,
4869      .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1,
4870      .access = PL0_W, .type = ARM_CP_NOP,
4871      .accessfn = aa64_cacheop_poc_access },
4872    { .name = "DC_CISW", .state = ARM_CP_STATE_AA64,
4873      .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
4874      .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP },
4875    /* TLBI operations */
4876    { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64,
4877      .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
4878      .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4879      .writefn = tlbi_aa64_vmalle1is_write },
4880    { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64,
4881      .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
4882      .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4883      .writefn = tlbi_aa64_vae1is_write },
4884    { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64,
4885      .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
4886      .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4887      .writefn = tlbi_aa64_vmalle1is_write },
4888    { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64,
4889      .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
4890      .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4891      .writefn = tlbi_aa64_vae1is_write },
4892    { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64,
4893      .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
4894      .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4895      .writefn = tlbi_aa64_vae1is_write },
4896    { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64,
4897      .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
4898      .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4899      .writefn = tlbi_aa64_vae1is_write },
4900    { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64,
4901      .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
4902      .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4903      .writefn = tlbi_aa64_vmalle1_write },
4904    { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64,
4905      .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
4906      .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4907      .writefn = tlbi_aa64_vae1_write },
4908    { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64,
4909      .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
4910      .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4911      .writefn = tlbi_aa64_vmalle1_write },
4912    { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64,
4913      .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
4914      .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4915      .writefn = tlbi_aa64_vae1_write },
4916    { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64,
4917      .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
4918      .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4919      .writefn = tlbi_aa64_vae1_write },
4920    { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64,
4921      .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
4922      .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4923      .writefn = tlbi_aa64_vae1_write },
4924    { .name = "TLBI_IPAS2E1IS", .state = ARM_CP_STATE_AA64,
4925      .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
4926      .access = PL2_W, .type = ARM_CP_NOP },
4927    { .name = "TLBI_IPAS2LE1IS", .state = ARM_CP_STATE_AA64,
4928      .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
4929      .access = PL2_W, .type = ARM_CP_NOP },
4930    { .name = "TLBI_ALLE1IS", .state = ARM_CP_STATE_AA64,
4931      .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
4932      .access = PL2_W, .type = ARM_CP_NO_RAW,
4933      .writefn = tlbi_aa64_alle1is_write },
4934    { .name = "TLBI_VMALLS12E1IS", .state = ARM_CP_STATE_AA64,
4935      .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 6,
4936      .access = PL2_W, .type = ARM_CP_NO_RAW,
4937      .writefn = tlbi_aa64_alle1is_write },
4938    { .name = "TLBI_IPAS2E1", .state = ARM_CP_STATE_AA64,
4939      .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
4940      .access = PL2_W, .type = ARM_CP_NOP },
4941    { .name = "TLBI_IPAS2LE1", .state = ARM_CP_STATE_AA64,
4942      .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
4943      .access = PL2_W, .type = ARM_CP_NOP },
4944    { .name = "TLBI_ALLE1", .state = ARM_CP_STATE_AA64,
4945      .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
4946      .access = PL2_W, .type = ARM_CP_NO_RAW,
4947      .writefn = tlbi_aa64_alle1_write },
4948    { .name = "TLBI_VMALLS12E1", .state = ARM_CP_STATE_AA64,
4949      .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 6,
4950      .access = PL2_W, .type = ARM_CP_NO_RAW,
4951      .writefn = tlbi_aa64_alle1is_write },
4952#ifndef CONFIG_USER_ONLY
4953    /* 64 bit address translation operations */
4954    { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64,
4955      .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0,
4956      .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4957      .writefn = ats_write64 },
4958    { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64,
4959      .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1,
4960      .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4961      .writefn = ats_write64 },
4962    { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64,
4963      .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2,
4964      .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4965      .writefn = ats_write64 },
4966    { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64,
4967      .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3,
4968      .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4969      .writefn = ats_write64 },
4970    { .name = "AT_S12E1R", .state = ARM_CP_STATE_AA64,
4971      .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 4,
4972      .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4973      .writefn = ats_write64 },
4974    { .name = "AT_S12E1W", .state = ARM_CP_STATE_AA64,
4975      .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 5,
4976      .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4977      .writefn = ats_write64 },
4978    { .name = "AT_S12E0R", .state = ARM_CP_STATE_AA64,
4979      .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 6,
4980      .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4981      .writefn = ats_write64 },
4982    { .name = "AT_S12E0W", .state = ARM_CP_STATE_AA64,
4983      .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 7,
4984      .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4985      .writefn = ats_write64 },
4986    /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */
4987    { .name = "AT_S1E3R", .state = ARM_CP_STATE_AA64,
4988      .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 0,
4989      .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4990      .writefn = ats_write64 },
4991    { .name = "AT_S1E3W", .state = ARM_CP_STATE_AA64,
4992      .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 1,
4993      .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4994      .writefn = ats_write64 },
4995    { .name = "PAR_EL1", .state = ARM_CP_STATE_AA64,
4996      .type = ARM_CP_ALIAS,
4997      .opc0 = 3, .opc1 = 0, .crn = 7, .crm = 4, .opc2 = 0,
4998      .access = PL1_RW, .resetvalue = 0,
4999      .fieldoffset = offsetof(CPUARMState, cp15.par_el[1]),
5000      .writefn = par_write },
5001#endif
5002    /* TLB invalidate last level of translation table walk */
5003    { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
5004      .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
5005      .writefn = tlbimva_is_write },
5006    { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
5007      .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
5008      .writefn = tlbimvaa_is_write },
5009    { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
5010      .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
5011      .writefn = tlbimva_write },
5012    { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
5013      .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
5014      .writefn = tlbimvaa_write },
5015    { .name = "TLBIMVALH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
5016      .type = ARM_CP_NO_RAW, .access = PL2_W,
5017      .writefn = tlbimva_hyp_write },
5018    { .name = "TLBIMVALHIS",
5019      .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
5020      .type = ARM_CP_NO_RAW, .access = PL2_W,
5021      .writefn = tlbimva_hyp_is_write },
5022    { .name = "TLBIIPAS2",
5023      .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
5024      .type = ARM_CP_NOP, .access = PL2_W },
5025    { .name = "TLBIIPAS2IS",
5026      .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
5027      .type = ARM_CP_NOP, .access = PL2_W },
5028    { .name = "TLBIIPAS2L",
5029      .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
5030      .type = ARM_CP_NOP, .access = PL2_W },
5031    { .name = "TLBIIPAS2LIS",
5032      .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
5033      .type = ARM_CP_NOP, .access = PL2_W },
5034    /* 32 bit cache operations */
5035    { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
5036      .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access },
5037    { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6,
5038      .type = ARM_CP_NOP, .access = PL1_W },
5039    { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
5040      .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access },
5041    { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1,
5042      .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access },
5043    { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6,
5044      .type = ARM_CP_NOP, .access = PL1_W },
5045    { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7,
5046      .type = ARM_CP_NOP, .access = PL1_W },
5047    { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
5048      .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access },
5049    { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
5050      .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
5051    { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1,
5052      .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access },
5053    { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
5054      .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
5055    { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1,
5056      .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access },
5057    { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1,
5058      .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access },
5059    { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
5060      .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
5061    /* MMU Domain access control / MPU write buffer control */
5062    { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0,
5063      .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
5064      .writefn = dacr_write, .raw_writefn = raw_write,
5065      .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
5066                             offsetoflow32(CPUARMState, cp15.dacr_ns) } },
5067    { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64,
5068      .type = ARM_CP_ALIAS,
5069      .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1,
5070      .access = PL1_RW,
5071      .fieldoffset = offsetof(CPUARMState, elr_el[1]) },
5072    { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64,
5073      .type = ARM_CP_ALIAS,
5074      .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0,
5075      .access = PL1_RW,
5076      .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_SVC]) },
5077    /* We rely on the access checks not allowing the guest to write to the
5078     * state field when SPSel indicates that it's being used as the stack
5079     * pointer.
5080     */
5081    { .name = "SP_EL0", .state = ARM_CP_STATE_AA64,
5082      .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0,
5083      .access = PL1_RW, .accessfn = sp_el0_access,
5084      .type = ARM_CP_ALIAS,
5085      .fieldoffset = offsetof(CPUARMState, sp_el[0]) },
5086    { .name = "SP_EL1", .state = ARM_CP_STATE_AA64,
5087      .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0,
5088      .access = PL2_RW, .type = ARM_CP_ALIAS,
5089      .fieldoffset = offsetof(CPUARMState, sp_el[1]) },
5090    { .name = "SPSel", .state = ARM_CP_STATE_AA64,
5091      .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0,
5092      .type = ARM_CP_NO_RAW,
5093      .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write },
5094    { .name = "FPEXC32_EL2", .state = ARM_CP_STATE_AA64,
5095      .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 3, .opc2 = 0,
5096      .type = ARM_CP_ALIAS,
5097      .fieldoffset = offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPEXC]),
5098      .access = PL2_RW, .accessfn = fpexc32_access },
5099    { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64,
5100      .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0,
5101      .access = PL2_RW, .resetvalue = 0,
5102      .writefn = dacr_write, .raw_writefn = raw_write,
5103      .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) },
5104    { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64,
5105      .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1,
5106      .access = PL2_RW, .resetvalue = 0,
5107      .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) },
5108    { .name = "SPSR_IRQ", .state = ARM_CP_STATE_AA64,
5109      .type = ARM_CP_ALIAS,
5110      .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 0,
5111      .access = PL2_RW,
5112      .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_IRQ]) },
5113    { .name = "SPSR_ABT", .state = ARM_CP_STATE_AA64,
5114      .type = ARM_CP_ALIAS,
5115      .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 1,
5116      .access = PL2_RW,
5117      .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_ABT]) },
5118    { .name = "SPSR_UND", .state = ARM_CP_STATE_AA64,
5119      .type = ARM_CP_ALIAS,
5120      .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 2,
5121      .access = PL2_RW,
5122      .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_UND]) },
5123    { .name = "SPSR_FIQ", .state = ARM_CP_STATE_AA64,
5124      .type = ARM_CP_ALIAS,
5125      .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 3,
5126      .access = PL2_RW,
5127      .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_FIQ]) },
5128    { .name = "MDCR_EL3", .state = ARM_CP_STATE_AA64,
5129      .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 3, .opc2 = 1,
5130      .resetvalue = 0,
5131      .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el3) },
5132    { .name = "SDCR", .type = ARM_CP_ALIAS,
5133      .cp = 15, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 1,
5134      .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
5135      .writefn = sdcr_write,
5136      .fieldoffset = offsetoflow32(CPUARMState, cp15.mdcr_el3) },
5137    REGINFO_SENTINEL
5138};
5139
5140/* Used to describe the behaviour of EL2 regs when EL2 does not exist.  */
5141static const ARMCPRegInfo el3_no_el2_cp_reginfo[] = {
5142    { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH,
5143      .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
5144      .access = PL2_RW,
5145      .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore },
5146    { .name = "HCR_EL2", .state = ARM_CP_STATE_BOTH,
5147      .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
5148      .access = PL2_RW,
5149      .type = ARM_CP_CONST, .resetvalue = 0 },
5150    { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH,
5151      .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7,
5152      .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5153    { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH,
5154      .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0,
5155      .access = PL2_RW,
5156      .type = ARM_CP_CONST, .resetvalue = 0 },
5157    { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
5158      .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
5159      .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5160    { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
5161      .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
5162      .access = PL2_RW, .type = ARM_CP_CONST,
5163      .resetvalue = 0 },
5164    { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
5165      .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
5166      .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5167    { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH,
5168      .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0,
5169      .access = PL2_RW, .type = ARM_CP_CONST,
5170      .resetvalue = 0 },
5171    { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32,
5172      .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1,
5173      .access = PL2_RW, .type = ARM_CP_CONST,
5174      .resetvalue = 0 },
5175    { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH,
5176      .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0,
5177      .access = PL2_RW, .type = ARM_CP_CONST,
5178      .resetvalue = 0 },
5179    { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH,
5180      .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1,
5181      .access = PL2_RW, .type = ARM_CP_CONST,
5182      .resetvalue = 0 },
5183    { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
5184      .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
5185      .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5186    { .name = "VTCR_EL2", .state = ARM_CP_STATE_BOTH,
5187      .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
5188      .access = PL2_RW, .accessfn = access_el3_aa32ns,
5189      .type = ARM_CP_CONST, .resetvalue = 0 },
5190    { .name = "VTTBR", .state = ARM_CP_STATE_AA32,
5191      .cp = 15, .opc1 = 6, .crm = 2,
5192      .access = PL2_RW, .accessfn = access_el3_aa32ns,
5193      .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 },
5194    { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64,
5195      .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0,
5196      .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5197    { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
5198      .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
5199      .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5200    { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
5201      .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
5202      .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5203    { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
5204      .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
5205      .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5206    { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
5207      .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
5208      .resetvalue = 0 },
5209    { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
5210      .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
5211      .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5212    { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64,
5213      .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
5214      .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5215    { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
5216      .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
5217      .resetvalue = 0 },
5218    { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64,
5219      .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2,
5220      .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5221    { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14,
5222      .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
5223      .resetvalue = 0 },
5224    { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
5225      .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0,
5226      .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5227    { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH,
5228      .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1,
5229      .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5230    { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH,
5231      .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1,
5232      .access = PL2_RW, .accessfn = access_tda,
5233      .type = ARM_CP_CONST, .resetvalue = 0 },
5234    { .name = "HPFAR_EL2", .state = ARM_CP_STATE_BOTH,
5235      .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
5236      .access = PL2_RW, .accessfn = access_el3_aa32ns,
5237      .type = ARM_CP_CONST, .resetvalue = 0 },
5238    { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH,
5239      .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3,
5240      .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5241    { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH,
5242      .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0,
5243      .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5244    { .name = "HIFAR", .state = ARM_CP_STATE_AA32,
5245      .type = ARM_CP_CONST,
5246      .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2,
5247      .access = PL2_RW, .resetvalue = 0 },
5248    REGINFO_SENTINEL
5249};
5250
5251/* Ditto, but for registers which exist in ARMv8 but not v7 */
5252static const ARMCPRegInfo el3_no_el2_v8_cp_reginfo[] = {
5253    { .name = "HCR2", .state = ARM_CP_STATE_AA32,
5254      .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4,
5255      .access = PL2_RW,
5256      .type = ARM_CP_CONST, .resetvalue = 0 },
5257    REGINFO_SENTINEL
5258};
5259
5260static void do_hcr_write(CPUARMState *env, uint64_t value, uint64_t valid_mask)
5261{
5262    ARMCPU *cpu = env_archcpu(env);
5263
5264    if (arm_feature(env, ARM_FEATURE_V8)) {
5265        valid_mask |= MAKE_64BIT_MASK(0, 34);  /* ARMv8.0 */
5266    } else {
5267        valid_mask |= MAKE_64BIT_MASK(0, 28);  /* ARMv7VE */
5268    }
5269
5270    if (arm_feature(env, ARM_FEATURE_EL3)) {
5271        valid_mask &= ~HCR_HCD;
5272    } else if (cpu->psci_conduit != QEMU_PSCI_CONDUIT_SMC) {
5273        /* Architecturally HCR.TSC is RES0 if EL3 is not implemented.
5274         * However, if we're using the SMC PSCI conduit then QEMU is
5275         * effectively acting like EL3 firmware and so the guest at
5276         * EL2 should retain the ability to prevent EL1 from being
5277         * able to make SMC calls into the ersatz firmware, so in
5278         * that case HCR.TSC should be read/write.
5279         */
5280        valid_mask &= ~HCR_TSC;
5281    }
5282
5283    if (arm_feature(env, ARM_FEATURE_AARCH64)) {
5284        if (cpu_isar_feature(aa64_vh, cpu)) {
5285            valid_mask |= HCR_E2H;
5286        }
5287        if (cpu_isar_feature(aa64_lor, cpu)) {
5288            valid_mask |= HCR_TLOR;
5289        }
5290        if (cpu_isar_feature(aa64_pauth, cpu)) {
5291            valid_mask |= HCR_API | HCR_APK;
5292        }
5293        if (cpu_isar_feature(aa64_mte, cpu)) {
5294            valid_mask |= HCR_ATA | HCR_DCT | HCR_TID5;
5295        }
5296    }
5297
5298    /* Clear RES0 bits.  */
5299    value &= valid_mask;
5300
5301    /*
5302     * These bits change the MMU setup:
5303     * HCR_VM enables stage 2 translation
5304     * HCR_PTW forbids certain page-table setups
5305     * HCR_DC disables stage1 and enables stage2 translation
5306     * HCR_DCT enables tagging on (disabled) stage1 translation
5307     */
5308    if ((env->cp15.hcr_el2 ^ value) & (HCR_VM | HCR_PTW | HCR_DC | HCR_DCT)) {
5309        tlb_flush(CPU(cpu));
5310    }
5311    env->cp15.hcr_el2 = value;
5312
5313    /*
5314     * Updates to VI and VF require us to update the status of
5315     * virtual interrupts, which are the logical OR of these bits
5316     * and the state of the input lines from the GIC. (This requires
5317     * that we have the iothread lock, which is done by marking the
5318     * reginfo structs as ARM_CP_IO.)
5319     * Note that if a write to HCR pends a VIRQ or VFIQ it is never
5320     * possible for it to be taken immediately, because VIRQ and
5321     * VFIQ are masked unless running at EL0 or EL1, and HCR
5322     * can only be written at EL2.
5323     */
5324    g_assert(qemu_mutex_iothread_locked());
5325    arm_cpu_update_virq(cpu);
5326    arm_cpu_update_vfiq(cpu);
5327}
5328
5329static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
5330{
5331    do_hcr_write(env, value, 0);
5332}
5333
5334static void hcr_writehigh(CPUARMState *env, const ARMCPRegInfo *ri,
5335                          uint64_t value)
5336{
5337    /* Handle HCR2 write, i.e. write to high half of HCR_EL2 */
5338    value = deposit64(env->cp15.hcr_el2, 32, 32, value);
5339    do_hcr_write(env, value, MAKE_64BIT_MASK(0, 32));
5340}
5341
5342static void hcr_writelow(CPUARMState *env, const ARMCPRegInfo *ri,
5343                         uint64_t value)
5344{
5345    /* Handle HCR write, i.e. write to low half of HCR_EL2 */
5346    value = deposit64(env->cp15.hcr_el2, 0, 32, value);
5347    do_hcr_write(env, value, MAKE_64BIT_MASK(32, 32));
5348}
5349
5350/*
5351 * Return the effective value of HCR_EL2.
5352 * Bits that are not included here:
5353 * RW       (read from SCR_EL3.RW as needed)
5354 */
5355uint64_t arm_hcr_el2_eff(CPUARMState *env)
5356{
5357    uint64_t ret = env->cp15.hcr_el2;
5358
5359    if (!arm_is_el2_enabled(env)) {
5360        /*
5361         * "This register has no effect if EL2 is not enabled in the
5362         * current Security state".  This is ARMv8.4-SecEL2 speak for
5363         * !(SCR_EL3.NS==1 || SCR_EL3.EEL2==1).
5364         *
5365         * Prior to that, the language was "In an implementation that
5366         * includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves
5367         * as if this field is 0 for all purposes other than a direct
5368         * read or write access of HCR_EL2".  With lots of enumeration
5369         * on a per-field basis.  In current QEMU, this is condition
5370         * is arm_is_secure_below_el3.
5371         *
5372         * Since the v8.4 language applies to the entire register, and
5373         * appears to be backward compatible, use that.
5374         */
5375        return 0;
5376    }
5377
5378    /*
5379     * For a cpu that supports both aarch64 and aarch32, we can set bits
5380     * in HCR_EL2 (e.g. via EL3) that are RES0 when we enter EL2 as aa32.
5381     * Ignore all of the bits in HCR+HCR2 that are not valid for aarch32.
5382     */
5383    if (!arm_el_is_aa64(env, 2)) {
5384        uint64_t aa32_valid;
5385
5386        /*
5387         * These bits are up-to-date as of ARMv8.6.
5388         * For HCR, it's easiest to list just the 2 bits that are invalid.
5389         * For HCR2, list those that are valid.
5390         */
5391        aa32_valid = MAKE_64BIT_MASK(0, 32) & ~(HCR_RW | HCR_TDZ);
5392        aa32_valid |= (HCR_CD | HCR_ID | HCR_TERR | HCR_TEA | HCR_MIOCNCE |
5393                       HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_TTLBIS);
5394        ret &= aa32_valid;
5395    }
5396
5397    if (ret & HCR_TGE) {
5398        /* These bits are up-to-date as of ARMv8.6.  */
5399        if (ret & HCR_E2H) {
5400            ret &= ~(HCR_VM | HCR_FMO | HCR_IMO | HCR_AMO |
5401                     HCR_BSU_MASK | HCR_DC | HCR_TWI | HCR_TWE |
5402                     HCR_TID0 | HCR_TID2 | HCR_TPCP | HCR_TPU |
5403                     HCR_TDZ | HCR_CD | HCR_ID | HCR_MIOCNCE |
5404                     HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_ENSCXT |
5405                     HCR_TTLBIS | HCR_TTLBOS | HCR_TID5);
5406        } else {
5407            ret |= HCR_FMO | HCR_IMO | HCR_AMO;
5408        }
5409        ret &= ~(HCR_SWIO | HCR_PTW | HCR_VF | HCR_VI | HCR_VSE |
5410                 HCR_FB | HCR_TID1 | HCR_TID3 | HCR_TSC | HCR_TACR |
5411                 HCR_TSW | HCR_TTLB | HCR_TVM | HCR_HCD | HCR_TRVM |
5412                 HCR_TLOR);
5413    }
5414
5415    return ret;
5416}
5417
5418static void cptr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri,
5419                           uint64_t value)
5420{
5421    /*
5422     * For A-profile AArch32 EL3, if NSACR.CP10
5423     * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1.
5424     */
5425    if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
5426        !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
5427        value &= ~(0x3 << 10);
5428        value |= env->cp15.cptr_el[2] & (0x3 << 10);
5429    }
5430    env->cp15.cptr_el[2] = value;
5431}
5432
5433static uint64_t cptr_el2_read(CPUARMState *env, const ARMCPRegInfo *ri)
5434{
5435    /*
5436     * For A-profile AArch32 EL3, if NSACR.CP10
5437     * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1.
5438     */
5439    uint64_t value = env->cp15.cptr_el[2];
5440
5441    if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
5442        !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
5443        value |= 0x3 << 10;
5444    }
5445    return value;
5446}
5447
5448static const ARMCPRegInfo el2_cp_reginfo[] = {
5449    { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64,
5450      .type = ARM_CP_IO,
5451      .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
5452      .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
5453      .writefn = hcr_write },
5454    { .name = "HCR", .state = ARM_CP_STATE_AA32,
5455      .type = ARM_CP_ALIAS | ARM_CP_IO,
5456      .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
5457      .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
5458      .writefn = hcr_writelow },
5459    { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH,
5460      .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7,
5461      .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5462    { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64,
5463      .type = ARM_CP_ALIAS,
5464      .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1,
5465      .access = PL2_RW,
5466      .fieldoffset = offsetof(CPUARMState, elr_el[2]) },
5467    { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH,
5468      .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0,
5469      .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) },
5470    { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH,
5471      .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0,
5472      .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) },
5473    { .name = "HIFAR", .state = ARM_CP_STATE_AA32,
5474      .type = ARM_CP_ALIAS,
5475      .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2,
5476      .access = PL2_RW,
5477      .fieldoffset = offsetofhigh32(CPUARMState, cp15.far_el[2]) },
5478    { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64,
5479      .type = ARM_CP_ALIAS,
5480      .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0,
5481      .access = PL2_RW,
5482      .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_HYP]) },
5483    { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH,
5484      .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
5485      .access = PL2_RW, .writefn = vbar_write,
5486      .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]),
5487      .resetvalue = 0 },
5488    { .name = "SP_EL2", .state = ARM_CP_STATE_AA64,
5489      .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0,
5490      .access = PL3_RW, .type = ARM_CP_ALIAS,
5491      .fieldoffset = offsetof(CPUARMState, sp_el[2]) },
5492    { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
5493      .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
5494      .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0,
5495      .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]),
5496      .readfn = cptr_el2_read, .writefn = cptr_el2_write },
5497    { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
5498      .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
5499      .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]),
5500      .resetvalue = 0 },
5501    { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
5502      .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
5503      .access = PL2_RW, .type = ARM_CP_ALIAS,
5504      .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) },
5505    { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH,
5506      .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0,
5507      .access = PL2_RW, .type = ARM_CP_CONST,
5508      .resetvalue = 0 },
5509    /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */
5510    { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32,
5511      .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1,
5512      .access = PL2_RW, .type = ARM_CP_CONST,
5513      .resetvalue = 0 },
5514    { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH,
5515      .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0,
5516      .access = PL2_RW, .type = ARM_CP_CONST,
5517      .resetvalue = 0 },
5518    { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH,
5519      .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1,
5520      .access = PL2_RW, .type = ARM_CP_CONST,
5521      .resetvalue = 0 },
5522    { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
5523      .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
5524      .access = PL2_RW, .writefn = vmsa_tcr_el12_write,
5525      /* no .raw_writefn or .resetfn needed as we never use mask/base_mask */
5526      .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) },
5527    { .name = "VTCR", .state = ARM_CP_STATE_AA32,
5528      .cp = 15, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
5529      .type = ARM_CP_ALIAS,
5530      .access = PL2_RW, .accessfn = access_el3_aa32ns,
5531      .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) },
5532    { .name = "VTCR_EL2", .state = ARM_CP_STATE_AA64,
5533      .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
5534      .access = PL2_RW,
5535      /* no .writefn needed as this can't cause an ASID change;
5536       * no .raw_writefn or .resetfn needed as we never use mask/base_mask
5537       */
5538      .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) },
5539    { .name = "VTTBR", .state = ARM_CP_STATE_AA32,
5540      .cp = 15, .opc1 = 6, .crm = 2,
5541      .type = ARM_CP_64BIT | ARM_CP_ALIAS,
5542      .access = PL2_RW, .accessfn = access_el3_aa32ns,
5543      .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2),
5544      .writefn = vttbr_write },
5545    { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64,
5546      .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0,
5547      .access = PL2_RW, .writefn = vttbr_write,
5548      .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2) },
5549    { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
5550      .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
5551      .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write,
5552      .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) },
5553    { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
5554      .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
5555      .access = PL2_RW, .resetvalue = 0,
5556      .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) },
5557    { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
5558      .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
5559      .access = PL2_RW, .resetvalue = 0, .writefn = vmsa_tcr_ttbr_el2_write,
5560      .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
5561    { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
5562      .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
5563      .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
5564    { .name = "TLBIALLNSNH",
5565      .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
5566      .type = ARM_CP_NO_RAW, .access = PL2_W,
5567      .writefn = tlbiall_nsnh_write },
5568    { .name = "TLBIALLNSNHIS",
5569      .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
5570      .type = ARM_CP_NO_RAW, .access = PL2_W,
5571      .writefn = tlbiall_nsnh_is_write },
5572    { .name = "TLBIALLH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
5573      .type = ARM_CP_NO_RAW, .access = PL2_W,
5574      .writefn = tlbiall_hyp_write },
5575    { .name = "TLBIALLHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
5576      .type = ARM_CP_NO_RAW, .access = PL2_W,
5577      .writefn = tlbiall_hyp_is_write },
5578    { .name = "TLBIMVAH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
5579      .type = ARM_CP_NO_RAW, .access = PL2_W,
5580      .writefn = tlbimva_hyp_write },
5581    { .name = "TLBIMVAHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
5582      .type = ARM_CP_NO_RAW, .access = PL2_W,
5583      .writefn = tlbimva_hyp_is_write },
5584    { .name = "TLBI_ALLE2", .state = ARM_CP_STATE_AA64,
5585      .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
5586      .type = ARM_CP_NO_RAW, .access = PL2_W,
5587      .writefn = tlbi_aa64_alle2_write },
5588    { .name = "TLBI_VAE2", .state = ARM_CP_STATE_AA64,
5589      .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
5590      .type = ARM_CP_NO_RAW, .access = PL2_W,
5591      .writefn = tlbi_aa64_vae2_write },
5592    { .name = "TLBI_VALE2", .state = ARM_CP_STATE_AA64,
5593      .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
5594      .access = PL2_W, .type = ARM_CP_NO_RAW,
5595      .writefn = tlbi_aa64_vae2_write },
5596    { .name = "TLBI_ALLE2IS", .state = ARM_CP_STATE_AA64,
5597      .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
5598      .access = PL2_W, .type = ARM_CP_NO_RAW,
5599      .writefn = tlbi_aa64_alle2is_write },
5600    { .name = "TLBI_VAE2IS", .state = ARM_CP_STATE_AA64,
5601      .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
5602      .type = ARM_CP_NO_RAW, .access = PL2_W,
5603      .writefn = tlbi_aa64_vae2is_write },
5604    { .name = "TLBI_VALE2IS", .state = ARM_CP_STATE_AA64,
5605      .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
5606      .access = PL2_W, .type = ARM_CP_NO_RAW,
5607      .writefn = tlbi_aa64_vae2is_write },
5608#ifndef CONFIG_USER_ONLY
5609    /* Unlike the other EL2-related AT operations, these must
5610     * UNDEF from EL3 if EL2 is not implemented, which is why we
5611     * define them here rather than with the rest of the AT ops.
5612     */
5613    { .name = "AT_S1E2R", .state = ARM_CP_STATE_AA64,
5614      .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
5615      .access = PL2_W, .accessfn = at_s1e2_access,
5616      .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, .writefn = ats_write64 },
5617    { .name = "AT_S1E2W", .state = ARM_CP_STATE_AA64,
5618      .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
5619      .access = PL2_W, .accessfn = at_s1e2_access,
5620      .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, .writefn = ats_write64 },
5621    /* The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE
5622     * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3
5623     * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose
5624     * to behave as if SCR.NS was 1.
5625     */
5626    { .name = "ATS1HR", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
5627      .access = PL2_W,
5628      .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC },
5629    { .name = "ATS1HW", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
5630      .access = PL2_W,
5631      .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC },
5632    { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
5633      .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
5634      /* ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the
5635       * reset values as IMPDEF. We choose to reset to 3 to comply with
5636       * both ARMv7 and ARMv8.
5637       */
5638      .access = PL2_RW, .resetvalue = 3,
5639      .fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) },
5640    { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64,
5641      .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
5642      .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0,
5643      .writefn = gt_cntvoff_write,
5644      .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
5645    { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
5646      .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO,
5647      .writefn = gt_cntvoff_write,
5648      .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
5649    { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64,
5650      .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2,
5651      .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
5652      .type = ARM_CP_IO, .access = PL2_RW,
5653      .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
5654    { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14,
5655      .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
5656      .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO,
5657      .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
5658    { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
5659      .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0,
5660      .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW,
5661      .resetfn = gt_hyp_timer_reset,
5662      .readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write },
5663    { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH,
5664      .type = ARM_CP_IO,
5665      .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1,
5666      .access = PL2_RW,
5667      .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl),
5668      .resetvalue = 0,
5669      .writefn = gt_hyp_ctl_write, .raw_writefn = raw_write },
5670#endif
5671    /* The only field of MDCR_EL2 that has a defined architectural reset value
5672     * is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N.
5673     */
5674    { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH,
5675      .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1,
5676      .access = PL2_RW, .resetvalue = PMCR_NUM_COUNTERS,
5677      .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el2), },
5678    { .name = "HPFAR", .state = ARM_CP_STATE_AA32,
5679      .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
5680      .access = PL2_RW, .accessfn = access_el3_aa32ns,
5681      .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
5682    { .name = "HPFAR_EL2", .state = ARM_CP_STATE_AA64,
5683      .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
5684      .access = PL2_RW,
5685      .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
5686    { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH,
5687      .cp = 15, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3,
5688      .access = PL2_RW,
5689      .fieldoffset = offsetof(CPUARMState, cp15.hstr_el2) },
5690    REGINFO_SENTINEL
5691};
5692
5693static const ARMCPRegInfo el2_v8_cp_reginfo[] = {
5694    { .name = "HCR2", .state = ARM_CP_STATE_AA32,
5695      .type = ARM_CP_ALIAS | ARM_CP_IO,
5696      .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4,
5697      .access = PL2_RW,
5698      .fieldoffset = offsetofhigh32(CPUARMState, cp15.hcr_el2),
5699      .writefn = hcr_writehigh },
5700    REGINFO_SENTINEL
5701};
5702
5703static CPAccessResult sel2_access(CPUARMState *env, const ARMCPRegInfo *ri,
5704                                  bool isread)
5705{
5706    if (arm_current_el(env) == 3 || arm_is_secure_below_el3(env)) {
5707        return CP_ACCESS_OK;
5708    }
5709    return CP_ACCESS_TRAP_UNCATEGORIZED;
5710}
5711
5712static const ARMCPRegInfo el2_sec_cp_reginfo[] = {
5713    { .name = "VSTTBR_EL2", .state = ARM_CP_STATE_AA64,
5714      .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 6, .opc2 = 0,
5715      .access = PL2_RW, .accessfn = sel2_access,
5716      .fieldoffset = offsetof(CPUARMState, cp15.vsttbr_el2) },
5717    { .name = "VSTCR_EL2", .state = ARM_CP_STATE_AA64,
5718      .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 6, .opc2 = 2,
5719      .access = PL2_RW, .accessfn = sel2_access,
5720      .fieldoffset = offsetof(CPUARMState, cp15.vstcr_el2) },
5721    REGINFO_SENTINEL
5722};
5723
5724static CPAccessResult nsacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
5725                                   bool isread)
5726{
5727    /* The NSACR is RW at EL3, and RO for NS EL1 and NS EL2.
5728     * At Secure EL1 it traps to EL3 or EL2.
5729     */
5730    if (arm_current_el(env) == 3) {
5731        return CP_ACCESS_OK;
5732    }
5733    if (arm_is_secure_below_el3(env)) {
5734        if (env->cp15.scr_el3 & SCR_EEL2) {
5735            return CP_ACCESS_TRAP_EL2;
5736        }
5737        return CP_ACCESS_TRAP_EL3;
5738    }
5739    /* Accesses from EL1 NS and EL2 NS are UNDEF for write but allow reads. */
5740    if (isread) {
5741        return CP_ACCESS_OK;
5742    }
5743    return CP_ACCESS_TRAP_UNCATEGORIZED;
5744}
5745
5746static const ARMCPRegInfo el3_cp_reginfo[] = {
5747    { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64,
5748      .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0,
5749      .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3),
5750      .resetfn = scr_reset, .writefn = scr_write },
5751    { .name = "SCR",  .type = ARM_CP_ALIAS | ARM_CP_NEWEL,
5752      .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0,
5753      .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
5754      .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3),
5755      .writefn = scr_write },
5756    { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64,
5757      .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1,
5758      .access = PL3_RW, .resetvalue = 0,
5759      .fieldoffset = offsetof(CPUARMState, cp15.sder) },
5760    { .name = "SDER",
5761      .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1,
5762      .access = PL3_RW, .resetvalue = 0,
5763      .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) },
5764    { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
5765      .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
5766      .writefn = vbar_write, .resetvalue = 0,
5767      .fieldoffset = offsetof(CPUARMState, cp15.mvbar) },
5768    { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64,
5769      .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0,
5770      .access = PL3_RW, .resetvalue = 0,
5771      .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) },
5772    { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64,
5773      .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2,
5774      .access = PL3_RW,
5775      /* no .writefn needed as this can't cause an ASID change;
5776       * we must provide a .raw_writefn and .resetfn because we handle
5777       * reset and migration for the AArch32 TTBCR(S), which might be
5778       * using mask and base_mask.
5779       */
5780      .resetfn = vmsa_ttbcr_reset, .raw_writefn = vmsa_ttbcr_raw_write,
5781      .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) },
5782    { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64,
5783      .type = ARM_CP_ALIAS,
5784      .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1,
5785      .access = PL3_RW,
5786      .fieldoffset = offsetof(CPUARMState, elr_el[3]) },
5787    { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64,
5788      .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0,
5789      .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) },
5790    { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64,
5791      .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0,
5792      .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) },
5793    { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64,
5794      .type = ARM_CP_ALIAS,
5795      .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0,
5796      .access = PL3_RW,
5797      .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_MON]) },
5798    { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64,
5799      .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0,
5800      .access = PL3_RW, .writefn = vbar_write,
5801      .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]),
5802      .resetvalue = 0 },
5803    { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64,
5804      .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2,
5805      .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0,
5806      .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) },
5807    { .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64,
5808      .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2,
5809      .access = PL3_RW, .resetvalue = 0,
5810      .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) },
5811    { .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64,
5812      .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0,
5813      .access = PL3_RW, .type = ARM_CP_CONST,
5814      .resetvalue = 0 },
5815    { .name = "AFSR0_EL3", .state = ARM_CP_STATE_BOTH,
5816      .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0,
5817      .access = PL3_RW, .type = ARM_CP_CONST,
5818      .resetvalue = 0 },
5819    { .name = "AFSR1_EL3", .state = ARM_CP_STATE_BOTH,
5820      .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1,
5821      .access = PL3_RW, .type = ARM_CP_CONST,
5822      .resetvalue = 0 },
5823    { .name = "TLBI_ALLE3IS", .state = ARM_CP_STATE_AA64,
5824      .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 0,
5825      .access = PL3_W, .type = ARM_CP_NO_RAW,
5826      .writefn = tlbi_aa64_alle3is_write },
5827    { .name = "TLBI_VAE3IS", .state = ARM_CP_STATE_AA64,
5828      .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 1,
5829      .access = PL3_W, .type = ARM_CP_NO_RAW,
5830      .writefn = tlbi_aa64_vae3is_write },
5831    { .name = "TLBI_VALE3IS", .state = ARM_CP_STATE_AA64,
5832      .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 5,
5833      .access = PL3_W, .type = ARM_CP_NO_RAW,
5834      .writefn = tlbi_aa64_vae3is_write },
5835    { .name = "TLBI_ALLE3", .state = ARM_CP_STATE_AA64,
5836      .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 0,
5837      .access = PL3_W, .type = ARM_CP_NO_RAW,
5838      .writefn = tlbi_aa64_alle3_write },
5839    { .name = "TLBI_VAE3", .state = ARM_CP_STATE_AA64,
5840      .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 1,
5841      .access = PL3_W, .type = ARM_CP_NO_RAW,
5842      .writefn = tlbi_aa64_vae3_write },
5843    { .name = "TLBI_VALE3", .state = ARM_CP_STATE_AA64,
5844      .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 5,
5845      .access = PL3_W, .type = ARM_CP_NO_RAW,
5846      .writefn = tlbi_aa64_vae3_write },
5847    REGINFO_SENTINEL
5848};
5849
5850#ifndef CONFIG_USER_ONLY
5851/* Test if system register redirection is to occur in the current state.  */
5852static bool redirect_for_e2h(CPUARMState *env)
5853{
5854    return arm_current_el(env) == 2 && (arm_hcr_el2_eff(env) & HCR_E2H);
5855}
5856
5857static uint64_t el2_e2h_read(CPUARMState *env, const ARMCPRegInfo *ri)
5858{
5859    CPReadFn *readfn;
5860
5861    if (redirect_for_e2h(env)) {
5862        /* Switch to the saved EL2 version of the register.  */
5863        ri = ri->opaque;
5864        readfn = ri->readfn;
5865    } else {
5866        readfn = ri->orig_readfn;
5867    }
5868    if (readfn == NULL) {
5869        readfn = raw_read;
5870    }
5871    return readfn(env, ri);
5872}
5873
5874static void el2_e2h_write(CPUARMState *env, const ARMCPRegInfo *ri,
5875                          uint64_t value)
5876{
5877    CPWriteFn *writefn;
5878
5879    if (redirect_for_e2h(env)) {
5880        /* Switch to the saved EL2 version of the register.  */
5881        ri = ri->opaque;
5882        writefn = ri->writefn;
5883    } else {
5884        writefn = ri->orig_writefn;
5885    }
5886    if (writefn == NULL) {
5887        writefn = raw_write;
5888    }
5889    writefn(env, ri, value);
5890}
5891
5892static void define_arm_vh_e2h_redirects_aliases(ARMCPU *cpu)
5893{
5894    struct E2HAlias {
5895        uint32_t src_key, dst_key, new_key;
5896        const char *src_name, *dst_name, *new_name;
5897        bool (*feature)(const ARMISARegisters *id);
5898    };
5899
5900#define K(op0, op1, crn, crm, op2) \
5901    ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, crn, crm, op0, op1, op2)
5902
5903    static const struct E2HAlias aliases[] = {
5904        { K(3, 0,  1, 0, 0), K(3, 4,  1, 0, 0), K(3, 5, 1, 0, 0),
5905          "SCTLR", "SCTLR_EL2", "SCTLR_EL12" },
5906        { K(3, 0,  1, 0, 2), K(3, 4,  1, 1, 2), K(3, 5, 1, 0, 2),
5907          "CPACR", "CPTR_EL2", "CPACR_EL12" },
5908        { K(3, 0,  2, 0, 0), K(3, 4,  2, 0, 0), K(3, 5, 2, 0, 0),
5909          "TTBR0_EL1", "TTBR0_EL2", "TTBR0_EL12" },
5910        { K(3, 0,  2, 0, 1), K(3, 4,  2, 0, 1), K(3, 5, 2, 0, 1),
5911          "TTBR1_EL1", "TTBR1_EL2", "TTBR1_EL12" },
5912        { K(3, 0,  2, 0, 2), K(3, 4,  2, 0, 2), K(3, 5, 2, 0, 2),
5913          "TCR_EL1", "TCR_EL2", "TCR_EL12" },
5914        { K(3, 0,  4, 0, 0), K(3, 4,  4, 0, 0), K(3, 5, 4, 0, 0),
5915          "SPSR_EL1", "SPSR_EL2", "SPSR_EL12" },
5916        { K(3, 0,  4, 0, 1), K(3, 4,  4, 0, 1), K(3, 5, 4, 0, 1),
5917          "ELR_EL1", "ELR_EL2", "ELR_EL12" },
5918        { K(3, 0,  5, 1, 0), K(3, 4,  5, 1, 0), K(3, 5, 5, 1, 0),
5919          "AFSR0_EL1", "AFSR0_EL2", "AFSR0_EL12" },
5920        { K(3, 0,  5, 1, 1), K(3, 4,  5, 1, 1), K(3, 5, 5, 1, 1),
5921          "AFSR1_EL1", "AFSR1_EL2", "AFSR1_EL12" },
5922        { K(3, 0,  5, 2, 0), K(3, 4,  5, 2, 0), K(3, 5, 5, 2, 0),
5923          "ESR_EL1", "ESR_EL2", "ESR_EL12" },
5924        { K(3, 0,  6, 0, 0), K(3, 4,  6, 0, 0), K(3, 5, 6, 0, 0),
5925          "FAR_EL1", "FAR_EL2", "FAR_EL12" },
5926        { K(3, 0, 10, 2, 0), K(3, 4, 10, 2, 0), K(3, 5, 10, 2, 0),
5927          "MAIR_EL1", "MAIR_EL2", "MAIR_EL12" },
5928        { K(3, 0, 10, 3, 0), K(3, 4, 10, 3, 0), K(3, 5, 10, 3, 0),
5929          "AMAIR0", "AMAIR_EL2", "AMAIR_EL12" },
5930        { K(3, 0, 12, 0, 0), K(3, 4, 12, 0, 0), K(3, 5, 12, 0, 0),
5931          "VBAR", "VBAR_EL2", "VBAR_EL12" },
5932        { K(3, 0, 13, 0, 1), K(3, 4, 13, 0, 1), K(3, 5, 13, 0, 1),
5933          "CONTEXTIDR_EL1", "CONTEXTIDR_EL2", "CONTEXTIDR_EL12" },
5934        { K(3, 0, 14, 1, 0), K(3, 4, 14, 1, 0), K(3, 5, 14, 1, 0),
5935          "CNTKCTL", "CNTHCTL_EL2", "CNTKCTL_EL12" },
5936
5937        /*
5938         * Note that redirection of ZCR is mentioned in the description
5939         * of ZCR_EL2, and aliasing in the description of ZCR_EL1, but
5940         * not in the summary table.
5941         */
5942        { K(3, 0,  1, 2, 0), K(3, 4,  1, 2, 0), K(3, 5, 1, 2, 0),
5943          "ZCR_EL1", "ZCR_EL2", "ZCR_EL12", isar_feature_aa64_sve },
5944
5945        { K(3, 0,  5, 6, 0), K(3, 4,  5, 6, 0), K(3, 5, 5, 6, 0),
5946          "TFSR_EL1", "TFSR_EL2", "TFSR_EL12", isar_feature_aa64_mte },
5947
5948        /* TODO: ARMv8.2-SPE -- PMSCR_EL2 */
5949        /* TODO: ARMv8.4-Trace -- TRFCR_EL2 */
5950    };
5951#undef K
5952
5953    size_t i;
5954
5955    for (i = 0; i < ARRAY_SIZE(aliases); i++) {
5956        const struct E2HAlias *a = &aliases[i];
5957        ARMCPRegInfo *src_reg, *dst_reg;
5958
5959        if (a->feature && !a->feature(&cpu->isar)) {
5960            continue;
5961        }
5962
5963        src_reg = g_hash_table_lookup(cpu->cp_regs, &a->src_key);
5964        dst_reg = g_hash_table_lookup(cpu->cp_regs, &a->dst_key);
5965        g_assert(src_reg != NULL);
5966        g_assert(dst_reg != NULL);
5967
5968        /* Cross-compare names to detect typos in the keys.  */
5969        g_assert(strcmp(src_reg->name, a->src_name) == 0);
5970        g_assert(strcmp(dst_reg->name, a->dst_name) == 0);
5971
5972        /* None of the core system registers use opaque; we will.  */
5973        g_assert(src_reg->opaque == NULL);
5974
5975        /* Create alias before redirection so we dup the right data. */
5976        if (a->new_key) {
5977            ARMCPRegInfo *new_reg = g_memdup(src_reg, sizeof(ARMCPRegInfo));
5978            uint32_t *new_key = g_memdup(&a->new_key, sizeof(uint32_t));
5979            bool ok;
5980
5981            new_reg->name = a->new_name;
5982            new_reg->type |= ARM_CP_ALIAS;
5983            /* Remove PL1/PL0 access, leaving PL2/PL3 R/W in place.  */
5984            new_reg->access &= PL2_RW | PL3_RW;
5985
5986            ok = g_hash_table_insert(cpu->cp_regs, new_key, new_reg);
5987            g_assert(ok);
5988        }
5989
5990        src_reg->opaque = dst_reg;
5991        src_reg->orig_readfn = src_reg->readfn ?: raw_read;
5992        src_reg->orig_writefn = src_reg->writefn ?: raw_write;
5993        if (!src_reg->raw_readfn) {
5994            src_reg->raw_readfn = raw_read;
5995        }
5996        if (!src_reg->raw_writefn) {
5997            src_reg->raw_writefn = raw_write;
5998        }
5999        src_reg->readfn = el2_e2h_read;
6000        src_reg->writefn = el2_e2h_write;
6001    }
6002}
6003#endif
6004
6005static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
6006                                     bool isread)
6007{
6008    int cur_el = arm_current_el(env);
6009
6010    if (cur_el < 2) {
6011        uint64_t hcr = arm_hcr_el2_eff(env);
6012
6013        if (cur_el == 0) {
6014            if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
6015                if (!(env->cp15.sctlr_el[2] & SCTLR_UCT)) {
6016                    return CP_ACCESS_TRAP_EL2;
6017                }
6018            } else {
6019                if (!(env->cp15.sctlr_el[1] & SCTLR_UCT)) {
6020                    return CP_ACCESS_TRAP;
6021                }
6022                if (hcr & HCR_TID2) {
6023                    return CP_ACCESS_TRAP_EL2;
6024                }
6025            }
6026        } else if (hcr & HCR_TID2) {
6027            return CP_ACCESS_TRAP_EL2;
6028        }
6029    }
6030
6031    if (arm_current_el(env) < 2 && arm_hcr_el2_eff(env) & HCR_TID2) {
6032        return CP_ACCESS_TRAP_EL2;
6033    }
6034
6035    return CP_ACCESS_OK;
6036}
6037
6038static void oslar_write(CPUARMState *env, const ARMCPRegInfo *ri,
6039                        uint64_t value)
6040{
6041    /* Writes to OSLAR_EL1 may update the OS lock status, which can be
6042     * read via a bit in OSLSR_EL1.
6043     */
6044    int oslock;
6045
6046    if (ri->state == ARM_CP_STATE_AA32) {
6047        oslock = (value == 0xC5ACCE55);
6048    } else {
6049        oslock = value & 1;
6050    }
6051
6052    env->cp15.oslsr_el1 = deposit32(env->cp15.oslsr_el1, 1, 1, oslock);
6053}
6054
6055static const ARMCPRegInfo debug_cp_reginfo[] = {
6056    /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped
6057     * debug components. The AArch64 version of DBGDRAR is named MDRAR_EL1;
6058     * unlike DBGDRAR it is never accessible from EL0.
6059     * DBGDSAR is deprecated and must RAZ from v8 anyway, so it has no AArch64
6060     * accessor.
6061     */
6062    { .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0,
6063      .access = PL0_R, .accessfn = access_tdra,
6064      .type = ARM_CP_CONST, .resetvalue = 0 },
6065    { .name = "MDRAR_EL1", .state = ARM_CP_STATE_AA64,
6066      .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
6067      .access = PL1_R, .accessfn = access_tdra,
6068      .type = ARM_CP_CONST, .resetvalue = 0 },
6069    { .name = "DBGDSAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
6070      .access = PL0_R, .accessfn = access_tdra,
6071      .type = ARM_CP_CONST, .resetvalue = 0 },
6072    /* Monitor debug system control register; the 32-bit alias is DBGDSCRext. */
6073    { .name = "MDSCR_EL1", .state = ARM_CP_STATE_BOTH,
6074      .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
6075      .access = PL1_RW, .accessfn = access_tda,
6076      .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1),
6077      .resetvalue = 0 },
6078    /*
6079     * MDCCSR_EL0[30:29] map to EDSCR[30:29].  Simply RAZ as the external
6080     * Debug Communication Channel is not implemented.
6081     */
6082    { .name = "MDCCSR_EL0", .state = ARM_CP_STATE_AA64,
6083      .opc0 = 2, .opc1 = 3, .crn = 0, .crm = 1, .opc2 = 0,
6084      .access = PL0_R, .accessfn = access_tda,
6085      .type = ARM_CP_CONST, .resetvalue = 0 },
6086    /*
6087     * DBGDSCRint[15,12,5:2] map to MDSCR_EL1[15,12,5:2].  Map all bits as
6088     * it is unlikely a guest will care.
6089     * We don't implement the configurable EL0 access.
6090     */
6091    { .name = "DBGDSCRint", .state = ARM_CP_STATE_AA32,
6092      .cp = 14, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
6093      .type = ARM_CP_ALIAS,
6094      .access = PL1_R, .accessfn = access_tda,
6095      .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), },
6096    { .name = "OSLAR_EL1", .state = ARM_CP_STATE_BOTH,
6097      .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 4,
6098      .access = PL1_W, .type = ARM_CP_NO_RAW,
6099      .accessfn = access_tdosa,
6100      .writefn = oslar_write },
6101    { .name = "OSLSR_EL1", .state = ARM_CP_STATE_BOTH,
6102      .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 4,
6103      .access = PL1_R, .resetvalue = 10,
6104      .accessfn = access_tdosa,
6105      .fieldoffset = offsetof(CPUARMState, cp15.oslsr_el1) },
6106    /* Dummy OSDLR_EL1: 32-bit Linux will read this */
6107    { .name = "OSDLR_EL1", .state = ARM_CP_STATE_BOTH,
6108      .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 4,
6109      .access = PL1_RW, .accessfn = access_tdosa,
6110      .type = ARM_CP_NOP },
6111    /* Dummy DBGVCR: Linux wants to clear this on startup, but we don't
6112     * implement vector catch debug events yet.
6113     */
6114    { .name = "DBGVCR",
6115      .cp = 14, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
6116      .access = PL1_RW, .accessfn = access_tda,
6117      .type = ARM_CP_NOP },
6118    /* Dummy DBGVCR32_EL2 (which is only for a 64-bit hypervisor
6119     * to save and restore a 32-bit guest's DBGVCR)
6120     */
6121    { .name = "DBGVCR32_EL2", .state = ARM_CP_STATE_AA64,
6122      .opc0 = 2, .opc1 = 4, .crn = 0, .crm = 7, .opc2 = 0,
6123      .access = PL2_RW, .accessfn = access_tda,
6124      .type = ARM_CP_NOP },
6125    /* Dummy MDCCINT_EL1, since we don't implement the Debug Communications
6126     * Channel but Linux may try to access this register. The 32-bit
6127     * alias is DBGDCCINT.
6128     */
6129    { .name = "MDCCINT_EL1", .state = ARM_CP_STATE_BOTH,
6130      .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
6131      .access = PL1_RW, .accessfn = access_tda,
6132      .type = ARM_CP_NOP },
6133    REGINFO_SENTINEL
6134};
6135
6136static const ARMCPRegInfo debug_lpae_cp_reginfo[] = {
6137    /* 64 bit access versions of the (dummy) debug registers */
6138    { .name = "DBGDRAR", .cp = 14, .crm = 1, .opc1 = 0,
6139      .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
6140    { .name = "DBGDSAR", .cp = 14, .crm = 2, .opc1 = 0,
6141      .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
6142    REGINFO_SENTINEL
6143};
6144
6145/* Return the exception level to which exceptions should be taken
6146 * via SVEAccessTrap.  If an exception should be routed through
6147 * AArch64.AdvSIMDFPAccessTrap, return 0; fp_exception_el should
6148 * take care of raising that exception.
6149 * C.f. the ARM pseudocode function CheckSVEEnabled.
6150 */
6151int sve_exception_el(CPUARMState *env, int el)
6152{
6153#ifndef CONFIG_USER_ONLY
6154    uint64_t hcr_el2 = arm_hcr_el2_eff(env);
6155
6156    if (el <= 1 && (hcr_el2 & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
6157        bool disabled = false;
6158
6159        /* The CPACR.ZEN controls traps to EL1:
6160         * 0, 2 : trap EL0 and EL1 accesses
6161         * 1    : trap only EL0 accesses
6162         * 3    : trap no accesses
6163         */
6164        if (!extract32(env->cp15.cpacr_el1, 16, 1)) {
6165            disabled = true;
6166        } else if (!extract32(env->cp15.cpacr_el1, 17, 1)) {
6167            disabled = el == 0;
6168        }
6169        if (disabled) {
6170            /* route_to_el2 */
6171            return hcr_el2 & HCR_TGE ? 2 : 1;
6172        }
6173
6174        /* Check CPACR.FPEN.  */
6175        if (!extract32(env->cp15.cpacr_el1, 20, 1)) {
6176            disabled = true;
6177        } else if (!extract32(env->cp15.cpacr_el1, 21, 1)) {
6178            disabled = el == 0;
6179        }
6180        if (disabled) {
6181            return 0;
6182        }
6183    }
6184
6185    /* CPTR_EL2.  Since TZ and TFP are positive,
6186     * they will be zero when EL2 is not present.
6187     */
6188    if (el <= 2 && arm_is_el2_enabled(env)) {
6189        if (env->cp15.cptr_el[2] & CPTR_TZ) {
6190            return 2;
6191        }
6192        if (env->cp15.cptr_el[2] & CPTR_TFP) {
6193            return 0;
6194        }
6195    }
6196
6197    /* CPTR_EL3.  Since EZ is negative we must check for EL3.  */
6198    if (arm_feature(env, ARM_FEATURE_EL3)
6199        && !(env->cp15.cptr_el[3] & CPTR_EZ)) {
6200        return 3;
6201    }
6202#endif
6203    return 0;
6204}
6205
6206uint32_t aarch64_sve_zcr_get_valid_len(ARMCPU *cpu, uint32_t start_len)
6207{
6208    uint32_t end_len;
6209
6210    start_len = MIN(start_len, ARM_MAX_VQ - 1);
6211    end_len = start_len;
6212
6213    if (!test_bit(start_len, cpu->sve_vq_map)) {
6214        end_len = find_last_bit(cpu->sve_vq_map, start_len);
6215        assert(end_len < start_len);
6216    }
6217    return end_len;
6218}
6219
6220/*
6221 * Given that SVE is enabled, return the vector length for EL.
6222 */
6223uint32_t sve_zcr_len_for_el(CPUARMState *env, int el)
6224{
6225    ARMCPU *cpu = env_archcpu(env);
6226    uint32_t zcr_len = cpu->sve_max_vq - 1;
6227
6228    if (el <= 1) {
6229        zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[1]);
6230    }
6231    if (el <= 2 && arm_feature(env, ARM_FEATURE_EL2)) {
6232        zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[2]);
6233    }
6234    if (arm_feature(env, ARM_FEATURE_EL3)) {
6235        zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[3]);
6236    }
6237
6238    return aarch64_sve_zcr_get_valid_len(cpu, zcr_len);
6239}
6240
6241static void zcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
6242                      uint64_t value)
6243{
6244    int cur_el = arm_current_el(env);
6245    int old_len = sve_zcr_len_for_el(env, cur_el);
6246    int new_len;
6247
6248    /* Bits other than [3:0] are RAZ/WI.  */
6249    QEMU_BUILD_BUG_ON(ARM_MAX_VQ > 16);
6250    raw_write(env, ri, value & 0xf);
6251
6252    /*
6253     * Because we arrived here, we know both FP and SVE are enabled;
6254     * otherwise we would have trapped access to the ZCR_ELn register.
6255     */
6256    new_len = sve_zcr_len_for_el(env, cur_el);
6257    if (new_len < old_len) {
6258        aarch64_sve_narrow_vq(env, new_len + 1);
6259    }
6260}
6261
6262static const ARMCPRegInfo zcr_el1_reginfo = {
6263    .name = "ZCR_EL1", .state = ARM_CP_STATE_AA64,
6264    .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 0,
6265    .access = PL1_RW, .type = ARM_CP_SVE,
6266    .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[1]),
6267    .writefn = zcr_write, .raw_writefn = raw_write
6268};
6269
6270static const ARMCPRegInfo zcr_el2_reginfo = {
6271    .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64,
6272    .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0,
6273    .access = PL2_RW, .type = ARM_CP_SVE,
6274    .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[2]),
6275    .writefn = zcr_write, .raw_writefn = raw_write
6276};
6277
6278static const ARMCPRegInfo zcr_no_el2_reginfo = {
6279    .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64,
6280    .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0,
6281    .access = PL2_RW, .type = ARM_CP_SVE,
6282    .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore
6283};
6284
6285static const ARMCPRegInfo zcr_el3_reginfo = {
6286    .name = "ZCR_EL3", .state = ARM_CP_STATE_AA64,
6287    .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 0,
6288    .access = PL3_RW, .type = ARM_CP_SVE,
6289    .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[3]),
6290    .writefn = zcr_write, .raw_writefn = raw_write
6291};
6292
6293void hw_watchpoint_update(ARMCPU *cpu, int n)
6294{
6295    CPUARMState *env = &cpu->env;
6296    vaddr len = 0;
6297    vaddr wvr = env->cp15.dbgwvr[n];
6298    uint64_t wcr = env->cp15.dbgwcr[n];
6299    int mask;
6300    int flags = BP_CPU | BP_STOP_BEFORE_ACCESS;
6301
6302    if (env->cpu_watchpoint[n]) {
6303        cpu_watchpoint_remove_by_ref(CPU(cpu), env->cpu_watchpoint[n]);
6304        env->cpu_watchpoint[n] = NULL;
6305    }
6306
6307    if (!extract64(wcr, 0, 1)) {
6308        /* E bit clear : watchpoint disabled */
6309        return;
6310    }
6311
6312    switch (extract64(wcr, 3, 2)) {
6313    case 0:
6314        /* LSC 00 is reserved and must behave as if the wp is disabled */
6315        return;
6316    case 1:
6317        flags |= BP_MEM_READ;
6318        break;
6319    case 2:
6320        flags |= BP_MEM_WRITE;
6321        break;
6322    case 3:
6323        flags |= BP_MEM_ACCESS;
6324        break;
6325    }
6326
6327    /* Attempts to use both MASK and BAS fields simultaneously are
6328     * CONSTRAINED UNPREDICTABLE; we opt to ignore BAS in this case,
6329     * thus generating a watchpoint for every byte in the masked region.
6330     */
6331    mask = extract64(wcr, 24, 4);
6332    if (mask == 1 || mask == 2) {
6333        /* Reserved values of MASK; we must act as if the mask value was
6334         * some non-reserved value, or as if the watchpoint were disabled.
6335         * We choose the latter.
6336         */
6337        return;
6338    } else if (mask) {
6339        /* Watchpoint covers an aligned area up to 2GB in size */
6340        len = 1ULL << mask;
6341        /* If masked bits in WVR are not zero it's CONSTRAINED UNPREDICTABLE
6342         * whether the watchpoint fires when the unmasked bits match; we opt
6343         * to generate the exceptions.
6344         */
6345        wvr &= ~(len - 1);
6346    } else {
6347        /* Watchpoint covers bytes defined by the byte address select bits */
6348        int bas = extract64(wcr, 5, 8);
6349        int basstart;
6350
6351        if (extract64(wvr, 2, 1)) {
6352            /* Deprecated case of an only 4-aligned address. BAS[7:4] are
6353             * ignored, and BAS[3:0] define which bytes to watch.
6354             */
6355            bas &= 0xf;
6356        }
6357
6358        if (bas == 0) {
6359            /* This must act as if the watchpoint is disabled */
6360            return;
6361        }
6362
6363        /* The BAS bits are supposed to be programmed to indicate a contiguous
6364         * range of bytes. Otherwise it is CONSTRAINED UNPREDICTABLE whether
6365         * we fire for each byte in the word/doubleword addressed by the WVR.
6366         * We choose to ignore any non-zero bits after the first range of 1s.
6367         */
6368        basstart = ctz32(bas);
6369        len = cto32(bas >> basstart);
6370        wvr += basstart;
6371    }
6372
6373    cpu_watchpoint_insert(CPU(cpu), wvr, len, flags,
6374                          &env->cpu_watchpoint[n]);
6375}
6376
6377void hw_watchpoint_update_all(ARMCPU *cpu)
6378{
6379    int i;
6380    CPUARMState *env = &cpu->env;
6381
6382    /* Completely clear out existing QEMU watchpoints and our array, to
6383     * avoid possible stale entries following migration load.
6384     */
6385    cpu_watchpoint_remove_all(CPU(cpu), BP_CPU);
6386    memset(env->cpu_watchpoint, 0, sizeof(env->cpu_watchpoint));
6387
6388    for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_watchpoint); i++) {
6389        hw_watchpoint_update(cpu, i);
6390    }
6391}
6392
6393static void dbgwvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
6394                         uint64_t value)
6395{
6396    ARMCPU *cpu = env_archcpu(env);
6397    int i = ri->crm;
6398
6399    /* Bits [63:49] are hardwired to the value of bit [48]; that is, the
6400     * register reads and behaves as if values written are sign extended.
6401     * Bits [1:0] are RES0.
6402     */
6403    value = sextract64(value, 0, 49) & ~3ULL;
6404
6405    raw_write(env, ri, value);
6406    hw_watchpoint_update(cpu, i);
6407}
6408
6409static void dbgwcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
6410                         uint64_t value)
6411{
6412    ARMCPU *cpu = env_archcpu(env);
6413    int i = ri->crm;
6414
6415    raw_write(env, ri, value);
6416    hw_watchpoint_update(cpu, i);
6417}
6418
6419void hw_breakpoint_update(ARMCPU *cpu, int n)
6420{
6421    CPUARMState *env = &cpu->env;
6422    uint64_t bvr = env->cp15.dbgbvr[n];
6423    uint64_t bcr = env->cp15.dbgbcr[n];
6424    vaddr addr;
6425    int bt;
6426    int flags = BP_CPU;
6427
6428    if (env->cpu_breakpoint[n]) {
6429        cpu_breakpoint_remove_by_ref(CPU(cpu), env->cpu_breakpoint[n]);
6430        env->cpu_breakpoint[n] = NULL;
6431    }
6432
6433    if (!extract64(bcr, 0, 1)) {
6434        /* E bit clear : watchpoint disabled */
6435        return;
6436    }
6437
6438    bt = extract64(bcr, 20, 4);
6439
6440    switch (bt) {
6441    case 4: /* unlinked address mismatch (reserved if AArch64) */
6442    case 5: /* linked address mismatch (reserved if AArch64) */
6443        qemu_log_mask(LOG_UNIMP,
6444                      "arm: address mismatch breakpoint types not implemented\n");
6445        return;
6446    case 0: /* unlinked address match */
6447    case 1: /* linked address match */
6448    {
6449        /* Bits [63:49] are hardwired to the value of bit [48]; that is,
6450         * we behave as if the register was sign extended. Bits [1:0] are
6451         * RES0. The BAS field is used to allow setting breakpoints on 16
6452         * bit wide instructions; it is CONSTRAINED UNPREDICTABLE whether
6453         * a bp will fire if the addresses covered by the bp and the addresses
6454         * covered by the insn overlap but the insn doesn't start at the
6455         * start of the bp address range. We choose to require the insn and
6456         * the bp to have the same address. The constraints on writing to
6457         * BAS enforced in dbgbcr_write mean we have only four cases:
6458         *  0b0000  => no breakpoint
6459         *  0b0011  => breakpoint on addr
6460         *  0b1100  => breakpoint on addr + 2
6461         *  0b1111  => breakpoint on addr
6462         * See also figure D2-3 in the v8 ARM ARM (DDI0487A.c).
6463         */
6464        int bas = extract64(bcr, 5, 4);
6465        addr = sextract64(bvr, 0, 49) & ~3ULL;
6466        if (bas == 0) {
6467            return;
6468        }
6469        if (bas == 0xc) {
6470            addr += 2;
6471        }
6472        break;
6473    }
6474    case 2: /* unlinked context ID match */
6475    case 8: /* unlinked VMID match (reserved if no EL2) */
6476    case 10: /* unlinked context ID and VMID match (reserved if no EL2) */
6477        qemu_log_mask(LOG_UNIMP,
6478                      "arm: unlinked context breakpoint types not implemented\n");
6479        return;
6480    case 9: /* linked VMID match (reserved if no EL2) */
6481    case 11: /* linked context ID and VMID match (reserved if no EL2) */
6482    case 3: /* linked context ID match */
6483    default:
6484        /* We must generate no events for Linked context matches (unless
6485         * they are linked to by some other bp/wp, which is handled in
6486         * updates for the linking bp/wp). We choose to also generate no events
6487         * for reserved values.
6488         */
6489        return;
6490    }
6491
6492    cpu_breakpoint_insert(CPU(cpu), addr, flags, &env->cpu_breakpoint[n]);
6493}
6494
6495void hw_breakpoint_update_all(ARMCPU *cpu)
6496{
6497    int i;
6498    CPUARMState *env = &cpu->env;
6499
6500    /* Completely clear out existing QEMU breakpoints and our array, to
6501     * avoid possible stale entries following migration load.
6502     */
6503    cpu_breakpoint_remove_all(CPU(cpu), BP_CPU);
6504    memset(env->cpu_breakpoint, 0, sizeof(env->cpu_breakpoint));
6505
6506    for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_breakpoint); i++) {
6507        hw_breakpoint_update(cpu, i);
6508    }
6509}
6510
6511static void dbgbvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
6512                         uint64_t value)
6513{
6514    ARMCPU *cpu = env_archcpu(env);
6515    int i = ri->crm;
6516
6517    raw_write(env, ri, value);
6518    hw_breakpoint_update(cpu, i);
6519}
6520
6521static void dbgbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
6522                         uint64_t value)
6523{
6524    ARMCPU *cpu = env_archcpu(env);
6525    int i = ri->crm;
6526
6527    /* BAS[3] is a read-only copy of BAS[2], and BAS[1] a read-only
6528     * copy of BAS[0].
6529     */
6530    value = deposit64(value, 6, 1, extract64(value, 5, 1));
6531    value = deposit64(value, 8, 1, extract64(value, 7, 1));
6532
6533    raw_write(env, ri, value);
6534    hw_breakpoint_update(cpu, i);
6535}
6536
6537static void define_debug_regs(ARMCPU *cpu)
6538{
6539    /* Define v7 and v8 architectural debug registers.
6540     * These are just dummy implementations for now.
6541     */
6542    int i;
6543    int wrps, brps, ctx_cmps;
6544
6545    /*
6546     * The Arm ARM says DBGDIDR is optional and deprecated if EL1 cannot
6547     * use AArch32.  Given that bit 15 is RES1, if the value is 0 then
6548     * the register must not exist for this cpu.
6549     */
6550    if (cpu->isar.dbgdidr != 0) {
6551        ARMCPRegInfo dbgdidr = {
6552            .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0,
6553            .opc1 = 0, .opc2 = 0,
6554            .access = PL0_R, .accessfn = access_tda,
6555            .type = ARM_CP_CONST, .resetvalue = cpu->isar.dbgdidr,
6556        };
6557        define_one_arm_cp_reg(cpu, &dbgdidr);
6558    }
6559
6560    /* Note that all these register fields hold "number of Xs minus 1". */
6561    brps = arm_num_brps(cpu);
6562    wrps = arm_num_wrps(cpu);
6563    ctx_cmps = arm_num_ctx_cmps(cpu);
6564
6565    assert(ctx_cmps <= brps);
6566
6567    define_arm_cp_regs(cpu, debug_cp_reginfo);
6568
6569    if (arm_feature(&cpu->env, ARM_FEATURE_LPAE)) {
6570        define_arm_cp_regs(cpu, debug_lpae_cp_reginfo);
6571    }
6572
6573    for (i = 0; i < brps; i++) {
6574        ARMCPRegInfo dbgregs[] = {
6575            { .name = "DBGBVR", .state = ARM_CP_STATE_BOTH,
6576              .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 4,
6577              .access = PL1_RW, .accessfn = access_tda,
6578              .fieldoffset = offsetof(CPUARMState, cp15.dbgbvr[i]),
6579              .writefn = dbgbvr_write, .raw_writefn = raw_write
6580            },
6581            { .name = "DBGBCR", .state = ARM_CP_STATE_BOTH,
6582              .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 5,
6583              .access = PL1_RW, .accessfn = access_tda,
6584              .fieldoffset = offsetof(CPUARMState, cp15.dbgbcr[i]),
6585              .writefn = dbgbcr_write, .raw_writefn = raw_write
6586            },
6587            REGINFO_SENTINEL
6588        };
6589        define_arm_cp_regs(cpu, dbgregs);
6590    }
6591
6592    for (i = 0; i < wrps; i++) {
6593        ARMCPRegInfo dbgregs[] = {
6594            { .name = "DBGWVR", .state = ARM_CP_STATE_BOTH,
6595              .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 6,
6596              .access = PL1_RW, .accessfn = access_tda,
6597              .fieldoffset = offsetof(CPUARMState, cp15.dbgwvr[i]),
6598              .writefn = dbgwvr_write, .raw_writefn = raw_write
6599            },
6600            { .name = "DBGWCR", .state = ARM_CP_STATE_BOTH,
6601              .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 7,
6602              .access = PL1_RW, .accessfn = access_tda,
6603              .fieldoffset = offsetof(CPUARMState, cp15.dbgwcr[i]),
6604              .writefn = dbgwcr_write, .raw_writefn = raw_write
6605            },
6606            REGINFO_SENTINEL
6607        };
6608        define_arm_cp_regs(cpu, dbgregs);
6609    }
6610}
6611
6612static void define_pmu_regs(ARMCPU *cpu)
6613{
6614    /*
6615     * v7 performance monitor control register: same implementor
6616     * field as main ID register, and we implement four counters in
6617     * addition to the cycle count register.
6618     */
6619    unsigned int i, pmcrn = PMCR_NUM_COUNTERS;
6620    ARMCPRegInfo pmcr = {
6621        .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0,
6622        .access = PL0_RW,
6623        .type = ARM_CP_IO | ARM_CP_ALIAS,
6624        .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr),
6625        .accessfn = pmreg_access, .writefn = pmcr_write,
6626        .raw_writefn = raw_write,
6627    };
6628    ARMCPRegInfo pmcr64 = {
6629        .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64,
6630        .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0,
6631        .access = PL0_RW, .accessfn = pmreg_access,
6632        .type = ARM_CP_IO,
6633        .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr),
6634        .resetvalue = (cpu->midr & 0xff000000) | (pmcrn << PMCRN_SHIFT) |
6635                      PMCRLC,
6636        .writefn = pmcr_write, .raw_writefn = raw_write,
6637    };
6638    define_one_arm_cp_reg(cpu, &pmcr);
6639    define_one_arm_cp_reg(cpu, &pmcr64);
6640    for (i = 0; i < pmcrn; i++) {
6641        char *pmevcntr_name = g_strdup_printf("PMEVCNTR%d", i);
6642        char *pmevcntr_el0_name = g_strdup_printf("PMEVCNTR%d_EL0", i);
6643        char *pmevtyper_name = g_strdup_printf("PMEVTYPER%d", i);
6644        char *pmevtyper_el0_name = g_strdup_printf("PMEVTYPER%d_EL0", i);
6645        ARMCPRegInfo pmev_regs[] = {
6646            { .name = pmevcntr_name, .cp = 15, .crn = 14,
6647              .crm = 8 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7,
6648              .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS,
6649              .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn,
6650              .accessfn = pmreg_access },
6651            { .name = pmevcntr_el0_name, .state = ARM_CP_STATE_AA64,
6652              .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 8 | (3 & (i >> 3)),
6653              .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access,
6654              .type = ARM_CP_IO,
6655              .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn,
6656              .raw_readfn = pmevcntr_rawread,
6657              .raw_writefn = pmevcntr_rawwrite },
6658            { .name = pmevtyper_name, .cp = 15, .crn = 14,
6659              .crm = 12 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7,
6660              .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS,
6661              .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn,
6662              .accessfn = pmreg_access },
6663            { .name = pmevtyper_el0_name, .state = ARM_CP_STATE_AA64,
6664              .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 12 | (3 & (i >> 3)),
6665              .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access,
6666              .type = ARM_CP_IO,
6667              .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn,
6668              .raw_writefn = pmevtyper_rawwrite },
6669            REGINFO_SENTINEL
6670        };
6671        define_arm_cp_regs(cpu, pmev_regs);
6672        g_free(pmevcntr_name);
6673        g_free(pmevcntr_el0_name);
6674        g_free(pmevtyper_name);
6675        g_free(pmevtyper_el0_name);
6676    }
6677    if (cpu_isar_feature(aa32_pmu_8_1, cpu)) {
6678        ARMCPRegInfo v81_pmu_regs[] = {
6679            { .name = "PMCEID2", .state = ARM_CP_STATE_AA32,
6680              .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 4,
6681              .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
6682              .resetvalue = extract64(cpu->pmceid0, 32, 32) },
6683            { .name = "PMCEID3", .state = ARM_CP_STATE_AA32,
6684              .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 5,
6685              .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
6686              .resetvalue = extract64(cpu->pmceid1, 32, 32) },
6687            REGINFO_SENTINEL
6688        };
6689        define_arm_cp_regs(cpu, v81_pmu_regs);
6690    }
6691    if (cpu_isar_feature(any_pmu_8_4, cpu)) {
6692        static const ARMCPRegInfo v84_pmmir = {
6693            .name = "PMMIR_EL1", .state = ARM_CP_STATE_BOTH,
6694            .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 6,
6695            .access = PL1_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
6696            .resetvalue = 0
6697        };
6698        define_one_arm_cp_reg(cpu, &v84_pmmir);
6699    }
6700}
6701
6702/* We don't know until after realize whether there's a GICv3
6703 * attached, and that is what registers the gicv3 sysregs.
6704 * So we have to fill in the GIC fields in ID_PFR/ID_PFR1_EL1/ID_AA64PFR0_EL1
6705 * at runtime.
6706 */
6707static uint64_t id_pfr1_read(CPUARMState *env, const ARMCPRegInfo *ri)
6708{
6709    ARMCPU *cpu = env_archcpu(env);
6710    uint64_t pfr1 = cpu->isar.id_pfr1;
6711
6712    if (env->gicv3state) {
6713        pfr1 |= 1 << 28;
6714    }
6715    return pfr1;
6716}
6717
6718#ifndef CONFIG_USER_ONLY
6719static uint64_t id_aa64pfr0_read(CPUARMState *env, const ARMCPRegInfo *ri)
6720{
6721    ARMCPU *cpu = env_archcpu(env);
6722    uint64_t pfr0 = cpu->isar.id_aa64pfr0;
6723
6724    if (env->gicv3state) {
6725        pfr0 |= 1 << 24;
6726    }
6727    return pfr0;
6728}
6729#endif
6730
6731/* Shared logic between LORID and the rest of the LOR* registers.
6732 * Secure state exclusion has already been dealt with.
6733 */
6734static CPAccessResult access_lor_ns(CPUARMState *env,
6735                                    const ARMCPRegInfo *ri, bool isread)
6736{
6737    int el = arm_current_el(env);
6738
6739    if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TLOR)) {
6740        return CP_ACCESS_TRAP_EL2;
6741    }
6742    if (el < 3 && (env->cp15.scr_el3 & SCR_TLOR)) {
6743        return CP_ACCESS_TRAP_EL3;
6744    }
6745    return CP_ACCESS_OK;
6746}
6747
6748static CPAccessResult access_lor_other(CPUARMState *env,
6749                                       const ARMCPRegInfo *ri, bool isread)
6750{
6751    if (arm_is_secure_below_el3(env)) {
6752        /* Access denied in secure mode.  */
6753        return CP_ACCESS_TRAP;
6754    }
6755    return access_lor_ns(env, ri, isread);
6756}
6757
6758/*
6759 * A trivial implementation of ARMv8.1-LOR leaves all of these
6760 * registers fixed at 0, which indicates that there are zero
6761 * supported Limited Ordering regions.
6762 */
6763static const ARMCPRegInfo lor_reginfo[] = {
6764    { .name = "LORSA_EL1", .state = ARM_CP_STATE_AA64,
6765      .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 0,
6766      .access = PL1_RW, .accessfn = access_lor_other,
6767      .type = ARM_CP_CONST, .resetvalue = 0 },
6768    { .name = "LOREA_EL1", .state = ARM_CP_STATE_AA64,
6769      .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 1,
6770      .access = PL1_RW, .accessfn = access_lor_other,
6771      .type = ARM_CP_CONST, .resetvalue = 0 },
6772    { .name = "LORN_EL1", .state = ARM_CP_STATE_AA64,
6773      .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 2,
6774      .access = PL1_RW, .accessfn = access_lor_other,
6775      .type = ARM_CP_CONST, .resetvalue = 0 },
6776    { .name = "LORC_EL1", .state = ARM_CP_STATE_AA64,
6777      .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 3,
6778      .access = PL1_RW, .accessfn = access_lor_other,
6779      .type = ARM_CP_CONST, .resetvalue = 0 },
6780    { .name = "LORID_EL1", .state = ARM_CP_STATE_AA64,
6781      .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 7,
6782      .access = PL1_R, .accessfn = access_lor_ns,
6783      .type = ARM_CP_CONST, .resetvalue = 0 },
6784    REGINFO_SENTINEL
6785};
6786
6787#ifdef TARGET_AARCH64
6788static CPAccessResult access_pauth(CPUARMState *env, const ARMCPRegInfo *ri,
6789                                   bool isread)
6790{
6791    int el = arm_current_el(env);
6792
6793    if (el < 2 &&
6794        arm_feature(env, ARM_FEATURE_EL2) &&
6795        !(arm_hcr_el2_eff(env) & HCR_APK)) {
6796        return CP_ACCESS_TRAP_EL2;
6797    }
6798    if (el < 3 &&
6799        arm_feature(env, ARM_FEATURE_EL3) &&
6800        !(env->cp15.scr_el3 & SCR_APK)) {
6801        return CP_ACCESS_TRAP_EL3;
6802    }
6803    return CP_ACCESS_OK;
6804}
6805
6806static const ARMCPRegInfo pauth_reginfo[] = {
6807    { .name = "APDAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
6808      .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 0,
6809      .access = PL1_RW, .accessfn = access_pauth,
6810      .fieldoffset = offsetof(CPUARMState, keys.apda.lo) },
6811    { .name = "APDAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
6812      .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 1,
6813      .access = PL1_RW, .accessfn = access_pauth,
6814      .fieldoffset = offsetof(CPUARMState, keys.apda.hi) },
6815    { .name = "APDBKEYLO_EL1", .state = ARM_CP_STATE_AA64,
6816      .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 2,
6817      .access = PL1_RW, .accessfn = access_pauth,
6818      .fieldoffset = offsetof(CPUARMState, keys.apdb.lo) },
6819    { .name = "APDBKEYHI_EL1", .state = ARM_CP_STATE_AA64,
6820      .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 3,
6821      .access = PL1_RW, .accessfn = access_pauth,
6822      .fieldoffset = offsetof(CPUARMState, keys.apdb.hi) },
6823    { .name = "APGAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
6824      .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 0,
6825      .access = PL1_RW, .accessfn = access_pauth,
6826      .fieldoffset = offsetof(CPUARMState, keys.apga.lo) },
6827    { .name = "APGAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
6828      .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 1,
6829      .access = PL1_RW, .accessfn = access_pauth,
6830      .fieldoffset = offsetof(CPUARMState, keys.apga.hi) },
6831    { .name = "APIAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
6832      .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 0,
6833      .access = PL1_RW, .accessfn = access_pauth,
6834      .fieldoffset = offsetof(CPUARMState, keys.apia.lo) },
6835    { .name = "APIAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
6836      .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 1,
6837      .access = PL1_RW, .accessfn = access_pauth,
6838      .fieldoffset = offsetof(CPUARMState, keys.apia.hi) },
6839    { .name = "APIBKEYLO_EL1", .state = ARM_CP_STATE_AA64,
6840      .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 2,
6841      .access = PL1_RW, .accessfn = access_pauth,
6842      .fieldoffset = offsetof(CPUARMState, keys.apib.lo) },
6843    { .name = "APIBKEYHI_EL1", .state = ARM_CP_STATE_AA64,
6844      .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 3,
6845      .access = PL1_RW, .accessfn = access_pauth,
6846      .fieldoffset = offsetof(CPUARMState, keys.apib.hi) },
6847    REGINFO_SENTINEL
6848};
6849
6850static const ARMCPRegInfo tlbirange_reginfo[] = {
6851    { .name = "TLBI_RVAE1IS", .state = ARM_CP_STATE_AA64,
6852      .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 1,
6853      .access = PL1_W, .type = ARM_CP_NO_RAW,
6854      .writefn = tlbi_aa64_rvae1is_write },
6855    { .name = "TLBI_RVAAE1IS", .state = ARM_CP_STATE_AA64,
6856      .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 3,
6857      .access = PL1_W, .type = ARM_CP_NO_RAW,
6858      .writefn = tlbi_aa64_rvae1is_write },
6859   { .name = "TLBI_RVALE1IS", .state = ARM_CP_STATE_AA64,
6860      .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 5,
6861      .access = PL1_W, .type = ARM_CP_NO_RAW,
6862      .writefn = tlbi_aa64_rvae1is_write },
6863    { .name = "TLBI_RVAALE1IS", .state = ARM_CP_STATE_AA64,
6864      .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 7,
6865      .access = PL1_W, .type = ARM_CP_NO_RAW,
6866      .writefn = tlbi_aa64_rvae1is_write },
6867    { .name = "TLBI_RVAE1OS", .state = ARM_CP_STATE_AA64,
6868      .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1,
6869      .access = PL1_W, .type = ARM_CP_NO_RAW,
6870      .writefn = tlbi_aa64_rvae1is_write },
6871    { .name = "TLBI_RVAAE1OS", .state = ARM_CP_STATE_AA64,
6872      .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 3,
6873      .access = PL1_W, .type = ARM_CP_NO_RAW,
6874      .writefn = tlbi_aa64_rvae1is_write },
6875   { .name = "TLBI_RVALE1OS", .state = ARM_CP_STATE_AA64,
6876      .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 5,
6877      .access = PL1_W, .type = ARM_CP_NO_RAW,
6878      .writefn = tlbi_aa64_rvae1is_write },
6879    { .name = "TLBI_RVAALE1OS", .state = ARM_CP_STATE_AA64,
6880      .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 7,
6881      .access = PL1_W, .type = ARM_CP_NO_RAW,
6882      .writefn = tlbi_aa64_rvae1is_write },
6883    { .name = "TLBI_RVAE1", .state = ARM_CP_STATE_AA64,
6884      .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1,
6885      .access = PL1_W, .type = ARM_CP_NO_RAW,
6886      .writefn = tlbi_aa64_rvae1_write },
6887    { .name = "TLBI_RVAAE1", .state = ARM_CP_STATE_AA64,
6888      .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 3,
6889      .access = PL1_W, .type = ARM_CP_NO_RAW,
6890      .writefn = tlbi_aa64_rvae1_write },
6891   { .name = "TLBI_RVALE1", .state = ARM_CP_STATE_AA64,
6892      .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 5,
6893      .access = PL1_W, .type = ARM_CP_NO_RAW,
6894      .writefn = tlbi_aa64_rvae1_write },
6895    { .name = "TLBI_RVAALE1", .state = ARM_CP_STATE_AA64,
6896      .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 7,
6897      .access = PL1_W, .type = ARM_CP_NO_RAW,
6898      .writefn = tlbi_aa64_rvae1_write },
6899    { .name = "TLBI_RIPAS2E1IS", .state = ARM_CP_STATE_AA64,
6900      .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 2,
6901      .access = PL2_W, .type = ARM_CP_NOP },
6902    { .name = "TLBI_RIPAS2LE1IS", .state = ARM_CP_STATE_AA64,
6903      .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 6,
6904      .access = PL2_W, .type = ARM_CP_NOP },
6905    { .name = "TLBI_RVAE2IS", .state = ARM_CP_STATE_AA64,
6906      .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 2, .opc2 = 1,
6907      .access = PL2_W, .type = ARM_CP_NO_RAW,
6908      .writefn = tlbi_aa64_rvae2is_write },
6909   { .name = "TLBI_RVALE2IS", .state = ARM_CP_STATE_AA64,
6910      .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 2, .opc2 = 5,
6911      .access = PL2_W, .type = ARM_CP_NO_RAW,
6912      .writefn = tlbi_aa64_rvae2is_write },
6913    { .name = "TLBI_RIPAS2E1", .state = ARM_CP_STATE_AA64,
6914      .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 2,
6915      .access = PL2_W, .type = ARM_CP_NOP },
6916   { .name = "TLBI_RIPAS2LE1", .state = ARM_CP_STATE_AA64,
6917      .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 6,
6918      .access = PL2_W, .type = ARM_CP_NOP },
6919   { .name = "TLBI_RVAE2OS", .state = ARM_CP_STATE_AA64,
6920      .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 5, .opc2 = 1,
6921      .access = PL2_W, .type = ARM_CP_NO_RAW,
6922      .writefn = tlbi_aa64_rvae2is_write },
6923   { .name = "TLBI_RVALE2OS", .state = ARM_CP_STATE_AA64,
6924      .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 5, .opc2 = 5,
6925      .access = PL2_W, .type = ARM_CP_NO_RAW,
6926      .writefn = tlbi_aa64_rvae2is_write },
6927    { .name = "TLBI_RVAE2", .state = ARM_CP_STATE_AA64,
6928      .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 6, .opc2 = 1,
6929      .access = PL2_W, .type = ARM_CP_NO_RAW,
6930      .writefn = tlbi_aa64_rvae2_write },
6931   { .name = "TLBI_RVALE2", .state = ARM_CP_STATE_AA64,
6932      .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 6, .opc2 = 5,
6933      .access = PL2_W, .type = ARM_CP_NO_RAW,
6934      .writefn = tlbi_aa64_rvae2_write },
6935   { .name = "TLBI_RVAE3IS", .state = ARM_CP_STATE_AA64,
6936      .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 2, .opc2 = 1,
6937      .access = PL3_W, .type = ARM_CP_NO_RAW,
6938      .writefn = tlbi_aa64_rvae3is_write },
6939   { .name = "TLBI_RVALE3IS", .state = ARM_CP_STATE_AA64,
6940      .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 2, .opc2 = 5,
6941      .access = PL3_W, .type = ARM_CP_NO_RAW,
6942      .writefn = tlbi_aa64_rvae3is_write },
6943   { .name = "TLBI_RVAE3OS", .state = ARM_CP_STATE_AA64,
6944      .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 5, .opc2 = 1,
6945      .access = PL3_W, .type = ARM_CP_NO_RAW,
6946      .writefn = tlbi_aa64_rvae3is_write },
6947   { .name = "TLBI_RVALE3OS", .state = ARM_CP_STATE_AA64,
6948      .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 5, .opc2 = 5,
6949      .access = PL3_W, .type = ARM_CP_NO_RAW,
6950      .writefn = tlbi_aa64_rvae3is_write },
6951   { .name = "TLBI_RVAE3", .state = ARM_CP_STATE_AA64,
6952      .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 6, .opc2 = 1,
6953      .access = PL3_W, .type = ARM_CP_NO_RAW,
6954      .writefn = tlbi_aa64_rvae3_write },
6955   { .name = "TLBI_RVALE3", .state = ARM_CP_STATE_AA64,
6956      .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 6, .opc2 = 5,
6957      .access = PL3_W, .type = ARM_CP_NO_RAW,
6958      .writefn = tlbi_aa64_rvae3_write },
6959    REGINFO_SENTINEL
6960};
6961
6962static const ARMCPRegInfo tlbios_reginfo[] = {
6963    { .name = "TLBI_VMALLE1OS", .state = ARM_CP_STATE_AA64,
6964      .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 0,
6965      .access = PL1_W, .type = ARM_CP_NO_RAW,
6966      .writefn = tlbi_aa64_vmalle1is_write },
6967    { .name = "TLBI_ASIDE1OS", .state = ARM_CP_STATE_AA64,
6968      .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 2,
6969      .access = PL1_W, .type = ARM_CP_NO_RAW,
6970      .writefn = tlbi_aa64_vmalle1is_write },
6971    { .name = "TLBI_ALLE2OS", .state = ARM_CP_STATE_AA64,
6972      .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 0,
6973      .access = PL2_W, .type = ARM_CP_NO_RAW,
6974      .writefn = tlbi_aa64_alle2is_write },
6975   { .name = "TLBI_ALLE1OS", .state = ARM_CP_STATE_AA64,
6976      .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 4,
6977      .access = PL2_W, .type = ARM_CP_NO_RAW,
6978      .writefn = tlbi_aa64_alle1is_write },
6979    { .name = "TLBI_VMALLS12E1OS", .state = ARM_CP_STATE_AA64,
6980      .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 6,
6981      .access = PL2_W, .type = ARM_CP_NO_RAW,
6982      .writefn = tlbi_aa64_alle1is_write },
6983    { .name = "TLBI_IPAS2E1OS", .state = ARM_CP_STATE_AA64,
6984      .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 0,
6985      .access = PL2_W, .type = ARM_CP_NOP },
6986    { .name = "TLBI_RIPAS2E1OS", .state = ARM_CP_STATE_AA64,
6987      .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 3,
6988      .access = PL2_W, .type = ARM_CP_NOP },
6989    { .name = "TLBI_IPAS2LE1OS", .state = ARM_CP_STATE_AA64,
6990      .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 4,
6991      .access = PL2_W, .type = ARM_CP_NOP },
6992    { .name = "TLBI_RIPAS2LE1OS", .state = ARM_CP_STATE_AA64,
6993      .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 7,
6994      .access = PL2_W, .type = ARM_CP_NOP },
6995    { .name = "TLBI_ALLE3OS", .state = ARM_CP_STATE_AA64,
6996      .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 0,
6997      .access = PL3_W, .type = ARM_CP_NO_RAW,
6998      .writefn = tlbi_aa64_alle3is_write },
6999    REGINFO_SENTINEL
7000};
7001
7002static uint64_t rndr_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
7003{
7004    Error *err = NULL;
7005    uint64_t ret;
7006
7007    /* Success sets NZCV = 0000.  */
7008    env->NF = env->CF = env->VF = 0, env->ZF = 1;
7009
7010    if (qemu_guest_getrandom(&ret, sizeof(ret), &err) < 0) {
7011        /*
7012         * ??? Failed, for unknown reasons in the crypto subsystem.
7013         * The best we can do is log the reason and return the
7014         * timed-out indication to the guest.  There is no reason
7015         * we know to expect this failure to be transitory, so the
7016         * guest may well hang retrying the operation.
7017         */
7018        qemu_log_mask(LOG_UNIMP, "%s: Crypto failure: %s",
7019                      ri->name, error_get_pretty(err));
7020        error_free(err);
7021
7022        env->ZF = 0; /* NZCF = 0100 */
7023        return 0;
7024    }
7025    return ret;
7026}
7027
7028/* We do not support re-seeding, so the two registers operate the same.  */
7029static const ARMCPRegInfo rndr_reginfo[] = {
7030    { .name = "RNDR", .state = ARM_CP_STATE_AA64,
7031      .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO,
7032      .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 0,
7033      .access = PL0_R, .readfn = rndr_readfn },
7034    { .name = "RNDRRS", .state = ARM_CP_STATE_AA64,
7035      .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO,
7036      .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 1,
7037      .access = PL0_R, .readfn = rndr_readfn },
7038    REGINFO_SENTINEL
7039};
7040
7041#ifndef CONFIG_USER_ONLY
7042static void dccvap_writefn(CPUARMState *env, const ARMCPRegInfo *opaque,
7043                          uint64_t value)
7044{
7045    ARMCPU *cpu = env_archcpu(env);
7046    /* CTR_EL0 System register -> DminLine, bits [19:16] */
7047    uint64_t dline_size = 4 << ((cpu->ctr >> 16) & 0xF);
7048    uint64_t vaddr_in = (uint64_t) value;
7049    uint64_t vaddr = vaddr_in & ~(dline_size - 1);
7050    void *haddr;
7051    int mem_idx = cpu_mmu_index(env, false);
7052
7053    /* This won't be crossing page boundaries */
7054    haddr = probe_read(env, vaddr, dline_size, mem_idx, GETPC());
7055    if (haddr) {
7056
7057        ram_addr_t offset;
7058        MemoryRegion *mr;
7059
7060        /* RCU lock is already being held */
7061        mr = memory_region_from_host(haddr, &offset);
7062
7063        if (mr) {
7064            memory_region_writeback(mr, offset, dline_size);
7065        }
7066    }
7067}
7068
7069static const ARMCPRegInfo dcpop_reg[] = {
7070    { .name = "DC_CVAP", .state = ARM_CP_STATE_AA64,
7071      .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 1,
7072      .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END,
7073      .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn },
7074    REGINFO_SENTINEL
7075};
7076
7077static const ARMCPRegInfo dcpodp_reg[] = {
7078    { .name = "DC_CVADP", .state = ARM_CP_STATE_AA64,
7079      .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 1,
7080      .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END,
7081      .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn },
7082    REGINFO_SENTINEL
7083};
7084#endif /*CONFIG_USER_ONLY*/
7085
7086static CPAccessResult access_aa64_tid5(CPUARMState *env, const ARMCPRegInfo *ri,
7087                                       bool isread)
7088{
7089    if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID5)) {
7090        return CP_ACCESS_TRAP_EL2;
7091    }
7092
7093    return CP_ACCESS_OK;
7094}
7095
7096static CPAccessResult access_mte(CPUARMState *env, const ARMCPRegInfo *ri,
7097                                 bool isread)
7098{
7099    int el = arm_current_el(env);
7100
7101    if (el < 2 && arm_feature(env, ARM_FEATURE_EL2)) {
7102        uint64_t hcr = arm_hcr_el2_eff(env);
7103        if (!(hcr & HCR_ATA) && (!(hcr & HCR_E2H) || !(hcr & HCR_TGE))) {
7104            return CP_ACCESS_TRAP_EL2;
7105        }
7106    }
7107    if (el < 3 &&
7108        arm_feature(env, ARM_FEATURE_EL3) &&
7109        !(env->cp15.scr_el3 & SCR_ATA)) {
7110        return CP_ACCESS_TRAP_EL3;
7111    }
7112    return CP_ACCESS_OK;
7113}
7114
7115static uint64_t tco_read(CPUARMState *env, const ARMCPRegInfo *ri)
7116{
7117    return env->pstate & PSTATE_TCO;
7118}
7119
7120static void tco_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
7121{
7122    env->pstate = (env->pstate & ~PSTATE_TCO) | (val & PSTATE_TCO);
7123}
7124
7125static const ARMCPRegInfo mte_reginfo[] = {
7126    { .name = "TFSRE0_EL1", .state = ARM_CP_STATE_AA64,
7127      .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 1,
7128      .access = PL1_RW, .accessfn = access_mte,
7129      .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[0]) },
7130    { .name = "TFSR_EL1", .state = ARM_CP_STATE_AA64,
7131      .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 0,
7132      .access = PL1_RW, .accessfn = access_mte,
7133      .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[1]) },
7134    { .name = "TFSR_EL2", .state = ARM_CP_STATE_AA64,
7135      .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 6, .opc2 = 0,
7136      .access = PL2_RW, .accessfn = access_mte,
7137      .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[2]) },
7138    { .name = "TFSR_EL3", .state = ARM_CP_STATE_AA64,
7139      .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 6, .opc2 = 0,
7140      .access = PL3_RW,
7141      .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[3]) },
7142    { .name = "RGSR_EL1", .state = ARM_CP_STATE_AA64,
7143      .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 5,
7144      .access = PL1_RW, .accessfn = access_mte,
7145      .fieldoffset = offsetof(CPUARMState, cp15.rgsr_el1) },
7146    { .name = "GCR_EL1", .state = ARM_CP_STATE_AA64,
7147      .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 6,
7148      .access = PL1_RW, .accessfn = access_mte,
7149      .fieldoffset = offsetof(CPUARMState, cp15.gcr_el1) },
7150    { .name = "GMID_EL1", .state = ARM_CP_STATE_AA64,
7151      .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 4,
7152      .access = PL1_R, .accessfn = access_aa64_tid5,
7153      .type = ARM_CP_CONST, .resetvalue = GMID_EL1_BS },
7154    { .name = "TCO", .state = ARM_CP_STATE_AA64,
7155      .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7,
7156      .type = ARM_CP_NO_RAW,
7157      .access = PL0_RW, .readfn = tco_read, .writefn = tco_write },
7158    { .name = "DC_IGVAC", .state = ARM_CP_STATE_AA64,
7159      .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 3,
7160      .type = ARM_CP_NOP, .access = PL1_W,
7161      .accessfn = aa64_cacheop_poc_access },
7162    { .name = "DC_IGSW", .state = ARM_CP_STATE_AA64,
7163      .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 4,
7164      .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
7165    { .name = "DC_IGDVAC", .state = ARM_CP_STATE_AA64,
7166      .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 5,
7167      .type = ARM_CP_NOP, .access = PL1_W,
7168      .accessfn = aa64_cacheop_poc_access },
7169    { .name = "DC_IGDSW", .state = ARM_CP_STATE_AA64,
7170      .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 6,
7171      .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
7172    { .name = "DC_CGSW", .state = ARM_CP_STATE_AA64,
7173      .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 4,
7174      .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
7175    { .name = "DC_CGDSW", .state = ARM_CP_STATE_AA64,
7176      .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 6,
7177      .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
7178    { .name = "DC_CIGSW", .state = ARM_CP_STATE_AA64,
7179      .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 4,
7180      .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
7181    { .name = "DC_CIGDSW", .state = ARM_CP_STATE_AA64,
7182      .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 6,
7183      .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
7184    REGINFO_SENTINEL
7185};
7186
7187static const ARMCPRegInfo mte_tco_ro_reginfo[] = {
7188    { .name = "TCO", .state = ARM_CP_STATE_AA64,
7189      .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7,
7190      .type = ARM_CP_CONST, .access = PL0_RW, },
7191    REGINFO_SENTINEL
7192};
7193
7194static const ARMCPRegInfo mte_el0_cacheop_reginfo[] = {
7195    { .name = "DC_CGVAC", .state = ARM_CP_STATE_AA64,
7196      .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 3,
7197      .type = ARM_CP_NOP, .access = PL0_W,
7198      .accessfn = aa64_cacheop_poc_access },
7199    { .name = "DC_CGDVAC", .state = ARM_CP_STATE_AA64,
7200      .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 5,
7201      .type = ARM_CP_NOP, .access = PL0_W,
7202      .accessfn = aa64_cacheop_poc_access },
7203    { .name = "DC_CGVAP", .state = ARM_CP_STATE_AA64,
7204      .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 3,
7205      .type = ARM_CP_NOP, .access = PL0_W,
7206      .accessfn = aa64_cacheop_poc_access },
7207    { .name = "DC_CGDVAP", .state = ARM_CP_STATE_AA64,
7208      .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 5,
7209      .type = ARM_CP_NOP, .access = PL0_W,
7210      .accessfn = aa64_cacheop_poc_access },
7211    { .name = "DC_CGVADP", .state = ARM_CP_STATE_AA64,
7212      .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 3,
7213      .type = ARM_CP_NOP, .access = PL0_W,
7214      .accessfn = aa64_cacheop_poc_access },
7215    { .name = "DC_CGDVADP", .state = ARM_CP_STATE_AA64,
7216      .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 5,
7217      .type = ARM_CP_NOP, .access = PL0_W,
7218      .accessfn = aa64_cacheop_poc_access },
7219    { .name = "DC_CIGVAC", .state = ARM_CP_STATE_AA64,
7220      .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 3,
7221      .type = ARM_CP_NOP, .access = PL0_W,
7222      .accessfn = aa64_cacheop_poc_access },
7223    { .name = "DC_CIGDVAC", .state = ARM_CP_STATE_AA64,
7224      .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 5,
7225      .type = ARM_CP_NOP, .access = PL0_W,
7226      .accessfn = aa64_cacheop_poc_access },
7227    { .name = "DC_GVA", .state = ARM_CP_STATE_AA64,
7228      .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 3,
7229      .access = PL0_W, .type = ARM_CP_DC_GVA,
7230#ifndef CONFIG_USER_ONLY
7231      /* Avoid overhead of an access check that always passes in user-mode */
7232      .accessfn = aa64_zva_access,
7233#endif
7234    },
7235    { .name = "DC_GZVA", .state = ARM_CP_STATE_AA64,
7236      .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 4,
7237      .access = PL0_W, .type = ARM_CP_DC_GZVA,
7238#ifndef CONFIG_USER_ONLY
7239      /* Avoid overhead of an access check that always passes in user-mode */
7240      .accessfn = aa64_zva_access,
7241#endif
7242    },
7243    REGINFO_SENTINEL
7244};
7245
7246#endif
7247
7248static CPAccessResult access_predinv(CPUARMState *env, const ARMCPRegInfo *ri,
7249                                     bool isread)
7250{
7251    int el = arm_current_el(env);
7252
7253    if (el == 0) {
7254        uint64_t sctlr = arm_sctlr(env, el);
7255        if (!(sctlr & SCTLR_EnRCTX)) {
7256            return CP_ACCESS_TRAP;
7257        }
7258    } else if (el == 1) {
7259        uint64_t hcr = arm_hcr_el2_eff(env);
7260        if (hcr & HCR_NV) {
7261            return CP_ACCESS_TRAP_EL2;
7262        }
7263    }
7264    return CP_ACCESS_OK;
7265}
7266
7267static const ARMCPRegInfo predinv_reginfo[] = {
7268    { .name = "CFP_RCTX", .state = ARM_CP_STATE_AA64,
7269      .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 4,
7270      .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7271    { .name = "DVP_RCTX", .state = ARM_CP_STATE_AA64,
7272      .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 5,
7273      .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7274    { .name = "CPP_RCTX", .state = ARM_CP_STATE_AA64,
7275      .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 7,
7276      .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7277    /*
7278     * Note the AArch32 opcodes have a different OPC1.
7279     */
7280    { .name = "CFPRCTX", .state = ARM_CP_STATE_AA32,
7281      .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 4,
7282      .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7283    { .name = "DVPRCTX", .state = ARM_CP_STATE_AA32,
7284      .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 5,
7285      .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7286    { .name = "CPPRCTX", .state = ARM_CP_STATE_AA32,
7287      .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 7,
7288      .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7289    REGINFO_SENTINEL
7290};
7291
7292static uint64_t ccsidr2_read(CPUARMState *env, const ARMCPRegInfo *ri)
7293{
7294    /* Read the high 32 bits of the current CCSIDR */
7295    return extract64(ccsidr_read(env, ri), 32, 32);
7296}
7297
7298static const ARMCPRegInfo ccsidr2_reginfo[] = {
7299    { .name = "CCSIDR2", .state = ARM_CP_STATE_BOTH,
7300      .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 2,
7301      .access = PL1_R,
7302      .accessfn = access_aa64_tid2,
7303      .readfn = ccsidr2_read, .type = ARM_CP_NO_RAW },
7304    REGINFO_SENTINEL
7305};
7306
7307static CPAccessResult access_aa64_tid3(CPUARMState *env, const ARMCPRegInfo *ri,
7308                                       bool isread)
7309{
7310    if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID3)) {
7311        return CP_ACCESS_TRAP_EL2;
7312    }
7313
7314    return CP_ACCESS_OK;
7315}
7316
7317static CPAccessResult access_aa32_tid3(CPUARMState *env, const ARMCPRegInfo *ri,
7318                                       bool isread)
7319{
7320    if (arm_feature(env, ARM_FEATURE_V8)) {
7321        return access_aa64_tid3(env, ri, isread);
7322    }
7323
7324    return CP_ACCESS_OK;
7325}
7326
7327static CPAccessResult access_jazelle(CPUARMState *env, const ARMCPRegInfo *ri,
7328                                     bool isread)
7329{
7330    if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID0)) {
7331        return CP_ACCESS_TRAP_EL2;
7332    }
7333
7334    return CP_ACCESS_OK;
7335}
7336
7337static CPAccessResult access_joscr_jmcr(CPUARMState *env,
7338                                        const ARMCPRegInfo *ri, bool isread)
7339{
7340    /*
7341     * HSTR.TJDBX traps JOSCR and JMCR accesses, but it exists only
7342     * in v7A, not in v8A.
7343     */
7344    if (!arm_feature(env, ARM_FEATURE_V8) &&
7345        arm_current_el(env) < 2 && !arm_is_secure_below_el3(env) &&
7346        (env->cp15.hstr_el2 & HSTR_TJDBX)) {
7347        return CP_ACCESS_TRAP_EL2;
7348    }
7349    return CP_ACCESS_OK;
7350}
7351
7352static const ARMCPRegInfo jazelle_regs[] = {
7353    { .name = "JIDR",
7354      .cp = 14, .crn = 0, .crm = 0, .opc1 = 7, .opc2 = 0,
7355      .access = PL1_R, .accessfn = access_jazelle,
7356      .type = ARM_CP_CONST, .resetvalue = 0 },
7357    { .name = "JOSCR",
7358      .cp = 14, .crn = 1, .crm = 0, .opc1 = 7, .opc2 = 0,
7359      .accessfn = access_joscr_jmcr,
7360      .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
7361    { .name = "JMCR",
7362      .cp = 14, .crn = 2, .crm = 0, .opc1 = 7, .opc2 = 0,
7363      .accessfn = access_joscr_jmcr,
7364      .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
7365    REGINFO_SENTINEL
7366};
7367
7368static const ARMCPRegInfo vhe_reginfo[] = {
7369    { .name = "CONTEXTIDR_EL2", .state = ARM_CP_STATE_AA64,
7370      .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 1,
7371      .access = PL2_RW,
7372      .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[2]) },
7373    { .name = "TTBR1_EL2", .state = ARM_CP_STATE_AA64,
7374      .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 1,
7375      .access = PL2_RW, .writefn = vmsa_tcr_ttbr_el2_write,
7376      .fieldoffset = offsetof(CPUARMState, cp15.ttbr1_el[2]) },
7377#ifndef CONFIG_USER_ONLY
7378    { .name = "CNTHV_CVAL_EL2", .state = ARM_CP_STATE_AA64,
7379      .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 2,
7380      .fieldoffset =
7381        offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].cval),
7382      .type = ARM_CP_IO, .access = PL2_RW,
7383      .writefn = gt_hv_cval_write, .raw_writefn = raw_write },
7384    { .name = "CNTHV_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
7385      .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 0,
7386      .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW,
7387      .resetfn = gt_hv_timer_reset,
7388      .readfn = gt_hv_tval_read, .writefn = gt_hv_tval_write },
7389    { .name = "CNTHV_CTL_EL2", .state = ARM_CP_STATE_BOTH,
7390      .type = ARM_CP_IO,
7391      .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 1,
7392      .access = PL2_RW,
7393      .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].ctl),
7394      .writefn = gt_hv_ctl_write, .raw_writefn = raw_write },
7395    { .name = "CNTP_CTL_EL02", .state = ARM_CP_STATE_AA64,
7396      .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 1,
7397      .type = ARM_CP_IO | ARM_CP_ALIAS,
7398      .access = PL2_RW, .accessfn = e2h_access,
7399      .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl),
7400      .writefn = gt_phys_ctl_write, .raw_writefn = raw_write },
7401    { .name = "CNTV_CTL_EL02", .state = ARM_CP_STATE_AA64,
7402      .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 1,
7403      .type = ARM_CP_IO | ARM_CP_ALIAS,
7404      .access = PL2_RW, .accessfn = e2h_access,
7405      .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl),
7406      .writefn = gt_virt_ctl_write, .raw_writefn = raw_write },
7407    { .name = "CNTP_TVAL_EL02", .state = ARM_CP_STATE_AA64,
7408      .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 0,
7409      .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS,
7410      .access = PL2_RW, .accessfn = e2h_access,
7411      .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write },
7412    { .name = "CNTV_TVAL_EL02", .state = ARM_CP_STATE_AA64,
7413      .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 0,
7414      .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS,
7415      .access = PL2_RW, .accessfn = e2h_access,
7416      .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write },
7417    { .name = "CNTP_CVAL_EL02", .state = ARM_CP_STATE_AA64,
7418      .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 2,
7419      .type = ARM_CP_IO | ARM_CP_ALIAS,
7420      .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
7421      .access = PL2_RW, .accessfn = e2h_access,
7422      .writefn = gt_phys_cval_write, .raw_writefn = raw_write },
7423    { .name = "CNTV_CVAL_EL02", .state = ARM_CP_STATE_AA64,
7424      .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 2,
7425      .type = ARM_CP_IO | ARM_CP_ALIAS,
7426      .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
7427      .access = PL2_RW, .accessfn = e2h_access,
7428      .writefn = gt_virt_cval_write, .raw_writefn = raw_write },
7429#endif
7430    REGINFO_SENTINEL
7431};
7432
7433#ifndef CONFIG_USER_ONLY
7434static const ARMCPRegInfo ats1e1_reginfo[] = {
7435    { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64,
7436      .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0,
7437      .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
7438      .writefn = ats_write64 },
7439    { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64,
7440      .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1,
7441      .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
7442      .writefn = ats_write64 },
7443    REGINFO_SENTINEL
7444};
7445
7446static const ARMCPRegInfo ats1cp_reginfo[] = {
7447    { .name = "ATS1CPRP",
7448      .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0,
7449      .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
7450      .writefn = ats_write },
7451    { .name = "ATS1CPWP",
7452      .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1,
7453      .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
7454      .writefn = ats_write },
7455    REGINFO_SENTINEL
7456};
7457#endif
7458
7459/*
7460 * ACTLR2 and HACTLR2 map to ACTLR_EL1[63:32] and
7461 * ACTLR_EL2[63:32]. They exist only if the ID_MMFR4.AC2 field
7462 * is non-zero, which is never for ARMv7, optionally in ARMv8
7463 * and mandatorily for ARMv8.2 and up.
7464 * ACTLR2 is banked for S and NS if EL3 is AArch32. Since QEMU's
7465 * implementation is RAZ/WI we can ignore this detail, as we
7466 * do for ACTLR.
7467 */
7468static const ARMCPRegInfo actlr2_hactlr2_reginfo[] = {
7469    { .name = "ACTLR2", .state = ARM_CP_STATE_AA32,
7470      .cp = 15, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 3,
7471      .access = PL1_RW, .accessfn = access_tacr,
7472      .type = ARM_CP_CONST, .resetvalue = 0 },
7473    { .name = "HACTLR2", .state = ARM_CP_STATE_AA32,
7474      .cp = 15, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 3,
7475      .access = PL2_RW, .type = ARM_CP_CONST,
7476      .resetvalue = 0 },
7477    REGINFO_SENTINEL
7478};
7479
7480void register_cp_regs_for_features(ARMCPU *cpu)
7481{
7482    /* Register all the coprocessor registers based on feature bits */
7483    CPUARMState *env = &cpu->env;
7484    if (arm_feature(env, ARM_FEATURE_M)) {
7485        /* M profile has no coprocessor registers */
7486        return;
7487    }
7488
7489    define_arm_cp_regs(cpu, cp_reginfo);
7490    if (!arm_feature(env, ARM_FEATURE_V8)) {
7491        /* Must go early as it is full of wildcards that may be
7492         * overridden by later definitions.
7493         */
7494        define_arm_cp_regs(cpu, not_v8_cp_reginfo);
7495    }
7496
7497    if (arm_feature(env, ARM_FEATURE_V6)) {
7498        /* The ID registers all have impdef reset values */
7499        ARMCPRegInfo v6_idregs[] = {
7500            { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH,
7501              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
7502              .access = PL1_R, .type = ARM_CP_CONST,
7503              .accessfn = access_aa32_tid3,
7504              .resetvalue = cpu->isar.id_pfr0 },
7505            /* ID_PFR1 is not a plain ARM_CP_CONST because we don't know
7506             * the value of the GIC field until after we define these regs.
7507             */
7508            { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH,
7509              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1,
7510              .access = PL1_R, .type = ARM_CP_NO_RAW,
7511              .accessfn = access_aa32_tid3,
7512              .readfn = id_pfr1_read,
7513              .writefn = arm_cp_write_ignore },
7514            { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH,
7515              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2,
7516              .access = PL1_R, .type = ARM_CP_CONST,
7517              .accessfn = access_aa32_tid3,
7518              .resetvalue = cpu->isar.id_dfr0 },
7519            { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH,
7520              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3,
7521              .access = PL1_R, .type = ARM_CP_CONST,
7522              .accessfn = access_aa32_tid3,
7523              .resetvalue = cpu->id_afr0 },
7524            { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH,
7525              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4,
7526              .access = PL1_R, .type = ARM_CP_CONST,
7527              .accessfn = access_aa32_tid3,
7528              .resetvalue = cpu->isar.id_mmfr0 },
7529            { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH,
7530              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5,
7531              .access = PL1_R, .type = ARM_CP_CONST,
7532              .accessfn = access_aa32_tid3,
7533              .resetvalue = cpu->isar.id_mmfr1 },
7534            { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH,
7535              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6,
7536              .access = PL1_R, .type = ARM_CP_CONST,
7537              .accessfn = access_aa32_tid3,
7538              .resetvalue = cpu->isar.id_mmfr2 },
7539            { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH,
7540              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7,
7541              .access = PL1_R, .type = ARM_CP_CONST,
7542              .accessfn = access_aa32_tid3,
7543              .resetvalue = cpu->isar.id_mmfr3 },
7544            { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH,
7545              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
7546              .access = PL1_R, .type = ARM_CP_CONST,
7547              .accessfn = access_aa32_tid3,
7548              .resetvalue = cpu->isar.id_isar0 },
7549            { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH,
7550              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1,
7551              .access = PL1_R, .type = ARM_CP_CONST,
7552              .accessfn = access_aa32_tid3,
7553              .resetvalue = cpu->isar.id_isar1 },
7554            { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH,
7555              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
7556              .access = PL1_R, .type = ARM_CP_CONST,
7557              .accessfn = access_aa32_tid3,
7558              .resetvalue = cpu->isar.id_isar2 },
7559            { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH,
7560              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3,
7561              .access = PL1_R, .type = ARM_CP_CONST,
7562              .accessfn = access_aa32_tid3,
7563              .resetvalue = cpu->isar.id_isar3 },
7564            { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH,
7565              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4,
7566              .access = PL1_R, .type = ARM_CP_CONST,
7567              .accessfn = access_aa32_tid3,
7568              .resetvalue = cpu->isar.id_isar4 },
7569            { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH,
7570              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5,
7571              .access = PL1_R, .type = ARM_CP_CONST,
7572              .accessfn = access_aa32_tid3,
7573              .resetvalue = cpu->isar.id_isar5 },
7574            { .name = "ID_MMFR4", .state = ARM_CP_STATE_BOTH,
7575              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 6,
7576              .access = PL1_R, .type = ARM_CP_CONST,
7577              .accessfn = access_aa32_tid3,
7578              .resetvalue = cpu->isar.id_mmfr4 },
7579            { .name = "ID_ISAR6", .state = ARM_CP_STATE_BOTH,
7580              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 7,
7581              .access = PL1_R, .type = ARM_CP_CONST,
7582              .accessfn = access_aa32_tid3,
7583              .resetvalue = cpu->isar.id_isar6 },
7584            REGINFO_SENTINEL
7585        };
7586        define_arm_cp_regs(cpu, v6_idregs);
7587        define_arm_cp_regs(cpu, v6_cp_reginfo);
7588    } else {
7589        define_arm_cp_regs(cpu, not_v6_cp_reginfo);
7590    }
7591    if (arm_feature(env, ARM_FEATURE_V6K)) {
7592        define_arm_cp_regs(cpu, v6k_cp_reginfo);
7593    }
7594    if (arm_feature(env, ARM_FEATURE_V7MP) &&
7595        !arm_feature(env, ARM_FEATURE_PMSA)) {
7596        define_arm_cp_regs(cpu, v7mp_cp_reginfo);
7597    }
7598    if (arm_feature(env, ARM_FEATURE_V7VE)) {
7599        define_arm_cp_regs(cpu, pmovsset_cp_reginfo);
7600    }
7601    if (arm_feature(env, ARM_FEATURE_V7)) {
7602        ARMCPRegInfo clidr = {
7603            .name = "CLIDR", .state = ARM_CP_STATE_BOTH,
7604            .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1,
7605            .access = PL1_R, .type = ARM_CP_CONST,
7606            .accessfn = access_aa64_tid2,
7607            .resetvalue = cpu->clidr
7608        };
7609        define_one_arm_cp_reg(cpu, &clidr);
7610        define_arm_cp_regs(cpu, v7_cp_reginfo);
7611        define_debug_regs(cpu);
7612        define_pmu_regs(cpu);
7613    } else {
7614        define_arm_cp_regs(cpu, not_v7_cp_reginfo);
7615    }
7616    if (arm_feature(env, ARM_FEATURE_V8)) {
7617        /* AArch64 ID registers, which all have impdef reset values.
7618         * Note that within the ID register ranges the unused slots
7619         * must all RAZ, not UNDEF; future architecture versions may
7620         * define new registers here.
7621         */
7622        ARMCPRegInfo v8_idregs[] = {
7623            /*
7624             * ID_AA64PFR0_EL1 is not a plain ARM_CP_CONST in system
7625             * emulation because we don't know the right value for the
7626             * GIC field until after we define these regs.
7627             */
7628            { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64,
7629              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0,
7630              .access = PL1_R,
7631#ifdef CONFIG_USER_ONLY
7632              .type = ARM_CP_CONST,
7633              .resetvalue = cpu->isar.id_aa64pfr0
7634#else
7635              .type = ARM_CP_NO_RAW,
7636              .accessfn = access_aa64_tid3,
7637              .readfn = id_aa64pfr0_read,
7638              .writefn = arm_cp_write_ignore
7639#endif
7640            },
7641            { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64,
7642              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1,
7643              .access = PL1_R, .type = ARM_CP_CONST,
7644              .accessfn = access_aa64_tid3,
7645              .resetvalue = cpu->isar.id_aa64pfr1},
7646            { .name = "ID_AA64PFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7647              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 2,
7648              .access = PL1_R, .type = ARM_CP_CONST,
7649              .accessfn = access_aa64_tid3,
7650              .resetvalue = 0 },
7651            { .name = "ID_AA64PFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7652              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 3,
7653              .access = PL1_R, .type = ARM_CP_CONST,
7654              .accessfn = access_aa64_tid3,
7655              .resetvalue = 0 },
7656            { .name = "ID_AA64ZFR0_EL1", .state = ARM_CP_STATE_AA64,
7657              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 4,
7658              .access = PL1_R, .type = ARM_CP_CONST,
7659              .accessfn = access_aa64_tid3,
7660              .resetvalue = cpu->isar.id_aa64zfr0 },
7661            { .name = "ID_AA64PFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7662              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 5,
7663              .access = PL1_R, .type = ARM_CP_CONST,
7664              .accessfn = access_aa64_tid3,
7665              .resetvalue = 0 },
7666            { .name = "ID_AA64PFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7667              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 6,
7668              .access = PL1_R, .type = ARM_CP_CONST,
7669              .accessfn = access_aa64_tid3,
7670              .resetvalue = 0 },
7671            { .name = "ID_AA64PFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7672              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 7,
7673              .access = PL1_R, .type = ARM_CP_CONST,
7674              .accessfn = access_aa64_tid3,
7675              .resetvalue = 0 },
7676            { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64,
7677              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0,
7678              .access = PL1_R, .type = ARM_CP_CONST,
7679              .accessfn = access_aa64_tid3,
7680              .resetvalue = cpu->isar.id_aa64dfr0 },
7681            { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64,
7682              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1,
7683              .access = PL1_R, .type = ARM_CP_CONST,
7684              .accessfn = access_aa64_tid3,
7685              .resetvalue = cpu->isar.id_aa64dfr1 },
7686            { .name = "ID_AA64DFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7687              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 2,
7688              .access = PL1_R, .type = ARM_CP_CONST,
7689              .accessfn = access_aa64_tid3,
7690              .resetvalue = 0 },
7691            { .name = "ID_AA64DFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7692              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 3,
7693              .access = PL1_R, .type = ARM_CP_CONST,
7694              .accessfn = access_aa64_tid3,
7695              .resetvalue = 0 },
7696            { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64,
7697              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4,
7698              .access = PL1_R, .type = ARM_CP_CONST,
7699              .accessfn = access_aa64_tid3,
7700              .resetvalue = cpu->id_aa64afr0 },
7701            { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64,
7702              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5,
7703              .access = PL1_R, .type = ARM_CP_CONST,
7704              .accessfn = access_aa64_tid3,
7705              .resetvalue = cpu->id_aa64afr1 },
7706            { .name = "ID_AA64AFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7707              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 6,
7708              .access = PL1_R, .type = ARM_CP_CONST,
7709              .accessfn = access_aa64_tid3,
7710              .resetvalue = 0 },
7711            { .name = "ID_AA64AFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7712              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 7,
7713              .access = PL1_R, .type = ARM_CP_CONST,
7714              .accessfn = access_aa64_tid3,
7715              .resetvalue = 0 },
7716            { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64,
7717              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0,
7718              .access = PL1_R, .type = ARM_CP_CONST,
7719              .accessfn = access_aa64_tid3,
7720              .resetvalue = cpu->isar.id_aa64isar0 },
7721            { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64,
7722              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1,
7723              .access = PL1_R, .type = ARM_CP_CONST,
7724              .accessfn = access_aa64_tid3,
7725              .resetvalue = cpu->isar.id_aa64isar1 },
7726            { .name = "ID_AA64ISAR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7727              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 2,
7728              .access = PL1_R, .type = ARM_CP_CONST,
7729              .accessfn = access_aa64_tid3,
7730              .resetvalue = 0 },
7731            { .name = "ID_AA64ISAR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7732              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 3,
7733              .access = PL1_R, .type = ARM_CP_CONST,
7734              .accessfn = access_aa64_tid3,
7735              .resetvalue = 0 },
7736            { .name = "ID_AA64ISAR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7737              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 4,
7738              .access = PL1_R, .type = ARM_CP_CONST,
7739              .accessfn = access_aa64_tid3,
7740              .resetvalue = 0 },
7741            { .name = "ID_AA64ISAR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7742              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 5,
7743              .access = PL1_R, .type = ARM_CP_CONST,
7744              .accessfn = access_aa64_tid3,
7745              .resetvalue = 0 },
7746            { .name = "ID_AA64ISAR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7747              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 6,
7748              .access = PL1_R, .type = ARM_CP_CONST,
7749              .accessfn = access_aa64_tid3,
7750              .resetvalue = 0 },
7751            { .name = "ID_AA64ISAR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7752              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 7,
7753              .access = PL1_R, .type = ARM_CP_CONST,
7754              .accessfn = access_aa64_tid3,
7755              .resetvalue = 0 },
7756            { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64,
7757              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
7758              .access = PL1_R, .type = ARM_CP_CONST,
7759              .accessfn = access_aa64_tid3,
7760              .resetvalue = cpu->isar.id_aa64mmfr0 },
7761            { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64,
7762              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1,
7763              .access = PL1_R, .type = ARM_CP_CONST,
7764              .accessfn = access_aa64_tid3,
7765              .resetvalue = cpu->isar.id_aa64mmfr1 },
7766            { .name = "ID_AA64MMFR2_EL1", .state = ARM_CP_STATE_AA64,
7767              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 2,
7768              .access = PL1_R, .type = ARM_CP_CONST,
7769              .accessfn = access_aa64_tid3,
7770              .resetvalue = cpu->isar.id_aa64mmfr2 },
7771            { .name = "ID_AA64MMFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7772              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 3,
7773              .access = PL1_R, .type = ARM_CP_CONST,
7774              .accessfn = access_aa64_tid3,
7775              .resetvalue = 0 },
7776            { .name = "ID_AA64MMFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7777              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 4,
7778              .access = PL1_R, .type = ARM_CP_CONST,
7779              .accessfn = access_aa64_tid3,
7780              .resetvalue = 0 },
7781            { .name = "ID_AA64MMFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7782              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 5,
7783              .access = PL1_R, .type = ARM_CP_CONST,
7784              .accessfn = access_aa64_tid3,
7785              .resetvalue = 0 },
7786            { .name = "ID_AA64MMFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7787              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 6,
7788              .access = PL1_R, .type = ARM_CP_CONST,
7789              .accessfn = access_aa64_tid3,
7790              .resetvalue = 0 },
7791            { .name = "ID_AA64MMFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7792              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 7,
7793              .access = PL1_R, .type = ARM_CP_CONST,
7794              .accessfn = access_aa64_tid3,
7795              .resetvalue = 0 },
7796            { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64,
7797              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0,
7798              .access = PL1_R, .type = ARM_CP_CONST,
7799              .accessfn = access_aa64_tid3,
7800              .resetvalue = cpu->isar.mvfr0 },
7801            { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64,
7802              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1,
7803              .access = PL1_R, .type = ARM_CP_CONST,
7804              .accessfn = access_aa64_tid3,
7805              .resetvalue = cpu->isar.mvfr1 },
7806            { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64,
7807              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2,
7808              .access = PL1_R, .type = ARM_CP_CONST,
7809              .accessfn = access_aa64_tid3,
7810              .resetvalue = cpu->isar.mvfr2 },
7811            { .name = "MVFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7812              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 3,
7813              .access = PL1_R, .type = ARM_CP_CONST,
7814              .accessfn = access_aa64_tid3,
7815              .resetvalue = 0 },
7816            { .name = "ID_PFR2", .state = ARM_CP_STATE_BOTH,
7817              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 4,
7818              .access = PL1_R, .type = ARM_CP_CONST,
7819              .accessfn = access_aa64_tid3,
7820              .resetvalue = cpu->isar.id_pfr2 },
7821            { .name = "MVFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7822              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 5,
7823              .access = PL1_R, .type = ARM_CP_CONST,
7824              .accessfn = access_aa64_tid3,
7825              .resetvalue = 0 },
7826            { .name = "MVFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7827              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 6,
7828              .access = PL1_R, .type = ARM_CP_CONST,
7829              .accessfn = access_aa64_tid3,
7830              .resetvalue = 0 },
7831            { .name = "MVFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7832              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 7,
7833              .access = PL1_R, .type = ARM_CP_CONST,
7834              .accessfn = access_aa64_tid3,
7835              .resetvalue = 0 },
7836            { .name = "PMCEID0", .state = ARM_CP_STATE_AA32,
7837              .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 6,
7838              .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
7839              .resetvalue = extract64(cpu->pmceid0, 0, 32) },
7840            { .name = "PMCEID0_EL0", .state = ARM_CP_STATE_AA64,
7841              .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 6,
7842              .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
7843              .resetvalue = cpu->pmceid0 },
7844            { .name = "PMCEID1", .state = ARM_CP_STATE_AA32,
7845              .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 7,
7846              .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
7847              .resetvalue = extract64(cpu->pmceid1, 0, 32) },
7848            { .name = "PMCEID1_EL0", .state = ARM_CP_STATE_AA64,
7849              .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 7,
7850              .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
7851              .resetvalue = cpu->pmceid1 },
7852            REGINFO_SENTINEL
7853        };
7854#ifdef CONFIG_USER_ONLY
7855        ARMCPRegUserSpaceInfo v8_user_idregs[] = {
7856            { .name = "ID_AA64PFR0_EL1",
7857              .exported_bits = 0x000f000f00ff0000,
7858              .fixed_bits    = 0x0000000000000011 },
7859            { .name = "ID_AA64PFR1_EL1",
7860              .exported_bits = 0x00000000000000f0 },
7861            { .name = "ID_AA64PFR*_EL1_RESERVED",
7862              .is_glob = true                     },
7863            { .name = "ID_AA64ZFR0_EL1"           },
7864            { .name = "ID_AA64MMFR0_EL1",
7865              .fixed_bits    = 0x00000000ff000000 },
7866            { .name = "ID_AA64MMFR1_EL1"          },
7867            { .name = "ID_AA64MMFR*_EL1_RESERVED",
7868              .is_glob = true                     },
7869            { .name = "ID_AA64DFR0_EL1",
7870              .fixed_bits    = 0x0000000000000006 },
7871            { .name = "ID_AA64DFR1_EL1"           },
7872            { .name = "ID_AA64DFR*_EL1_RESERVED",
7873              .is_glob = true                     },
7874            { .name = "ID_AA64AFR*",
7875              .is_glob = true                     },
7876            { .name = "ID_AA64ISAR0_EL1",
7877              .exported_bits = 0x00fffffff0fffff0 },
7878            { .name = "ID_AA64ISAR1_EL1",
7879              .exported_bits = 0x000000f0ffffffff },
7880            { .name = "ID_AA64ISAR*_EL1_RESERVED",
7881              .is_glob = true                     },
7882            REGUSERINFO_SENTINEL
7883        };
7884        modify_arm_cp_regs(v8_idregs, v8_user_idregs);
7885#endif
7886        /* RVBAR_EL1 is only implemented if EL1 is the highest EL */
7887        if (!arm_feature(env, ARM_FEATURE_EL3) &&
7888            !arm_feature(env, ARM_FEATURE_EL2)) {
7889            ARMCPRegInfo rvbar = {
7890                .name = "RVBAR_EL1", .state = ARM_CP_STATE_AA64,
7891                .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
7892                .type = ARM_CP_CONST, .access = PL1_R, .resetvalue = cpu->rvbar
7893            };
7894            define_one_arm_cp_reg(cpu, &rvbar);
7895        }
7896        define_arm_cp_regs(cpu, v8_idregs);
7897        define_arm_cp_regs(cpu, v8_cp_reginfo);
7898    }
7899    if (arm_feature(env, ARM_FEATURE_EL2)) {
7900        uint64_t vmpidr_def = mpidr_read_val(env);
7901        ARMCPRegInfo vpidr_regs[] = {
7902            { .name = "VPIDR", .state = ARM_CP_STATE_AA32,
7903              .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
7904              .access = PL2_RW, .accessfn = access_el3_aa32ns,
7905              .resetvalue = cpu->midr, .type = ARM_CP_ALIAS,
7906              .fieldoffset = offsetoflow32(CPUARMState, cp15.vpidr_el2) },
7907            { .name = "VPIDR_EL2", .state = ARM_CP_STATE_AA64,
7908              .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
7909              .access = PL2_RW, .resetvalue = cpu->midr,
7910              .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
7911            { .name = "VMPIDR", .state = ARM_CP_STATE_AA32,
7912              .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
7913              .access = PL2_RW, .accessfn = access_el3_aa32ns,
7914              .resetvalue = vmpidr_def, .type = ARM_CP_ALIAS,
7915              .fieldoffset = offsetoflow32(CPUARMState, cp15.vmpidr_el2) },
7916            { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_AA64,
7917              .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
7918              .access = PL2_RW,
7919              .resetvalue = vmpidr_def,
7920              .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) },
7921            REGINFO_SENTINEL
7922        };
7923        define_arm_cp_regs(cpu, vpidr_regs);
7924        define_arm_cp_regs(cpu, el2_cp_reginfo);
7925        if (arm_feature(env, ARM_FEATURE_V8)) {
7926            define_arm_cp_regs(cpu, el2_v8_cp_reginfo);
7927        }
7928        if (cpu_isar_feature(aa64_sel2, cpu)) {
7929            define_arm_cp_regs(cpu, el2_sec_cp_reginfo);
7930        }
7931        /* RVBAR_EL2 is only implemented if EL2 is the highest EL */
7932        if (!arm_feature(env, ARM_FEATURE_EL3)) {
7933            ARMCPRegInfo rvbar = {
7934                .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64,
7935                .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1,
7936                .type = ARM_CP_CONST, .access = PL2_R, .resetvalue = cpu->rvbar
7937            };
7938            define_one_arm_cp_reg(cpu, &rvbar);
7939        }
7940    } else {
7941        /* If EL2 is missing but higher ELs are enabled, we need to
7942         * register the no_el2 reginfos.
7943         */
7944        if (arm_feature(env, ARM_FEATURE_EL3)) {
7945            /* When EL3 exists but not EL2, VPIDR and VMPIDR take the value
7946             * of MIDR_EL1 and MPIDR_EL1.
7947             */
7948            ARMCPRegInfo vpidr_regs[] = {
7949                { .name = "VPIDR_EL2", .state = ARM_CP_STATE_BOTH,
7950                  .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
7951                  .access = PL2_RW, .accessfn = access_el3_aa32ns,
7952                  .type = ARM_CP_CONST, .resetvalue = cpu->midr,
7953                  .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
7954                { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_BOTH,
7955                  .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
7956                  .access = PL2_RW, .accessfn = access_el3_aa32ns,
7957                  .type = ARM_CP_NO_RAW,
7958                  .writefn = arm_cp_write_ignore, .readfn = mpidr_read },
7959                REGINFO_SENTINEL
7960            };
7961            define_arm_cp_regs(cpu, vpidr_regs);
7962            define_arm_cp_regs(cpu, el3_no_el2_cp_reginfo);
7963            if (arm_feature(env, ARM_FEATURE_V8)) {
7964                define_arm_cp_regs(cpu, el3_no_el2_v8_cp_reginfo);
7965            }
7966        }
7967    }
7968    if (arm_feature(env, ARM_FEATURE_EL3)) {
7969        define_arm_cp_regs(cpu, el3_cp_reginfo);
7970        ARMCPRegInfo el3_regs[] = {
7971            { .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64,
7972              .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1,
7973              .type = ARM_CP_CONST, .access = PL3_R, .resetvalue = cpu->rvbar },
7974            { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64,
7975              .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0,
7976              .access = PL3_RW,
7977              .raw_writefn = raw_write, .writefn = sctlr_write,
7978              .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]),
7979              .resetvalue = cpu->reset_sctlr },
7980            REGINFO_SENTINEL
7981        };
7982
7983        define_arm_cp_regs(cpu, el3_regs);
7984    }
7985    /* The behaviour of NSACR is sufficiently various that we don't
7986     * try to describe it in a single reginfo:
7987     *  if EL3 is 64 bit, then trap to EL3 from S EL1,
7988     *     reads as constant 0xc00 from NS EL1 and NS EL2
7989     *  if EL3 is 32 bit, then RW at EL3, RO at NS EL1 and NS EL2
7990     *  if v7 without EL3, register doesn't exist
7991     *  if v8 without EL3, reads as constant 0xc00 from NS EL1 and NS EL2
7992     */
7993    if (arm_feature(env, ARM_FEATURE_EL3)) {
7994        if (arm_feature(env, ARM_FEATURE_AARCH64)) {
7995            ARMCPRegInfo nsacr = {
7996                .name = "NSACR", .type = ARM_CP_CONST,
7997                .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
7998                .access = PL1_RW, .accessfn = nsacr_access,
7999                .resetvalue = 0xc00
8000            };
8001            define_one_arm_cp_reg(cpu, &nsacr);
8002        } else {
8003            ARMCPRegInfo nsacr = {
8004                .name = "NSACR",
8005                .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
8006                .access = PL3_RW | PL1_R,
8007                .resetvalue = 0,
8008                .fieldoffset = offsetof(CPUARMState, cp15.nsacr)
8009            };
8010            define_one_arm_cp_reg(cpu, &nsacr);
8011        }
8012    } else {
8013        if (arm_feature(env, ARM_FEATURE_V8)) {
8014            ARMCPRegInfo nsacr = {
8015                .name = "NSACR", .type = ARM_CP_CONST,
8016                .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
8017                .access = PL1_R,
8018                .resetvalue = 0xc00
8019            };
8020            define_one_arm_cp_reg(cpu, &nsacr);
8021        }
8022    }
8023
8024    if (arm_feature(env, ARM_FEATURE_PMSA)) {
8025        if (arm_feature(env, ARM_FEATURE_V6)) {
8026            /* PMSAv6 not implemented */
8027            assert(arm_feature(env, ARM_FEATURE_V7));
8028            define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
8029            define_arm_cp_regs(cpu, pmsav7_cp_reginfo);
8030        } else {
8031            define_arm_cp_regs(cpu, pmsav5_cp_reginfo);
8032        }
8033    } else {
8034        define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
8035        define_arm_cp_regs(cpu, vmsa_cp_reginfo);
8036        /* TTCBR2 is introduced with ARMv8.2-AA32HPD.  */
8037        if (cpu_isar_feature(aa32_hpd, cpu)) {
8038            define_one_arm_cp_reg(cpu, &ttbcr2_reginfo);
8039        }
8040    }
8041    if (arm_feature(env, ARM_FEATURE_THUMB2EE)) {
8042        define_arm_cp_regs(cpu, t2ee_cp_reginfo);
8043    }
8044    if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
8045        define_arm_cp_regs(cpu, generic_timer_cp_reginfo);
8046    }
8047    if (arm_feature(env, ARM_FEATURE_VAPA)) {
8048        define_arm_cp_regs(cpu, vapa_cp_reginfo);
8049    }
8050    if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) {
8051        define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo);
8052    }
8053    if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) {
8054        define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo);
8055    }
8056    if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) {
8057        define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo);
8058    }
8059    if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
8060        define_arm_cp_regs(cpu, omap_cp_reginfo);
8061    }
8062    if (arm_feature(env, ARM_FEATURE_STRONGARM)) {
8063        define_arm_cp_regs(cpu, strongarm_cp_reginfo);
8064    }
8065    if (arm_feature(env, ARM_FEATURE_XSCALE)) {
8066        define_arm_cp_regs(cpu, xscale_cp_reginfo);
8067    }
8068    if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) {
8069        define_arm_cp_regs(cpu, dummy_c15_cp_reginfo);
8070    }
8071    if (arm_feature(env, ARM_FEATURE_LPAE)) {
8072        define_arm_cp_regs(cpu, lpae_cp_reginfo);
8073    }
8074    if (cpu_isar_feature(aa32_jazelle, cpu)) {
8075        define_arm_cp_regs(cpu, jazelle_regs);
8076    }
8077    /* Slightly awkwardly, the OMAP and StrongARM cores need all of
8078     * cp15 crn=0 to be writes-ignored, whereas for other cores they should
8079     * be read-only (ie write causes UNDEF exception).
8080     */
8081    {
8082        ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = {
8083            /* Pre-v8 MIDR space.
8084             * Note that the MIDR isn't a simple constant register because
8085             * of the TI925 behaviour where writes to another register can
8086             * cause the MIDR value to change.
8087             *
8088             * Unimplemented registers in the c15 0 0 0 space default to
8089             * MIDR. Define MIDR first as this entire space, then CTR, TCMTR
8090             * and friends override accordingly.
8091             */
8092            { .name = "MIDR",
8093              .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY,
8094              .access = PL1_R, .resetvalue = cpu->midr,
8095              .writefn = arm_cp_write_ignore, .raw_writefn = raw_write,
8096              .readfn = midr_read,
8097              .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
8098              .type = ARM_CP_OVERRIDE },
8099            /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */
8100            { .name = "DUMMY",
8101              .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY,
8102              .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
8103            { .name = "DUMMY",
8104              .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY,
8105              .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
8106            { .name = "DUMMY",
8107              .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY,
8108              .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
8109            { .name = "DUMMY",
8110              .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY,
8111              .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
8112            { .name = "DUMMY",
8113              .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY,
8114              .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
8115            REGINFO_SENTINEL
8116        };
8117        ARMCPRegInfo id_v8_midr_cp_reginfo[] = {
8118            { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH,
8119              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0,
8120              .access = PL1_R, .type = ARM_CP_NO_RAW, .resetvalue = cpu->midr,
8121              .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
8122              .readfn = midr_read },
8123            /* crn = 0 op1 = 0 crm = 0 op2 = 4,7 : AArch32 aliases of MIDR */
8124            { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
8125              .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
8126              .access = PL1_R, .resetvalue = cpu->midr },
8127            { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
8128              .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7,
8129              .access = PL1_R, .resetvalue = cpu->midr },
8130            { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH,
8131              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6,
8132              .access = PL1_R,
8133              .accessfn = access_aa64_tid1,
8134              .type = ARM_CP_CONST, .resetvalue = cpu->revidr },
8135            REGINFO_SENTINEL
8136        };
8137        ARMCPRegInfo id_cp_reginfo[] = {
8138            /* These are common to v8 and pre-v8 */
8139            { .name = "CTR",
8140              .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1,
8141              .access = PL1_R, .accessfn = ctr_el0_access,
8142              .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
8143            { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64,
8144              .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0,
8145              .access = PL0_R, .accessfn = ctr_el0_access,
8146              .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
8147            /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */
8148            { .name = "TCMTR",
8149              .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2,
8150              .access = PL1_R,
8151              .accessfn = access_aa32_tid1,
8152              .type = ARM_CP_CONST, .resetvalue = 0 },
8153            REGINFO_SENTINEL
8154        };
8155        /* TLBTR is specific to VMSA */
8156        ARMCPRegInfo id_tlbtr_reginfo = {
8157              .name = "TLBTR",
8158              .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3,
8159              .access = PL1_R,
8160              .accessfn = access_aa32_tid1,
8161              .type = ARM_CP_CONST, .resetvalue = 0,
8162        };
8163        /* MPUIR is specific to PMSA V6+ */
8164        ARMCPRegInfo id_mpuir_reginfo = {
8165              .name = "MPUIR",
8166              .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
8167              .access = PL1_R, .type = ARM_CP_CONST,
8168              .resetvalue = cpu->pmsav7_dregion << 8
8169        };
8170        ARMCPRegInfo crn0_wi_reginfo = {
8171            .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY,
8172            .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W,
8173            .type = ARM_CP_NOP | ARM_CP_OVERRIDE
8174        };
8175#ifdef CONFIG_USER_ONLY
8176        ARMCPRegUserSpaceInfo id_v8_user_midr_cp_reginfo[] = {
8177            { .name = "MIDR_EL1",
8178              .exported_bits = 0x00000000ffffffff },
8179            { .name = "REVIDR_EL1"                },
8180            REGUSERINFO_SENTINEL
8181        };
8182        modify_arm_cp_regs(id_v8_midr_cp_reginfo, id_v8_user_midr_cp_reginfo);
8183#endif
8184        if (arm_feature(env, ARM_FEATURE_OMAPCP) ||
8185            arm_feature(env, ARM_FEATURE_STRONGARM)) {
8186            ARMCPRegInfo *r;
8187            /* Register the blanket "writes ignored" value first to cover the
8188             * whole space. Then update the specific ID registers to allow write
8189             * access, so that they ignore writes rather than causing them to
8190             * UNDEF.
8191             */
8192            define_one_arm_cp_reg(cpu, &crn0_wi_reginfo);
8193            for (r = id_pre_v8_midr_cp_reginfo;
8194                 r->type != ARM_CP_SENTINEL; r++) {
8195                r->access = PL1_RW;
8196            }
8197            for (r = id_cp_reginfo; r->type != ARM_CP_SENTINEL; r++) {
8198                r->access = PL1_RW;
8199            }
8200            id_mpuir_reginfo.access = PL1_RW;
8201            id_tlbtr_reginfo.access = PL1_RW;
8202        }
8203        if (arm_feature(env, ARM_FEATURE_V8)) {
8204            define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo);
8205        } else {
8206            define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo);
8207        }
8208        define_arm_cp_regs(cpu, id_cp_reginfo);
8209        if (!arm_feature(env, ARM_FEATURE_PMSA)) {
8210            define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo);
8211        } else if (arm_feature(env, ARM_FEATURE_V7)) {
8212            define_one_arm_cp_reg(cpu, &id_mpuir_reginfo);
8213        }
8214    }
8215
8216    if (arm_feature(env, ARM_FEATURE_MPIDR)) {
8217        ARMCPRegInfo mpidr_cp_reginfo[] = {
8218            { .name = "MPIDR_EL1", .state = ARM_CP_STATE_BOTH,
8219              .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5,
8220              .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW },
8221            REGINFO_SENTINEL
8222        };
8223#ifdef CONFIG_USER_ONLY
8224        ARMCPRegUserSpaceInfo mpidr_user_cp_reginfo[] = {
8225            { .name = "MPIDR_EL1",
8226              .fixed_bits = 0x0000000080000000 },
8227            REGUSERINFO_SENTINEL
8228        };
8229        modify_arm_cp_regs(mpidr_cp_reginfo, mpidr_user_cp_reginfo);
8230#endif
8231        define_arm_cp_regs(cpu, mpidr_cp_reginfo);
8232    }
8233
8234    if (arm_feature(env, ARM_FEATURE_AUXCR)) {
8235        ARMCPRegInfo auxcr_reginfo[] = {
8236            { .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH,
8237              .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1,
8238              .access = PL1_RW, .accessfn = access_tacr,
8239              .type = ARM_CP_CONST, .resetvalue = cpu->reset_auxcr },
8240            { .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH,
8241              .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1,
8242              .access = PL2_RW, .type = ARM_CP_CONST,
8243              .resetvalue = 0 },
8244            { .name = "ACTLR_EL3", .state = ARM_CP_STATE_AA64,
8245              .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1,
8246              .access = PL3_RW, .type = ARM_CP_CONST,
8247              .resetvalue = 0 },
8248            REGINFO_SENTINEL
8249        };
8250        define_arm_cp_regs(cpu, auxcr_reginfo);
8251        if (cpu_isar_feature(aa32_ac2, cpu)) {
8252            define_arm_cp_regs(cpu, actlr2_hactlr2_reginfo);
8253        }
8254    }
8255
8256    if (arm_feature(env, ARM_FEATURE_CBAR)) {
8257        /*
8258         * CBAR is IMPDEF, but common on Arm Cortex-A implementations.
8259         * There are two flavours:
8260         *  (1) older 32-bit only cores have a simple 32-bit CBAR
8261         *  (2) 64-bit cores have a 64-bit CBAR visible to AArch64, plus a
8262         *      32-bit register visible to AArch32 at a different encoding
8263         *      to the "flavour 1" register and with the bits rearranged to
8264         *      be able to squash a 64-bit address into the 32-bit view.
8265         * We distinguish the two via the ARM_FEATURE_AARCH64 flag, but
8266         * in future if we support AArch32-only configs of some of the
8267         * AArch64 cores we might need to add a specific feature flag
8268         * to indicate cores with "flavour 2" CBAR.
8269         */
8270        if (arm_feature(env, ARM_FEATURE_AARCH64)) {
8271            /* 32 bit view is [31:18] 0...0 [43:32]. */
8272            uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18)
8273                | extract64(cpu->reset_cbar, 32, 12);
8274            ARMCPRegInfo cbar_reginfo[] = {
8275                { .name = "CBAR",
8276                  .type = ARM_CP_CONST,
8277                  .cp = 15, .crn = 15, .crm = 3, .opc1 = 1, .opc2 = 0,
8278                  .access = PL1_R, .resetvalue = cbar32 },
8279                { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64,
8280                  .type = ARM_CP_CONST,
8281                  .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0,
8282                  .access = PL1_R, .resetvalue = cpu->reset_cbar },
8283                REGINFO_SENTINEL
8284            };
8285            /* We don't implement a r/w 64 bit CBAR currently */
8286            assert(arm_feature(env, ARM_FEATURE_CBAR_RO));
8287            define_arm_cp_regs(cpu, cbar_reginfo);
8288        } else {
8289            ARMCPRegInfo cbar = {
8290                .name = "CBAR",
8291                .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
8292                .access = PL1_R|PL3_W, .resetvalue = cpu->reset_cbar,
8293                .fieldoffset = offsetof(CPUARMState,
8294                                        cp15.c15_config_base_address)
8295            };
8296            if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
8297                cbar.access = PL1_R;
8298                cbar.fieldoffset = 0;
8299                cbar.type = ARM_CP_CONST;
8300            }
8301            define_one_arm_cp_reg(cpu, &cbar);
8302        }
8303    }
8304
8305    if (arm_feature(env, ARM_FEATURE_VBAR)) {
8306        ARMCPRegInfo vbar_cp_reginfo[] = {
8307            { .name = "VBAR", .state = ARM_CP_STATE_BOTH,
8308              .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0,
8309              .access = PL1_RW, .writefn = vbar_write,
8310              .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s),
8311                                     offsetof(CPUARMState, cp15.vbar_ns) },
8312              .resetvalue = 0 },
8313            REGINFO_SENTINEL
8314        };
8315        define_arm_cp_regs(cpu, vbar_cp_reginfo);
8316    }
8317
8318    /* Generic registers whose values depend on the implementation */
8319    {
8320        ARMCPRegInfo sctlr = {
8321            .name = "SCTLR", .state = ARM_CP_STATE_BOTH,
8322            .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
8323            .access = PL1_RW, .accessfn = access_tvm_trvm,
8324            .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s),
8325                                   offsetof(CPUARMState, cp15.sctlr_ns) },
8326            .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr,
8327            .raw_writefn = raw_write,
8328        };
8329        if (arm_feature(env, ARM_FEATURE_XSCALE)) {
8330            /* Normally we would always end the TB on an SCTLR write, but Linux
8331             * arch/arm/mach-pxa/sleep.S expects two instructions following
8332             * an MMU enable to execute from cache.  Imitate this behaviour.
8333             */
8334            sctlr.type |= ARM_CP_SUPPRESS_TB_END;
8335        }
8336        define_one_arm_cp_reg(cpu, &sctlr);
8337    }
8338
8339    if (cpu_isar_feature(aa64_lor, cpu)) {
8340        define_arm_cp_regs(cpu, lor_reginfo);
8341    }
8342    if (cpu_isar_feature(aa64_pan, cpu)) {
8343        define_one_arm_cp_reg(cpu, &pan_reginfo);
8344    }
8345#ifndef CONFIG_USER_ONLY
8346    if (cpu_isar_feature(aa64_ats1e1, cpu)) {
8347        define_arm_cp_regs(cpu, ats1e1_reginfo);
8348    }
8349    if (cpu_isar_feature(aa32_ats1e1, cpu)) {
8350        define_arm_cp_regs(cpu, ats1cp_reginfo);
8351    }
8352#endif
8353    if (cpu_isar_feature(aa64_uao, cpu)) {
8354        define_one_arm_cp_reg(cpu, &uao_reginfo);
8355    }
8356
8357    if (cpu_isar_feature(aa64_dit, cpu)) {
8358        define_one_arm_cp_reg(cpu, &dit_reginfo);
8359    }
8360    if (cpu_isar_feature(aa64_ssbs, cpu)) {
8361        define_one_arm_cp_reg(cpu, &ssbs_reginfo);
8362    }
8363
8364    if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) {
8365        define_arm_cp_regs(cpu, vhe_reginfo);
8366    }
8367
8368    if (cpu_isar_feature(aa64_sve, cpu)) {
8369        define_one_arm_cp_reg(cpu, &zcr_el1_reginfo);
8370        if (arm_feature(env, ARM_FEATURE_EL2)) {
8371            define_one_arm_cp_reg(cpu, &zcr_el2_reginfo);
8372        } else {
8373            define_one_arm_cp_reg(cpu, &zcr_no_el2_reginfo);
8374        }
8375        if (arm_feature(env, ARM_FEATURE_EL3)) {
8376            define_one_arm_cp_reg(cpu, &zcr_el3_reginfo);
8377        }
8378    }
8379
8380#ifdef TARGET_AARCH64
8381    if (cpu_isar_feature(aa64_pauth, cpu)) {
8382        define_arm_cp_regs(cpu, pauth_reginfo);
8383    }
8384    if (cpu_isar_feature(aa64_rndr, cpu)) {
8385        define_arm_cp_regs(cpu, rndr_reginfo);
8386    }
8387    if (cpu_isar_feature(aa64_tlbirange, cpu)) {
8388        define_arm_cp_regs(cpu, tlbirange_reginfo);
8389    }
8390    if (cpu_isar_feature(aa64_tlbios, cpu)) {
8391        define_arm_cp_regs(cpu, tlbios_reginfo);
8392    }
8393#ifndef CONFIG_USER_ONLY
8394    /* Data Cache clean instructions up to PoP */
8395    if (cpu_isar_feature(aa64_dcpop, cpu)) {
8396        define_one_arm_cp_reg(cpu, dcpop_reg);
8397
8398        if (cpu_isar_feature(aa64_dcpodp, cpu)) {
8399            define_one_arm_cp_reg(cpu, dcpodp_reg);
8400        }
8401    }
8402#endif /*CONFIG_USER_ONLY*/
8403
8404    /*
8405     * If full MTE is enabled, add all of the system registers.
8406     * If only "instructions available at EL0" are enabled,
8407     * then define only a RAZ/WI version of PSTATE.TCO.
8408     */
8409    if (cpu_isar_feature(aa64_mte, cpu)) {
8410        define_arm_cp_regs(cpu, mte_reginfo);
8411        define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo);
8412    } else if (cpu_isar_feature(aa64_mte_insn_reg, cpu)) {
8413        define_arm_cp_regs(cpu, mte_tco_ro_reginfo);
8414        define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo);
8415    }
8416#endif
8417
8418    if (cpu_isar_feature(any_predinv, cpu)) {
8419        define_arm_cp_regs(cpu, predinv_reginfo);
8420    }
8421
8422    if (cpu_isar_feature(any_ccidx, cpu)) {
8423        define_arm_cp_regs(cpu, ccsidr2_reginfo);
8424    }
8425
8426#ifndef CONFIG_USER_ONLY
8427    /*
8428     * Register redirections and aliases must be done last,
8429     * after the registers from the other extensions have been defined.
8430     */
8431    if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) {
8432        define_arm_vh_e2h_redirects_aliases(cpu);
8433    }
8434#endif
8435}
8436
8437/* Sort alphabetically by type name, except for "any". */
8438static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b)
8439{
8440    ObjectClass *class_a = (ObjectClass *)a;
8441    ObjectClass *class_b = (ObjectClass *)b;
8442    const char *name_a, *name_b;
8443
8444    name_a = object_class_get_name(class_a);
8445    name_b = object_class_get_name(class_b);
8446    if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) {
8447        return 1;
8448    } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) {
8449        return -1;
8450    } else {
8451        return strcmp(name_a, name_b);
8452    }
8453}
8454
8455static void arm_cpu_list_entry(gpointer data, gpointer user_data)
8456{
8457    ObjectClass *oc = data;
8458    const char *typename;
8459    char *name;
8460
8461    typename = object_class_get_name(oc);
8462    name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU));
8463    qemu_printf("  %s\n", name);
8464    g_free(name);
8465}
8466
8467void arm_cpu_list(void)
8468{
8469    GSList *list;
8470
8471    list = object_class_get_list(TYPE_ARM_CPU, false);
8472    list = g_slist_sort(list, arm_cpu_list_compare);
8473    qemu_printf("Available CPUs:\n");
8474    g_slist_foreach(list, arm_cpu_list_entry, NULL);
8475    g_slist_free(list);
8476}
8477
8478static void arm_cpu_add_definition(gpointer data, gpointer user_data)
8479{
8480    ObjectClass *oc = data;
8481    CpuDefinitionInfoList **cpu_list = user_data;
8482    CpuDefinitionInfo *info;
8483    const char *typename;
8484
8485    typename = object_class_get_name(oc);
8486    info = g_malloc0(sizeof(*info));
8487    info->name = g_strndup(typename,
8488                           strlen(typename) - strlen("-" TYPE_ARM_CPU));
8489    info->q_typename = g_strdup(typename);
8490
8491    QAPI_LIST_PREPEND(*cpu_list, info);
8492}
8493
8494CpuDefinitionInfoList *qmp_query_cpu_definitions(Error **errp)
8495{
8496    CpuDefinitionInfoList *cpu_list = NULL;
8497    GSList *list;
8498
8499    list = object_class_get_list(TYPE_ARM_CPU, false);
8500    g_slist_foreach(list, arm_cpu_add_definition, &cpu_list);
8501    g_slist_free(list);
8502
8503    return cpu_list;
8504}
8505
8506static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r,
8507                                   void *opaque, int state, int secstate,
8508                                   int crm, int opc1, int opc2,
8509                                   const char *name)
8510{
8511    /* Private utility function for define_one_arm_cp_reg_with_opaque():
8512     * add a single reginfo struct to the hash table.
8513     */
8514    uint32_t *key = g_new(uint32_t, 1);
8515    ARMCPRegInfo *r2 = g_memdup(r, sizeof(ARMCPRegInfo));
8516    int is64 = (r->type & ARM_CP_64BIT) ? 1 : 0;
8517    int ns = (secstate & ARM_CP_SECSTATE_NS) ? 1 : 0;
8518
8519    r2->name = g_strdup(name);
8520    /* Reset the secure state to the specific incoming state.  This is
8521     * necessary as the register may have been defined with both states.
8522     */
8523    r2->secure = secstate;
8524
8525    if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) {
8526        /* Register is banked (using both entries in array).
8527         * Overwriting fieldoffset as the array is only used to define
8528         * banked registers but later only fieldoffset is used.
8529         */
8530        r2->fieldoffset = r->bank_fieldoffsets[ns];
8531    }
8532
8533    if (state == ARM_CP_STATE_AA32) {
8534        if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) {
8535            /* If the register is banked then we don't need to migrate or
8536             * reset the 32-bit instance in certain cases:
8537             *
8538             * 1) If the register has both 32-bit and 64-bit instances then we
8539             *    can count on the 64-bit instance taking care of the
8540             *    non-secure bank.
8541             * 2) If ARMv8 is enabled then we can count on a 64-bit version
8542             *    taking care of the secure bank.  This requires that separate
8543             *    32 and 64-bit definitions are provided.
8544             */
8545            if ((r->state == ARM_CP_STATE_BOTH && ns) ||
8546                (arm_feature(&cpu->env, ARM_FEATURE_V8) && !ns)) {
8547                r2->type |= ARM_CP_ALIAS;
8548            }
8549        } else if ((secstate != r->secure) && !ns) {
8550            /* The register is not banked so we only want to allow migration of
8551             * the non-secure instance.
8552             */
8553            r2->type |= ARM_CP_ALIAS;
8554        }
8555
8556        if (r->state == ARM_CP_STATE_BOTH) {
8557            /* We assume it is a cp15 register if the .cp field is left unset.
8558             */
8559            if (r2->cp == 0) {
8560                r2->cp = 15;
8561            }
8562
8563#ifdef HOST_WORDS_BIGENDIAN
8564            if (r2->fieldoffset) {
8565                r2->fieldoffset += sizeof(uint32_t);
8566            }
8567#endif
8568        }
8569    }
8570    if (state == ARM_CP_STATE_AA64) {
8571        /* To allow abbreviation of ARMCPRegInfo
8572         * definitions, we treat cp == 0 as equivalent to
8573         * the value for "standard guest-visible sysreg".
8574         * STATE_BOTH definitions are also always "standard
8575         * sysreg" in their AArch64 view (the .cp value may
8576         * be non-zero for the benefit of the AArch32 view).
8577         */
8578        if (r->cp == 0 || r->state == ARM_CP_STATE_BOTH) {
8579            r2->cp = CP_REG_ARM64_SYSREG_CP;
8580        }
8581        *key = ENCODE_AA64_CP_REG(r2->cp, r2->crn, crm,
8582                                  r2->opc0, opc1, opc2);
8583    } else {
8584        *key = ENCODE_CP_REG(r2->cp, is64, ns, r2->crn, crm, opc1, opc2);
8585    }
8586    if (opaque) {
8587        r2->opaque = opaque;
8588    }
8589    /* reginfo passed to helpers is correct for the actual access,
8590     * and is never ARM_CP_STATE_BOTH:
8591     */
8592    r2->state = state;
8593    /* Make sure reginfo passed to helpers for wildcarded regs
8594     * has the correct crm/opc1/opc2 for this reg, not CP_ANY:
8595     */
8596    r2->crm = crm;
8597    r2->opc1 = opc1;
8598    r2->opc2 = opc2;
8599    /* By convention, for wildcarded registers only the first
8600     * entry is used for migration; the others are marked as
8601     * ALIAS so we don't try to transfer the register
8602     * multiple times. Special registers (ie NOP/WFI) are
8603     * never migratable and not even raw-accessible.
8604     */
8605    if ((r->type & ARM_CP_SPECIAL)) {
8606        r2->type |= ARM_CP_NO_RAW;
8607    }
8608    if (((r->crm == CP_ANY) && crm != 0) ||
8609        ((r->opc1 == CP_ANY) && opc1 != 0) ||
8610        ((r->opc2 == CP_ANY) && opc2 != 0)) {
8611        r2->type |= ARM_CP_ALIAS | ARM_CP_NO_GDB;
8612    }
8613
8614    /* Check that raw accesses are either forbidden or handled. Note that
8615     * we can't assert this earlier because the setup of fieldoffset for
8616     * banked registers has to be done first.
8617     */
8618    if (!(r2->type & ARM_CP_NO_RAW)) {
8619        assert(!raw_accessors_invalid(r2));
8620    }
8621
8622    /* Overriding of an existing definition must be explicitly
8623     * requested.
8624     */
8625    if (!(r->type & ARM_CP_OVERRIDE)) {
8626        ARMCPRegInfo *oldreg;
8627        oldreg = g_hash_table_lookup(cpu->cp_regs, key);
8628        if (oldreg && !(oldreg->type & ARM_CP_OVERRIDE)) {
8629            fprintf(stderr, "Register redefined: cp=%d %d bit "
8630                    "crn=%d crm=%d opc1=%d opc2=%d, "
8631                    "was %s, now %s\n", r2->cp, 32 + 32 * is64,
8632                    r2->crn, r2->crm, r2->opc1, r2->opc2,
8633                    oldreg->name, r2->name);
8634            g_assert_not_reached();
8635        }
8636    }
8637    g_hash_table_insert(cpu->cp_regs, key, r2);
8638}
8639
8640
8641void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
8642                                       const ARMCPRegInfo *r, void *opaque)
8643{
8644    /* Define implementations of coprocessor registers.
8645     * We store these in a hashtable because typically
8646     * there are less than 150 registers in a space which
8647     * is 16*16*16*8*8 = 262144 in size.
8648     * Wildcarding is supported for the crm, opc1 and opc2 fields.
8649     * If a register is defined twice then the second definition is
8650     * used, so this can be used to define some generic registers and
8651     * then override them with implementation specific variations.
8652     * At least one of the original and the second definition should
8653     * include ARM_CP_OVERRIDE in its type bits -- this is just a guard
8654     * against accidental use.
8655     *
8656     * The state field defines whether the register is to be
8657     * visible in the AArch32 or AArch64 execution state. If the
8658     * state is set to ARM_CP_STATE_BOTH then we synthesise a
8659     * reginfo structure for the AArch32 view, which sees the lower
8660     * 32 bits of the 64 bit register.
8661     *
8662     * Only registers visible in AArch64 may set r->opc0; opc0 cannot
8663     * be wildcarded. AArch64 registers are always considered to be 64
8664     * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of
8665     * the register, if any.
8666     */
8667    int crm, opc1, opc2, state;
8668    int crmmin = (r->crm == CP_ANY) ? 0 : r->crm;
8669    int crmmax = (r->crm == CP_ANY) ? 15 : r->crm;
8670    int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1;
8671    int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1;
8672    int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2;
8673    int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2;
8674    /* 64 bit registers have only CRm and Opc1 fields */
8675    assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn)));
8676    /* op0 only exists in the AArch64 encodings */
8677    assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0));
8678    /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */
8679    assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT));
8680    /*
8681     * This API is only for Arm's system coprocessors (14 and 15) or
8682     * (M-profile or v7A-and-earlier only) for implementation defined
8683     * coprocessors in the range 0..7.  Our decode assumes this, since
8684     * 8..13 can be used for other insns including VFP and Neon. See
8685     * valid_cp() in translate.c.  Assert here that we haven't tried
8686     * to use an invalid coprocessor number.
8687     */
8688    switch (r->state) {
8689    case ARM_CP_STATE_BOTH:
8690        /* 0 has a special meaning, but otherwise the same rules as AA32. */
8691        if (r->cp == 0) {
8692            break;
8693        }
8694        /* fall through */
8695    case ARM_CP_STATE_AA32:
8696        if (arm_feature(&cpu->env, ARM_FEATURE_V8) &&
8697            !arm_feature(&cpu->env, ARM_FEATURE_M)) {
8698            assert(r->cp >= 14 && r->cp <= 15);
8699        } else {
8700            assert(r->cp < 8 || (r->cp >= 14 && r->cp <= 15));
8701        }
8702        break;
8703    case ARM_CP_STATE_AA64:
8704        assert(r->cp == 0 || r->cp == CP_REG_ARM64_SYSREG_CP);
8705        break;
8706    default:
8707        g_assert_not_reached();
8708    }
8709    /* The AArch64 pseudocode CheckSystemAccess() specifies that op1
8710     * encodes a minimum access level for the register. We roll this
8711     * runtime check into our general permission check code, so check
8712     * here that the reginfo's specified permissions are strict enough
8713     * to encompass the generic architectural permission check.
8714     */
8715    if (r->state != ARM_CP_STATE_AA32) {
8716        int mask = 0;
8717        switch (r->opc1) {
8718        case 0:
8719            /* min_EL EL1, but some accessible to EL0 via kernel ABI */
8720            mask = PL0U_R | PL1_RW;
8721            break;
8722        case 1: case 2:
8723            /* min_EL EL1 */
8724            mask = PL1_RW;
8725            break;
8726        case 3:
8727            /* min_EL EL0 */
8728            mask = PL0_RW;
8729            break;
8730        case 4:
8731        case 5:
8732            /* min_EL EL2 */
8733            mask = PL2_RW;
8734            break;
8735        case 6:
8736            /* min_EL EL3 */
8737            mask = PL3_RW;
8738            break;
8739        case 7:
8740            /* min_EL EL1, secure mode only (we don't check the latter) */
8741            mask = PL1_RW;
8742            break;
8743        default:
8744            /* broken reginfo with out-of-range opc1 */
8745            assert(false);
8746            break;
8747        }
8748        /* assert our permissions are not too lax (stricter is fine) */
8749        assert((r->access & ~mask) == 0);
8750    }
8751
8752    /* Check that the register definition has enough info to handle
8753     * reads and writes if they are permitted.
8754     */
8755    if (!(r->type & (ARM_CP_SPECIAL|ARM_CP_CONST))) {
8756        if (r->access & PL3_R) {
8757            assert((r->fieldoffset ||
8758                   (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
8759                   r->readfn);
8760        }
8761        if (r->access & PL3_W) {
8762            assert((r->fieldoffset ||
8763                   (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
8764                   r->writefn);
8765        }
8766    }
8767    /* Bad type field probably means missing sentinel at end of reg list */
8768    assert(cptype_valid(r->type));
8769    for (crm = crmmin; crm <= crmmax; crm++) {
8770        for (opc1 = opc1min; opc1 <= opc1max; opc1++) {
8771            for (opc2 = opc2min; opc2 <= opc2max; opc2++) {
8772                for (state = ARM_CP_STATE_AA32;
8773                     state <= ARM_CP_STATE_AA64; state++) {
8774                    if (r->state != state && r->state != ARM_CP_STATE_BOTH) {
8775                        continue;
8776                    }
8777                    if (state == ARM_CP_STATE_AA32) {
8778                        /* Under AArch32 CP registers can be common
8779                         * (same for secure and non-secure world) or banked.
8780                         */
8781                        char *name;
8782
8783                        switch (r->secure) {
8784                        case ARM_CP_SECSTATE_S:
8785                        case ARM_CP_SECSTATE_NS:
8786                            add_cpreg_to_hashtable(cpu, r, opaque, state,
8787                                                   r->secure, crm, opc1, opc2,
8788                                                   r->name);
8789                            break;
8790                        default:
8791                            name = g_strdup_printf("%s_S", r->name);
8792                            add_cpreg_to_hashtable(cpu, r, opaque, state,
8793                                                   ARM_CP_SECSTATE_S,
8794                                                   crm, opc1, opc2, name);
8795                            g_free(name);
8796                            add_cpreg_to_hashtable(cpu, r, opaque, state,
8797                                                   ARM_CP_SECSTATE_NS,
8798                                                   crm, opc1, opc2, r->name);
8799                            break;
8800                        }
8801                    } else {
8802                        /* AArch64 registers get mapped to non-secure instance
8803                         * of AArch32 */
8804                        add_cpreg_to_hashtable(cpu, r, opaque, state,
8805                                               ARM_CP_SECSTATE_NS,
8806                                               crm, opc1, opc2, r->name);
8807                    }
8808                }
8809            }
8810        }
8811    }
8812}
8813
8814void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
8815                                    const ARMCPRegInfo *regs, void *opaque)
8816{
8817    /* Define a whole list of registers */
8818    const ARMCPRegInfo *r;
8819    for (r = regs; r->type != ARM_CP_SENTINEL; r++) {
8820        define_one_arm_cp_reg_with_opaque(cpu, r, opaque);
8821    }
8822}
8823
8824/*
8825 * Modify ARMCPRegInfo for access from userspace.
8826 *
8827 * This is a data driven modification directed by
8828 * ARMCPRegUserSpaceInfo. All registers become ARM_CP_CONST as
8829 * user-space cannot alter any values and dynamic values pertaining to
8830 * execution state are hidden from user space view anyway.
8831 */
8832void modify_arm_cp_regs(ARMCPRegInfo *regs, const ARMCPRegUserSpaceInfo *mods)
8833{
8834    const ARMCPRegUserSpaceInfo *m;
8835    ARMCPRegInfo *r;
8836
8837    for (m = mods; m->name; m++) {
8838        GPatternSpec *pat = NULL;
8839        if (m->is_glob) {
8840            pat = g_pattern_spec_new(m->name);
8841        }
8842        for (r = regs; r->type != ARM_CP_SENTINEL; r++) {
8843            if (pat && g_pattern_match_string(pat, r->name)) {
8844                r->type = ARM_CP_CONST;
8845                r->access = PL0U_R;
8846                r->resetvalue = 0;
8847                /* continue */
8848            } else if (strcmp(r->name, m->name) == 0) {
8849                r->type = ARM_CP_CONST;
8850                r->access = PL0U_R;
8851                r->resetvalue &= m->exported_bits;
8852                r->resetvalue |= m->fixed_bits;
8853                break;
8854            }
8855        }
8856        if (pat) {
8857            g_pattern_spec_free(pat);
8858        }
8859    }
8860}
8861
8862const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp)
8863{
8864    return g_hash_table_lookup(cpregs, &encoded_cp);
8865}
8866
8867void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
8868                         uint64_t value)
8869{
8870    /* Helper coprocessor write function for write-ignore registers */
8871}
8872
8873uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri)
8874{
8875    /* Helper coprocessor write function for read-as-zero registers */
8876    return 0;
8877}
8878
8879void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque)
8880{
8881    /* Helper coprocessor reset function for do-nothing-on-reset registers */
8882}
8883
8884static int bad_mode_switch(CPUARMState *env, int mode, CPSRWriteType write_type)
8885{
8886    /* Return true if it is not valid for us to switch to
8887     * this CPU mode (ie all the UNPREDICTABLE cases in
8888     * the ARM ARM CPSRWriteByInstr pseudocode).
8889     */
8890
8891    /* Changes to or from Hyp via MSR and CPS are illegal. */
8892    if (write_type == CPSRWriteByInstr &&
8893        ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_HYP ||
8894         mode == ARM_CPU_MODE_HYP)) {
8895        return 1;
8896    }
8897
8898    switch (mode) {
8899    case ARM_CPU_MODE_USR:
8900        return 0;
8901    case ARM_CPU_MODE_SYS:
8902    case ARM_CPU_MODE_SVC:
8903    case ARM_CPU_MODE_ABT:
8904    case ARM_CPU_MODE_UND:
8905    case ARM_CPU_MODE_IRQ:
8906    case ARM_CPU_MODE_FIQ:
8907        /* Note that we don't implement the IMPDEF NSACR.RFR which in v7
8908         * allows FIQ mode to be Secure-only. (In v8 this doesn't exist.)
8909         */
8910        /* If HCR.TGE is set then changes from Monitor to NS PL1 via MSR
8911         * and CPS are treated as illegal mode changes.
8912         */
8913        if (write_type == CPSRWriteByInstr &&
8914            (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON &&
8915            (arm_hcr_el2_eff(env) & HCR_TGE)) {
8916            return 1;
8917        }
8918        return 0;
8919    case ARM_CPU_MODE_HYP:
8920        return !arm_is_el2_enabled(env) || arm_current_el(env) < 2;
8921    case ARM_CPU_MODE_MON:
8922        return arm_current_el(env) < 3;
8923    default:
8924        return 1;
8925    }
8926}
8927
8928uint32_t cpsr_read(CPUARMState *env)
8929{
8930    int ZF;
8931    ZF = (env->ZF == 0);
8932    return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) |
8933        (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
8934        | (env->thumb << 5) | ((env->condexec_bits & 3) << 25)
8935        | ((env->condexec_bits & 0xfc) << 8)
8936        | (env->GE << 16) | (env->daif & CPSR_AIF);
8937}
8938
8939void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
8940                CPSRWriteType write_type)
8941{
8942    uint32_t changed_daif;
8943    bool rebuild_hflags = (write_type != CPSRWriteRaw) &&
8944        (mask & (CPSR_M | CPSR_E | CPSR_IL));
8945
8946    if (mask & CPSR_NZCV) {
8947        env->ZF = (~val) & CPSR_Z;
8948        env->NF = val;
8949        env->CF = (val >> 29) & 1;
8950        env->VF = (val << 3) & 0x80000000;
8951    }
8952    if (mask & CPSR_Q)
8953        env->QF = ((val & CPSR_Q) != 0);
8954    if (mask & CPSR_T)
8955        env->thumb = ((val & CPSR_T) != 0);
8956    if (mask & CPSR_IT_0_1) {
8957        env->condexec_bits &= ~3;
8958        env->condexec_bits |= (val >> 25) & 3;
8959    }
8960    if (mask & CPSR_IT_2_7) {
8961        env->condexec_bits &= 3;
8962        env->condexec_bits |= (val >> 8) & 0xfc;
8963    }
8964    if (mask & CPSR_GE) {
8965        env->GE = (val >> 16) & 0xf;
8966    }
8967
8968    /* In a V7 implementation that includes the security extensions but does
8969     * not include Virtualization Extensions the SCR.FW and SCR.AW bits control
8970     * whether non-secure software is allowed to change the CPSR_F and CPSR_A
8971     * bits respectively.
8972     *
8973     * In a V8 implementation, it is permitted for privileged software to
8974     * change the CPSR A/F bits regardless of the SCR.AW/FW bits.
8975     */
8976    if (write_type != CPSRWriteRaw && !arm_feature(env, ARM_FEATURE_V8) &&
8977        arm_feature(env, ARM_FEATURE_EL3) &&
8978        !arm_feature(env, ARM_FEATURE_EL2) &&
8979        !arm_is_secure(env)) {
8980
8981        changed_daif = (env->daif ^ val) & mask;
8982
8983        if (changed_daif & CPSR_A) {
8984            /* Check to see if we are allowed to change the masking of async
8985             * abort exceptions from a non-secure state.
8986             */
8987            if (!(env->cp15.scr_el3 & SCR_AW)) {
8988                qemu_log_mask(LOG_GUEST_ERROR,
8989                              "Ignoring attempt to switch CPSR_A flag from "
8990                              "non-secure world with SCR.AW bit clear\n");
8991                mask &= ~CPSR_A;
8992            }
8993        }
8994
8995        if (changed_daif & CPSR_F) {
8996            /* Check to see if we are allowed to change the masking of FIQ
8997             * exceptions from a non-secure state.
8998             */
8999            if (!(env->cp15.scr_el3 & SCR_FW)) {
9000                qemu_log_mask(LOG_GUEST_ERROR,
9001                              "Ignoring attempt to switch CPSR_F flag from "
9002                              "non-secure world with SCR.FW bit clear\n");
9003                mask &= ~CPSR_F;
9004            }
9005
9006            /* Check whether non-maskable FIQ (NMFI) support is enabled.
9007             * If this bit is set software is not allowed to mask
9008             * FIQs, but is allowed to set CPSR_F to 0.
9009             */
9010            if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) &&
9011                (val & CPSR_F)) {
9012                qemu_log_mask(LOG_GUEST_ERROR,
9013                              "Ignoring attempt to enable CPSR_F flag "
9014                              "(non-maskable FIQ [NMFI] support enabled)\n");
9015                mask &= ~CPSR_F;
9016            }
9017        }
9018    }
9019
9020    env->daif &= ~(CPSR_AIF & mask);
9021    env->daif |= val & CPSR_AIF & mask;
9022
9023    if (write_type != CPSRWriteRaw &&
9024        ((env->uncached_cpsr ^ val) & mask & CPSR_M)) {
9025        if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR) {
9026            /* Note that we can only get here in USR mode if this is a
9027             * gdb stub write; for this case we follow the architectural
9028             * behaviour for guest writes in USR mode of ignoring an attempt
9029             * to switch mode. (Those are caught by translate.c for writes
9030             * triggered by guest instructions.)
9031             */
9032            mask &= ~CPSR_M;
9033        } else if (bad_mode_switch(env, val & CPSR_M, write_type)) {
9034            /* Attempt to switch to an invalid mode: this is UNPREDICTABLE in
9035             * v7, and has defined behaviour in v8:
9036             *  + leave CPSR.M untouched
9037             *  + allow changes to the other CPSR fields
9038             *  + set PSTATE.IL
9039             * For user changes via the GDB stub, we don't set PSTATE.IL,
9040             * as this would be unnecessarily harsh for a user error.
9041             */
9042            mask &= ~CPSR_M;
9043            if (write_type != CPSRWriteByGDBStub &&
9044                arm_feature(env, ARM_FEATURE_V8)) {
9045                mask |= CPSR_IL;
9046                val |= CPSR_IL;
9047            }
9048            qemu_log_mask(LOG_GUEST_ERROR,
9049                          "Illegal AArch32 mode switch attempt from %s to %s\n",
9050                          aarch32_mode_name(env->uncached_cpsr),
9051                          aarch32_mode_name(val));
9052        } else {
9053            qemu_log_mask(CPU_LOG_INT, "%s %s to %s PC 0x%" PRIx32 "\n",
9054                          write_type == CPSRWriteExceptionReturn ?
9055                          "Exception return from AArch32" :
9056                          "AArch32 mode switch from",
9057                          aarch32_mode_name(env->uncached_cpsr),
9058                          aarch32_mode_name(val), env->regs[15]);
9059            switch_mode(env, val & CPSR_M);
9060        }
9061    }
9062    mask &= ~CACHED_CPSR_BITS;
9063    env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask);
9064    if (rebuild_hflags) {
9065        arm_rebuild_hflags(env);
9066    }
9067}
9068
9069/* Sign/zero extend */
9070uint32_t HELPER(sxtb16)(uint32_t x)
9071{
9072    uint32_t res;
9073    res = (uint16_t)(int8_t)x;
9074    res |= (uint32_t)(int8_t)(x >> 16) << 16;
9075    return res;
9076}
9077
9078static void handle_possible_div0_trap(CPUARMState *env, uintptr_t ra)
9079{
9080    /*
9081     * Take a division-by-zero exception if necessary; otherwise return
9082     * to get the usual non-trapping division behaviour (result of 0)
9083     */
9084    if (arm_feature(env, ARM_FEATURE_M)
9085        && (env->v7m.ccr[env->v7m.secure] & R_V7M_CCR_DIV_0_TRP_MASK)) {
9086        raise_exception_ra(env, EXCP_DIVBYZERO, 0, 1, ra);
9087    }
9088}
9089
9090uint32_t HELPER(uxtb16)(uint32_t x)
9091{
9092    uint32_t res;
9093    res = (uint16_t)(uint8_t)x;
9094    res |= (uint32_t)(uint8_t)(x >> 16) << 16;
9095    return res;
9096}
9097
9098int32_t HELPER(sdiv)(CPUARMState *env, int32_t num, int32_t den)
9099{
9100    if (den == 0) {
9101        handle_possible_div0_trap(env, GETPC());
9102        return 0;
9103    }
9104    if (num == INT_MIN && den == -1) {
9105        return INT_MIN;
9106    }
9107    return num / den;
9108}
9109
9110uint32_t HELPER(udiv)(CPUARMState *env, uint32_t num, uint32_t den)
9111{
9112    if (den == 0) {
9113        handle_possible_div0_trap(env, GETPC());
9114        return 0;
9115    }
9116    return num / den;
9117}
9118
9119uint32_t HELPER(rbit)(uint32_t x)
9120{
9121    return revbit32(x);
9122}
9123
9124#ifdef CONFIG_USER_ONLY
9125
9126static void switch_mode(CPUARMState *env, int mode)
9127{
9128    ARMCPU *cpu = env_archcpu(env);
9129
9130    if (mode != ARM_CPU_MODE_USR) {
9131        cpu_abort(CPU(cpu), "Tried to switch out of user mode\n");
9132    }
9133}
9134
9135uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
9136                                 uint32_t cur_el, bool secure)
9137{
9138    return 1;
9139}
9140
9141void aarch64_sync_64_to_32(CPUARMState *env)
9142{
9143    g_assert_not_reached();
9144}
9145
9146#else
9147
9148static void switch_mode(CPUARMState *env, int mode)
9149{
9150    int old_mode;
9151    int i;
9152
9153    old_mode = env->uncached_cpsr & CPSR_M;
9154    if (mode == old_mode)
9155        return;
9156
9157    if (old_mode == ARM_CPU_MODE_FIQ) {
9158        memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
9159        memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
9160    } else if (mode == ARM_CPU_MODE_FIQ) {
9161        memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
9162        memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
9163    }
9164
9165    i = bank_number(old_mode);
9166    env->banked_r13[i] = env->regs[13];
9167    env->banked_spsr[i] = env->spsr;
9168
9169    i = bank_number(mode);
9170    env->regs[13] = env->banked_r13[i];
9171    env->spsr = env->banked_spsr[i];
9172
9173    env->banked_r14[r14_bank_number(old_mode)] = env->regs[14];
9174    env->regs[14] = env->banked_r14[r14_bank_number(mode)];
9175}
9176
9177/* Physical Interrupt Target EL Lookup Table
9178 *
9179 * [ From ARM ARM section G1.13.4 (Table G1-15) ]
9180 *
9181 * The below multi-dimensional table is used for looking up the target
9182 * exception level given numerous condition criteria.  Specifically, the
9183 * target EL is based on SCR and HCR routing controls as well as the
9184 * currently executing EL and secure state.
9185 *
9186 *    Dimensions:
9187 *    target_el_table[2][2][2][2][2][4]
9188 *                    |  |  |  |  |  +--- Current EL
9189 *                    |  |  |  |  +------ Non-secure(0)/Secure(1)
9190 *                    |  |  |  +--------- HCR mask override
9191 *                    |  |  +------------ SCR exec state control
9192 *                    |  +--------------- SCR mask override
9193 *                    +------------------ 32-bit(0)/64-bit(1) EL3
9194 *
9195 *    The table values are as such:
9196 *    0-3 = EL0-EL3
9197 *     -1 = Cannot occur
9198 *
9199 * The ARM ARM target EL table includes entries indicating that an "exception
9200 * is not taken".  The two cases where this is applicable are:
9201 *    1) An exception is taken from EL3 but the SCR does not have the exception
9202 *    routed to EL3.
9203 *    2) An exception is taken from EL2 but the HCR does not have the exception
9204 *    routed to EL2.
9205 * In these two cases, the below table contain a target of EL1.  This value is
9206 * returned as it is expected that the consumer of the table data will check
9207 * for "target EL >= current EL" to ensure the exception is not taken.
9208 *
9209 *            SCR     HCR
9210 *         64  EA     AMO                 From
9211 *        BIT IRQ     IMO      Non-secure         Secure
9212 *        EL3 FIQ  RW FMO   EL0 EL1 EL2 EL3   EL0 EL1 EL2 EL3
9213 */
9214static const int8_t target_el_table[2][2][2][2][2][4] = {
9215    {{{{/* 0   0   0   0 */{ 1,  1,  2, -1 },{ 3, -1, -1,  3 },},
9216       {/* 0   0   0   1 */{ 2,  2,  2, -1 },{ 3, -1, -1,  3 },},},
9217      {{/* 0   0   1   0 */{ 1,  1,  2, -1 },{ 3, -1, -1,  3 },},
9218       {/* 0   0   1   1 */{ 2,  2,  2, -1 },{ 3, -1, -1,  3 },},},},
9219     {{{/* 0   1   0   0 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},
9220       {/* 0   1   0   1 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},},
9221      {{/* 0   1   1   0 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},
9222       {/* 0   1   1   1 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},},},},
9223    {{{{/* 1   0   0   0 */{ 1,  1,  2, -1 },{ 1,  1, -1,  1 },},
9224       {/* 1   0   0   1 */{ 2,  2,  2, -1 },{ 2,  2, -1,  1 },},},
9225      {{/* 1   0   1   0 */{ 1,  1,  1, -1 },{ 1,  1,  1,  1 },},
9226       {/* 1   0   1   1 */{ 2,  2,  2, -1 },{ 2,  2,  2,  1 },},},},
9227     {{{/* 1   1   0   0 */{ 3,  3,  3, -1 },{ 3,  3, -1,  3 },},
9228       {/* 1   1   0   1 */{ 3,  3,  3, -1 },{ 3,  3, -1,  3 },},},
9229      {{/* 1   1   1   0 */{ 3,  3,  3, -1 },{ 3,  3,  3,  3 },},
9230       {/* 1   1   1   1 */{ 3,  3,  3, -1 },{ 3,  3,  3,  3 },},},},},
9231};
9232
9233/*
9234 * Determine the target EL for physical exceptions
9235 */
9236uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
9237                                 uint32_t cur_el, bool secure)
9238{
9239    CPUARMState *env = cs->env_ptr;
9240    bool rw;
9241    bool scr;
9242    bool hcr;
9243    int target_el;
9244    /* Is the highest EL AArch64? */
9245    bool is64 = arm_feature(env, ARM_FEATURE_AARCH64);
9246    uint64_t hcr_el2;
9247
9248    if (arm_feature(env, ARM_FEATURE_EL3)) {
9249        rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW);
9250    } else {
9251        /* Either EL2 is the highest EL (and so the EL2 register width
9252         * is given by is64); or there is no EL2 or EL3, in which case
9253         * the value of 'rw' does not affect the table lookup anyway.
9254         */
9255        rw = is64;
9256    }
9257
9258    hcr_el2 = arm_hcr_el2_eff(env);
9259    switch (excp_idx) {
9260    case EXCP_IRQ:
9261        scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ);
9262        hcr = hcr_el2 & HCR_IMO;
9263        break;
9264    case EXCP_FIQ:
9265        scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ);
9266        hcr = hcr_el2 & HCR_FMO;
9267        break;
9268    default:
9269        scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA);
9270        hcr = hcr_el2 & HCR_AMO;
9271        break;
9272    };
9273
9274    /*
9275     * For these purposes, TGE and AMO/IMO/FMO both force the
9276     * interrupt to EL2.  Fold TGE into the bit extracted above.
9277     */
9278    hcr |= (hcr_el2 & HCR_TGE) != 0;
9279
9280    /* Perform a table-lookup for the target EL given the current state */
9281    target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el];
9282
9283    assert(target_el > 0);
9284
9285    return target_el;
9286}
9287
9288void arm_log_exception(int idx)
9289{
9290    if (qemu_loglevel_mask(CPU_LOG_INT)) {
9291        const char *exc = NULL;
9292        static const char * const excnames[] = {
9293            [EXCP_UDEF] = "Undefined Instruction",
9294            [EXCP_SWI] = "SVC",
9295            [EXCP_PREFETCH_ABORT] = "Prefetch Abort",
9296            [EXCP_DATA_ABORT] = "Data Abort",
9297            [EXCP_IRQ] = "IRQ",
9298            [EXCP_FIQ] = "FIQ",
9299            [EXCP_BKPT] = "Breakpoint",
9300            [EXCP_EXCEPTION_EXIT] = "QEMU v7M exception exit",
9301            [EXCP_KERNEL_TRAP] = "QEMU intercept of kernel commpage",
9302            [EXCP_HVC] = "Hypervisor Call",
9303            [EXCP_HYP_TRAP] = "Hypervisor Trap",
9304            [EXCP_SMC] = "Secure Monitor Call",
9305            [EXCP_VIRQ] = "Virtual IRQ",
9306            [EXCP_VFIQ] = "Virtual FIQ",
9307            [EXCP_SEMIHOST] = "Semihosting call",
9308            [EXCP_NOCP] = "v7M NOCP UsageFault",
9309            [EXCP_INVSTATE] = "v7M INVSTATE UsageFault",
9310            [EXCP_STKOF] = "v8M STKOF UsageFault",
9311            [EXCP_LAZYFP] = "v7M exception during lazy FP stacking",
9312            [EXCP_LSERR] = "v8M LSERR UsageFault",
9313            [EXCP_UNALIGNED] = "v7M UNALIGNED UsageFault",
9314            [EXCP_DIVBYZERO] = "v7M DIVBYZERO UsageFault",
9315        };
9316
9317        if (idx >= 0 && idx < ARRAY_SIZE(excnames)) {
9318            exc = excnames[idx];
9319        }
9320        if (!exc) {
9321            exc = "unknown";
9322        }
9323        qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s]\n", idx, exc);
9324    }
9325}
9326
9327/*
9328 * Function used to synchronize QEMU's AArch64 register set with AArch32
9329 * register set.  This is necessary when switching between AArch32 and AArch64
9330 * execution state.
9331 */
9332void aarch64_sync_32_to_64(CPUARMState *env)
9333{
9334    int i;
9335    uint32_t mode = env->uncached_cpsr & CPSR_M;
9336
9337    /* We can blanket copy R[0:7] to X[0:7] */
9338    for (i = 0; i < 8; i++) {
9339        env->xregs[i] = env->regs[i];
9340    }
9341
9342    /*
9343     * Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12.
9344     * Otherwise, they come from the banked user regs.
9345     */
9346    if (mode == ARM_CPU_MODE_FIQ) {
9347        for (i = 8; i < 13; i++) {
9348            env->xregs[i] = env->usr_regs[i - 8];
9349        }
9350    } else {
9351        for (i = 8; i < 13; i++) {
9352            env->xregs[i] = env->regs[i];
9353        }
9354    }
9355
9356    /*
9357     * Registers x13-x23 are the various mode SP and FP registers. Registers
9358     * r13 and r14 are only copied if we are in that mode, otherwise we copy
9359     * from the mode banked register.
9360     */
9361    if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
9362        env->xregs[13] = env->regs[13];
9363        env->xregs[14] = env->regs[14];
9364    } else {
9365        env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)];
9366        /* HYP is an exception in that it is copied from r14 */
9367        if (mode == ARM_CPU_MODE_HYP) {
9368            env->xregs[14] = env->regs[14];
9369        } else {
9370            env->xregs[14] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)];
9371        }
9372    }
9373
9374    if (mode == ARM_CPU_MODE_HYP) {
9375        env->xregs[15] = env->regs[13];
9376    } else {
9377        env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)];
9378    }
9379
9380    if (mode == ARM_CPU_MODE_IRQ) {
9381        env->xregs[16] = env->regs[14];
9382        env->xregs[17] = env->regs[13];
9383    } else {
9384        env->xregs[16] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)];
9385        env->xregs[17] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)];
9386    }
9387
9388    if (mode == ARM_CPU_MODE_SVC) {
9389        env->xregs[18] = env->regs[14];
9390        env->xregs[19] = env->regs[13];
9391    } else {
9392        env->xregs[18] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)];
9393        env->xregs[19] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)];
9394    }
9395
9396    if (mode == ARM_CPU_MODE_ABT) {
9397        env->xregs[20] = env->regs[14];
9398        env->xregs[21] = env->regs[13];
9399    } else {
9400        env->xregs[20] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)];
9401        env->xregs[21] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)];
9402    }
9403
9404    if (mode == ARM_CPU_MODE_UND) {
9405        env->xregs[22] = env->regs[14];
9406        env->xregs[23] = env->regs[13];
9407    } else {
9408        env->xregs[22] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)];
9409        env->xregs[23] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)];
9410    }
9411
9412    /*
9413     * Registers x24-x30 are mapped to r8-r14 in FIQ mode.  If we are in FIQ
9414     * mode, then we can copy from r8-r14.  Otherwise, we copy from the
9415     * FIQ bank for r8-r14.
9416     */
9417    if (mode == ARM_CPU_MODE_FIQ) {
9418        for (i = 24; i < 31; i++) {
9419            env->xregs[i] = env->regs[i - 16];   /* X[24:30] <- R[8:14] */
9420        }
9421    } else {
9422        for (i = 24; i < 29; i++) {
9423            env->xregs[i] = env->fiq_regs[i - 24];
9424        }
9425        env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)];
9426        env->xregs[30] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)];
9427    }
9428
9429    env->pc = env->regs[15];
9430}
9431
9432/*
9433 * Function used to synchronize QEMU's AArch32 register set with AArch64
9434 * register set.  This is necessary when switching between AArch32 and AArch64
9435 * execution state.
9436 */
9437void aarch64_sync_64_to_32(CPUARMState *env)
9438{
9439    int i;
9440    uint32_t mode = env->uncached_cpsr & CPSR_M;
9441
9442    /* We can blanket copy X[0:7] to R[0:7] */
9443    for (i = 0; i < 8; i++) {
9444        env->regs[i] = env->xregs[i];
9445    }
9446
9447    /*
9448     * Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12.
9449     * Otherwise, we copy x8-x12 into the banked user regs.
9450     */
9451    if (mode == ARM_CPU_MODE_FIQ) {
9452        for (i = 8; i < 13; i++) {
9453            env->usr_regs[i - 8] = env->xregs[i];
9454        }
9455    } else {
9456        for (i = 8; i < 13; i++) {
9457            env->regs[i] = env->xregs[i];
9458        }
9459    }
9460
9461    /*
9462     * Registers r13 & r14 depend on the current mode.
9463     * If we are in a given mode, we copy the corresponding x registers to r13
9464     * and r14.  Otherwise, we copy the x register to the banked r13 and r14
9465     * for the mode.
9466     */
9467    if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
9468        env->regs[13] = env->xregs[13];
9469        env->regs[14] = env->xregs[14];
9470    } else {
9471        env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13];
9472
9473        /*
9474         * HYP is an exception in that it does not have its own banked r14 but
9475         * shares the USR r14
9476         */
9477        if (mode == ARM_CPU_MODE_HYP) {
9478            env->regs[14] = env->xregs[14];
9479        } else {
9480            env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)] = env->xregs[14];
9481        }
9482    }
9483
9484    if (mode == ARM_CPU_MODE_HYP) {
9485        env->regs[13] = env->xregs[15];
9486    } else {
9487        env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15];
9488    }
9489
9490    if (mode == ARM_CPU_MODE_IRQ) {
9491        env->regs[14] = env->xregs[16];
9492        env->regs[13] = env->xregs[17];
9493    } else {
9494        env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16];
9495        env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17];
9496    }
9497
9498    if (mode == ARM_CPU_MODE_SVC) {
9499        env->regs[14] = env->xregs[18];
9500        env->regs[13] = env->xregs[19];
9501    } else {
9502        env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18];
9503        env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19];
9504    }
9505
9506    if (mode == ARM_CPU_MODE_ABT) {
9507        env->regs[14] = env->xregs[20];
9508        env->regs[13] = env->xregs[21];
9509    } else {
9510        env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20];
9511        env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21];
9512    }
9513
9514    if (mode == ARM_CPU_MODE_UND) {
9515        env->regs[14] = env->xregs[22];
9516        env->regs[13] = env->xregs[23];
9517    } else {
9518        env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)] = env->xregs[22];
9519        env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23];
9520    }
9521
9522    /* Registers x24-x30 are mapped to r8-r14 in FIQ mode.  If we are in FIQ
9523     * mode, then we can copy to r8-r14.  Otherwise, we copy to the
9524     * FIQ bank for r8-r14.
9525     */
9526    if (mode == ARM_CPU_MODE_FIQ) {
9527        for (i = 24; i < 31; i++) {
9528            env->regs[i - 16] = env->xregs[i];   /* X[24:30] -> R[8:14] */
9529        }
9530    } else {
9531        for (i = 24; i < 29; i++) {
9532            env->fiq_regs[i - 24] = env->xregs[i];
9533        }
9534        env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29];
9535        env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30];
9536    }
9537
9538    env->regs[15] = env->pc;
9539}
9540
9541static void take_aarch32_exception(CPUARMState *env, int new_mode,
9542                                   uint32_t mask, uint32_t offset,
9543                                   uint32_t newpc)
9544{
9545    int new_el;
9546
9547    /* Change the CPU state so as to actually take the exception. */
9548    switch_mode(env, new_mode);
9549
9550    /*
9551     * For exceptions taken to AArch32 we must clear the SS bit in both
9552     * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now.
9553     */
9554    env->pstate &= ~PSTATE_SS;
9555    env->spsr = cpsr_read(env);
9556    /* Clear IT bits.  */
9557    env->condexec_bits = 0;
9558    /* Switch to the new mode, and to the correct instruction set.  */
9559    env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode;
9560
9561    /* This must be after mode switching. */
9562    new_el = arm_current_el(env);
9563
9564    /* Set new mode endianness */
9565    env->uncached_cpsr &= ~CPSR_E;
9566    if (env->cp15.sctlr_el[new_el] & SCTLR_EE) {
9567        env->uncached_cpsr |= CPSR_E;
9568    }
9569    /* J and IL must always be cleared for exception entry */
9570    env->uncached_cpsr &= ~(CPSR_IL | CPSR_J);
9571    env->daif |= mask;
9572
9573    if (cpu_isar_feature(aa32_ssbs, env_archcpu(env))) {
9574        if (env->cp15.sctlr_el[new_el] & SCTLR_DSSBS_32) {
9575            env->uncached_cpsr |= CPSR_SSBS;
9576        } else {
9577            env->uncached_cpsr &= ~CPSR_SSBS;
9578        }
9579    }
9580
9581    if (new_mode == ARM_CPU_MODE_HYP) {
9582        env->thumb = (env->cp15.sctlr_el[2] & SCTLR_TE) != 0;
9583        env->elr_el[2] = env->regs[15];
9584    } else {
9585        /* CPSR.PAN is normally preserved preserved unless...  */
9586        if (cpu_isar_feature(aa32_pan, env_archcpu(env))) {
9587            switch (new_el) {
9588            case 3:
9589                if (!arm_is_secure_below_el3(env)) {
9590                    /* ... the target is EL3, from non-secure state.  */
9591                    env->uncached_cpsr &= ~CPSR_PAN;
9592                    break;
9593                }
9594                /* ... the target is EL3, from secure state ... */
9595                /* fall through */
9596            case 1:
9597                /* ... the target is EL1 and SCTLR.SPAN is 0.  */
9598                if (!(env->cp15.sctlr_el[new_el] & SCTLR_SPAN)) {
9599                    env->uncached_cpsr |= CPSR_PAN;
9600                }
9601                break;
9602            }
9603        }
9604        /*
9605         * this is a lie, as there was no c1_sys on V4T/V5, but who cares
9606         * and we should just guard the thumb mode on V4
9607         */
9608        if (arm_feature(env, ARM_FEATURE_V4T)) {
9609            env->thumb =
9610                (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0;
9611        }
9612        env->regs[14] = env->regs[15] + offset;
9613    }
9614    env->regs[15] = newpc;
9615    arm_rebuild_hflags(env);
9616}
9617
9618static void arm_cpu_do_interrupt_aarch32_hyp(CPUState *cs)
9619{
9620    /*
9621     * Handle exception entry to Hyp mode; this is sufficiently
9622     * different to entry to other AArch32 modes that we handle it
9623     * separately here.
9624     *
9625     * The vector table entry used is always the 0x14 Hyp mode entry point,
9626     * unless this is an UNDEF/HVC/abort taken from Hyp to Hyp.
9627     * The offset applied to the preferred return address is always zero
9628     * (see DDI0487C.a section G1.12.3).
9629     * PSTATE A/I/F masks are set based only on the SCR.EA/IRQ/FIQ values.
9630     */
9631    uint32_t addr, mask;
9632    ARMCPU *cpu = ARM_CPU(cs);
9633    CPUARMState *env = &cpu->env;
9634
9635    switch (cs->exception_index) {
9636    case EXCP_UDEF:
9637        addr = 0x04;
9638        break;
9639    case EXCP_SWI:
9640        addr = 0x14;
9641        break;
9642    case EXCP_BKPT:
9643        /* Fall through to prefetch abort.  */
9644    case EXCP_PREFETCH_ABORT:
9645        env->cp15.ifar_s = env->exception.vaddress;
9646        qemu_log_mask(CPU_LOG_INT, "...with HIFAR 0x%x\n",
9647                      (uint32_t)env->exception.vaddress);
9648        addr = 0x0c;
9649        break;
9650    case EXCP_DATA_ABORT:
9651        env->cp15.dfar_s = env->exception.vaddress;
9652        qemu_log_mask(CPU_LOG_INT, "...with HDFAR 0x%x\n",
9653                      (uint32_t)env->exception.vaddress);
9654        addr = 0x10;
9655        break;
9656    case EXCP_IRQ:
9657        addr = 0x18;
9658        break;
9659    case EXCP_FIQ:
9660        addr = 0x1c;
9661        break;
9662    case EXCP_HVC:
9663        addr = 0x08;
9664        break;
9665    case EXCP_HYP_TRAP:
9666        addr = 0x14;
9667        break;
9668    default:
9669        cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
9670    }
9671
9672    if (cs->exception_index != EXCP_IRQ && cs->exception_index != EXCP_FIQ) {
9673        if (!arm_feature(env, ARM_FEATURE_V8)) {
9674            /*
9675             * QEMU syndrome values are v8-style. v7 has the IL bit
9676             * UNK/SBZP for "field not valid" cases, where v8 uses RES1.
9677             * If this is a v7 CPU, squash the IL bit in those cases.
9678             */
9679            if (cs->exception_index == EXCP_PREFETCH_ABORT ||
9680                (cs->exception_index == EXCP_DATA_ABORT &&
9681                 !(env->exception.syndrome & ARM_EL_ISV)) ||
9682                syn_get_ec(env->exception.syndrome) == EC_UNCATEGORIZED) {
9683                env->exception.syndrome &= ~ARM_EL_IL;
9684            }
9685        }
9686        env->cp15.esr_el[2] = env->exception.syndrome;
9687    }
9688
9689    if (arm_current_el(env) != 2 && addr < 0x14) {
9690        addr = 0x14;
9691    }
9692
9693    mask = 0;
9694    if (!(env->cp15.scr_el3 & SCR_EA)) {
9695        mask |= CPSR_A;
9696    }
9697    if (!(env->cp15.scr_el3 & SCR_IRQ)) {
9698        mask |= CPSR_I;
9699    }
9700    if (!(env->cp15.scr_el3 & SCR_FIQ)) {
9701        mask |= CPSR_F;
9702    }
9703
9704    addr += env->cp15.hvbar;
9705
9706    take_aarch32_exception(env, ARM_CPU_MODE_HYP, mask, 0, addr);
9707}
9708
9709static void arm_cpu_do_interrupt_aarch32(CPUState *cs)
9710{
9711    ARMCPU *cpu = ARM_CPU(cs);
9712    CPUARMState *env = &cpu->env;
9713    uint32_t addr;
9714    uint32_t mask;
9715    int new_mode;
9716    uint32_t offset;
9717    uint32_t moe;
9718
9719    /* If this is a debug exception we must update the DBGDSCR.MOE bits */
9720    switch (syn_get_ec(env->exception.syndrome)) {
9721    case EC_BREAKPOINT:
9722    case EC_BREAKPOINT_SAME_EL:
9723        moe = 1;
9724        break;
9725    case EC_WATCHPOINT:
9726    case EC_WATCHPOINT_SAME_EL:
9727        moe = 10;
9728        break;
9729    case EC_AA32_BKPT:
9730        moe = 3;
9731        break;
9732    case EC_VECTORCATCH:
9733        moe = 5;
9734        break;
9735    default:
9736        moe = 0;
9737        break;
9738    }
9739
9740    if (moe) {
9741        env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe);
9742    }
9743
9744    if (env->exception.target_el == 2) {
9745        arm_cpu_do_interrupt_aarch32_hyp(cs);
9746        return;
9747    }
9748
9749    switch (cs->exception_index) {
9750    case EXCP_UDEF:
9751        new_mode = ARM_CPU_MODE_UND;
9752        addr = 0x04;
9753        mask = CPSR_I;
9754        if (env->thumb)
9755            offset = 2;
9756        else
9757            offset = 4;
9758        break;
9759    case EXCP_SWI:
9760        new_mode = ARM_CPU_MODE_SVC;
9761        addr = 0x08;
9762        mask = CPSR_I;
9763        /* The PC already points to the next instruction.  */
9764        offset = 0;
9765        break;
9766    case EXCP_BKPT:
9767        /* Fall through to prefetch abort.  */
9768    case EXCP_PREFETCH_ABORT:
9769        A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr);
9770        A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress);
9771        qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n",
9772                      env->exception.fsr, (uint32_t)env->exception.vaddress);
9773        new_mode = ARM_CPU_MODE_ABT;
9774        addr = 0x0c;
9775        mask = CPSR_A | CPSR_I;
9776        offset = 4;
9777        break;
9778    case EXCP_DATA_ABORT:
9779        A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr);
9780        A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress);
9781        qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n",
9782                      env->exception.fsr,
9783                      (uint32_t)env->exception.vaddress);
9784        new_mode = ARM_CPU_MODE_ABT;
9785        addr = 0x10;
9786        mask = CPSR_A | CPSR_I;
9787        offset = 8;
9788        break;
9789    case EXCP_IRQ:
9790        new_mode = ARM_CPU_MODE_IRQ;
9791        addr = 0x18;
9792        /* Disable IRQ and imprecise data aborts.  */
9793        mask = CPSR_A | CPSR_I;
9794        offset = 4;
9795        if (env->cp15.scr_el3 & SCR_IRQ) {
9796            /* IRQ routed to monitor mode */
9797            new_mode = ARM_CPU_MODE_MON;
9798            mask |= CPSR_F;
9799        }
9800        break;
9801    case EXCP_FIQ:
9802        new_mode = ARM_CPU_MODE_FIQ;
9803        addr = 0x1c;
9804        /* Disable FIQ, IRQ and imprecise data aborts.  */
9805        mask = CPSR_A | CPSR_I | CPSR_F;
9806        if (env->cp15.scr_el3 & SCR_FIQ) {
9807            /* FIQ routed to monitor mode */
9808            new_mode = ARM_CPU_MODE_MON;
9809        }
9810        offset = 4;
9811        break;
9812    case EXCP_VIRQ:
9813        new_mode = ARM_CPU_MODE_IRQ;
9814        addr = 0x18;
9815        /* Disable IRQ and imprecise data aborts.  */
9816        mask = CPSR_A | CPSR_I;
9817        offset = 4;
9818        break;
9819    case EXCP_VFIQ:
9820        new_mode = ARM_CPU_MODE_FIQ;
9821        addr = 0x1c;
9822        /* Disable FIQ, IRQ and imprecise data aborts.  */
9823        mask = CPSR_A | CPSR_I | CPSR_F;
9824        offset = 4;
9825        break;
9826    case EXCP_SMC:
9827        new_mode = ARM_CPU_MODE_MON;
9828        addr = 0x08;
9829        mask = CPSR_A | CPSR_I | CPSR_F;
9830        offset = 0;
9831        break;
9832    default:
9833        cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
9834        return; /* Never happens.  Keep compiler happy.  */
9835    }
9836
9837    if (new_mode == ARM_CPU_MODE_MON) {
9838        addr += env->cp15.mvbar;
9839    } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
9840        /* High vectors. When enabled, base address cannot be remapped. */
9841        addr += 0xffff0000;
9842    } else {
9843        /* ARM v7 architectures provide a vector base address register to remap
9844         * the interrupt vector table.
9845         * This register is only followed in non-monitor mode, and is banked.
9846         * Note: only bits 31:5 are valid.
9847         */
9848        addr += A32_BANKED_CURRENT_REG_GET(env, vbar);
9849    }
9850
9851    if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
9852        env->cp15.scr_el3 &= ~SCR_NS;
9853    }
9854
9855    take_aarch32_exception(env, new_mode, mask, offset, addr);
9856}
9857
9858static int aarch64_regnum(CPUARMState *env, int aarch32_reg)
9859{
9860    /*
9861     * Return the register number of the AArch64 view of the AArch32
9862     * register @aarch32_reg. The CPUARMState CPSR is assumed to still
9863     * be that of the AArch32 mode the exception came from.
9864     */
9865    int mode = env->uncached_cpsr & CPSR_M;
9866
9867    switch (aarch32_reg) {
9868    case 0 ... 7:
9869        return aarch32_reg;
9870    case 8 ... 12:
9871        return mode == ARM_CPU_MODE_FIQ ? aarch32_reg + 16 : aarch32_reg;
9872    case 13:
9873        switch (mode) {
9874        case ARM_CPU_MODE_USR:
9875        case ARM_CPU_MODE_SYS:
9876            return 13;
9877        case ARM_CPU_MODE_HYP:
9878            return 15;
9879        case ARM_CPU_MODE_IRQ:
9880            return 17;
9881        case ARM_CPU_MODE_SVC:
9882            return 19;
9883        case ARM_CPU_MODE_ABT:
9884            return 21;
9885        case ARM_CPU_MODE_UND:
9886            return 23;
9887        case ARM_CPU_MODE_FIQ:
9888            return 29;
9889        default:
9890            g_assert_not_reached();
9891        }
9892    case 14:
9893        switch (mode) {
9894        case ARM_CPU_MODE_USR:
9895        case ARM_CPU_MODE_SYS:
9896        case ARM_CPU_MODE_HYP:
9897            return 14;
9898        case ARM_CPU_MODE_IRQ:
9899            return 16;
9900        case ARM_CPU_MODE_SVC:
9901            return 18;
9902        case ARM_CPU_MODE_ABT:
9903            return 20;
9904        case ARM_CPU_MODE_UND:
9905            return 22;
9906        case ARM_CPU_MODE_FIQ:
9907            return 30;
9908        default:
9909            g_assert_not_reached();
9910        }
9911    case 15:
9912        return 31;
9913    default:
9914        g_assert_not_reached();
9915    }
9916}
9917
9918static uint32_t cpsr_read_for_spsr_elx(CPUARMState *env)
9919{
9920    uint32_t ret = cpsr_read(env);
9921
9922    /* Move DIT to the correct location for SPSR_ELx */
9923    if (ret & CPSR_DIT) {
9924        ret &= ~CPSR_DIT;
9925        ret |= PSTATE_DIT;
9926    }
9927    /* Merge PSTATE.SS into SPSR_ELx */
9928    ret |= env->pstate & PSTATE_SS;
9929
9930    return ret;
9931}
9932
9933/* Handle exception entry to a target EL which is using AArch64 */
9934static void arm_cpu_do_interrupt_aarch64(CPUState *cs)
9935{
9936    ARMCPU *cpu = ARM_CPU(cs);
9937    CPUARMState *env = &cpu->env;
9938    unsigned int new_el = env->exception.target_el;
9939    target_ulong addr = env->cp15.vbar_el[new_el];
9940    unsigned int new_mode = aarch64_pstate_mode(new_el, true);
9941    unsigned int old_mode;
9942    unsigned int cur_el = arm_current_el(env);
9943    int rt;
9944
9945    /*
9946     * Note that new_el can never be 0.  If cur_el is 0, then
9947     * el0_a64 is is_a64(), else el0_a64 is ignored.
9948     */
9949    aarch64_sve_change_el(env, cur_el, new_el, is_a64(env));
9950
9951    if (cur_el < new_el) {
9952        /* Entry vector offset depends on whether the implemented EL
9953         * immediately lower than the target level is using AArch32 or AArch64
9954         */
9955        bool is_aa64;
9956        uint64_t hcr;
9957
9958        switch (new_el) {
9959        case 3:
9960            is_aa64 = (env->cp15.scr_el3 & SCR_RW) != 0;
9961            break;
9962        case 2:
9963            hcr = arm_hcr_el2_eff(env);
9964            if ((hcr & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
9965                is_aa64 = (hcr & HCR_RW) != 0;
9966                break;
9967            }
9968            /* fall through */
9969        case 1:
9970            is_aa64 = is_a64(env);
9971            break;
9972        default:
9973            g_assert_not_reached();
9974        }
9975
9976        if (is_aa64) {
9977            addr += 0x400;
9978        } else {
9979            addr += 0x600;
9980        }
9981    } else if (pstate_read(env) & PSTATE_SP) {
9982        addr += 0x200;
9983    }
9984
9985    switch (cs->exception_index) {
9986    case EXCP_PREFETCH_ABORT:
9987    case EXCP_DATA_ABORT:
9988        env->cp15.far_el[new_el] = env->exception.vaddress;
9989        qemu_log_mask(CPU_LOG_INT, "...with FAR 0x%" PRIx64 "\n",
9990                      env->cp15.far_el[new_el]);
9991        /* fall through */
9992    case EXCP_BKPT:
9993    case EXCP_UDEF:
9994    case EXCP_SWI:
9995    case EXCP_HVC:
9996    case EXCP_HYP_TRAP:
9997    case EXCP_SMC:
9998        switch (syn_get_ec(env->exception.syndrome)) {
9999        case EC_ADVSIMDFPACCESSTRAP:
10000            /*
10001             * QEMU internal FP/SIMD syndromes from AArch32 include the
10002             * TA and coproc fields which are only exposed if the exception
10003             * is taken to AArch32 Hyp mode. Mask them out to get a valid
10004             * AArch64 format syndrome.
10005             */
10006            env->exception.syndrome &= ~MAKE_64BIT_MASK(0, 20);
10007            break;
10008        case EC_CP14RTTRAP:
10009        case EC_CP15RTTRAP:
10010        case EC_CP14DTTRAP:
10011            /*
10012             * For a trap on AArch32 MRC/MCR/LDC/STC the Rt field is currently
10013             * the raw register field from the insn; when taking this to
10014             * AArch64 we must convert it to the AArch64 view of the register
10015             * number. Notice that we read a 4-bit AArch32 register number and
10016             * write back a 5-bit AArch64 one.
10017             */
10018            rt = extract32(env->exception.syndrome, 5, 4);
10019            rt = aarch64_regnum(env, rt);
10020            env->exception.syndrome = deposit32(env->exception.syndrome,
10021                                                5, 5, rt);
10022            break;
10023        case EC_CP15RRTTRAP:
10024        case EC_CP14RRTTRAP:
10025            /* Similarly for MRRC/MCRR traps for Rt and Rt2 fields */
10026            rt = extract32(env->exception.syndrome, 5, 4);
10027            rt = aarch64_regnum(env, rt);
10028            env->exception.syndrome = deposit32(env->exception.syndrome,
10029                                                5, 5, rt);
10030            rt = extract32(env->exception.syndrome, 10, 4);
10031            rt = aarch64_regnum(env, rt);
10032            env->exception.syndrome = deposit32(env->exception.syndrome,
10033                                                10, 5, rt);
10034            break;
10035        }
10036        env->cp15.esr_el[new_el] = env->exception.syndrome;
10037        break;
10038    case EXCP_IRQ:
10039    case EXCP_VIRQ:
10040        addr += 0x80;
10041        break;
10042    case EXCP_FIQ:
10043    case EXCP_VFIQ:
10044        addr += 0x100;
10045        break;
10046    default:
10047        cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
10048    }
10049
10050    if (is_a64(env)) {
10051        old_mode = pstate_read(env);
10052        aarch64_save_sp(env, arm_current_el(env));
10053        env->elr_el[new_el] = env->pc;
10054    } else {
10055        old_mode = cpsr_read_for_spsr_elx(env);
10056        env->elr_el[new_el] = env->regs[15];
10057
10058        aarch64_sync_32_to_64(env);
10059
10060        env->condexec_bits = 0;
10061    }
10062    env->banked_spsr[aarch64_banked_spsr_index(new_el)] = old_mode;
10063
10064    qemu_log_mask(CPU_LOG_INT, "...with ELR 0x%" PRIx64 "\n",
10065                  env->elr_el[new_el]);
10066
10067    if (cpu_isar_feature(aa64_pan, cpu)) {
10068        /* The value of PSTATE.PAN is normally preserved, except when ... */
10069        new_mode |= old_mode & PSTATE_PAN;
10070        switch (new_el) {
10071        case 2:
10072            /* ... the target is EL2 with HCR_EL2.{E2H,TGE} == '11' ...  */
10073            if ((arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE))
10074                != (HCR_E2H | HCR_TGE)) {
10075                break;
10076            }
10077            /* fall through */
10078        case 1:
10079            /* ... the target is EL1 ... */
10080            /* ... and SCTLR_ELx.SPAN == 0, then set to 1.  */
10081            if ((env->cp15.sctlr_el[new_el] & SCTLR_SPAN) == 0) {
10082                new_mode |= PSTATE_PAN;
10083            }
10084            break;
10085        }
10086    }
10087    if (cpu_isar_feature(aa64_mte, cpu)) {
10088        new_mode |= PSTATE_TCO;
10089    }
10090
10091    if (cpu_isar_feature(aa64_ssbs, cpu)) {
10092        if (env->cp15.sctlr_el[new_el] & SCTLR_DSSBS_64) {
10093            new_mode |= PSTATE_SSBS;
10094        } else {
10095            new_mode &= ~PSTATE_SSBS;
10096        }
10097    }
10098
10099    pstate_write(env, PSTATE_DAIF | new_mode);
10100    env->aarch64 = 1;
10101    aarch64_restore_sp(env, new_el);
10102    helper_rebuild_hflags_a64(env, new_el);
10103
10104    env->pc = addr;
10105
10106    qemu_log_mask(CPU_LOG_INT, "...to EL%d PC 0x%" PRIx64 " PSTATE 0x%x\n",
10107                  new_el, env->pc, pstate_read(env));
10108}
10109
10110/*
10111 * Do semihosting call and set the appropriate return value. All the
10112 * permission and validity checks have been done at translate time.
10113 *
10114 * We only see semihosting exceptions in TCG only as they are not
10115 * trapped to the hypervisor in KVM.
10116 */
10117#ifdef CONFIG_TCG
10118static void handle_semihosting(CPUState *cs)
10119{
10120    ARMCPU *cpu = ARM_CPU(cs);
10121    CPUARMState *env = &cpu->env;
10122
10123    if (is_a64(env)) {
10124        qemu_log_mask(CPU_LOG_INT,
10125                      "...handling as semihosting call 0x%" PRIx64 "\n",
10126                      env->xregs[0]);
10127        env->xregs[0] = do_common_semihosting(cs);
10128        env->pc += 4;
10129    } else {
10130        qemu_log_mask(CPU_LOG_INT,
10131                      "...handling as semihosting call 0x%x\n",
10132                      env->regs[0]);
10133        env->regs[0] = do_common_semihosting(cs);
10134        env->regs[15] += env->thumb ? 2 : 4;
10135    }
10136}
10137#endif
10138
10139/* Handle a CPU exception for A and R profile CPUs.
10140 * Do any appropriate logging, handle PSCI calls, and then hand off
10141 * to the AArch64-entry or AArch32-entry function depending on the
10142 * target exception level's register width.
10143 *
10144 * Note: this is used for both TCG (as the do_interrupt tcg op),
10145 *       and KVM to re-inject guest debug exceptions, and to
10146 *       inject a Synchronous-External-Abort.
10147 */
10148void arm_cpu_do_interrupt(CPUState *cs)
10149{
10150    ARMCPU *cpu = ARM_CPU(cs);
10151    CPUARMState *env = &cpu->env;
10152    unsigned int new_el = env->exception.target_el;
10153
10154    assert(!arm_feature(env, ARM_FEATURE_M));
10155
10156    arm_log_exception(cs->exception_index);
10157    qemu_log_mask(CPU_LOG_INT, "...from EL%d to EL%d\n", arm_current_el(env),
10158                  new_el);
10159    if (qemu_loglevel_mask(CPU_LOG_INT)
10160        && !excp_is_internal(cs->exception_index)) {
10161        qemu_log_mask(CPU_LOG_INT, "...with ESR 0x%x/0x%" PRIx32 "\n",
10162                      syn_get_ec(env->exception.syndrome),
10163                      env->exception.syndrome);
10164    }
10165
10166    if (arm_is_psci_call(cpu, cs->exception_index)) {
10167        arm_handle_psci_call(cpu);
10168        qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n");
10169        return;
10170    }
10171
10172    /*
10173     * Semihosting semantics depend on the register width of the code
10174     * that caused the exception, not the target exception level, so
10175     * must be handled here.
10176     */
10177#ifdef CONFIG_TCG
10178    if (cs->exception_index == EXCP_SEMIHOST) {
10179        handle_semihosting(cs);
10180        return;
10181    }
10182#endif
10183
10184    /* Hooks may change global state so BQL should be held, also the
10185     * BQL needs to be held for any modification of
10186     * cs->interrupt_request.
10187     */
10188    g_assert(qemu_mutex_iothread_locked());
10189
10190    arm_call_pre_el_change_hook(cpu);
10191
10192    assert(!excp_is_internal(cs->exception_index));
10193    if (arm_el_is_aa64(env, new_el)) {
10194        arm_cpu_do_interrupt_aarch64(cs);
10195    } else {
10196        arm_cpu_do_interrupt_aarch32(cs);
10197    }
10198
10199    arm_call_el_change_hook(cpu);
10200
10201    if (!kvm_enabled()) {
10202        cs->interrupt_request |= CPU_INTERRUPT_EXITTB;
10203    }
10204}
10205#endif /* !CONFIG_USER_ONLY */
10206
10207uint64_t arm_sctlr(CPUARMState *env, int el)
10208{
10209    /* Only EL0 needs to be adjusted for EL1&0 or EL2&0. */
10210    if (el == 0) {
10211        ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, 0);
10212        el = (mmu_idx == ARMMMUIdx_E20_0 || mmu_idx == ARMMMUIdx_SE20_0)
10213             ? 2 : 1;
10214    }
10215    return env->cp15.sctlr_el[el];
10216}
10217
10218/* Return the SCTLR value which controls this address translation regime */
10219static inline uint64_t regime_sctlr(CPUARMState *env, ARMMMUIdx mmu_idx)
10220{
10221    return env->cp15.sctlr_el[regime_el(env, mmu_idx)];
10222}
10223
10224#ifndef CONFIG_USER_ONLY
10225
10226/* Return true if the specified stage of address translation is disabled */
10227static inline bool regime_translation_disabled(CPUARMState *env,
10228                                               ARMMMUIdx mmu_idx)
10229{
10230    uint64_t hcr_el2;
10231
10232    if (arm_feature(env, ARM_FEATURE_M)) {
10233        switch (env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)] &
10234                (R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK)) {
10235        case R_V7M_MPU_CTRL_ENABLE_MASK:
10236            /* Enabled, but not for HardFault and NMI */
10237            return mmu_idx & ARM_MMU_IDX_M_NEGPRI;
10238        case R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK:
10239            /* Enabled for all cases */
10240            return false;
10241        case 0:
10242        default:
10243            /* HFNMIENA set and ENABLE clear is UNPREDICTABLE, but
10244             * we warned about that in armv7m_nvic.c when the guest set it.
10245             */
10246            return true;
10247        }
10248    }
10249
10250    hcr_el2 = arm_hcr_el2_eff(env);
10251
10252    if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) {
10253        /* HCR.DC means HCR.VM behaves as 1 */
10254        return (hcr_el2 & (HCR_DC | HCR_VM)) == 0;
10255    }
10256
10257    if (hcr_el2 & HCR_TGE) {
10258        /* TGE means that NS EL0/1 act as if SCTLR_EL1.M is zero */
10259        if (!regime_is_secure(env, mmu_idx) && regime_el(env, mmu_idx) == 1) {
10260            return true;
10261        }
10262    }
10263
10264    if ((hcr_el2 & HCR_DC) && arm_mmu_idx_is_stage1_of_2(mmu_idx)) {
10265        /* HCR.DC means SCTLR_EL1.M behaves as 0 */
10266        return true;
10267    }
10268
10269    return (regime_sctlr(env, mmu_idx) & SCTLR_M) == 0;
10270}
10271
10272static inline bool regime_translation_big_endian(CPUARMState *env,
10273                                                 ARMMMUIdx mmu_idx)
10274{
10275    return (regime_sctlr(env, mmu_idx) & SCTLR_EE) != 0;
10276}
10277
10278/* Return the TTBR associated with this translation regime */
10279static inline uint64_t regime_ttbr(CPUARMState *env, ARMMMUIdx mmu_idx,
10280                                   int ttbrn)
10281{
10282    if (mmu_idx == ARMMMUIdx_Stage2) {
10283        return env->cp15.vttbr_el2;
10284    }
10285    if (mmu_idx == ARMMMUIdx_Stage2_S) {
10286        return env->cp15.vsttbr_el2;
10287    }
10288    if (ttbrn == 0) {
10289        return env->cp15.ttbr0_el[regime_el(env, mmu_idx)];
10290    } else {
10291        return env->cp15.ttbr1_el[regime_el(env, mmu_idx)];
10292    }
10293}
10294
10295#endif /* !CONFIG_USER_ONLY */
10296
10297/* Convert a possible stage1+2 MMU index into the appropriate
10298 * stage 1 MMU index
10299 */
10300static inline ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx)
10301{
10302    switch (mmu_idx) {
10303    case ARMMMUIdx_SE10_0:
10304        return ARMMMUIdx_Stage1_SE0;
10305    case ARMMMUIdx_SE10_1:
10306        return ARMMMUIdx_Stage1_SE1;
10307    case ARMMMUIdx_SE10_1_PAN:
10308        return ARMMMUIdx_Stage1_SE1_PAN;
10309    case ARMMMUIdx_E10_0:
10310        return ARMMMUIdx_Stage1_E0;
10311    case ARMMMUIdx_E10_1:
10312        return ARMMMUIdx_Stage1_E1;
10313    case ARMMMUIdx_E10_1_PAN:
10314        return ARMMMUIdx_Stage1_E1_PAN;
10315    default:
10316        return mmu_idx;
10317    }
10318}
10319
10320/* Return true if the translation regime is using LPAE format page tables */
10321static inline bool regime_using_lpae_format(CPUARMState *env,
10322                                            ARMMMUIdx mmu_idx)
10323{
10324    int el = regime_el(env, mmu_idx);
10325    if (el == 2 || arm_el_is_aa64(env, el)) {
10326        return true;
10327    }
10328    if (arm_feature(env, ARM_FEATURE_LPAE)
10329        && (regime_tcr(env, mmu_idx)->raw_tcr & TTBCR_EAE)) {
10330        return true;
10331    }
10332    return false;
10333}
10334
10335/* Returns true if the stage 1 translation regime is using LPAE format page
10336 * tables. Used when raising alignment exceptions, whose FSR changes depending
10337 * on whether the long or short descriptor format is in use. */
10338bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx)
10339{
10340    mmu_idx = stage_1_mmu_idx(mmu_idx);
10341
10342    return regime_using_lpae_format(env, mmu_idx);
10343}
10344
10345#ifndef CONFIG_USER_ONLY
10346static inline bool regime_is_user(CPUARMState *env, ARMMMUIdx mmu_idx)
10347{
10348    switch (mmu_idx) {
10349    case ARMMMUIdx_SE10_0:
10350    case ARMMMUIdx_E20_0:
10351    case ARMMMUIdx_SE20_0:
10352    case ARMMMUIdx_Stage1_E0:
10353    case ARMMMUIdx_Stage1_SE0:
10354    case ARMMMUIdx_MUser:
10355    case ARMMMUIdx_MSUser:
10356    case ARMMMUIdx_MUserNegPri:
10357    case ARMMMUIdx_MSUserNegPri:
10358        return true;
10359    default:
10360        return false;
10361    case ARMMMUIdx_E10_0:
10362    case ARMMMUIdx_E10_1:
10363    case ARMMMUIdx_E10_1_PAN:
10364        g_assert_not_reached();
10365    }
10366}
10367
10368/* Translate section/page access permissions to page
10369 * R/W protection flags
10370 *
10371 * @env:         CPUARMState
10372 * @mmu_idx:     MMU index indicating required translation regime
10373 * @ap:          The 3-bit access permissions (AP[2:0])
10374 * @domain_prot: The 2-bit domain access permissions
10375 */
10376static inline int ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx,
10377                                int ap, int domain_prot)
10378{
10379    bool is_user = regime_is_user(env, mmu_idx);
10380
10381    if (domain_prot == 3) {
10382        return PAGE_READ | PAGE_WRITE;
10383    }
10384
10385    switch (ap) {
10386    case 0:
10387        if (arm_feature(env, ARM_FEATURE_V7)) {
10388            return 0;
10389        }
10390        switch (regime_sctlr(env, mmu_idx) & (SCTLR_S | SCTLR_R)) {
10391        case SCTLR_S:
10392            return is_user ? 0 : PAGE_READ;
10393        case SCTLR_R:
10394            return PAGE_READ;
10395        default:
10396            return 0;
10397        }
10398    case 1:
10399        return is_user ? 0 : PAGE_READ | PAGE_WRITE;
10400    case 2:
10401        if (is_user) {
10402            return PAGE_READ;
10403        } else {
10404            return PAGE_READ | PAGE_WRITE;
10405        }
10406    case 3:
10407        return PAGE_READ | PAGE_WRITE;
10408    case 4: /* Reserved.  */
10409        return 0;
10410    case 5:
10411        return is_user ? 0 : PAGE_READ;
10412    case 6:
10413        return PAGE_READ;
10414    case 7:
10415        if (!arm_feature(env, ARM_FEATURE_V6K)) {
10416            return 0;
10417        }
10418        return PAGE_READ;
10419    default:
10420        g_assert_not_reached();
10421    }
10422}
10423
10424/* Translate section/page access permissions to page
10425 * R/W protection flags.
10426 *
10427 * @ap:      The 2-bit simple AP (AP[2:1])
10428 * @is_user: TRUE if accessing from PL0
10429 */
10430static inline int simple_ap_to_rw_prot_is_user(int ap, bool is_user)
10431{
10432    switch (ap) {
10433    case 0:
10434        return is_user ? 0 : PAGE_READ | PAGE_WRITE;
10435    case 1:
10436        return PAGE_READ | PAGE_WRITE;
10437    case 2:
10438        return is_user ? 0 : PAGE_READ;
10439    case 3:
10440        return PAGE_READ;
10441    default:
10442        g_assert_not_reached();
10443    }
10444}
10445
10446static inline int
10447simple_ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, int ap)
10448{
10449    return simple_ap_to_rw_prot_is_user(ap, regime_is_user(env, mmu_idx));
10450}
10451
10452/* Translate S2 section/page access permissions to protection flags
10453 *
10454 * @env:     CPUARMState
10455 * @s2ap:    The 2-bit stage2 access permissions (S2AP)
10456 * @xn:      XN (execute-never) bits
10457 * @s1_is_el0: true if this is S2 of an S1+2 walk for EL0
10458 */
10459static int get_S2prot(CPUARMState *env, int s2ap, int xn, bool s1_is_el0)
10460{
10461    int prot = 0;
10462
10463    if (s2ap & 1) {
10464        prot |= PAGE_READ;
10465    }
10466    if (s2ap & 2) {
10467        prot |= PAGE_WRITE;
10468    }
10469
10470    if (cpu_isar_feature(any_tts2uxn, env_archcpu(env))) {
10471        switch (xn) {
10472        case 0:
10473            prot |= PAGE_EXEC;
10474            break;
10475        case 1:
10476            if (s1_is_el0) {
10477                prot |= PAGE_EXEC;
10478            }
10479            break;
10480        case 2:
10481            break;
10482        case 3:
10483            if (!s1_is_el0) {
10484                prot |= PAGE_EXEC;
10485            }
10486            break;
10487        default:
10488            g_assert_not_reached();
10489        }
10490    } else {
10491        if (!extract32(xn, 1, 1)) {
10492            if (arm_el_is_aa64(env, 2) || prot & PAGE_READ) {
10493                prot |= PAGE_EXEC;
10494            }
10495        }
10496    }
10497    return prot;
10498}
10499
10500/* Translate section/page access permissions to protection flags
10501 *
10502 * @env:     CPUARMState
10503 * @mmu_idx: MMU index indicating required translation regime
10504 * @is_aa64: TRUE if AArch64
10505 * @ap:      The 2-bit simple AP (AP[2:1])
10506 * @ns:      NS (non-secure) bit
10507 * @xn:      XN (execute-never) bit
10508 * @pxn:     PXN (privileged execute-never) bit
10509 */
10510static int get_S1prot(CPUARMState *env, ARMMMUIdx mmu_idx, bool is_aa64,
10511                      int ap, int ns, int xn, int pxn)
10512{
10513    bool is_user = regime_is_user(env, mmu_idx);
10514    int prot_rw, user_rw;
10515    bool have_wxn;
10516    int wxn = 0;
10517
10518    assert(mmu_idx != ARMMMUIdx_Stage2);
10519    assert(mmu_idx != ARMMMUIdx_Stage2_S);
10520
10521    user_rw = simple_ap_to_rw_prot_is_user(ap, true);
10522    if (is_user) {
10523        prot_rw = user_rw;
10524    } else {
10525        if (user_rw && regime_is_pan(env, mmu_idx)) {
10526            /* PAN forbids data accesses but doesn't affect insn fetch */
10527            prot_rw = 0;
10528        } else {
10529            prot_rw = simple_ap_to_rw_prot_is_user(ap, false);
10530        }
10531    }
10532
10533    if (ns && arm_is_secure(env) && (env->cp15.scr_el3 & SCR_SIF)) {
10534        return prot_rw;
10535    }
10536
10537    /* TODO have_wxn should be replaced with
10538     *   ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2)
10539     * when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE
10540     * compatible processors have EL2, which is required for [U]WXN.
10541     */
10542    have_wxn = arm_feature(env, ARM_FEATURE_LPAE);
10543
10544    if (have_wxn) {
10545        wxn = regime_sctlr(env, mmu_idx) & SCTLR_WXN;
10546    }
10547
10548    if (is_aa64) {
10549        if (regime_has_2_ranges(mmu_idx) && !is_user) {
10550            xn = pxn || (user_rw & PAGE_WRITE);
10551        }
10552    } else if (arm_feature(env, ARM_FEATURE_V7)) {
10553        switch (regime_el(env, mmu_idx)) {
10554        case 1:
10555        case 3:
10556            if (is_user) {
10557                xn = xn || !(user_rw & PAGE_READ);
10558            } else {
10559                int uwxn = 0;
10560                if (have_wxn) {
10561                    uwxn = regime_sctlr(env, mmu_idx) & SCTLR_UWXN;
10562                }
10563                xn = xn || !(prot_rw & PAGE_READ) || pxn ||
10564                     (uwxn && (user_rw & PAGE_WRITE));
10565            }
10566            break;
10567        case 2:
10568            break;
10569        }
10570    } else {
10571        xn = wxn = 0;
10572    }
10573
10574    if (xn || (wxn && (prot_rw & PAGE_WRITE))) {
10575        return prot_rw;
10576    }
10577    return prot_rw | PAGE_EXEC;
10578}
10579
10580static bool get_level1_table_address(CPUARMState *env, ARMMMUIdx mmu_idx,
10581                                     uint32_t *table, uint32_t address)
10582{
10583    /* Note that we can only get here for an AArch32 PL0/PL1 lookup */
10584    TCR *tcr = regime_tcr(env, mmu_idx);
10585
10586    if (address & tcr->mask) {
10587        if (tcr->raw_tcr & TTBCR_PD1) {
10588            /* Translation table walk disabled for TTBR1 */
10589            return false;
10590        }
10591        *table = regime_ttbr(env, mmu_idx, 1) & 0xffffc000;
10592    } else {
10593        if (tcr->raw_tcr & TTBCR_PD0) {
10594            /* Translation table walk disabled for TTBR0 */
10595            return false;
10596        }
10597        *table = regime_ttbr(env, mmu_idx, 0) & tcr->base_mask;
10598    }
10599    *table |= (address >> 18) & 0x3ffc;
10600    return true;
10601}
10602
10603/* Translate a S1 pagetable walk through S2 if needed.  */
10604static hwaddr S1_ptw_translate(CPUARMState *env, ARMMMUIdx mmu_idx,
10605                               hwaddr addr, bool *is_secure,
10606                               ARMMMUFaultInfo *fi)
10607{
10608    if (arm_mmu_idx_is_stage1_of_2(mmu_idx) &&
10609        !regime_translation_disabled(env, ARMMMUIdx_Stage2)) {
10610        target_ulong s2size;
10611        hwaddr s2pa;
10612        int s2prot;
10613        int ret;
10614        ARMMMUIdx s2_mmu_idx = *is_secure ? ARMMMUIdx_Stage2_S
10615                                          : ARMMMUIdx_Stage2;
10616        ARMCacheAttrs cacheattrs = {};
10617        MemTxAttrs txattrs = {};
10618
10619        ret = get_phys_addr_lpae(env, addr, MMU_DATA_LOAD, s2_mmu_idx, false,
10620                                 &s2pa, &txattrs, &s2prot, &s2size, fi,
10621                                 &cacheattrs);
10622        if (ret) {
10623            assert(fi->type != ARMFault_None);
10624            fi->s2addr = addr;
10625            fi->stage2 = true;
10626            fi->s1ptw = true;
10627            fi->s1ns = !*is_secure;
10628            return ~0;
10629        }
10630        if ((arm_hcr_el2_eff(env) & HCR_PTW) &&
10631            (cacheattrs.attrs & 0xf0) == 0) {
10632            /*
10633             * PTW set and S1 walk touched S2 Device memory:
10634             * generate Permission fault.
10635             */
10636            fi->type = ARMFault_Permission;
10637            fi->s2addr = addr;
10638            fi->stage2 = true;
10639            fi->s1ptw = true;
10640            fi->s1ns = !*is_secure;
10641            return ~0;
10642        }
10643
10644        if (arm_is_secure_below_el3(env)) {
10645            /* Check if page table walk is to secure or non-secure PA space. */
10646            if (*is_secure) {
10647                *is_secure = !(env->cp15.vstcr_el2.raw_tcr & VSTCR_SW);
10648            } else {
10649                *is_secure = !(env->cp15.vtcr_el2.raw_tcr & VTCR_NSW);
10650            }
10651        } else {
10652            assert(!*is_secure);
10653        }
10654
10655        addr = s2pa;
10656    }
10657    return addr;
10658}
10659
10660/* All loads done in the course of a page table walk go through here. */
10661static uint32_t arm_ldl_ptw(CPUState *cs, hwaddr addr, bool is_secure,
10662                            ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi)
10663{
10664    ARMCPU *cpu = ARM_CPU(cs);
10665    CPUARMState *env = &cpu->env;
10666    MemTxAttrs attrs = {};
10667    MemTxResult result = MEMTX_OK;
10668    AddressSpace *as;
10669    uint32_t data;
10670
10671    addr = S1_ptw_translate(env, mmu_idx, addr, &is_secure, fi);
10672    attrs.secure = is_secure;
10673    as = arm_addressspace(cs, attrs);
10674    if (fi->s1ptw) {
10675        return 0;
10676    }
10677    if (regime_translation_big_endian(env, mmu_idx)) {
10678        data = address_space_ldl_be(as, addr, attrs, &result);
10679    } else {
10680        data = address_space_ldl_le(as, addr, attrs, &result);
10681    }
10682    if (result == MEMTX_OK) {
10683        return data;
10684    }
10685    fi->type = ARMFault_SyncExternalOnWalk;
10686    fi->ea = arm_extabort_type(result);
10687    return 0;
10688}
10689
10690static uint64_t arm_ldq_ptw(CPUState *cs, hwaddr addr, bool is_secure,
10691                            ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi)
10692{
10693    ARMCPU *cpu = ARM_CPU(cs);
10694    CPUARMState *env = &cpu->env;
10695    MemTxAttrs attrs = {};
10696    MemTxResult result = MEMTX_OK;
10697    AddressSpace *as;
10698    uint64_t data;
10699
10700    addr = S1_ptw_translate(env, mmu_idx, addr, &is_secure, fi);
10701    attrs.secure = is_secure;
10702    as = arm_addressspace(cs, attrs);
10703    if (fi->s1ptw) {
10704        return 0;
10705    }
10706    if (regime_translation_big_endian(env, mmu_idx)) {
10707        data = address_space_ldq_be(as, addr, attrs, &result);
10708    } else {
10709        data = address_space_ldq_le(as, addr, attrs, &result);
10710    }
10711    if (result == MEMTX_OK) {
10712        return data;
10713    }
10714    fi->type = ARMFault_SyncExternalOnWalk;
10715    fi->ea = arm_extabort_type(result);
10716    return 0;
10717}
10718
10719static bool get_phys_addr_v5(CPUARMState *env, uint32_t address,
10720                             MMUAccessType access_type, ARMMMUIdx mmu_idx,
10721                             hwaddr *phys_ptr, int *prot,
10722                             target_ulong *page_size,
10723                             ARMMMUFaultInfo *fi)
10724{
10725    CPUState *cs = env_cpu(env);
10726    int level = 1;
10727    uint32_t table;
10728    uint32_t desc;
10729    int type;
10730    int ap;
10731    int domain = 0;
10732    int domain_prot;
10733    hwaddr phys_addr;
10734    uint32_t dacr;
10735
10736    /* Pagetable walk.  */
10737    /* Lookup l1 descriptor.  */
10738    if (!get_level1_table_address(env, mmu_idx, &table, address)) {
10739        /* Section translation fault if page walk is disabled by PD0 or PD1 */
10740        fi->type = ARMFault_Translation;
10741        goto do_fault;
10742    }
10743    desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
10744                       mmu_idx, fi);
10745    if (fi->type != ARMFault_None) {
10746        goto do_fault;
10747    }
10748    type = (desc & 3);
10749    domain = (desc >> 5) & 0x0f;
10750    if (regime_el(env, mmu_idx) == 1) {
10751        dacr = env->cp15.dacr_ns;
10752    } else {
10753        dacr = env->cp15.dacr_s;
10754    }
10755    domain_prot = (dacr >> (domain * 2)) & 3;
10756    if (type == 0) {
10757        /* Section translation fault.  */
10758        fi->type = ARMFault_Translation;
10759        goto do_fault;
10760    }
10761    if (type != 2) {
10762        level = 2;
10763    }
10764    if (domain_prot == 0 || domain_prot == 2) {
10765        fi->type = ARMFault_Domain;
10766        goto do_fault;
10767    }
10768    if (type == 2) {
10769        /* 1Mb section.  */
10770        phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
10771        ap = (desc >> 10) & 3;
10772        *page_size = 1024 * 1024;
10773    } else {
10774        /* Lookup l2 entry.  */
10775        if (type == 1) {
10776            /* Coarse pagetable.  */
10777            table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
10778        } else {
10779            /* Fine pagetable.  */
10780            table = (desc & 0xfffff000) | ((address >> 8) & 0xffc);
10781        }
10782        desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
10783                           mmu_idx, fi);
10784        if (fi->type != ARMFault_None) {
10785            goto do_fault;
10786        }
10787        switch (desc & 3) {
10788        case 0: /* Page translation fault.  */
10789            fi->type = ARMFault_Translation;
10790            goto do_fault;
10791        case 1: /* 64k page.  */
10792            phys_addr = (desc & 0xffff0000) | (address & 0xffff);
10793            ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
10794            *page_size = 0x10000;
10795            break;
10796        case 2: /* 4k page.  */
10797            phys_addr = (desc & 0xfffff000) | (address & 0xfff);
10798            ap = (desc >> (4 + ((address >> 9) & 6))) & 3;
10799            *page_size = 0x1000;
10800            break;
10801        case 3: /* 1k page, or ARMv6/XScale "extended small (4k) page" */
10802            if (type == 1) {
10803                /* ARMv6/XScale extended small page format */
10804                if (arm_feature(env, ARM_FEATURE_XSCALE)
10805                    || arm_feature(env, ARM_FEATURE_V6)) {
10806                    phys_addr = (desc & 0xfffff000) | (address & 0xfff);
10807                    *page_size = 0x1000;
10808                } else {
10809                    /* UNPREDICTABLE in ARMv5; we choose to take a
10810                     * page translation fault.
10811                     */
10812                    fi->type = ARMFault_Translation;
10813                    goto do_fault;
10814                }
10815            } else {
10816                phys_addr = (desc & 0xfffffc00) | (address & 0x3ff);
10817                *page_size = 0x400;
10818            }
10819            ap = (desc >> 4) & 3;
10820            break;
10821        default:
10822            /* Never happens, but compiler isn't smart enough to tell.  */
10823            abort();
10824        }
10825    }
10826    *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
10827    *prot |= *prot ? PAGE_EXEC : 0;
10828    if (!(*prot & (1 << access_type))) {
10829        /* Access permission fault.  */
10830        fi->type = ARMFault_Permission;
10831        goto do_fault;
10832    }
10833    *phys_ptr = phys_addr;
10834    return false;
10835do_fault:
10836    fi->domain = domain;
10837    fi->level = level;
10838    return true;
10839}
10840
10841static bool get_phys_addr_v6(CPUARMState *env, uint32_t address,
10842                             MMUAccessType access_type, ARMMMUIdx mmu_idx,
10843                             hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
10844                             target_ulong *page_size, ARMMMUFaultInfo *fi)
10845{
10846    CPUState *cs = env_cpu(env);
10847    ARMCPU *cpu = env_archcpu(env);
10848    int level = 1;
10849    uint32_t table;
10850    uint32_t desc;
10851    uint32_t xn;
10852    uint32_t pxn = 0;
10853    int type;
10854    int ap;
10855    int domain = 0;
10856    int domain_prot;
10857    hwaddr phys_addr;
10858    uint32_t dacr;
10859    bool ns;
10860
10861    /* Pagetable walk.  */
10862    /* Lookup l1 descriptor.  */
10863    if (!get_level1_table_address(env, mmu_idx, &table, address)) {
10864        /* Section translation fault if page walk is disabled by PD0 or PD1 */
10865        fi->type = ARMFault_Translation;
10866        goto do_fault;
10867    }
10868    desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
10869                       mmu_idx, fi);
10870    if (fi->type != ARMFault_None) {
10871        goto do_fault;
10872    }
10873    type = (desc & 3);
10874    if (type == 0 || (type == 3 && !cpu_isar_feature(aa32_pxn, cpu))) {
10875        /* Section translation fault, or attempt to use the encoding
10876         * which is Reserved on implementations without PXN.
10877         */
10878        fi->type = ARMFault_Translation;
10879        goto do_fault;
10880    }
10881    if ((type == 1) || !(desc & (1 << 18))) {
10882        /* Page or Section.  */
10883        domain = (desc >> 5) & 0x0f;
10884    }
10885    if (regime_el(env, mmu_idx) == 1) {
10886        dacr = env->cp15.dacr_ns;
10887    } else {
10888        dacr = env->cp15.dacr_s;
10889    }
10890    if (type == 1) {
10891        level = 2;
10892    }
10893    domain_prot = (dacr >> (domain * 2)) & 3;
10894    if (domain_prot == 0 || domain_prot == 2) {
10895        /* Section or Page domain fault */
10896        fi->type = ARMFault_Domain;
10897        goto do_fault;
10898    }
10899    if (type != 1) {
10900        if (desc & (1 << 18)) {
10901            /* Supersection.  */
10902            phys_addr = (desc & 0xff000000) | (address & 0x00ffffff);
10903            phys_addr |= (uint64_t)extract32(desc, 20, 4) << 32;
10904            phys_addr |= (uint64_t)extract32(desc, 5, 4) << 36;
10905            *page_size = 0x1000000;
10906        } else {
10907            /* Section.  */
10908            phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
10909            *page_size = 0x100000;
10910        }
10911        ap = ((desc >> 10) & 3) | ((desc >> 13) & 4);
10912        xn = desc & (1 << 4);
10913        pxn = desc & 1;
10914        ns = extract32(desc, 19, 1);
10915    } else {
10916        if (cpu_isar_feature(aa32_pxn, cpu)) {
10917            pxn = (desc >> 2) & 1;
10918        }
10919        ns = extract32(desc, 3, 1);
10920        /* Lookup l2 entry.  */
10921        table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
10922        desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
10923                           mmu_idx, fi);
10924        if (fi->type != ARMFault_None) {
10925            goto do_fault;
10926        }
10927        ap = ((desc >> 4) & 3) | ((desc >> 7) & 4);
10928        switch (desc & 3) {
10929        case 0: /* Page translation fault.  */
10930            fi->type = ARMFault_Translation;
10931            goto do_fault;
10932        case 1: /* 64k page.  */
10933            phys_addr = (desc & 0xffff0000) | (address & 0xffff);
10934            xn = desc & (1 << 15);
10935            *page_size = 0x10000;
10936            break;
10937        case 2: case 3: /* 4k page.  */
10938            phys_addr = (desc & 0xfffff000) | (address & 0xfff);
10939            xn = desc & 1;
10940            *page_size = 0x1000;
10941            break;
10942        default:
10943            /* Never happens, but compiler isn't smart enough to tell.  */
10944            abort();
10945        }
10946    }
10947    if (domain_prot == 3) {
10948        *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
10949    } else {
10950        if (pxn && !regime_is_user(env, mmu_idx)) {
10951            xn = 1;
10952        }
10953        if (xn && access_type == MMU_INST_FETCH) {
10954            fi->type = ARMFault_Permission;
10955            goto do_fault;
10956        }
10957
10958        if (arm_feature(env, ARM_FEATURE_V6K) &&
10959                (regime_sctlr(env, mmu_idx) & SCTLR_AFE)) {
10960            /* The simplified model uses AP[0] as an access control bit.  */
10961            if ((ap & 1) == 0) {
10962                /* Access flag fault.  */
10963                fi->type = ARMFault_AccessFlag;
10964                goto do_fault;
10965            }
10966            *prot = simple_ap_to_rw_prot(env, mmu_idx, ap >> 1);
10967        } else {
10968            *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
10969        }
10970        if (*prot && !xn) {
10971            *prot |= PAGE_EXEC;
10972        }
10973        if (!(*prot & (1 << access_type))) {
10974            /* Access permission fault.  */
10975            fi->type = ARMFault_Permission;
10976            goto do_fault;
10977        }
10978    }
10979    if (ns) {
10980        /* The NS bit will (as required by the architecture) have no effect if
10981         * the CPU doesn't support TZ or this is a non-secure translation
10982         * regime, because the attribute will already be non-secure.
10983         */
10984        attrs->secure = false;
10985    }
10986    *phys_ptr = phys_addr;
10987    return false;
10988do_fault:
10989    fi->domain = domain;
10990    fi->level = level;
10991    return true;
10992}
10993
10994/*
10995 * check_s2_mmu_setup
10996 * @cpu:        ARMCPU
10997 * @is_aa64:    True if the translation regime is in AArch64 state
10998 * @startlevel: Suggested starting level
10999 * @inputsize:  Bitsize of IPAs
11000 * @stride:     Page-table stride (See the ARM ARM)
11001 *
11002 * Returns true if the suggested S2 translation parameters are OK and
11003 * false otherwise.
11004 */
11005static bool check_s2_mmu_setup(ARMCPU *cpu, bool is_aa64, int level,
11006                               int inputsize, int stride)
11007{
11008    const int grainsize = stride + 3;
11009    int startsizecheck;
11010
11011    /* Negative levels are never allowed.  */
11012    if (level < 0) {
11013        return false;
11014    }
11015
11016    startsizecheck = inputsize - ((3 - level) * stride + grainsize);
11017    if (startsizecheck < 1 || startsizecheck > stride + 4) {
11018        return false;
11019    }
11020
11021    if (is_aa64) {
11022        CPUARMState *env = &cpu->env;
11023        unsigned int pamax = arm_pamax(cpu);
11024
11025        switch (stride) {
11026        case 13: /* 64KB Pages.  */
11027            if (level == 0 || (level == 1 && pamax <= 42)) {
11028                return false;
11029            }
11030            break;
11031        case 11: /* 16KB Pages.  */
11032            if (level == 0 || (level == 1 && pamax <= 40)) {
11033                return false;
11034            }
11035            break;
11036        case 9: /* 4KB Pages.  */
11037            if (level == 0 && pamax <= 42) {
11038                return false;
11039            }
11040            break;
11041        default:
11042            g_assert_not_reached();
11043        }
11044
11045        /* Inputsize checks.  */
11046        if (inputsize > pamax &&
11047            (arm_el_is_aa64(env, 1) || inputsize > 40)) {
11048            /* This is CONSTRAINED UNPREDICTABLE and we choose to fault.  */
11049            return false;
11050        }
11051    } else {
11052        /* AArch32 only supports 4KB pages. Assert on that.  */
11053        assert(stride == 9);
11054
11055        if (level == 0) {
11056            return false;
11057        }
11058    }
11059    return true;
11060}
11061
11062/* Translate from the 4-bit stage 2 representation of
11063 * memory attributes (without cache-allocation hints) to
11064 * the 8-bit representation of the stage 1 MAIR registers
11065 * (which includes allocation hints).
11066 *
11067 * ref: shared/translation/attrs/S2AttrDecode()
11068 *      .../S2ConvertAttrsHints()
11069 */
11070static uint8_t convert_stage2_attrs(CPUARMState *env, uint8_t s2attrs)
11071{
11072    uint8_t hiattr = extract32(s2attrs, 2, 2);
11073    uint8_t loattr = extract32(s2attrs, 0, 2);
11074    uint8_t hihint = 0, lohint = 0;
11075
11076    if (hiattr != 0) { /* normal memory */
11077        if (arm_hcr_el2_eff(env) & HCR_CD) { /* cache disabled */
11078            hiattr = loattr = 1; /* non-cacheable */
11079        } else {
11080            if (hiattr != 1) { /* Write-through or write-back */
11081                hihint = 3; /* RW allocate */
11082            }
11083            if (loattr != 1) { /* Write-through or write-back */
11084                lohint = 3; /* RW allocate */
11085            }
11086        }
11087    }
11088
11089    return (hiattr << 6) | (hihint << 4) | (loattr << 2) | lohint;
11090}
11091#endif /* !CONFIG_USER_ONLY */
11092
11093static int aa64_va_parameter_tbi(uint64_t tcr, ARMMMUIdx mmu_idx)
11094{
11095    if (regime_has_2_ranges(mmu_idx)) {
11096        return extract64(tcr, 37, 2);
11097    } else if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) {
11098        return 0; /* VTCR_EL2 */
11099    } else {
11100        /* Replicate the single TBI bit so we always have 2 bits.  */
11101        return extract32(tcr, 20, 1) * 3;
11102    }
11103}
11104
11105static int aa64_va_parameter_tbid(uint64_t tcr, ARMMMUIdx mmu_idx)
11106{
11107    if (regime_has_2_ranges(mmu_idx)) {
11108        return extract64(tcr, 51, 2);
11109    } else if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) {
11110        return 0; /* VTCR_EL2 */
11111    } else {
11112        /* Replicate the single TBID bit so we always have 2 bits.  */
11113        return extract32(tcr, 29, 1) * 3;
11114    }
11115}
11116
11117static int aa64_va_parameter_tcma(uint64_t tcr, ARMMMUIdx mmu_idx)
11118{
11119    if (regime_has_2_ranges(mmu_idx)) {
11120        return extract64(tcr, 57, 2);
11121    } else {
11122        /* Replicate the single TCMA bit so we always have 2 bits.  */
11123        return extract32(tcr, 30, 1) * 3;
11124    }
11125}
11126
11127ARMVAParameters aa64_va_parameters(CPUARMState *env, uint64_t va,
11128                                   ARMMMUIdx mmu_idx, bool data)
11129{
11130    uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr;
11131    bool epd, hpd, using16k, using64k;
11132    int select, tsz, tbi, max_tsz;
11133
11134    if (!regime_has_2_ranges(mmu_idx)) {
11135        select = 0;
11136        tsz = extract32(tcr, 0, 6);
11137        using64k = extract32(tcr, 14, 1);
11138        using16k = extract32(tcr, 15, 1);
11139        if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) {
11140            /* VTCR_EL2 */
11141            hpd = false;
11142        } else {
11143            hpd = extract32(tcr, 24, 1);
11144        }
11145        epd = false;
11146    } else {
11147        /*
11148         * Bit 55 is always between the two regions, and is canonical for
11149         * determining if address tagging is enabled.
11150         */
11151        select = extract64(va, 55, 1);
11152        if (!select) {
11153            tsz = extract32(tcr, 0, 6);
11154            epd = extract32(tcr, 7, 1);
11155            using64k = extract32(tcr, 14, 1);
11156            using16k = extract32(tcr, 15, 1);
11157            hpd = extract64(tcr, 41, 1);
11158        } else {
11159            int tg = extract32(tcr, 30, 2);
11160            using16k = tg == 1;
11161            using64k = tg == 3;
11162            tsz = extract32(tcr, 16, 6);
11163            epd = extract32(tcr, 23, 1);
11164            hpd = extract64(tcr, 42, 1);
11165        }
11166    }
11167
11168    if (cpu_isar_feature(aa64_st, env_archcpu(env))) {
11169        max_tsz = 48 - using64k;
11170    } else {
11171        max_tsz = 39;
11172    }
11173
11174    tsz = MIN(tsz, max_tsz);
11175    tsz = MAX(tsz, 16);  /* TODO: ARMv8.2-LVA  */
11176
11177    /* Present TBI as a composite with TBID.  */
11178    tbi = aa64_va_parameter_tbi(tcr, mmu_idx);
11179    if (!data) {
11180        tbi &= ~aa64_va_parameter_tbid(tcr, mmu_idx);
11181    }
11182    tbi = (tbi >> select) & 1;
11183
11184    return (ARMVAParameters) {
11185        .tsz = tsz,
11186        .select = select,
11187        .tbi = tbi,
11188        .epd = epd,
11189        .hpd = hpd,
11190        .using16k = using16k,
11191        .using64k = using64k,
11192    };
11193}
11194
11195#ifndef CONFIG_USER_ONLY
11196static ARMVAParameters aa32_va_parameters(CPUARMState *env, uint32_t va,
11197                                          ARMMMUIdx mmu_idx)
11198{
11199    uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr;
11200    uint32_t el = regime_el(env, mmu_idx);
11201    int select, tsz;
11202    bool epd, hpd;
11203
11204    assert(mmu_idx != ARMMMUIdx_Stage2_S);
11205
11206    if (mmu_idx == ARMMMUIdx_Stage2) {
11207        /* VTCR */
11208        bool sext = extract32(tcr, 4, 1);
11209        bool sign = extract32(tcr, 3, 1);
11210
11211        /*
11212         * If the sign-extend bit is not the same as t0sz[3], the result
11213         * is unpredictable. Flag this as a guest error.
11214         */
11215        if (sign != sext) {
11216            qemu_log_mask(LOG_GUEST_ERROR,
11217                          "AArch32: VTCR.S / VTCR.T0SZ[3] mismatch\n");
11218        }
11219        tsz = sextract32(tcr, 0, 4) + 8;
11220        select = 0;
11221        hpd = false;
11222        epd = false;
11223    } else if (el == 2) {
11224        /* HTCR */
11225        tsz = extract32(tcr, 0, 3);
11226        select = 0;
11227        hpd = extract64(tcr, 24, 1);
11228        epd = false;
11229    } else {
11230        int t0sz = extract32(tcr, 0, 3);
11231        int t1sz = extract32(tcr, 16, 3);
11232
11233        if (t1sz == 0) {
11234            select = va > (0xffffffffu >> t0sz);
11235        } else {
11236            /* Note that we will detect errors later.  */
11237            select = va >= ~(0xffffffffu >> t1sz);
11238        }
11239        if (!select) {
11240            tsz = t0sz;
11241            epd = extract32(tcr, 7, 1);
11242            hpd = extract64(tcr, 41, 1);
11243        } else {
11244            tsz = t1sz;
11245            epd = extract32(tcr, 23, 1);
11246            hpd = extract64(tcr, 42, 1);
11247        }
11248        /* For aarch32, hpd0 is not enabled without t2e as well.  */
11249        hpd &= extract32(tcr, 6, 1);
11250    }
11251
11252    return (ARMVAParameters) {
11253        .tsz = tsz,
11254        .select = select,
11255        .epd = epd,
11256        .hpd = hpd,
11257    };
11258}
11259
11260/**
11261 * get_phys_addr_lpae: perform one stage of page table walk, LPAE format
11262 *
11263 * Returns false if the translation was successful. Otherwise, phys_ptr, attrs,
11264 * prot and page_size may not be filled in, and the populated fsr value provides
11265 * information on why the translation aborted, in the format of a long-format
11266 * DFSR/IFSR fault register, with the following caveats:
11267 *  * the WnR bit is never set (the caller must do this).
11268 *
11269 * @env: CPUARMState
11270 * @address: virtual address to get physical address for
11271 * @access_type: MMU_DATA_LOAD, MMU_DATA_STORE or MMU_INST_FETCH
11272 * @mmu_idx: MMU index indicating required translation regime
11273 * @s1_is_el0: if @mmu_idx is ARMMMUIdx_Stage2 (so this is a stage 2 page table
11274 *             walk), must be true if this is stage 2 of a stage 1+2 walk for an
11275 *             EL0 access). If @mmu_idx is anything else, @s1_is_el0 is ignored.
11276 * @phys_ptr: set to the physical address corresponding to the virtual address
11277 * @attrs: set to the memory transaction attributes to use
11278 * @prot: set to the permissions for the page containing phys_ptr
11279 * @page_size_ptr: set to the size of the page containing phys_ptr
11280 * @fi: set to fault info if the translation fails
11281 * @cacheattrs: (if non-NULL) set to the cacheability/shareability attributes
11282 */
11283static bool get_phys_addr_lpae(CPUARMState *env, uint64_t address,
11284                               MMUAccessType access_type, ARMMMUIdx mmu_idx,
11285                               bool s1_is_el0,
11286                               hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot,
11287                               target_ulong *page_size_ptr,
11288                               ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs)
11289{
11290    ARMCPU *cpu = env_archcpu(env);
11291    CPUState *cs = CPU(cpu);
11292    /* Read an LPAE long-descriptor translation table. */
11293    ARMFaultType fault_type = ARMFault_Translation;
11294    uint32_t level;
11295    ARMVAParameters param;
11296    uint64_t ttbr;
11297    hwaddr descaddr, indexmask, indexmask_grainsize;
11298    uint32_t tableattrs;
11299    target_ulong page_size;
11300    uint32_t attrs;
11301    int32_t stride;
11302    int addrsize, inputsize;
11303    TCR *tcr = regime_tcr(env, mmu_idx);
11304    int ap, ns, xn, pxn;
11305    uint32_t el = regime_el(env, mmu_idx);
11306    uint64_t descaddrmask;
11307    bool aarch64 = arm_el_is_aa64(env, el);
11308    bool guarded = false;
11309
11310    /* TODO: This code does not support shareability levels. */
11311    if (aarch64) {
11312        param = aa64_va_parameters(env, address, mmu_idx,
11313                                   access_type != MMU_INST_FETCH);
11314        level = 0;
11315        addrsize = 64 - 8 * param.tbi;
11316        inputsize = 64 - param.tsz;
11317    } else {
11318        param = aa32_va_parameters(env, address, mmu_idx);
11319        level = 1;
11320        addrsize = (mmu_idx == ARMMMUIdx_Stage2 ? 40 : 32);
11321        inputsize = addrsize - param.tsz;
11322    }
11323
11324    /*
11325     * We determined the region when collecting the parameters, but we
11326     * have not yet validated that the address is valid for the region.
11327     * Extract the top bits and verify that they all match select.
11328     *
11329     * For aa32, if inputsize == addrsize, then we have selected the
11330     * region by exclusion in aa32_va_parameters and there is no more
11331     * validation to do here.
11332     */
11333    if (inputsize < addrsize) {
11334        target_ulong top_bits = sextract64(address, inputsize,
11335                                           addrsize - inputsize);
11336        if (-top_bits != param.select) {
11337            /* The gap between the two regions is a Translation fault */
11338            fault_type = ARMFault_Translation;
11339            goto do_fault;
11340        }
11341    }
11342
11343    if (param.using64k) {
11344        stride = 13;
11345    } else if (param.using16k) {
11346        stride = 11;
11347    } else {
11348        stride = 9;
11349    }
11350
11351    /* Note that QEMU ignores shareability and cacheability attributes,
11352     * so we don't need to do anything with the SH, ORGN, IRGN fields
11353     * in the TTBCR.  Similarly, TTBCR:A1 selects whether we get the
11354     * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently
11355     * implement any ASID-like capability so we can ignore it (instead
11356     * we will always flush the TLB any time the ASID is changed).
11357     */
11358    ttbr = regime_ttbr(env, mmu_idx, param.select);
11359
11360    /* Here we should have set up all the parameters for the translation:
11361     * inputsize, ttbr, epd, stride, tbi
11362     */
11363
11364    if (param.epd) {
11365        /* Translation table walk disabled => Translation fault on TLB miss
11366         * Note: This is always 0 on 64-bit EL2 and EL3.
11367         */
11368        goto do_fault;
11369    }
11370
11371    if (mmu_idx != ARMMMUIdx_Stage2 && mmu_idx != ARMMMUIdx_Stage2_S) {
11372        /* The starting level depends on the virtual address size (which can
11373         * be up to 48 bits) and the translation granule size. It indicates
11374         * the number of strides (stride bits at a time) needed to
11375         * consume the bits of the input address. In the pseudocode this is:
11376         *  level = 4 - RoundUp((inputsize - grainsize) / stride)
11377         * where their 'inputsize' is our 'inputsize', 'grainsize' is
11378         * our 'stride + 3' and 'stride' is our 'stride'.
11379         * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying:
11380         * = 4 - (inputsize - stride - 3 + stride - 1) / stride
11381         * = 4 - (inputsize - 4) / stride;
11382         */
11383        level = 4 - (inputsize - 4) / stride;
11384    } else {
11385        /* For stage 2 translations the starting level is specified by the
11386         * VTCR_EL2.SL0 field (whose interpretation depends on the page size)
11387         */
11388        uint32_t sl0 = extract32(tcr->raw_tcr, 6, 2);
11389        uint32_t startlevel;
11390        bool ok;
11391
11392        if (!aarch64 || stride == 9) {
11393            /* AArch32 or 4KB pages */
11394            startlevel = 2 - sl0;
11395
11396            if (cpu_isar_feature(aa64_st, cpu)) {
11397                startlevel &= 3;
11398            }
11399        } else {
11400            /* 16KB or 64KB pages */
11401            startlevel = 3 - sl0;
11402        }
11403
11404        /* Check that the starting level is valid. */
11405        ok = check_s2_mmu_setup(cpu, aarch64, startlevel,
11406                                inputsize, stride);
11407        if (!ok) {
11408            fault_type = ARMFault_Translation;
11409            goto do_fault;
11410        }
11411        level = startlevel;
11412    }
11413
11414    indexmask_grainsize = (1ULL << (stride + 3)) - 1;
11415    indexmask = (1ULL << (inputsize - (stride * (4 - level)))) - 1;
11416
11417    /* Now we can extract the actual base address from the TTBR */
11418    descaddr = extract64(ttbr, 0, 48);
11419    /*
11420     * We rely on this masking to clear the RES0 bits at the bottom of the TTBR
11421     * and also to mask out CnP (bit 0) which could validly be non-zero.
11422     */
11423    descaddr &= ~indexmask;
11424
11425    /* The address field in the descriptor goes up to bit 39 for ARMv7
11426     * but up to bit 47 for ARMv8, but we use the descaddrmask
11427     * up to bit 39 for AArch32, because we don't need other bits in that case
11428     * to construct next descriptor address (anyway they should be all zeroes).
11429     */
11430    descaddrmask = ((1ull << (aarch64 ? 48 : 40)) - 1) &
11431                   ~indexmask_grainsize;
11432
11433    /* Secure accesses start with the page table in secure memory and
11434     * can be downgraded to non-secure at any step. Non-secure accesses
11435     * remain non-secure. We implement this by just ORing in the NSTable/NS
11436     * bits at each step.
11437     */
11438    tableattrs = regime_is_secure(env, mmu_idx) ? 0 : (1 << 4);
11439    for (;;) {
11440        uint64_t descriptor;
11441        bool nstable;
11442
11443        descaddr |= (address >> (stride * (4 - level))) & indexmask;
11444        descaddr &= ~7ULL;
11445        nstable = extract32(tableattrs, 4, 1);
11446        descriptor = arm_ldq_ptw(cs, descaddr, !nstable, mmu_idx, fi);
11447        if (fi->type != ARMFault_None) {
11448            goto do_fault;
11449        }
11450
11451        if (!(descriptor & 1) ||
11452            (!(descriptor & 2) && (level == 3))) {
11453            /* Invalid, or the Reserved level 3 encoding */
11454            goto do_fault;
11455        }
11456        descaddr = descriptor & descaddrmask;
11457
11458        if ((descriptor & 2) && (level < 3)) {
11459            /* Table entry. The top five bits are attributes which may
11460             * propagate down through lower levels of the table (and
11461             * which are all arranged so that 0 means "no effect", so
11462             * we can gather them up by ORing in the bits at each level).
11463             */
11464            tableattrs |= extract64(descriptor, 59, 5);
11465            level++;
11466            indexmask = indexmask_grainsize;
11467            continue;
11468        }
11469        /* Block entry at level 1 or 2, or page entry at level 3.
11470         * These are basically the same thing, although the number
11471         * of bits we pull in from the vaddr varies.
11472         */
11473        page_size = (1ULL << ((stride * (4 - level)) + 3));
11474        descaddr |= (address & (page_size - 1));
11475        /* Extract attributes from the descriptor */
11476        attrs = extract64(descriptor, 2, 10)
11477            | (extract64(descriptor, 52, 12) << 10);
11478
11479        if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) {
11480            /* Stage 2 table descriptors do not include any attribute fields */
11481            break;
11482        }
11483        /* Merge in attributes from table descriptors */
11484        attrs |= nstable << 3; /* NS */
11485        guarded = extract64(descriptor, 50, 1);  /* GP */
11486        if (param.hpd) {
11487            /* HPD disables all the table attributes except NSTable.  */
11488            break;
11489        }
11490        attrs |= extract32(tableattrs, 0, 2) << 11;     /* XN, PXN */
11491        /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1
11492         * means "force PL1 access only", which means forcing AP[1] to 0.
11493         */
11494        attrs &= ~(extract32(tableattrs, 2, 1) << 4);   /* !APT[0] => AP[1] */
11495        attrs |= extract32(tableattrs, 3, 1) << 5;      /* APT[1] => AP[2] */
11496        break;
11497    }
11498    /* Here descaddr is the final physical address, and attributes
11499     * are all in attrs.
11500     */
11501    fault_type = ARMFault_AccessFlag;
11502    if ((attrs & (1 << 8)) == 0) {
11503        /* Access flag */
11504        goto do_fault;
11505    }
11506
11507    ap = extract32(attrs, 4, 2);
11508
11509    if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) {
11510        ns = mmu_idx == ARMMMUIdx_Stage2;
11511        xn = extract32(attrs, 11, 2);
11512        *prot = get_S2prot(env, ap, xn, s1_is_el0);
11513    } else {
11514        ns = extract32(attrs, 3, 1);
11515        xn = extract32(attrs, 12, 1);
11516        pxn = extract32(attrs, 11, 1);
11517        *prot = get_S1prot(env, mmu_idx, aarch64, ap, ns, xn, pxn);
11518    }
11519
11520    fault_type = ARMFault_Permission;
11521    if (!(*prot & (1 << access_type))) {
11522        goto do_fault;
11523    }
11524
11525    if (ns) {
11526        /* The NS bit will (as required by the architecture) have no effect if
11527         * the CPU doesn't support TZ or this is a non-secure translation
11528         * regime, because the attribute will already be non-secure.
11529         */
11530        txattrs->secure = false;
11531    }
11532    /* When in aarch64 mode, and BTI is enabled, remember GP in the IOTLB.  */
11533    if (aarch64 && guarded && cpu_isar_feature(aa64_bti, cpu)) {
11534        arm_tlb_bti_gp(txattrs) = true;
11535    }
11536
11537    if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) {
11538        cacheattrs->attrs = convert_stage2_attrs(env, extract32(attrs, 0, 4));
11539    } else {
11540        /* Index into MAIR registers for cache attributes */
11541        uint8_t attrindx = extract32(attrs, 0, 3);
11542        uint64_t mair = env->cp15.mair_el[regime_el(env, mmu_idx)];
11543        assert(attrindx <= 7);
11544        cacheattrs->attrs = extract64(mair, attrindx * 8, 8);
11545    }
11546    cacheattrs->shareability = extract32(attrs, 6, 2);
11547
11548    *phys_ptr = descaddr;
11549    *page_size_ptr = page_size;
11550    return false;
11551
11552do_fault:
11553    fi->type = fault_type;
11554    fi->level = level;
11555    /* Tag the error as S2 for failed S1 PTW at S2 or ordinary S2.  */
11556    fi->stage2 = fi->s1ptw || (mmu_idx == ARMMMUIdx_Stage2 ||
11557                               mmu_idx == ARMMMUIdx_Stage2_S);
11558    fi->s1ns = mmu_idx == ARMMMUIdx_Stage2;
11559    return true;
11560}
11561
11562static inline void get_phys_addr_pmsav7_default(CPUARMState *env,
11563                                                ARMMMUIdx mmu_idx,
11564                                                int32_t address, int *prot)
11565{
11566    if (!arm_feature(env, ARM_FEATURE_M)) {
11567        *prot = PAGE_READ | PAGE_WRITE;
11568        switch (address) {
11569        case 0xF0000000 ... 0xFFFFFFFF:
11570            if (regime_sctlr(env, mmu_idx) & SCTLR_V) {
11571                /* hivecs execing is ok */
11572                *prot |= PAGE_EXEC;
11573            }
11574            break;
11575        case 0x00000000 ... 0x7FFFFFFF:
11576            *prot |= PAGE_EXEC;
11577            break;
11578        }
11579    } else {
11580        /* Default system address map for M profile cores.
11581         * The architecture specifies which regions are execute-never;
11582         * at the MPU level no other checks are defined.
11583         */
11584        switch (address) {
11585        case 0x00000000 ... 0x1fffffff: /* ROM */
11586        case 0x20000000 ... 0x3fffffff: /* SRAM */
11587        case 0x60000000 ... 0x7fffffff: /* RAM */
11588        case 0x80000000 ... 0x9fffffff: /* RAM */
11589            *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
11590            break;
11591        case 0x40000000 ... 0x5fffffff: /* Peripheral */
11592        case 0xa0000000 ... 0xbfffffff: /* Device */
11593        case 0xc0000000 ... 0xdfffffff: /* Device */
11594        case 0xe0000000 ... 0xffffffff: /* System */
11595            *prot = PAGE_READ | PAGE_WRITE;
11596            break;
11597        default:
11598            g_assert_not_reached();
11599        }
11600    }
11601}
11602
11603static bool pmsav7_use_background_region(ARMCPU *cpu,
11604                                         ARMMMUIdx mmu_idx, bool is_user)
11605{
11606    /* Return true if we should use the default memory map as a
11607     * "background" region if there are no hits against any MPU regions.
11608     */
11609    CPUARMState *env = &cpu->env;
11610
11611    if (is_user) {
11612        return false;
11613    }
11614
11615    if (arm_feature(env, ARM_FEATURE_M)) {
11616        return env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)]
11617            & R_V7M_MPU_CTRL_PRIVDEFENA_MASK;
11618    } else {
11619        return regime_sctlr(env, mmu_idx) & SCTLR_BR;
11620    }
11621}
11622
11623static inline bool m_is_ppb_region(CPUARMState *env, uint32_t address)
11624{
11625    /* True if address is in the M profile PPB region 0xe0000000 - 0xe00fffff */
11626    return arm_feature(env, ARM_FEATURE_M) &&
11627        extract32(address, 20, 12) == 0xe00;
11628}
11629
11630static inline bool m_is_system_region(CPUARMState *env, uint32_t address)
11631{
11632    /* True if address is in the M profile system region
11633     * 0xe0000000 - 0xffffffff
11634     */
11635    return arm_feature(env, ARM_FEATURE_M) && extract32(address, 29, 3) == 0x7;
11636}
11637
11638static bool get_phys_addr_pmsav7(CPUARMState *env, uint32_t address,
11639                                 MMUAccessType access_type, ARMMMUIdx mmu_idx,
11640                                 hwaddr *phys_ptr, int *prot,
11641                                 target_ulong *page_size,
11642                                 ARMMMUFaultInfo *fi)
11643{
11644    ARMCPU *cpu = env_archcpu(env);
11645    int n;
11646    bool is_user = regime_is_user(env, mmu_idx);
11647
11648    *phys_ptr = address;
11649    *page_size = TARGET_PAGE_SIZE;
11650    *prot = 0;
11651
11652    if (regime_translation_disabled(env, mmu_idx) ||
11653        m_is_ppb_region(env, address)) {
11654        /* MPU disabled or M profile PPB access: use default memory map.
11655         * The other case which uses the default memory map in the
11656         * v7M ARM ARM pseudocode is exception vector reads from the vector
11657         * table. In QEMU those accesses are done in arm_v7m_load_vector(),
11658         * which always does a direct read using address_space_ldl(), rather
11659         * than going via this function, so we don't need to check that here.
11660         */
11661        get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
11662    } else { /* MPU enabled */
11663        for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) {
11664            /* region search */
11665            uint32_t base = env->pmsav7.drbar[n];
11666            uint32_t rsize = extract32(env->pmsav7.drsr[n], 1, 5);
11667            uint32_t rmask;
11668            bool srdis = false;
11669
11670            if (!(env->pmsav7.drsr[n] & 0x1)) {
11671                continue;
11672            }
11673
11674            if (!rsize) {
11675                qemu_log_mask(LOG_GUEST_ERROR,
11676                              "DRSR[%d]: Rsize field cannot be 0\n", n);
11677                continue;
11678            }
11679            rsize++;
11680            rmask = (1ull << rsize) - 1;
11681
11682            if (base & rmask) {
11683                qemu_log_mask(LOG_GUEST_ERROR,
11684                              "DRBAR[%d]: 0x%" PRIx32 " misaligned "
11685                              "to DRSR region size, mask = 0x%" PRIx32 "\n",
11686                              n, base, rmask);
11687                continue;
11688            }
11689
11690            if (address < base || address > base + rmask) {
11691                /*
11692                 * Address not in this region. We must check whether the
11693                 * region covers addresses in the same page as our address.
11694                 * In that case we must not report a size that covers the
11695                 * whole page for a subsequent hit against a different MPU
11696                 * region or the background region, because it would result in
11697                 * incorrect TLB hits for subsequent accesses to addresses that
11698                 * are in this MPU region.
11699                 */
11700                if (ranges_overlap(base, rmask,
11701                                   address & TARGET_PAGE_MASK,
11702                                   TARGET_PAGE_SIZE)) {
11703                    *page_size = 1;
11704                }
11705                continue;
11706            }
11707
11708            /* Region matched */
11709
11710            if (rsize >= 8) { /* no subregions for regions < 256 bytes */
11711                int i, snd;
11712                uint32_t srdis_mask;
11713
11714                rsize -= 3; /* sub region size (power of 2) */
11715                snd = ((address - base) >> rsize) & 0x7;
11716                srdis = extract32(env->pmsav7.drsr[n], snd + 8, 1);
11717
11718                srdis_mask = srdis ? 0x3 : 0x0;
11719                for (i = 2; i <= 8 && rsize < TARGET_PAGE_BITS; i *= 2) {
11720                    /* This will check in groups of 2, 4 and then 8, whether
11721                     * the subregion bits are consistent. rsize is incremented
11722                     * back up to give the region size, considering consistent
11723                     * adjacent subregions as one region. Stop testing if rsize
11724                     * is already big enough for an entire QEMU page.
11725                     */
11726                    int snd_rounded = snd & ~(i - 1);
11727                    uint32_t srdis_multi = extract32(env->pmsav7.drsr[n],
11728                                                     snd_rounded + 8, i);
11729                    if (srdis_mask ^ srdis_multi) {
11730                        break;
11731                    }
11732                    srdis_mask = (srdis_mask << i) | srdis_mask;
11733                    rsize++;
11734                }
11735            }
11736            if (srdis) {
11737                continue;
11738            }
11739            if (rsize < TARGET_PAGE_BITS) {
11740                *page_size = 1 << rsize;
11741            }
11742            break;
11743        }
11744
11745        if (n == -1) { /* no hits */
11746            if (!pmsav7_use_background_region(cpu, mmu_idx, is_user)) {
11747                /* background fault */
11748                fi->type = ARMFault_Background;
11749                return true;
11750            }
11751            get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
11752        } else { /* a MPU hit! */
11753            uint32_t ap = extract32(env->pmsav7.dracr[n], 8, 3);
11754            uint32_t xn = extract32(env->pmsav7.dracr[n], 12, 1);
11755
11756            if (m_is_system_region(env, address)) {
11757                /* System space is always execute never */
11758                xn = 1;
11759            }
11760
11761            if (is_user) { /* User mode AP bit decoding */
11762                switch (ap) {
11763                case 0:
11764                case 1:
11765                case 5:
11766                    break; /* no access */
11767                case 3:
11768                    *prot |= PAGE_WRITE;
11769                    /* fall through */
11770                case 2:
11771                case 6:
11772                    *prot |= PAGE_READ | PAGE_EXEC;
11773                    break;
11774                case 7:
11775                    /* for v7M, same as 6; for R profile a reserved value */
11776                    if (arm_feature(env, ARM_FEATURE_M)) {
11777                        *prot |= PAGE_READ | PAGE_EXEC;
11778                        break;
11779                    }
11780                    /* fall through */
11781                default:
11782                    qemu_log_mask(LOG_GUEST_ERROR,
11783                                  "DRACR[%d]: Bad value for AP bits: 0x%"
11784                                  PRIx32 "\n", n, ap);
11785                }
11786            } else { /* Priv. mode AP bits decoding */
11787                switch (ap) {
11788                case 0:
11789                    break; /* no access */
11790                case 1:
11791                case 2:
11792                case 3:
11793                    *prot |= PAGE_WRITE;
11794                    /* fall through */
11795                case 5:
11796                case 6:
11797                    *prot |= PAGE_READ | PAGE_EXEC;
11798                    break;
11799                case 7:
11800                    /* for v7M, same as 6; for R profile a reserved value */
11801                    if (arm_feature(env, ARM_FEATURE_M)) {
11802                        *prot |= PAGE_READ | PAGE_EXEC;
11803                        break;
11804                    }
11805                    /* fall through */
11806                default:
11807                    qemu_log_mask(LOG_GUEST_ERROR,
11808                                  "DRACR[%d]: Bad value for AP bits: 0x%"
11809                                  PRIx32 "\n", n, ap);
11810                }
11811            }
11812
11813            /* execute never */
11814            if (xn) {
11815                *prot &= ~PAGE_EXEC;
11816            }
11817        }
11818    }
11819
11820    fi->type = ARMFault_Permission;
11821    fi->level = 1;
11822    return !(*prot & (1 << access_type));
11823}
11824
11825static bool v8m_is_sau_exempt(CPUARMState *env,
11826                              uint32_t address, MMUAccessType access_type)
11827{
11828    /* The architecture specifies that certain address ranges are
11829     * exempt from v8M SAU/IDAU checks.
11830     */
11831    return
11832        (access_type == MMU_INST_FETCH && m_is_system_region(env, address)) ||
11833        (address >= 0xe0000000 && address <= 0xe0002fff) ||
11834        (address >= 0xe000e000 && address <= 0xe000efff) ||
11835        (address >= 0xe002e000 && address <= 0xe002efff) ||
11836        (address >= 0xe0040000 && address <= 0xe0041fff) ||
11837        (address >= 0xe00ff000 && address <= 0xe00fffff);
11838}
11839
11840void v8m_security_lookup(CPUARMState *env, uint32_t address,
11841                                MMUAccessType access_type, ARMMMUIdx mmu_idx,
11842                                V8M_SAttributes *sattrs)
11843{
11844    /* Look up the security attributes for this address. Compare the
11845     * pseudocode SecurityCheck() function.
11846     * We assume the caller has zero-initialized *sattrs.
11847     */
11848    ARMCPU *cpu = env_archcpu(env);
11849    int r;
11850    bool idau_exempt = false, idau_ns = true, idau_nsc = true;
11851    int idau_region = IREGION_NOTVALID;
11852    uint32_t addr_page_base = address & TARGET_PAGE_MASK;
11853    uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1);
11854
11855    if (cpu->idau) {
11856        IDAUInterfaceClass *iic = IDAU_INTERFACE_GET_CLASS(cpu->idau);
11857        IDAUInterface *ii = IDAU_INTERFACE(cpu->idau);
11858
11859        iic->check(ii, address, &idau_region, &idau_exempt, &idau_ns,
11860                   &idau_nsc);
11861    }
11862
11863    if (access_type == MMU_INST_FETCH && extract32(address, 28, 4) == 0xf) {
11864        /* 0xf0000000..0xffffffff is always S for insn fetches */
11865        return;
11866    }
11867
11868    if (idau_exempt || v8m_is_sau_exempt(env, address, access_type)) {
11869        sattrs->ns = !regime_is_secure(env, mmu_idx);
11870        return;
11871    }
11872
11873    if (idau_region != IREGION_NOTVALID) {
11874        sattrs->irvalid = true;
11875        sattrs->iregion = idau_region;
11876    }
11877
11878    switch (env->sau.ctrl & 3) {
11879    case 0: /* SAU.ENABLE == 0, SAU.ALLNS == 0 */
11880        break;
11881    case 2: /* SAU.ENABLE == 0, SAU.ALLNS == 1 */
11882        sattrs->ns = true;
11883        break;
11884    default: /* SAU.ENABLE == 1 */
11885        for (r = 0; r < cpu->sau_sregion; r++) {
11886            if (env->sau.rlar[r] & 1) {
11887                uint32_t base = env->sau.rbar[r] & ~0x1f;
11888                uint32_t limit = env->sau.rlar[r] | 0x1f;
11889
11890                if (base <= address && limit >= address) {
11891                    if (base > addr_page_base || limit < addr_page_limit) {
11892                        sattrs->subpage = true;
11893                    }
11894                    if (sattrs->srvalid) {
11895                        /* If we hit in more than one region then we must report
11896                         * as Secure, not NS-Callable, with no valid region
11897                         * number info.
11898                         */
11899                        sattrs->ns = false;
11900                        sattrs->nsc = false;
11901                        sattrs->sregion = 0;
11902                        sattrs->srvalid = false;
11903                        break;
11904                    } else {
11905                        if (env->sau.rlar[r] & 2) {
11906                            sattrs->nsc = true;
11907                        } else {
11908                            sattrs->ns = true;
11909                        }
11910                        sattrs->srvalid = true;
11911                        sattrs->sregion = r;
11912                    }
11913                } else {
11914                    /*
11915                     * Address not in this region. We must check whether the
11916                     * region covers addresses in the same page as our address.
11917                     * In that case we must not report a size that covers the
11918                     * whole page for a subsequent hit against a different MPU
11919                     * region or the background region, because it would result
11920                     * in incorrect TLB hits for subsequent accesses to
11921                     * addresses that are in this MPU region.
11922                     */
11923                    if (limit >= base &&
11924                        ranges_overlap(base, limit - base + 1,
11925                                       addr_page_base,
11926                                       TARGET_PAGE_SIZE)) {
11927                        sattrs->subpage = true;
11928                    }
11929                }
11930            }
11931        }
11932        break;
11933    }
11934
11935    /*
11936     * The IDAU will override the SAU lookup results if it specifies
11937     * higher security than the SAU does.
11938     */
11939    if (!idau_ns) {
11940        if (sattrs->ns || (!idau_nsc && sattrs->nsc)) {
11941            sattrs->ns = false;
11942            sattrs->nsc = idau_nsc;
11943        }
11944    }
11945}
11946
11947bool pmsav8_mpu_lookup(CPUARMState *env, uint32_t address,
11948                              MMUAccessType access_type, ARMMMUIdx mmu_idx,
11949                              hwaddr *phys_ptr, MemTxAttrs *txattrs,
11950                              int *prot, bool *is_subpage,
11951                              ARMMMUFaultInfo *fi, uint32_t *mregion)
11952{
11953    /* Perform a PMSAv8 MPU lookup (without also doing the SAU check
11954     * that a full phys-to-virt translation does).
11955     * mregion is (if not NULL) set to the region number which matched,
11956     * or -1 if no region number is returned (MPU off, address did not
11957     * hit a region, address hit in multiple regions).
11958     * We set is_subpage to true if the region hit doesn't cover the
11959     * entire TARGET_PAGE the address is within.
11960     */
11961    ARMCPU *cpu = env_archcpu(env);
11962    bool is_user = regime_is_user(env, mmu_idx);
11963    uint32_t secure = regime_is_secure(env, mmu_idx);
11964    int n;
11965    int matchregion = -1;
11966    bool hit = false;
11967    uint32_t addr_page_base = address & TARGET_PAGE_MASK;
11968    uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1);
11969
11970    *is_subpage = false;
11971    *phys_ptr = address;
11972    *prot = 0;
11973    if (mregion) {
11974        *mregion = -1;
11975    }
11976
11977    /* Unlike the ARM ARM pseudocode, we don't need to check whether this
11978     * was an exception vector read from the vector table (which is always
11979     * done using the default system address map), because those accesses
11980     * are done in arm_v7m_load_vector(), which always does a direct
11981     * read using address_space_ldl(), rather than going via this function.
11982     */
11983    if (regime_translation_disabled(env, mmu_idx)) { /* MPU disabled */
11984        hit = true;
11985    } else if (m_is_ppb_region(env, address)) {
11986        hit = true;
11987    } else {
11988        if (pmsav7_use_background_region(cpu, mmu_idx, is_user)) {
11989            hit = true;
11990        }
11991
11992        for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) {
11993            /* region search */
11994            /* Note that the base address is bits [31:5] from the register
11995             * with bits [4:0] all zeroes, but the limit address is bits
11996             * [31:5] from the register with bits [4:0] all ones.
11997             */
11998            uint32_t base = env->pmsav8.rbar[secure][n] & ~0x1f;
11999            uint32_t limit = env->pmsav8.rlar[secure][n] | 0x1f;
12000
12001            if (!(env->pmsav8.rlar[secure][n] & 0x1)) {
12002                /* Region disabled */
12003                continue;
12004            }
12005
12006            if (address < base || address > limit) {
12007                /*
12008                 * Address not in this region. We must check whether the
12009                 * region covers addresses in the same page as our address.
12010                 * In that case we must not report a size that covers the
12011                 * whole page for a subsequent hit against a different MPU
12012                 * region or the background region, because it would result in
12013                 * incorrect TLB hits for subsequent accesses to addresses that
12014                 * are in this MPU region.
12015                 */
12016                if (limit >= base &&
12017                    ranges_overlap(base, limit - base + 1,
12018                                   addr_page_base,
12019                                   TARGET_PAGE_SIZE)) {
12020                    *is_subpage = true;
12021                }
12022                continue;
12023            }
12024
12025            if (base > addr_page_base || limit < addr_page_limit) {
12026                *is_subpage = true;
12027            }
12028
12029            if (matchregion != -1) {
12030                /* Multiple regions match -- always a failure (unlike
12031                 * PMSAv7 where highest-numbered-region wins)
12032                 */
12033                fi->type = ARMFault_Permission;
12034                fi->level = 1;
12035                return true;
12036            }
12037
12038            matchregion = n;
12039            hit = true;
12040        }
12041    }
12042
12043    if (!hit) {
12044        /* background fault */
12045        fi->type = ARMFault_Background;
12046        return true;
12047    }
12048
12049    if (matchregion == -1) {
12050        /* hit using the background region */
12051        get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
12052    } else {
12053        uint32_t ap = extract32(env->pmsav8.rbar[secure][matchregion], 1, 2);
12054        uint32_t xn = extract32(env->pmsav8.rbar[secure][matchregion], 0, 1);
12055        bool pxn = false;
12056
12057        if (arm_feature(env, ARM_FEATURE_V8_1M)) {
12058            pxn = extract32(env->pmsav8.rlar[secure][matchregion], 4, 1);
12059        }
12060
12061        if (m_is_system_region(env, address)) {
12062            /* System space is always execute never */
12063            xn = 1;
12064        }
12065
12066        *prot = simple_ap_to_rw_prot(env, mmu_idx, ap);
12067        if (*prot && !xn && !(pxn && !is_user)) {
12068            *prot |= PAGE_EXEC;
12069        }
12070        /* We don't need to look the attribute up in the MAIR0/MAIR1
12071         * registers because that only tells us about cacheability.
12072         */
12073        if (mregion) {
12074            *mregion = matchregion;
12075        }
12076    }
12077
12078    fi->type = ARMFault_Permission;
12079    fi->level = 1;
12080    return !(*prot & (1 << access_type));
12081}
12082
12083
12084static bool get_phys_addr_pmsav8(CPUARMState *env, uint32_t address,
12085                                 MMUAccessType access_type, ARMMMUIdx mmu_idx,
12086                                 hwaddr *phys_ptr, MemTxAttrs *txattrs,
12087                                 int *prot, target_ulong *page_size,
12088                                 ARMMMUFaultInfo *fi)
12089{
12090    uint32_t secure = regime_is_secure(env, mmu_idx);
12091    V8M_SAttributes sattrs = {};
12092    bool ret;
12093    bool mpu_is_subpage;
12094
12095    if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
12096        v8m_security_lookup(env, address, access_type, mmu_idx, &sattrs);
12097        if (access_type == MMU_INST_FETCH) {
12098            /* Instruction fetches always use the MMU bank and the
12099             * transaction attribute determined by the fetch address,
12100             * regardless of CPU state. This is painful for QEMU
12101             * to handle, because it would mean we need to encode
12102             * into the mmu_idx not just the (user, negpri) information
12103             * for the current security state but also that for the
12104             * other security state, which would balloon the number
12105             * of mmu_idx values needed alarmingly.
12106             * Fortunately we can avoid this because it's not actually
12107             * possible to arbitrarily execute code from memory with
12108             * the wrong security attribute: it will always generate
12109             * an exception of some kind or another, apart from the
12110             * special case of an NS CPU executing an SG instruction
12111             * in S&NSC memory. So we always just fail the translation
12112             * here and sort things out in the exception handler
12113             * (including possibly emulating an SG instruction).
12114             */
12115            if (sattrs.ns != !secure) {
12116                if (sattrs.nsc) {
12117                    fi->type = ARMFault_QEMU_NSCExec;
12118                } else {
12119                    fi->type = ARMFault_QEMU_SFault;
12120                }
12121                *page_size = sattrs.subpage ? 1 : TARGET_PAGE_SIZE;
12122                *phys_ptr = address;
12123                *prot = 0;
12124                return true;
12125            }
12126        } else {
12127            /* For data accesses we always use the MMU bank indicated
12128             * by the current CPU state, but the security attributes
12129             * might downgrade a secure access to nonsecure.
12130             */
12131            if (sattrs.ns) {
12132                txattrs->secure = false;
12133            } else if (!secure) {
12134                /* NS access to S memory must fault.
12135                 * Architecturally we should first check whether the
12136                 * MPU information for this address indicates that we
12137                 * are doing an unaligned access to Device memory, which
12138                 * should generate a UsageFault instead. QEMU does not
12139                 * currently check for that kind of unaligned access though.
12140                 * If we added it we would need to do so as a special case
12141                 * for M_FAKE_FSR_SFAULT in arm_v7m_cpu_do_interrupt().
12142                 */
12143                fi->type = ARMFault_QEMU_SFault;
12144                *page_size = sattrs.subpage ? 1 : TARGET_PAGE_SIZE;
12145                *phys_ptr = address;
12146                *prot = 0;
12147                return true;
12148            }
12149        }
12150    }
12151
12152    ret = pmsav8_mpu_lookup(env, address, access_type, mmu_idx, phys_ptr,
12153                            txattrs, prot, &mpu_is_subpage, fi, NULL);
12154    *page_size = sattrs.subpage || mpu_is_subpage ? 1 : TARGET_PAGE_SIZE;
12155    return ret;
12156}
12157
12158static bool get_phys_addr_pmsav5(CPUARMState *env, uint32_t address,
12159                                 MMUAccessType access_type, ARMMMUIdx mmu_idx,
12160                                 hwaddr *phys_ptr, int *prot,
12161                                 ARMMMUFaultInfo *fi)
12162{
12163    int n;
12164    uint32_t mask;
12165    uint32_t base;
12166    bool is_user = regime_is_user(env, mmu_idx);
12167
12168    if (regime_translation_disabled(env, mmu_idx)) {
12169        /* MPU disabled.  */
12170        *phys_ptr = address;
12171        *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
12172        return false;
12173    }
12174
12175    *phys_ptr = address;
12176    for (n = 7; n >= 0; n--) {
12177        base = env->cp15.c6_region[n];
12178        if ((base & 1) == 0) {
12179            continue;
12180        }
12181        mask = 1 << ((base >> 1) & 0x1f);
12182        /* Keep this shift separate from the above to avoid an
12183           (undefined) << 32.  */
12184        mask = (mask << 1) - 1;
12185        if (((base ^ address) & ~mask) == 0) {
12186            break;
12187        }
12188    }
12189    if (n < 0) {
12190        fi->type = ARMFault_Background;
12191        return true;
12192    }
12193
12194    if (access_type == MMU_INST_FETCH) {
12195        mask = env->cp15.pmsav5_insn_ap;
12196    } else {
12197        mask = env->cp15.pmsav5_data_ap;
12198    }
12199    mask = (mask >> (n * 4)) & 0xf;
12200    switch (mask) {
12201    case 0:
12202        fi->type = ARMFault_Permission;
12203        fi->level = 1;
12204        return true;
12205    case 1:
12206        if (is_user) {
12207            fi->type = ARMFault_Permission;
12208            fi->level = 1;
12209            return true;
12210        }
12211        *prot = PAGE_READ | PAGE_WRITE;
12212        break;
12213    case 2:
12214        *prot = PAGE_READ;
12215        if (!is_user) {
12216            *prot |= PAGE_WRITE;
12217        }
12218        break;
12219    case 3:
12220        *prot = PAGE_READ | PAGE_WRITE;
12221        break;
12222    case 5:
12223        if (is_user) {
12224            fi->type = ARMFault_Permission;
12225            fi->level = 1;
12226            return true;
12227        }
12228        *prot = PAGE_READ;
12229        break;
12230    case 6:
12231        *prot = PAGE_READ;
12232        break;
12233    default:
12234        /* Bad permission.  */
12235        fi->type = ARMFault_Permission;
12236        fi->level = 1;
12237        return true;
12238    }
12239    *prot |= PAGE_EXEC;
12240    return false;
12241}
12242
12243/* Combine either inner or outer cacheability attributes for normal
12244 * memory, according to table D4-42 and pseudocode procedure
12245 * CombineS1S2AttrHints() of ARM DDI 0487B.b (the ARMv8 ARM).
12246 *
12247 * NB: only stage 1 includes allocation hints (RW bits), leading to
12248 * some asymmetry.
12249 */
12250static uint8_t combine_cacheattr_nibble(uint8_t s1, uint8_t s2)
12251{
12252    if (s1 == 4 || s2 == 4) {
12253        /* non-cacheable has precedence */
12254        return 4;
12255    } else if (extract32(s1, 2, 2) == 0 || extract32(s1, 2, 2) == 2) {
12256        /* stage 1 write-through takes precedence */
12257        return s1;
12258    } else if (extract32(s2, 2, 2) == 2) {
12259        /* stage 2 write-through takes precedence, but the allocation hint
12260         * is still taken from stage 1
12261         */
12262        return (2 << 2) | extract32(s1, 0, 2);
12263    } else { /* write-back */
12264        return s1;
12265    }
12266}
12267
12268/* Combine S1 and S2 cacheability/shareability attributes, per D4.5.4
12269 * and CombineS1S2Desc()
12270 *
12271 * @s1:      Attributes from stage 1 walk
12272 * @s2:      Attributes from stage 2 walk
12273 */
12274static ARMCacheAttrs combine_cacheattrs(ARMCacheAttrs s1, ARMCacheAttrs s2)
12275{
12276    uint8_t s1lo, s2lo, s1hi, s2hi;
12277    ARMCacheAttrs ret;
12278    bool tagged = false;
12279
12280    if (s1.attrs == 0xf0) {
12281        tagged = true;
12282        s1.attrs = 0xff;
12283    }
12284
12285    s1lo = extract32(s1.attrs, 0, 4);
12286    s2lo = extract32(s2.attrs, 0, 4);
12287    s1hi = extract32(s1.attrs, 4, 4);
12288    s2hi = extract32(s2.attrs, 4, 4);
12289
12290    /* Combine shareability attributes (table D4-43) */
12291    if (s1.shareability == 2 || s2.shareability == 2) {
12292        /* if either are outer-shareable, the result is outer-shareable */
12293        ret.shareability = 2;
12294    } else if (s1.shareability == 3 || s2.shareability == 3) {
12295        /* if either are inner-shareable, the result is inner-shareable */
12296        ret.shareability = 3;
12297    } else {
12298        /* both non-shareable */
12299        ret.shareability = 0;
12300    }
12301
12302    /* Combine memory type and cacheability attributes */
12303    if (s1hi == 0 || s2hi == 0) {
12304        /* Device has precedence over normal */
12305        if (s1lo == 0 || s2lo == 0) {
12306            /* nGnRnE has precedence over anything */
12307            ret.attrs = 0;
12308        } else if (s1lo == 4 || s2lo == 4) {
12309            /* non-Reordering has precedence over Reordering */
12310            ret.attrs = 4;  /* nGnRE */
12311        } else if (s1lo == 8 || s2lo == 8) {
12312            /* non-Gathering has precedence over Gathering */
12313            ret.attrs = 8;  /* nGRE */
12314        } else {
12315            ret.attrs = 0xc; /* GRE */
12316        }
12317
12318        /* Any location for which the resultant memory type is any
12319         * type of Device memory is always treated as Outer Shareable.
12320         */
12321        ret.shareability = 2;
12322    } else { /* Normal memory */
12323        /* Outer/inner cacheability combine independently */
12324        ret.attrs = combine_cacheattr_nibble(s1hi, s2hi) << 4
12325                  | combine_cacheattr_nibble(s1lo, s2lo);
12326
12327        if (ret.attrs == 0x44) {
12328            /* Any location for which the resultant memory type is Normal
12329             * Inner Non-cacheable, Outer Non-cacheable is always treated
12330             * as Outer Shareable.
12331             */
12332            ret.shareability = 2;
12333        }
12334    }
12335
12336    /* TODO: CombineS1S2Desc does not consider transient, only WB, RWA. */
12337    if (tagged && ret.attrs == 0xff) {
12338        ret.attrs = 0xf0;
12339    }
12340
12341    return ret;
12342}
12343
12344
12345/* get_phys_addr - get the physical address for this virtual address
12346 *
12347 * Find the physical address corresponding to the given virtual address,
12348 * by doing a translation table walk on MMU based systems or using the
12349 * MPU state on MPU based systems.
12350 *
12351 * Returns false if the translation was successful. Otherwise, phys_ptr, attrs,
12352 * prot and page_size may not be filled in, and the populated fsr value provides
12353 * information on why the translation aborted, in the format of a
12354 * DFSR/IFSR fault register, with the following caveats:
12355 *  * we honour the short vs long DFSR format differences.
12356 *  * the WnR bit is never set (the caller must do this).
12357 *  * for PSMAv5 based systems we don't bother to return a full FSR format
12358 *    value.
12359 *
12360 * @env: CPUARMState
12361 * @address: virtual address to get physical address for
12362 * @access_type: 0 for read, 1 for write, 2 for execute
12363 * @mmu_idx: MMU index indicating required translation regime
12364 * @phys_ptr: set to the physical address corresponding to the virtual address
12365 * @attrs: set to the memory transaction attributes to use
12366 * @prot: set to the permissions for the page containing phys_ptr
12367 * @page_size: set to the size of the page containing phys_ptr
12368 * @fi: set to fault info if the translation fails
12369 * @cacheattrs: (if non-NULL) set to the cacheability/shareability attributes
12370 */
12371bool get_phys_addr(CPUARMState *env, target_ulong address,
12372                   MMUAccessType access_type, ARMMMUIdx mmu_idx,
12373                   hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
12374                   target_ulong *page_size,
12375                   ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs)
12376{
12377    ARMMMUIdx s1_mmu_idx = stage_1_mmu_idx(mmu_idx);
12378
12379    if (mmu_idx != s1_mmu_idx) {
12380        /* Call ourselves recursively to do the stage 1 and then stage 2
12381         * translations if mmu_idx is a two-stage regime.
12382         */
12383        if (arm_feature(env, ARM_FEATURE_EL2)) {
12384            hwaddr ipa;
12385            int s2_prot;
12386            int ret;
12387            ARMCacheAttrs cacheattrs2 = {};
12388            ARMMMUIdx s2_mmu_idx;
12389            bool is_el0;
12390
12391            ret = get_phys_addr(env, address, access_type, s1_mmu_idx, &ipa,
12392                                attrs, prot, page_size, fi, cacheattrs);
12393
12394            /* If S1 fails or S2 is disabled, return early.  */
12395            if (ret || regime_translation_disabled(env, ARMMMUIdx_Stage2)) {
12396                *phys_ptr = ipa;
12397                return ret;
12398            }
12399
12400            s2_mmu_idx = attrs->secure ? ARMMMUIdx_Stage2_S : ARMMMUIdx_Stage2;
12401            is_el0 = mmu_idx == ARMMMUIdx_E10_0 || mmu_idx == ARMMMUIdx_SE10_0;
12402
12403            /* S1 is done. Now do S2 translation.  */
12404            ret = get_phys_addr_lpae(env, ipa, access_type, s2_mmu_idx, is_el0,
12405                                     phys_ptr, attrs, &s2_prot,
12406                                     page_size, fi, &cacheattrs2);
12407            fi->s2addr = ipa;
12408            /* Combine the S1 and S2 perms.  */
12409            *prot &= s2_prot;
12410
12411            /* If S2 fails, return early.  */
12412            if (ret) {
12413                return ret;
12414            }
12415
12416            /* Combine the S1 and S2 cache attributes. */
12417            if (arm_hcr_el2_eff(env) & HCR_DC) {
12418                /*
12419                 * HCR.DC forces the first stage attributes to
12420                 *  Normal Non-Shareable,
12421                 *  Inner Write-Back Read-Allocate Write-Allocate,
12422                 *  Outer Write-Back Read-Allocate Write-Allocate.
12423                 * Do not overwrite Tagged within attrs.
12424                 */
12425                if (cacheattrs->attrs != 0xf0) {
12426                    cacheattrs->attrs = 0xff;
12427                }
12428                cacheattrs->shareability = 0;
12429            }
12430            *cacheattrs = combine_cacheattrs(*cacheattrs, cacheattrs2);
12431
12432            /* Check if IPA translates to secure or non-secure PA space. */
12433            if (arm_is_secure_below_el3(env)) {
12434                if (attrs->secure) {
12435                    attrs->secure =
12436                        !(env->cp15.vstcr_el2.raw_tcr & (VSTCR_SA | VSTCR_SW));
12437                } else {
12438                    attrs->secure =
12439                        !((env->cp15.vtcr_el2.raw_tcr & (VTCR_NSA | VTCR_NSW))
12440                        || (env->cp15.vstcr_el2.raw_tcr & VSTCR_SA));
12441                }
12442            }
12443            return 0;
12444        } else {
12445            /*
12446             * For non-EL2 CPUs a stage1+stage2 translation is just stage 1.
12447             */
12448            mmu_idx = stage_1_mmu_idx(mmu_idx);
12449        }
12450    }
12451
12452    /* The page table entries may downgrade secure to non-secure, but
12453     * cannot upgrade an non-secure translation regime's attributes
12454     * to secure.
12455     */
12456    attrs->secure = regime_is_secure(env, mmu_idx);
12457    attrs->user = regime_is_user(env, mmu_idx);
12458
12459    /* Fast Context Switch Extension. This doesn't exist at all in v8.
12460     * In v7 and earlier it affects all stage 1 translations.
12461     */
12462    if (address < 0x02000000 && mmu_idx != ARMMMUIdx_Stage2
12463        && !arm_feature(env, ARM_FEATURE_V8)) {
12464        if (regime_el(env, mmu_idx) == 3) {
12465            address += env->cp15.fcseidr_s;
12466        } else {
12467            address += env->cp15.fcseidr_ns;
12468        }
12469    }
12470
12471    if (arm_feature(env, ARM_FEATURE_PMSA)) {
12472        bool ret;
12473        *page_size = TARGET_PAGE_SIZE;
12474
12475        if (arm_feature(env, ARM_FEATURE_V8)) {
12476            /* PMSAv8 */
12477            ret = get_phys_addr_pmsav8(env, address, access_type, mmu_idx,
12478                                       phys_ptr, attrs, prot, page_size, fi);
12479        } else if (arm_feature(env, ARM_FEATURE_V7)) {
12480            /* PMSAv7 */
12481            ret = get_phys_addr_pmsav7(env, address, access_type, mmu_idx,
12482                                       phys_ptr, prot, page_size, fi);
12483        } else {
12484            /* Pre-v7 MPU */
12485            ret = get_phys_addr_pmsav5(env, address, access_type, mmu_idx,
12486                                       phys_ptr, prot, fi);
12487        }
12488        qemu_log_mask(CPU_LOG_MMU, "PMSA MPU lookup for %s at 0x%08" PRIx32
12489                      " mmu_idx %u -> %s (prot %c%c%c)\n",
12490                      access_type == MMU_DATA_LOAD ? "reading" :
12491                      (access_type == MMU_DATA_STORE ? "writing" : "execute"),
12492                      (uint32_t)address, mmu_idx,
12493                      ret ? "Miss" : "Hit",
12494                      *prot & PAGE_READ ? 'r' : '-',
12495                      *prot & PAGE_WRITE ? 'w' : '-',
12496                      *prot & PAGE_EXEC ? 'x' : '-');
12497
12498        return ret;
12499    }
12500
12501    /* Definitely a real MMU, not an MPU */
12502
12503    if (regime_translation_disabled(env, mmu_idx)) {
12504        uint64_t hcr;
12505        uint8_t memattr;
12506
12507        /*
12508         * MMU disabled.  S1 addresses within aa64 translation regimes are
12509         * still checked for bounds -- see AArch64.TranslateAddressS1Off.
12510         */
12511        if (mmu_idx != ARMMMUIdx_Stage2 && mmu_idx != ARMMMUIdx_Stage2_S) {
12512            int r_el = regime_el(env, mmu_idx);
12513            if (arm_el_is_aa64(env, r_el)) {
12514                int pamax = arm_pamax(env_archcpu(env));
12515                uint64_t tcr = env->cp15.tcr_el[r_el].raw_tcr;
12516                int addrtop, tbi;
12517
12518                tbi = aa64_va_parameter_tbi(tcr, mmu_idx);
12519                if (access_type == MMU_INST_FETCH) {
12520                    tbi &= ~aa64_va_parameter_tbid(tcr, mmu_idx);
12521                }
12522                tbi = (tbi >> extract64(address, 55, 1)) & 1;
12523                addrtop = (tbi ? 55 : 63);
12524
12525                if (extract64(address, pamax, addrtop - pamax + 1) != 0) {
12526                    fi->type = ARMFault_AddressSize;
12527                    fi->level = 0;
12528                    fi->stage2 = false;
12529                    return 1;
12530                }
12531
12532                /*
12533                 * When TBI is disabled, we've just validated that all of the
12534                 * bits above PAMax are zero, so logically we only need to
12535                 * clear the top byte for TBI.  But it's clearer to follow
12536                 * the pseudocode set of addrdesc.paddress.
12537                 */
12538                address = extract64(address, 0, 52);
12539            }
12540        }
12541        *phys_ptr = address;
12542        *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
12543        *page_size = TARGET_PAGE_SIZE;
12544
12545        /* Fill in cacheattr a-la AArch64.TranslateAddressS1Off. */
12546        hcr = arm_hcr_el2_eff(env);
12547        cacheattrs->shareability = 0;
12548        if (hcr & HCR_DC) {
12549            if (hcr & HCR_DCT) {
12550                memattr = 0xf0;  /* Tagged, Normal, WB, RWA */
12551            } else {
12552                memattr = 0xff;  /* Normal, WB, RWA */
12553            }
12554        } else if (access_type == MMU_INST_FETCH) {
12555            if (regime_sctlr(env, mmu_idx) & SCTLR_I) {
12556                memattr = 0xee;  /* Normal, WT, RA, NT */
12557            } else {
12558                memattr = 0x44;  /* Normal, NC, No */
12559            }
12560            cacheattrs->shareability = 2; /* outer sharable */
12561        } else {
12562            memattr = 0x00;      /* Device, nGnRnE */
12563        }
12564        cacheattrs->attrs = memattr;
12565        return 0;
12566    }
12567
12568    if (regime_using_lpae_format(env, mmu_idx)) {
12569        return get_phys_addr_lpae(env, address, access_type, mmu_idx, false,
12570                                  phys_ptr, attrs, prot, page_size,
12571                                  fi, cacheattrs);
12572    } else if (regime_sctlr(env, mmu_idx) & SCTLR_XP) {
12573        return get_phys_addr_v6(env, address, access_type, mmu_idx,
12574                                phys_ptr, attrs, prot, page_size, fi);
12575    } else {
12576        return get_phys_addr_v5(env, address, access_type, mmu_idx,
12577                                    phys_ptr, prot, page_size, fi);
12578    }
12579}
12580
12581hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cs, vaddr addr,
12582                                         MemTxAttrs *attrs)
12583{
12584    ARMCPU *cpu = ARM_CPU(cs);
12585    CPUARMState *env = &cpu->env;
12586    hwaddr phys_addr;
12587    target_ulong page_size;
12588    int prot;
12589    bool ret;
12590    ARMMMUFaultInfo fi = {};
12591    ARMMMUIdx mmu_idx = arm_mmu_idx(env);
12592    ARMCacheAttrs cacheattrs = {};
12593
12594    *attrs = (MemTxAttrs) {};
12595
12596    ret = get_phys_addr(env, addr, MMU_DATA_LOAD, mmu_idx, &phys_addr,
12597                        attrs, &prot, &page_size, &fi, &cacheattrs);
12598
12599    if (ret) {
12600        return -1;
12601    }
12602    return phys_addr;
12603}
12604
12605#endif
12606
12607/* Note that signed overflow is undefined in C.  The following routines are
12608   careful to use unsigned types where modulo arithmetic is required.
12609   Failure to do so _will_ break on newer gcc.  */
12610
12611/* Signed saturating arithmetic.  */
12612
12613/* Perform 16-bit signed saturating addition.  */
12614static inline uint16_t add16_sat(uint16_t a, uint16_t b)
12615{
12616    uint16_t res;
12617
12618    res = a + b;
12619    if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) {
12620        if (a & 0x8000)
12621            res = 0x8000;
12622        else
12623            res = 0x7fff;
12624    }
12625    return res;
12626}
12627
12628/* Perform 8-bit signed saturating addition.  */
12629static inline uint8_t add8_sat(uint8_t a, uint8_t b)
12630{
12631    uint8_t res;
12632
12633    res = a + b;
12634    if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) {
12635        if (a & 0x80)
12636            res = 0x80;
12637        else
12638            res = 0x7f;
12639    }
12640    return res;
12641}
12642
12643/* Perform 16-bit signed saturating subtraction.  */
12644static inline uint16_t sub16_sat(uint16_t a, uint16_t b)
12645{
12646    uint16_t res;
12647
12648    res = a - b;
12649    if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) {
12650        if (a & 0x8000)
12651            res = 0x8000;
12652        else
12653            res = 0x7fff;
12654    }
12655    return res;
12656}
12657
12658/* Perform 8-bit signed saturating subtraction.  */
12659static inline uint8_t sub8_sat(uint8_t a, uint8_t b)
12660{
12661    uint8_t res;
12662
12663    res = a - b;
12664    if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) {
12665        if (a & 0x80)
12666            res = 0x80;
12667        else
12668            res = 0x7f;
12669    }
12670    return res;
12671}
12672
12673#define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
12674#define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
12675#define ADD8(a, b, n)  RESULT(add8_sat(a, b), n, 8);
12676#define SUB8(a, b, n)  RESULT(sub8_sat(a, b), n, 8);
12677#define PFX q
12678
12679#include "op_addsub.h"
12680
12681/* Unsigned saturating arithmetic.  */
12682static inline uint16_t add16_usat(uint16_t a, uint16_t b)
12683{
12684    uint16_t res;
12685    res = a + b;
12686    if (res < a)
12687        res = 0xffff;
12688    return res;
12689}
12690
12691static inline uint16_t sub16_usat(uint16_t a, uint16_t b)
12692{
12693    if (a > b)
12694        return a - b;
12695    else
12696        return 0;
12697}
12698
12699static inline uint8_t add8_usat(uint8_t a, uint8_t b)
12700{
12701    uint8_t res;
12702    res = a + b;
12703    if (res < a)
12704        res = 0xff;
12705    return res;
12706}
12707
12708static inline uint8_t sub8_usat(uint8_t a, uint8_t b)
12709{
12710    if (a > b)
12711        return a - b;
12712    else
12713        return 0;
12714}
12715
12716#define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
12717#define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
12718#define ADD8(a, b, n)  RESULT(add8_usat(a, b), n, 8);
12719#define SUB8(a, b, n)  RESULT(sub8_usat(a, b), n, 8);
12720#define PFX uq
12721
12722#include "op_addsub.h"
12723
12724/* Signed modulo arithmetic.  */
12725#define SARITH16(a, b, n, op) do { \
12726    int32_t sum; \
12727    sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \
12728    RESULT(sum, n, 16); \
12729    if (sum >= 0) \
12730        ge |= 3 << (n * 2); \
12731    } while(0)
12732
12733#define SARITH8(a, b, n, op) do { \
12734    int32_t sum; \
12735    sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \
12736    RESULT(sum, n, 8); \
12737    if (sum >= 0) \
12738        ge |= 1 << n; \
12739    } while(0)
12740
12741
12742#define ADD16(a, b, n) SARITH16(a, b, n, +)
12743#define SUB16(a, b, n) SARITH16(a, b, n, -)
12744#define ADD8(a, b, n)  SARITH8(a, b, n, +)
12745#define SUB8(a, b, n)  SARITH8(a, b, n, -)
12746#define PFX s
12747#define ARITH_GE
12748
12749#include "op_addsub.h"
12750
12751/* Unsigned modulo arithmetic.  */
12752#define ADD16(a, b, n) do { \
12753    uint32_t sum; \
12754    sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
12755    RESULT(sum, n, 16); \
12756    if ((sum >> 16) == 1) \
12757        ge |= 3 << (n * 2); \
12758    } while(0)
12759
12760#define ADD8(a, b, n) do { \
12761    uint32_t sum; \
12762    sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
12763    RESULT(sum, n, 8); \
12764    if ((sum >> 8) == 1) \
12765        ge |= 1 << n; \
12766    } while(0)
12767
12768#define SUB16(a, b, n) do { \
12769    uint32_t sum; \
12770    sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
12771    RESULT(sum, n, 16); \
12772    if ((sum >> 16) == 0) \
12773        ge |= 3 << (n * 2); \
12774    } while(0)
12775
12776#define SUB8(a, b, n) do { \
12777    uint32_t sum; \
12778    sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
12779    RESULT(sum, n, 8); \
12780    if ((sum >> 8) == 0) \
12781        ge |= 1 << n; \
12782    } while(0)
12783
12784#define PFX u
12785#define ARITH_GE
12786
12787#include "op_addsub.h"
12788
12789/* Halved signed arithmetic.  */
12790#define ADD16(a, b, n) \
12791  RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
12792#define SUB16(a, b, n) \
12793  RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
12794#define ADD8(a, b, n) \
12795  RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
12796#define SUB8(a, b, n) \
12797  RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
12798#define PFX sh
12799
12800#include "op_addsub.h"
12801
12802/* Halved unsigned arithmetic.  */
12803#define ADD16(a, b, n) \
12804  RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
12805#define SUB16(a, b, n) \
12806  RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
12807#define ADD8(a, b, n) \
12808  RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
12809#define SUB8(a, b, n) \
12810  RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
12811#define PFX uh
12812
12813#include "op_addsub.h"
12814
12815static inline uint8_t do_usad(uint8_t a, uint8_t b)
12816{
12817    if (a > b)
12818        return a - b;
12819    else
12820        return b - a;
12821}
12822
12823/* Unsigned sum of absolute byte differences.  */
12824uint32_t HELPER(usad8)(uint32_t a, uint32_t b)
12825{
12826    uint32_t sum;
12827    sum = do_usad(a, b);
12828    sum += do_usad(a >> 8, b >> 8);
12829    sum += do_usad(a >> 16, b >> 16);
12830    sum += do_usad(a >> 24, b >> 24);
12831    return sum;
12832}
12833
12834/* For ARMv6 SEL instruction.  */
12835uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b)
12836{
12837    uint32_t mask;
12838
12839    mask = 0;
12840    if (flags & 1)
12841        mask |= 0xff;
12842    if (flags & 2)
12843        mask |= 0xff00;
12844    if (flags & 4)
12845        mask |= 0xff0000;
12846    if (flags & 8)
12847        mask |= 0xff000000;
12848    return (a & mask) | (b & ~mask);
12849}
12850
12851/* CRC helpers.
12852 * The upper bytes of val (above the number specified by 'bytes') must have
12853 * been zeroed out by the caller.
12854 */
12855uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes)
12856{
12857    uint8_t buf[4];
12858
12859    stl_le_p(buf, val);
12860
12861    /* zlib crc32 converts the accumulator and output to one's complement.  */
12862    return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff;
12863}
12864
12865uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes)
12866{
12867    uint8_t buf[4];
12868
12869    stl_le_p(buf, val);
12870
12871    /* Linux crc32c converts the output to one's complement.  */
12872    return crc32c(acc, buf, bytes) ^ 0xffffffff;
12873}
12874
12875/* Return the exception level to which FP-disabled exceptions should
12876 * be taken, or 0 if FP is enabled.
12877 */
12878int fp_exception_el(CPUARMState *env, int cur_el)
12879{
12880#ifndef CONFIG_USER_ONLY
12881    /* CPACR and the CPTR registers don't exist before v6, so FP is
12882     * always accessible
12883     */
12884    if (!arm_feature(env, ARM_FEATURE_V6)) {
12885        return 0;
12886    }
12887
12888    if (arm_feature(env, ARM_FEATURE_M)) {
12889        /* CPACR can cause a NOCP UsageFault taken to current security state */
12890        if (!v7m_cpacr_pass(env, env->v7m.secure, cur_el != 0)) {
12891            return 1;
12892        }
12893
12894        if (arm_feature(env, ARM_FEATURE_M_SECURITY) && !env->v7m.secure) {
12895            if (!extract32(env->v7m.nsacr, 10, 1)) {
12896                /* FP insns cause a NOCP UsageFault taken to Secure */
12897                return 3;
12898            }
12899        }
12900
12901        return 0;
12902    }
12903
12904    /* The CPACR controls traps to EL1, or PL1 if we're 32 bit:
12905     * 0, 2 : trap EL0 and EL1/PL1 accesses
12906     * 1    : trap only EL0 accesses
12907     * 3    : trap no accesses
12908     * This register is ignored if E2H+TGE are both set.
12909     */
12910    if ((arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
12911        int fpen = extract32(env->cp15.cpacr_el1, 20, 2);
12912
12913        switch (fpen) {
12914        case 0:
12915        case 2:
12916            if (cur_el == 0 || cur_el == 1) {
12917                /* Trap to PL1, which might be EL1 or EL3 */
12918                if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
12919                    return 3;
12920                }
12921                return 1;
12922            }
12923            if (cur_el == 3 && !is_a64(env)) {
12924                /* Secure PL1 running at EL3 */
12925                return 3;
12926            }
12927            break;
12928        case 1:
12929            if (cur_el == 0) {
12930                return 1;
12931            }
12932            break;
12933        case 3:
12934            break;
12935        }
12936    }
12937
12938    /*
12939     * The NSACR allows A-profile AArch32 EL3 and M-profile secure mode
12940     * to control non-secure access to the FPU. It doesn't have any
12941     * effect if EL3 is AArch64 or if EL3 doesn't exist at all.
12942     */
12943    if ((arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
12944         cur_el <= 2 && !arm_is_secure_below_el3(env))) {
12945        if (!extract32(env->cp15.nsacr, 10, 1)) {
12946            /* FP insns act as UNDEF */
12947            return cur_el == 2 ? 2 : 1;
12948        }
12949    }
12950
12951    /* For the CPTR registers we don't need to guard with an ARM_FEATURE
12952     * check because zero bits in the registers mean "don't trap".
12953     */
12954
12955    /* CPTR_EL2 : present in v7VE or v8 */
12956    if (cur_el <= 2 && extract32(env->cp15.cptr_el[2], 10, 1)
12957        && arm_is_el2_enabled(env)) {
12958        /* Trap FP ops at EL2, NS-EL1 or NS-EL0 to EL2 */
12959        return 2;
12960    }
12961
12962    /* CPTR_EL3 : present in v8 */
12963    if (extract32(env->cp15.cptr_el[3], 10, 1)) {
12964        /* Trap all FP ops to EL3 */
12965        return 3;
12966    }
12967#endif
12968    return 0;
12969}
12970
12971/* Return the exception level we're running at if this is our mmu_idx */
12972int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx)
12973{
12974    if (mmu_idx & ARM_MMU_IDX_M) {
12975        return mmu_idx & ARM_MMU_IDX_M_PRIV;
12976    }
12977
12978    switch (mmu_idx) {
12979    case ARMMMUIdx_E10_0:
12980    case ARMMMUIdx_E20_0:
12981    case ARMMMUIdx_SE10_0:
12982    case ARMMMUIdx_SE20_0:
12983        return 0;
12984    case ARMMMUIdx_E10_1:
12985    case ARMMMUIdx_E10_1_PAN:
12986    case ARMMMUIdx_SE10_1:
12987    case ARMMMUIdx_SE10_1_PAN:
12988        return 1;
12989    case ARMMMUIdx_E2:
12990    case ARMMMUIdx_E20_2:
12991    case ARMMMUIdx_E20_2_PAN:
12992    case ARMMMUIdx_SE2:
12993    case ARMMMUIdx_SE20_2:
12994    case ARMMMUIdx_SE20_2_PAN:
12995        return 2;
12996    case ARMMMUIdx_SE3:
12997        return 3;
12998    default:
12999        g_assert_not_reached();
13000    }
13001}
13002
13003#ifndef CONFIG_TCG
13004ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate)
13005{
13006    g_assert_not_reached();
13007}
13008#endif
13009
13010ARMMMUIdx arm_mmu_idx_el(CPUARMState *env, int el)
13011{
13012    ARMMMUIdx idx;
13013    uint64_t hcr;
13014
13015    if (arm_feature(env, ARM_FEATURE_M)) {
13016        return arm_v7m_mmu_idx_for_secstate(env, env->v7m.secure);
13017    }
13018
13019    /* See ARM pseudo-function ELIsInHost.  */
13020    switch (el) {
13021    case 0:
13022        hcr = arm_hcr_el2_eff(env);
13023        if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
13024            idx = ARMMMUIdx_E20_0;
13025        } else {
13026            idx = ARMMMUIdx_E10_0;
13027        }
13028        break;
13029    case 1:
13030        if (env->pstate & PSTATE_PAN) {
13031            idx = ARMMMUIdx_E10_1_PAN;
13032        } else {
13033            idx = ARMMMUIdx_E10_1;
13034        }
13035        break;
13036    case 2:
13037        /* Note that TGE does not apply at EL2.  */
13038        if (arm_hcr_el2_eff(env) & HCR_E2H) {
13039            if (env->pstate & PSTATE_PAN) {
13040                idx = ARMMMUIdx_E20_2_PAN;
13041            } else {
13042                idx = ARMMMUIdx_E20_2;
13043            }
13044        } else {
13045            idx = ARMMMUIdx_E2;
13046        }
13047        break;
13048    case 3:
13049        return ARMMMUIdx_SE3;
13050    default:
13051        g_assert_not_reached();
13052    }
13053
13054    if (arm_is_secure_below_el3(env)) {
13055        idx &= ~ARM_MMU_IDX_A_NS;
13056    }
13057
13058    return idx;
13059}
13060
13061ARMMMUIdx arm_mmu_idx(CPUARMState *env)
13062{
13063    return arm_mmu_idx_el(env, arm_current_el(env));
13064}
13065
13066#ifndef CONFIG_USER_ONLY
13067ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env)
13068{
13069    return stage_1_mmu_idx(arm_mmu_idx(env));
13070}
13071#endif
13072
13073static CPUARMTBFlags rebuild_hflags_common(CPUARMState *env, int fp_el,
13074                                           ARMMMUIdx mmu_idx,
13075                                           CPUARMTBFlags flags)
13076{
13077    DP_TBFLAG_ANY(flags, FPEXC_EL, fp_el);
13078    DP_TBFLAG_ANY(flags, MMUIDX, arm_to_core_mmu_idx(mmu_idx));
13079
13080    if (arm_singlestep_active(env)) {
13081        DP_TBFLAG_ANY(flags, SS_ACTIVE, 1);
13082    }
13083    return flags;
13084}
13085
13086static CPUARMTBFlags rebuild_hflags_common_32(CPUARMState *env, int fp_el,
13087                                              ARMMMUIdx mmu_idx,
13088                                              CPUARMTBFlags flags)
13089{
13090    bool sctlr_b = arm_sctlr_b(env);
13091
13092    if (sctlr_b) {
13093        DP_TBFLAG_A32(flags, SCTLR__B, 1);
13094    }
13095    if (arm_cpu_data_is_big_endian_a32(env, sctlr_b)) {
13096        DP_TBFLAG_ANY(flags, BE_DATA, 1);
13097    }
13098    DP_TBFLAG_A32(flags, NS, !access_secure_reg(env));
13099
13100    return rebuild_hflags_common(env, fp_el, mmu_idx, flags);
13101}
13102
13103static CPUARMTBFlags rebuild_hflags_m32(CPUARMState *env, int fp_el,
13104                                        ARMMMUIdx mmu_idx)
13105{
13106    CPUARMTBFlags flags = {};
13107    uint32_t ccr = env->v7m.ccr[env->v7m.secure];
13108
13109    /* Without HaveMainExt, CCR.UNALIGN_TRP is RES1. */
13110    if (ccr & R_V7M_CCR_UNALIGN_TRP_MASK) {
13111        DP_TBFLAG_ANY(flags, ALIGN_MEM, 1);
13112    }
13113
13114    if (arm_v7m_is_handler_mode(env)) {
13115        DP_TBFLAG_M32(flags, HANDLER, 1);
13116    }
13117
13118    /*
13119     * v8M always applies stack limit checks unless CCR.STKOFHFNMIGN
13120     * is suppressing them because the requested execution priority
13121     * is less than 0.
13122     */
13123    if (arm_feature(env, ARM_FEATURE_V8) &&
13124        !((mmu_idx & ARM_MMU_IDX_M_NEGPRI) &&
13125          (ccr & R_V7M_CCR_STKOFHFNMIGN_MASK))) {
13126        DP_TBFLAG_M32(flags, STACKCHECK, 1);
13127    }
13128
13129    return rebuild_hflags_common_32(env, fp_el, mmu_idx, flags);
13130}
13131
13132static CPUARMTBFlags rebuild_hflags_aprofile(CPUARMState *env)
13133{
13134    CPUARMTBFlags flags = {};
13135
13136    DP_TBFLAG_ANY(flags, DEBUG_TARGET_EL, arm_debug_target_el(env));
13137    return flags;
13138}
13139
13140static CPUARMTBFlags rebuild_hflags_a32(CPUARMState *env, int fp_el,
13141                                        ARMMMUIdx mmu_idx)
13142{
13143    CPUARMTBFlags flags = rebuild_hflags_aprofile(env);
13144    int el = arm_current_el(env);
13145
13146    if (arm_sctlr(env, el) & SCTLR_A) {
13147        DP_TBFLAG_ANY(flags, ALIGN_MEM, 1);
13148    }
13149
13150    if (arm_el_is_aa64(env, 1)) {
13151        DP_TBFLAG_A32(flags, VFPEN, 1);
13152    }
13153
13154    if (el < 2 && env->cp15.hstr_el2 &&
13155        (arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
13156        DP_TBFLAG_A32(flags, HSTR_ACTIVE, 1);
13157    }
13158
13159    if (env->uncached_cpsr & CPSR_IL) {
13160        DP_TBFLAG_ANY(flags, PSTATE__IL, 1);
13161    }
13162
13163    return rebuild_hflags_common_32(env, fp_el, mmu_idx, flags);
13164}
13165
13166static CPUARMTBFlags rebuild_hflags_a64(CPUARMState *env, int el, int fp_el,
13167                                        ARMMMUIdx mmu_idx)
13168{
13169    CPUARMTBFlags flags = rebuild_hflags_aprofile(env);
13170    ARMMMUIdx stage1 = stage_1_mmu_idx(mmu_idx);
13171    uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr;
13172    uint64_t sctlr;
13173    int tbii, tbid;
13174
13175    DP_TBFLAG_ANY(flags, AARCH64_STATE, 1);
13176
13177    /* Get control bits for tagged addresses.  */
13178    tbid = aa64_va_parameter_tbi(tcr, mmu_idx);
13179    tbii = tbid & ~aa64_va_parameter_tbid(tcr, mmu_idx);
13180
13181    DP_TBFLAG_A64(flags, TBII, tbii);
13182    DP_TBFLAG_A64(flags, TBID, tbid);
13183
13184    if (cpu_isar_feature(aa64_sve, env_archcpu(env))) {
13185        int sve_el = sve_exception_el(env, el);
13186        uint32_t zcr_len;
13187
13188        /*
13189         * If SVE is disabled, but FP is enabled,
13190         * then the effective len is 0.
13191         */
13192        if (sve_el != 0 && fp_el == 0) {
13193            zcr_len = 0;
13194        } else {
13195            zcr_len = sve_zcr_len_for_el(env, el);
13196        }
13197        DP_TBFLAG_A64(flags, SVEEXC_EL, sve_el);
13198        DP_TBFLAG_A64(flags, ZCR_LEN, zcr_len);
13199    }
13200
13201    sctlr = regime_sctlr(env, stage1);
13202
13203    if (sctlr & SCTLR_A) {
13204        DP_TBFLAG_ANY(flags, ALIGN_MEM, 1);
13205    }
13206
13207    if (arm_cpu_data_is_big_endian_a64(el, sctlr)) {
13208        DP_TBFLAG_ANY(flags, BE_DATA, 1);
13209    }
13210
13211    if (cpu_isar_feature(aa64_pauth, env_archcpu(env))) {
13212        /*
13213         * In order to save space in flags, we record only whether
13214         * pauth is "inactive", meaning all insns are implemented as
13215         * a nop, or "active" when some action must be performed.
13216         * The decision of which action to take is left to a helper.
13217         */
13218        if (sctlr & (SCTLR_EnIA | SCTLR_EnIB | SCTLR_EnDA | SCTLR_EnDB)) {
13219            DP_TBFLAG_A64(flags, PAUTH_ACTIVE, 1);
13220        }
13221    }
13222
13223    if (cpu_isar_feature(aa64_bti, env_archcpu(env))) {
13224        /* Note that SCTLR_EL[23].BT == SCTLR_BT1.  */
13225        if (sctlr & (el == 0 ? SCTLR_BT0 : SCTLR_BT1)) {
13226            DP_TBFLAG_A64(flags, BT, 1);
13227        }
13228    }
13229
13230    /* Compute the condition for using AccType_UNPRIV for LDTR et al. */
13231    if (!(env->pstate & PSTATE_UAO)) {
13232        switch (mmu_idx) {
13233        case ARMMMUIdx_E10_1:
13234        case ARMMMUIdx_E10_1_PAN:
13235        case ARMMMUIdx_SE10_1:
13236        case ARMMMUIdx_SE10_1_PAN:
13237            /* TODO: ARMv8.3-NV */
13238            DP_TBFLAG_A64(flags, UNPRIV, 1);
13239            break;
13240        case ARMMMUIdx_E20_2:
13241        case ARMMMUIdx_E20_2_PAN:
13242        case ARMMMUIdx_SE20_2:
13243        case ARMMMUIdx_SE20_2_PAN:
13244            /*
13245             * Note that EL20_2 is gated by HCR_EL2.E2H == 1, but EL20_0 is
13246             * gated by HCR_EL2.<E2H,TGE> == '11', and so is LDTR.
13247             */
13248            if (env->cp15.hcr_el2 & HCR_TGE) {
13249                DP_TBFLAG_A64(flags, UNPRIV, 1);
13250            }
13251            break;
13252        default:
13253            break;
13254        }
13255    }
13256
13257    if (env->pstate & PSTATE_IL) {
13258        DP_TBFLAG_ANY(flags, PSTATE__IL, 1);
13259    }
13260
13261    if (cpu_isar_feature(aa64_mte, env_archcpu(env))) {
13262        /*
13263         * Set MTE_ACTIVE if any access may be Checked, and leave clear
13264         * if all accesses must be Unchecked:
13265         * 1) If no TBI, then there are no tags in the address to check,
13266         * 2) If Tag Check Override, then all accesses are Unchecked,
13267         * 3) If Tag Check Fail == 0, then Checked access have no effect,
13268         * 4) If no Allocation Tag Access, then all accesses are Unchecked.
13269         */
13270        if (allocation_tag_access_enabled(env, el, sctlr)) {
13271            DP_TBFLAG_A64(flags, ATA, 1);
13272            if (tbid
13273                && !(env->pstate & PSTATE_TCO)
13274                && (sctlr & (el == 0 ? SCTLR_TCF0 : SCTLR_TCF))) {
13275                DP_TBFLAG_A64(flags, MTE_ACTIVE, 1);
13276            }
13277        }
13278        /* And again for unprivileged accesses, if required.  */
13279        if (EX_TBFLAG_A64(flags, UNPRIV)
13280            && tbid
13281            && !(env->pstate & PSTATE_TCO)
13282            && (sctlr & SCTLR_TCF0)
13283            && allocation_tag_access_enabled(env, 0, sctlr)) {
13284            DP_TBFLAG_A64(flags, MTE0_ACTIVE, 1);
13285        }
13286        /* Cache TCMA as well as TBI. */
13287        DP_TBFLAG_A64(flags, TCMA, aa64_va_parameter_tcma(tcr, mmu_idx));
13288    }
13289
13290    return rebuild_hflags_common(env, fp_el, mmu_idx, flags);
13291}
13292
13293static CPUARMTBFlags rebuild_hflags_internal(CPUARMState *env)
13294{
13295    int el = arm_current_el(env);
13296    int fp_el = fp_exception_el(env, el);
13297    ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
13298
13299    if (is_a64(env)) {
13300        return rebuild_hflags_a64(env, el, fp_el, mmu_idx);
13301    } else if (arm_feature(env, ARM_FEATURE_M)) {
13302        return rebuild_hflags_m32(env, fp_el, mmu_idx);
13303    } else {
13304        return rebuild_hflags_a32(env, fp_el, mmu_idx);
13305    }
13306}
13307
13308void arm_rebuild_hflags(CPUARMState *env)
13309{
13310    env->hflags = rebuild_hflags_internal(env);
13311}
13312
13313/*
13314 * If we have triggered a EL state change we can't rely on the
13315 * translator having passed it to us, we need to recompute.
13316 */
13317void HELPER(rebuild_hflags_m32_newel)(CPUARMState *env)
13318{
13319    int el = arm_current_el(env);
13320    int fp_el = fp_exception_el(env, el);
13321    ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
13322
13323    env->hflags = rebuild_hflags_m32(env, fp_el, mmu_idx);
13324}
13325
13326void HELPER(rebuild_hflags_m32)(CPUARMState *env, int el)
13327{
13328    int fp_el = fp_exception_el(env, el);
13329    ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
13330
13331    env->hflags = rebuild_hflags_m32(env, fp_el, mmu_idx);
13332}
13333
13334/*
13335 * If we have triggered a EL state change we can't rely on the
13336 * translator having passed it to us, we need to recompute.
13337 */
13338void HELPER(rebuild_hflags_a32_newel)(CPUARMState *env)
13339{
13340    int el = arm_current_el(env);
13341    int fp_el = fp_exception_el(env, el);
13342    ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
13343    env->hflags = rebuild_hflags_a32(env, fp_el, mmu_idx);
13344}
13345
13346void HELPER(rebuild_hflags_a32)(CPUARMState *env, int el)
13347{
13348    int fp_el = fp_exception_el(env, el);
13349    ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
13350
13351    env->hflags = rebuild_hflags_a32(env, fp_el, mmu_idx);
13352}
13353
13354void HELPER(rebuild_hflags_a64)(CPUARMState *env, int el)
13355{
13356    int fp_el = fp_exception_el(env, el);
13357    ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
13358
13359    env->hflags = rebuild_hflags_a64(env, el, fp_el, mmu_idx);
13360}
13361
13362static inline void assert_hflags_rebuild_correctly(CPUARMState *env)
13363{
13364#ifdef CONFIG_DEBUG_TCG
13365    CPUARMTBFlags c = env->hflags;
13366    CPUARMTBFlags r = rebuild_hflags_internal(env);
13367
13368    if (unlikely(c.flags != r.flags || c.flags2 != r.flags2)) {
13369        fprintf(stderr, "TCG hflags mismatch "
13370                        "(current:(0x%08x,0x" TARGET_FMT_lx ")"
13371                        " rebuilt:(0x%08x,0x" TARGET_FMT_lx ")\n",
13372                c.flags, c.flags2, r.flags, r.flags2);
13373        abort();
13374    }
13375#endif
13376}
13377
13378static bool mve_no_pred(CPUARMState *env)
13379{
13380    /*
13381     * Return true if there is definitely no predication of MVE
13382     * instructions by VPR or LTPSIZE. (Returning false even if there
13383     * isn't any predication is OK; generated code will just be
13384     * a little worse.)
13385     * If the CPU does not implement MVE then this TB flag is always 0.
13386     *
13387     * NOTE: if you change this logic, the "recalculate s->mve_no_pred"
13388     * logic in gen_update_fp_context() needs to be updated to match.
13389     *
13390     * We do not include the effect of the ECI bits here -- they are
13391     * tracked in other TB flags. This simplifies the logic for
13392     * "when did we emit code that changes the MVE_NO_PRED TB flag
13393     * and thus need to end the TB?".
13394     */
13395    if (cpu_isar_feature(aa32_mve, env_archcpu(env))) {
13396        return false;
13397    }
13398    if (env->v7m.vpr) {
13399        return false;
13400    }
13401    if (env->v7m.ltpsize < 4) {
13402        return false;
13403    }
13404    return true;
13405}
13406
13407void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
13408                          target_ulong *cs_base, uint32_t *pflags)
13409{
13410    CPUARMTBFlags flags;
13411
13412    assert_hflags_rebuild_correctly(env);
13413    flags = env->hflags;
13414
13415    if (EX_TBFLAG_ANY(flags, AARCH64_STATE)) {
13416        *pc = env->pc;
13417        if (cpu_isar_feature(aa64_bti, env_archcpu(env))) {
13418            DP_TBFLAG_A64(flags, BTYPE, env->btype);
13419        }
13420    } else {
13421        *pc = env->regs[15];
13422
13423        if (arm_feature(env, ARM_FEATURE_M)) {
13424            if (arm_feature(env, ARM_FEATURE_M_SECURITY) &&
13425                FIELD_EX32(env->v7m.fpccr[M_REG_S], V7M_FPCCR, S)
13426                != env->v7m.secure) {
13427                DP_TBFLAG_M32(flags, FPCCR_S_WRONG, 1);
13428            }
13429
13430            if ((env->v7m.fpccr[env->v7m.secure] & R_V7M_FPCCR_ASPEN_MASK) &&
13431                (!(env->v7m.control[M_REG_S] & R_V7M_CONTROL_FPCA_MASK) ||
13432                 (env->v7m.secure &&
13433                  !(env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK)))) {
13434                /*
13435                 * ASPEN is set, but FPCA/SFPA indicate that there is no
13436                 * active FP context; we must create a new FP context before
13437                 * executing any FP insn.
13438                 */
13439                DP_TBFLAG_M32(flags, NEW_FP_CTXT_NEEDED, 1);
13440            }
13441
13442            bool is_secure = env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_S_MASK;
13443            if (env->v7m.fpccr[is_secure] & R_V7M_FPCCR_LSPACT_MASK) {
13444                DP_TBFLAG_M32(flags, LSPACT, 1);
13445            }
13446
13447            if (mve_no_pred(env)) {
13448                DP_TBFLAG_M32(flags, MVE_NO_PRED, 1);
13449            }
13450        } else {
13451            /*
13452             * Note that XSCALE_CPAR shares bits with VECSTRIDE.
13453             * Note that VECLEN+VECSTRIDE are RES0 for M-profile.
13454             */
13455            if (arm_feature(env, ARM_FEATURE_XSCALE)) {
13456                DP_TBFLAG_A32(flags, XSCALE_CPAR, env->cp15.c15_cpar);
13457            } else {
13458                DP_TBFLAG_A32(flags, VECLEN, env->vfp.vec_len);
13459                DP_TBFLAG_A32(flags, VECSTRIDE, env->vfp.vec_stride);
13460            }
13461            if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)) {
13462                DP_TBFLAG_A32(flags, VFPEN, 1);
13463            }
13464        }
13465
13466        DP_TBFLAG_AM32(flags, THUMB, env->thumb);
13467        DP_TBFLAG_AM32(flags, CONDEXEC, env->condexec_bits);
13468    }
13469
13470    /*
13471     * The SS_ACTIVE and PSTATE_SS bits correspond to the state machine
13472     * states defined in the ARM ARM for software singlestep:
13473     *  SS_ACTIVE   PSTATE.SS   State
13474     *     0            x       Inactive (the TB flag for SS is always 0)
13475     *     1            0       Active-pending
13476     *     1            1       Active-not-pending
13477     * SS_ACTIVE is set in hflags; PSTATE__SS is computed every TB.
13478     */
13479    if (EX_TBFLAG_ANY(flags, SS_ACTIVE) && (env->pstate & PSTATE_SS)) {
13480        DP_TBFLAG_ANY(flags, PSTATE__SS, 1);
13481    }
13482
13483    *pflags = flags.flags;
13484    *cs_base = flags.flags2;
13485}
13486
13487#ifdef TARGET_AARCH64
13488/*
13489 * The manual says that when SVE is enabled and VQ is widened the
13490 * implementation is allowed to zero the previously inaccessible
13491 * portion of the registers.  The corollary to that is that when
13492 * SVE is enabled and VQ is narrowed we are also allowed to zero
13493 * the now inaccessible portion of the registers.
13494 *
13495 * The intent of this is that no predicate bit beyond VQ is ever set.
13496 * Which means that some operations on predicate registers themselves
13497 * may operate on full uint64_t or even unrolled across the maximum
13498 * uint64_t[4].  Performing 4 bits of host arithmetic unconditionally
13499 * may well be cheaper than conditionals to restrict the operation
13500 * to the relevant portion of a uint16_t[16].
13501 */
13502void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq)
13503{
13504    int i, j;
13505    uint64_t pmask;
13506
13507    assert(vq >= 1 && vq <= ARM_MAX_VQ);
13508    assert(vq <= env_archcpu(env)->sve_max_vq);
13509
13510    /* Zap the high bits of the zregs.  */
13511    for (i = 0; i < 32; i++) {
13512        memset(&env->vfp.zregs[i].d[2 * vq], 0, 16 * (ARM_MAX_VQ - vq));
13513    }
13514
13515    /* Zap the high bits of the pregs and ffr.  */
13516    pmask = 0;
13517    if (vq & 3) {
13518        pmask = ~(-1ULL << (16 * (vq & 3)));
13519    }
13520    for (j = vq / 4; j < ARM_MAX_VQ / 4; j++) {
13521        for (i = 0; i < 17; ++i) {
13522            env->vfp.pregs[i].p[j] &= pmask;
13523        }
13524        pmask = 0;
13525    }
13526}
13527
13528/*
13529 * Notice a change in SVE vector size when changing EL.
13530 */
13531void aarch64_sve_change_el(CPUARMState *env, int old_el,
13532                           int new_el, bool el0_a64)
13533{
13534    ARMCPU *cpu = env_archcpu(env);
13535    int old_len, new_len;
13536    bool old_a64, new_a64;
13537
13538    /* Nothing to do if no SVE.  */
13539    if (!cpu_isar_feature(aa64_sve, cpu)) {
13540        return;
13541    }
13542
13543    /* Nothing to do if FP is disabled in either EL.  */
13544    if (fp_exception_el(env, old_el) || fp_exception_el(env, new_el)) {
13545        return;
13546    }
13547
13548    /*
13549     * DDI0584A.d sec 3.2: "If SVE instructions are disabled or trapped
13550     * at ELx, or not available because the EL is in AArch32 state, then
13551     * for all purposes other than a direct read, the ZCR_ELx.LEN field
13552     * has an effective value of 0".
13553     *
13554     * Consider EL2 (aa64, vq=4) -> EL0 (aa32) -> EL1 (aa64, vq=0).
13555     * If we ignore aa32 state, we would fail to see the vq4->vq0 transition
13556     * from EL2->EL1.  Thus we go ahead and narrow when entering aa32 so that
13557     * we already have the correct register contents when encountering the
13558     * vq0->vq0 transition between EL0->EL1.
13559     */
13560    old_a64 = old_el ? arm_el_is_aa64(env, old_el) : el0_a64;
13561    old_len = (old_a64 && !sve_exception_el(env, old_el)
13562               ? sve_zcr_len_for_el(env, old_el) : 0);
13563    new_a64 = new_el ? arm_el_is_aa64(env, new_el) : el0_a64;
13564    new_len = (new_a64 && !sve_exception_el(env, new_el)
13565               ? sve_zcr_len_for_el(env, new_el) : 0);
13566
13567    /* When changing vector length, clear inaccessible state.  */
13568    if (new_len < old_len) {
13569        aarch64_sve_narrow_vq(env, new_len + 1);
13570    }
13571}
13572#endif
13573