qemu/target/arm/kvm.c
<<
>>
Prefs
   1/*
   2 * ARM implementation of KVM hooks
   3 *
   4 * Copyright Christoffer Dall 2009-2010
   5 *
   6 * This work is licensed under the terms of the GNU GPL, version 2 or later.
   7 * See the COPYING file in the top-level directory.
   8 *
   9 */
  10
  11#include "qemu/osdep.h"
  12#include <sys/ioctl.h>
  13
  14#include <linux/kvm.h>
  15
  16#include "qemu-common.h"
  17#include "qemu/timer.h"
  18#include "qemu/error-report.h"
  19#include "qemu/main-loop.h"
  20#include "qom/object.h"
  21#include "qapi/error.h"
  22#include "sysemu/sysemu.h"
  23#include "sysemu/kvm.h"
  24#include "sysemu/kvm_int.h"
  25#include "kvm_arm.h"
  26#include "cpu.h"
  27#include "trace.h"
  28#include "internals.h"
  29#include "hw/pci/pci.h"
  30#include "exec/memattrs.h"
  31#include "exec/address-spaces.h"
  32#include "hw/boards.h"
  33#include "hw/irq.h"
  34#include "qemu/log.h"
  35
  36const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
  37    KVM_CAP_LAST_INFO
  38};
  39
  40static bool cap_has_mp_state;
  41static bool cap_has_inject_serror_esr;
  42static bool cap_has_inject_ext_dabt;
  43
  44static ARMHostCPUFeatures arm_host_cpu_features;
  45
  46int kvm_arm_vcpu_init(CPUState *cs)
  47{
  48    ARMCPU *cpu = ARM_CPU(cs);
  49    struct kvm_vcpu_init init;
  50
  51    init.target = cpu->kvm_target;
  52    memcpy(init.features, cpu->kvm_init_features, sizeof(init.features));
  53
  54    return kvm_vcpu_ioctl(cs, KVM_ARM_VCPU_INIT, &init);
  55}
  56
  57int kvm_arm_vcpu_finalize(CPUState *cs, int feature)
  58{
  59    return kvm_vcpu_ioctl(cs, KVM_ARM_VCPU_FINALIZE, &feature);
  60}
  61
  62void kvm_arm_init_serror_injection(CPUState *cs)
  63{
  64    cap_has_inject_serror_esr = kvm_check_extension(cs->kvm_state,
  65                                    KVM_CAP_ARM_INJECT_SERROR_ESR);
  66}
  67
  68bool kvm_arm_create_scratch_host_vcpu(const uint32_t *cpus_to_try,
  69                                      int *fdarray,
  70                                      struct kvm_vcpu_init *init)
  71{
  72    int ret = 0, kvmfd = -1, vmfd = -1, cpufd = -1;
  73    int max_vm_pa_size;
  74
  75    kvmfd = qemu_open_old("/dev/kvm", O_RDWR);
  76    if (kvmfd < 0) {
  77        goto err;
  78    }
  79    max_vm_pa_size = ioctl(kvmfd, KVM_CHECK_EXTENSION, KVM_CAP_ARM_VM_IPA_SIZE);
  80    if (max_vm_pa_size < 0) {
  81        max_vm_pa_size = 0;
  82    }
  83    vmfd = ioctl(kvmfd, KVM_CREATE_VM, max_vm_pa_size);
  84    if (vmfd < 0) {
  85        goto err;
  86    }
  87    cpufd = ioctl(vmfd, KVM_CREATE_VCPU, 0);
  88    if (cpufd < 0) {
  89        goto err;
  90    }
  91
  92    if (!init) {
  93        /* Caller doesn't want the VCPU to be initialized, so skip it */
  94        goto finish;
  95    }
  96
  97    if (init->target == -1) {
  98        struct kvm_vcpu_init preferred;
  99
 100        ret = ioctl(vmfd, KVM_ARM_PREFERRED_TARGET, &preferred);
 101        if (!ret) {
 102            init->target = preferred.target;
 103        }
 104    }
 105    if (ret >= 0) {
 106        ret = ioctl(cpufd, KVM_ARM_VCPU_INIT, init);
 107        if (ret < 0) {
 108            goto err;
 109        }
 110    } else if (cpus_to_try) {
 111        /* Old kernel which doesn't know about the
 112         * PREFERRED_TARGET ioctl: we know it will only support
 113         * creating one kind of guest CPU which is its preferred
 114         * CPU type.
 115         */
 116        struct kvm_vcpu_init try;
 117
 118        while (*cpus_to_try != QEMU_KVM_ARM_TARGET_NONE) {
 119            try.target = *cpus_to_try++;
 120            memcpy(try.features, init->features, sizeof(init->features));
 121            ret = ioctl(cpufd, KVM_ARM_VCPU_INIT, &try);
 122            if (ret >= 0) {
 123                break;
 124            }
 125        }
 126        if (ret < 0) {
 127            goto err;
 128        }
 129        init->target = try.target;
 130    } else {
 131        /* Treat a NULL cpus_to_try argument the same as an empty
 132         * list, which means we will fail the call since this must
 133         * be an old kernel which doesn't support PREFERRED_TARGET.
 134         */
 135        goto err;
 136    }
 137
 138finish:
 139    fdarray[0] = kvmfd;
 140    fdarray[1] = vmfd;
 141    fdarray[2] = cpufd;
 142
 143    return true;
 144
 145err:
 146    if (cpufd >= 0) {
 147        close(cpufd);
 148    }
 149    if (vmfd >= 0) {
 150        close(vmfd);
 151    }
 152    if (kvmfd >= 0) {
 153        close(kvmfd);
 154    }
 155
 156    return false;
 157}
 158
 159void kvm_arm_destroy_scratch_host_vcpu(int *fdarray)
 160{
 161    int i;
 162
 163    for (i = 2; i >= 0; i--) {
 164        close(fdarray[i]);
 165    }
 166}
 167
 168void kvm_arm_set_cpu_features_from_host(ARMCPU *cpu)
 169{
 170    CPUARMState *env = &cpu->env;
 171
 172    if (!arm_host_cpu_features.dtb_compatible) {
 173        if (!kvm_enabled() ||
 174            !kvm_arm_get_host_cpu_features(&arm_host_cpu_features)) {
 175            /* We can't report this error yet, so flag that we need to
 176             * in arm_cpu_realizefn().
 177             */
 178            cpu->kvm_target = QEMU_KVM_ARM_TARGET_NONE;
 179            cpu->host_cpu_probe_failed = true;
 180            return;
 181        }
 182    }
 183
 184    cpu->kvm_target = arm_host_cpu_features.target;
 185    cpu->dtb_compatible = arm_host_cpu_features.dtb_compatible;
 186    cpu->isar = arm_host_cpu_features.isar;
 187    env->features = arm_host_cpu_features.features;
 188}
 189
 190static bool kvm_no_adjvtime_get(Object *obj, Error **errp)
 191{
 192    return !ARM_CPU(obj)->kvm_adjvtime;
 193}
 194
 195static void kvm_no_adjvtime_set(Object *obj, bool value, Error **errp)
 196{
 197    ARM_CPU(obj)->kvm_adjvtime = !value;
 198}
 199
 200static bool kvm_steal_time_get(Object *obj, Error **errp)
 201{
 202    return ARM_CPU(obj)->kvm_steal_time != ON_OFF_AUTO_OFF;
 203}
 204
 205static void kvm_steal_time_set(Object *obj, bool value, Error **errp)
 206{
 207    ARM_CPU(obj)->kvm_steal_time = value ? ON_OFF_AUTO_ON : ON_OFF_AUTO_OFF;
 208}
 209
 210/* KVM VCPU properties should be prefixed with "kvm-". */
 211void kvm_arm_add_vcpu_properties(Object *obj)
 212{
 213    ARMCPU *cpu = ARM_CPU(obj);
 214    CPUARMState *env = &cpu->env;
 215
 216    if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
 217        cpu->kvm_adjvtime = true;
 218        object_property_add_bool(obj, "kvm-no-adjvtime", kvm_no_adjvtime_get,
 219                                 kvm_no_adjvtime_set);
 220        object_property_set_description(obj, "kvm-no-adjvtime",
 221                                        "Set on to disable the adjustment of "
 222                                        "the virtual counter. VM stopped time "
 223                                        "will be counted.");
 224    }
 225
 226    cpu->kvm_steal_time = ON_OFF_AUTO_AUTO;
 227    object_property_add_bool(obj, "kvm-steal-time", kvm_steal_time_get,
 228                             kvm_steal_time_set);
 229    object_property_set_description(obj, "kvm-steal-time",
 230                                    "Set off to disable KVM steal time.");
 231}
 232
 233bool kvm_arm_pmu_supported(void)
 234{
 235    return kvm_check_extension(kvm_state, KVM_CAP_ARM_PMU_V3);
 236}
 237
 238int kvm_arm_get_max_vm_ipa_size(MachineState *ms, bool *fixed_ipa)
 239{
 240    KVMState *s = KVM_STATE(ms->accelerator);
 241    int ret;
 242
 243    ret = kvm_check_extension(s, KVM_CAP_ARM_VM_IPA_SIZE);
 244    *fixed_ipa = ret <= 0;
 245
 246    return ret > 0 ? ret : 40;
 247}
 248
 249int kvm_arch_init(MachineState *ms, KVMState *s)
 250{
 251    int ret = 0;
 252    /* For ARM interrupt delivery is always asynchronous,
 253     * whether we are using an in-kernel VGIC or not.
 254     */
 255    kvm_async_interrupts_allowed = true;
 256
 257    /*
 258     * PSCI wakes up secondary cores, so we always need to
 259     * have vCPUs waiting in kernel space
 260     */
 261    kvm_halt_in_kernel_allowed = true;
 262
 263    cap_has_mp_state = kvm_check_extension(s, KVM_CAP_MP_STATE);
 264
 265    if (ms->smp.cpus > 256 &&
 266        !kvm_check_extension(s, KVM_CAP_ARM_IRQ_LINE_LAYOUT_2)) {
 267        error_report("Using more than 256 vcpus requires a host kernel "
 268                     "with KVM_CAP_ARM_IRQ_LINE_LAYOUT_2");
 269        ret = -EINVAL;
 270    }
 271
 272    if (kvm_check_extension(s, KVM_CAP_ARM_NISV_TO_USER)) {
 273        if (kvm_vm_enable_cap(s, KVM_CAP_ARM_NISV_TO_USER, 0)) {
 274            error_report("Failed to enable KVM_CAP_ARM_NISV_TO_USER cap");
 275        } else {
 276            /* Set status for supporting the external dabt injection */
 277            cap_has_inject_ext_dabt = kvm_check_extension(s,
 278                                    KVM_CAP_ARM_INJECT_EXT_DABT);
 279        }
 280    }
 281
 282    return ret;
 283}
 284
 285unsigned long kvm_arch_vcpu_id(CPUState *cpu)
 286{
 287    return cpu->cpu_index;
 288}
 289
 290/* We track all the KVM devices which need their memory addresses
 291 * passing to the kernel in a list of these structures.
 292 * When board init is complete we run through the list and
 293 * tell the kernel the base addresses of the memory regions.
 294 * We use a MemoryListener to track mapping and unmapping of
 295 * the regions during board creation, so the board models don't
 296 * need to do anything special for the KVM case.
 297 *
 298 * Sometimes the address must be OR'ed with some other fields
 299 * (for example for KVM_VGIC_V3_ADDR_TYPE_REDIST_REGION).
 300 * @kda_addr_ormask aims at storing the value of those fields.
 301 */
 302typedef struct KVMDevice {
 303    struct kvm_arm_device_addr kda;
 304    struct kvm_device_attr kdattr;
 305    uint64_t kda_addr_ormask;
 306    MemoryRegion *mr;
 307    QSLIST_ENTRY(KVMDevice) entries;
 308    int dev_fd;
 309} KVMDevice;
 310
 311static QSLIST_HEAD(, KVMDevice) kvm_devices_head;
 312
 313static void kvm_arm_devlistener_add(MemoryListener *listener,
 314                                    MemoryRegionSection *section)
 315{
 316    KVMDevice *kd;
 317
 318    QSLIST_FOREACH(kd, &kvm_devices_head, entries) {
 319        if (section->mr == kd->mr) {
 320            kd->kda.addr = section->offset_within_address_space;
 321        }
 322    }
 323}
 324
 325static void kvm_arm_devlistener_del(MemoryListener *listener,
 326                                    MemoryRegionSection *section)
 327{
 328    KVMDevice *kd;
 329
 330    QSLIST_FOREACH(kd, &kvm_devices_head, entries) {
 331        if (section->mr == kd->mr) {
 332            kd->kda.addr = -1;
 333        }
 334    }
 335}
 336
 337static MemoryListener devlistener = {
 338    .name = "kvm-arm",
 339    .region_add = kvm_arm_devlistener_add,
 340    .region_del = kvm_arm_devlistener_del,
 341};
 342
 343static void kvm_arm_set_device_addr(KVMDevice *kd)
 344{
 345    struct kvm_device_attr *attr = &kd->kdattr;
 346    int ret;
 347
 348    /* If the device control API is available and we have a device fd on the
 349     * KVMDevice struct, let's use the newer API
 350     */
 351    if (kd->dev_fd >= 0) {
 352        uint64_t addr = kd->kda.addr;
 353
 354        addr |= kd->kda_addr_ormask;
 355        attr->addr = (uintptr_t)&addr;
 356        ret = kvm_device_ioctl(kd->dev_fd, KVM_SET_DEVICE_ATTR, attr);
 357    } else {
 358        ret = kvm_vm_ioctl(kvm_state, KVM_ARM_SET_DEVICE_ADDR, &kd->kda);
 359    }
 360
 361    if (ret < 0) {
 362        fprintf(stderr, "Failed to set device address: %s\n",
 363                strerror(-ret));
 364        abort();
 365    }
 366}
 367
 368static void kvm_arm_machine_init_done(Notifier *notifier, void *data)
 369{
 370    KVMDevice *kd, *tkd;
 371
 372    QSLIST_FOREACH_SAFE(kd, &kvm_devices_head, entries, tkd) {
 373        if (kd->kda.addr != -1) {
 374            kvm_arm_set_device_addr(kd);
 375        }
 376        memory_region_unref(kd->mr);
 377        QSLIST_REMOVE_HEAD(&kvm_devices_head, entries);
 378        g_free(kd);
 379    }
 380    memory_listener_unregister(&devlistener);
 381}
 382
 383static Notifier notify = {
 384    .notify = kvm_arm_machine_init_done,
 385};
 386
 387void kvm_arm_register_device(MemoryRegion *mr, uint64_t devid, uint64_t group,
 388                             uint64_t attr, int dev_fd, uint64_t addr_ormask)
 389{
 390    KVMDevice *kd;
 391
 392    if (!kvm_irqchip_in_kernel()) {
 393        return;
 394    }
 395
 396    if (QSLIST_EMPTY(&kvm_devices_head)) {
 397        memory_listener_register(&devlistener, &address_space_memory);
 398        qemu_add_machine_init_done_notifier(&notify);
 399    }
 400    kd = g_new0(KVMDevice, 1);
 401    kd->mr = mr;
 402    kd->kda.id = devid;
 403    kd->kda.addr = -1;
 404    kd->kdattr.flags = 0;
 405    kd->kdattr.group = group;
 406    kd->kdattr.attr = attr;
 407    kd->dev_fd = dev_fd;
 408    kd->kda_addr_ormask = addr_ormask;
 409    QSLIST_INSERT_HEAD(&kvm_devices_head, kd, entries);
 410    memory_region_ref(kd->mr);
 411}
 412
 413static int compare_u64(const void *a, const void *b)
 414{
 415    if (*(uint64_t *)a > *(uint64_t *)b) {
 416        return 1;
 417    }
 418    if (*(uint64_t *)a < *(uint64_t *)b) {
 419        return -1;
 420    }
 421    return 0;
 422}
 423
 424/*
 425 * cpreg_values are sorted in ascending order by KVM register ID
 426 * (see kvm_arm_init_cpreg_list). This allows us to cheaply find
 427 * the storage for a KVM register by ID with a binary search.
 428 */
 429static uint64_t *kvm_arm_get_cpreg_ptr(ARMCPU *cpu, uint64_t regidx)
 430{
 431    uint64_t *res;
 432
 433    res = bsearch(&regidx, cpu->cpreg_indexes, cpu->cpreg_array_len,
 434                  sizeof(uint64_t), compare_u64);
 435    assert(res);
 436
 437    return &cpu->cpreg_values[res - cpu->cpreg_indexes];
 438}
 439
 440/* Initialize the ARMCPU cpreg list according to the kernel's
 441 * definition of what CPU registers it knows about (and throw away
 442 * the previous TCG-created cpreg list).
 443 */
 444int kvm_arm_init_cpreg_list(ARMCPU *cpu)
 445{
 446    struct kvm_reg_list rl;
 447    struct kvm_reg_list *rlp;
 448    int i, ret, arraylen;
 449    CPUState *cs = CPU(cpu);
 450
 451    rl.n = 0;
 452    ret = kvm_vcpu_ioctl(cs, KVM_GET_REG_LIST, &rl);
 453    if (ret != -E2BIG) {
 454        return ret;
 455    }
 456    rlp = g_malloc(sizeof(struct kvm_reg_list) + rl.n * sizeof(uint64_t));
 457    rlp->n = rl.n;
 458    ret = kvm_vcpu_ioctl(cs, KVM_GET_REG_LIST, rlp);
 459    if (ret) {
 460        goto out;
 461    }
 462    /* Sort the list we get back from the kernel, since cpreg_tuples
 463     * must be in strictly ascending order.
 464     */
 465    qsort(&rlp->reg, rlp->n, sizeof(rlp->reg[0]), compare_u64);
 466
 467    for (i = 0, arraylen = 0; i < rlp->n; i++) {
 468        if (!kvm_arm_reg_syncs_via_cpreg_list(rlp->reg[i])) {
 469            continue;
 470        }
 471        switch (rlp->reg[i] & KVM_REG_SIZE_MASK) {
 472        case KVM_REG_SIZE_U32:
 473        case KVM_REG_SIZE_U64:
 474            break;
 475        default:
 476            fprintf(stderr, "Can't handle size of register in kernel list\n");
 477            ret = -EINVAL;
 478            goto out;
 479        }
 480
 481        arraylen++;
 482    }
 483
 484    cpu->cpreg_indexes = g_renew(uint64_t, cpu->cpreg_indexes, arraylen);
 485    cpu->cpreg_values = g_renew(uint64_t, cpu->cpreg_values, arraylen);
 486    cpu->cpreg_vmstate_indexes = g_renew(uint64_t, cpu->cpreg_vmstate_indexes,
 487                                         arraylen);
 488    cpu->cpreg_vmstate_values = g_renew(uint64_t, cpu->cpreg_vmstate_values,
 489                                        arraylen);
 490    cpu->cpreg_array_len = arraylen;
 491    cpu->cpreg_vmstate_array_len = arraylen;
 492
 493    for (i = 0, arraylen = 0; i < rlp->n; i++) {
 494        uint64_t regidx = rlp->reg[i];
 495        if (!kvm_arm_reg_syncs_via_cpreg_list(regidx)) {
 496            continue;
 497        }
 498        cpu->cpreg_indexes[arraylen] = regidx;
 499        arraylen++;
 500    }
 501    assert(cpu->cpreg_array_len == arraylen);
 502
 503    if (!write_kvmstate_to_list(cpu)) {
 504        /* Shouldn't happen unless kernel is inconsistent about
 505         * what registers exist.
 506         */
 507        fprintf(stderr, "Initial read of kernel register state failed\n");
 508        ret = -EINVAL;
 509        goto out;
 510    }
 511
 512out:
 513    g_free(rlp);
 514    return ret;
 515}
 516
 517bool write_kvmstate_to_list(ARMCPU *cpu)
 518{
 519    CPUState *cs = CPU(cpu);
 520    int i;
 521    bool ok = true;
 522
 523    for (i = 0; i < cpu->cpreg_array_len; i++) {
 524        struct kvm_one_reg r;
 525        uint64_t regidx = cpu->cpreg_indexes[i];
 526        uint32_t v32;
 527        int ret;
 528
 529        r.id = regidx;
 530
 531        switch (regidx & KVM_REG_SIZE_MASK) {
 532        case KVM_REG_SIZE_U32:
 533            r.addr = (uintptr_t)&v32;
 534            ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r);
 535            if (!ret) {
 536                cpu->cpreg_values[i] = v32;
 537            }
 538            break;
 539        case KVM_REG_SIZE_U64:
 540            r.addr = (uintptr_t)(cpu->cpreg_values + i);
 541            ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r);
 542            break;
 543        default:
 544            abort();
 545        }
 546        if (ret) {
 547            ok = false;
 548        }
 549    }
 550    return ok;
 551}
 552
 553bool write_list_to_kvmstate(ARMCPU *cpu, int level)
 554{
 555    CPUState *cs = CPU(cpu);
 556    int i;
 557    bool ok = true;
 558
 559    for (i = 0; i < cpu->cpreg_array_len; i++) {
 560        struct kvm_one_reg r;
 561        uint64_t regidx = cpu->cpreg_indexes[i];
 562        uint32_t v32;
 563        int ret;
 564
 565        if (kvm_arm_cpreg_level(regidx) > level) {
 566            continue;
 567        }
 568
 569        r.id = regidx;
 570        switch (regidx & KVM_REG_SIZE_MASK) {
 571        case KVM_REG_SIZE_U32:
 572            v32 = cpu->cpreg_values[i];
 573            r.addr = (uintptr_t)&v32;
 574            break;
 575        case KVM_REG_SIZE_U64:
 576            r.addr = (uintptr_t)(cpu->cpreg_values + i);
 577            break;
 578        default:
 579            abort();
 580        }
 581        ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &r);
 582        if (ret) {
 583            /* We might fail for "unknown register" and also for
 584             * "you tried to set a register which is constant with
 585             * a different value from what it actually contains".
 586             */
 587            ok = false;
 588        }
 589    }
 590    return ok;
 591}
 592
 593void kvm_arm_cpu_pre_save(ARMCPU *cpu)
 594{
 595    /* KVM virtual time adjustment */
 596    if (cpu->kvm_vtime_dirty) {
 597        *kvm_arm_get_cpreg_ptr(cpu, KVM_REG_ARM_TIMER_CNT) = cpu->kvm_vtime;
 598    }
 599}
 600
 601void kvm_arm_cpu_post_load(ARMCPU *cpu)
 602{
 603    /* KVM virtual time adjustment */
 604    if (cpu->kvm_adjvtime) {
 605        cpu->kvm_vtime = *kvm_arm_get_cpreg_ptr(cpu, KVM_REG_ARM_TIMER_CNT);
 606        cpu->kvm_vtime_dirty = true;
 607    }
 608}
 609
 610void kvm_arm_reset_vcpu(ARMCPU *cpu)
 611{
 612    int ret;
 613
 614    /* Re-init VCPU so that all registers are set to
 615     * their respective reset values.
 616     */
 617    ret = kvm_arm_vcpu_init(CPU(cpu));
 618    if (ret < 0) {
 619        fprintf(stderr, "kvm_arm_vcpu_init failed: %s\n", strerror(-ret));
 620        abort();
 621    }
 622    if (!write_kvmstate_to_list(cpu)) {
 623        fprintf(stderr, "write_kvmstate_to_list failed\n");
 624        abort();
 625    }
 626    /*
 627     * Sync the reset values also into the CPUState. This is necessary
 628     * because the next thing we do will be a kvm_arch_put_registers()
 629     * which will update the list values from the CPUState before copying
 630     * the list values back to KVM. It's OK to ignore failure returns here
 631     * for the same reason we do so in kvm_arch_get_registers().
 632     */
 633    write_list_to_cpustate(cpu);
 634}
 635
 636/*
 637 * Update KVM's MP_STATE based on what QEMU thinks it is
 638 */
 639int kvm_arm_sync_mpstate_to_kvm(ARMCPU *cpu)
 640{
 641    if (cap_has_mp_state) {
 642        struct kvm_mp_state mp_state = {
 643            .mp_state = (cpu->power_state == PSCI_OFF) ?
 644            KVM_MP_STATE_STOPPED : KVM_MP_STATE_RUNNABLE
 645        };
 646        int ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state);
 647        if (ret) {
 648            fprintf(stderr, "%s: failed to set MP_STATE %d/%s\n",
 649                    __func__, ret, strerror(-ret));
 650            return -1;
 651        }
 652    }
 653
 654    return 0;
 655}
 656
 657/*
 658 * Sync the KVM MP_STATE into QEMU
 659 */
 660int kvm_arm_sync_mpstate_to_qemu(ARMCPU *cpu)
 661{
 662    if (cap_has_mp_state) {
 663        struct kvm_mp_state mp_state;
 664        int ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MP_STATE, &mp_state);
 665        if (ret) {
 666            fprintf(stderr, "%s: failed to get MP_STATE %d/%s\n",
 667                    __func__, ret, strerror(-ret));
 668            abort();
 669        }
 670        cpu->power_state = (mp_state.mp_state == KVM_MP_STATE_STOPPED) ?
 671            PSCI_OFF : PSCI_ON;
 672    }
 673
 674    return 0;
 675}
 676
 677void kvm_arm_get_virtual_time(CPUState *cs)
 678{
 679    ARMCPU *cpu = ARM_CPU(cs);
 680    struct kvm_one_reg reg = {
 681        .id = KVM_REG_ARM_TIMER_CNT,
 682        .addr = (uintptr_t)&cpu->kvm_vtime,
 683    };
 684    int ret;
 685
 686    if (cpu->kvm_vtime_dirty) {
 687        return;
 688    }
 689
 690    ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
 691    if (ret) {
 692        error_report("Failed to get KVM_REG_ARM_TIMER_CNT");
 693        abort();
 694    }
 695
 696    cpu->kvm_vtime_dirty = true;
 697}
 698
 699void kvm_arm_put_virtual_time(CPUState *cs)
 700{
 701    ARMCPU *cpu = ARM_CPU(cs);
 702    struct kvm_one_reg reg = {
 703        .id = KVM_REG_ARM_TIMER_CNT,
 704        .addr = (uintptr_t)&cpu->kvm_vtime,
 705    };
 706    int ret;
 707
 708    if (!cpu->kvm_vtime_dirty) {
 709        return;
 710    }
 711
 712    ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
 713    if (ret) {
 714        error_report("Failed to set KVM_REG_ARM_TIMER_CNT");
 715        abort();
 716    }
 717
 718    cpu->kvm_vtime_dirty = false;
 719}
 720
 721int kvm_put_vcpu_events(ARMCPU *cpu)
 722{
 723    CPUARMState *env = &cpu->env;
 724    struct kvm_vcpu_events events;
 725    int ret;
 726
 727    if (!kvm_has_vcpu_events()) {
 728        return 0;
 729    }
 730
 731    memset(&events, 0, sizeof(events));
 732    events.exception.serror_pending = env->serror.pending;
 733
 734    /* Inject SError to guest with specified syndrome if host kernel
 735     * supports it, otherwise inject SError without syndrome.
 736     */
 737    if (cap_has_inject_serror_esr) {
 738        events.exception.serror_has_esr = env->serror.has_esr;
 739        events.exception.serror_esr = env->serror.esr;
 740    }
 741
 742    ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_VCPU_EVENTS, &events);
 743    if (ret) {
 744        error_report("failed to put vcpu events");
 745    }
 746
 747    return ret;
 748}
 749
 750int kvm_get_vcpu_events(ARMCPU *cpu)
 751{
 752    CPUARMState *env = &cpu->env;
 753    struct kvm_vcpu_events events;
 754    int ret;
 755
 756    if (!kvm_has_vcpu_events()) {
 757        return 0;
 758    }
 759
 760    memset(&events, 0, sizeof(events));
 761    ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_VCPU_EVENTS, &events);
 762    if (ret) {
 763        error_report("failed to get vcpu events");
 764        return ret;
 765    }
 766
 767    env->serror.pending = events.exception.serror_pending;
 768    env->serror.has_esr = events.exception.serror_has_esr;
 769    env->serror.esr = events.exception.serror_esr;
 770
 771    return 0;
 772}
 773
 774void kvm_arch_pre_run(CPUState *cs, struct kvm_run *run)
 775{
 776    ARMCPU *cpu = ARM_CPU(cs);
 777    CPUARMState *env = &cpu->env;
 778
 779    if (unlikely(env->ext_dabt_raised)) {
 780        /*
 781         * Verifying that the ext DABT has been properly injected,
 782         * otherwise risking indefinitely re-running the faulting instruction
 783         * Covering a very narrow case for kernels 5.5..5.5.4
 784         * when injected abort was misconfigured to be
 785         * an IMPLEMENTATION DEFINED exception (for 32-bit EL1)
 786         */
 787        if (!arm_feature(env, ARM_FEATURE_AARCH64) &&
 788            unlikely(!kvm_arm_verify_ext_dabt_pending(cs))) {
 789
 790            error_report("Data abort exception with no valid ISS generated by "
 791                   "guest memory access. KVM unable to emulate faulting "
 792                   "instruction. Failed to inject an external data abort "
 793                   "into the guest.");
 794            abort();
 795       }
 796       /* Clear the status */
 797       env->ext_dabt_raised = 0;
 798    }
 799}
 800
 801MemTxAttrs kvm_arch_post_run(CPUState *cs, struct kvm_run *run)
 802{
 803    ARMCPU *cpu;
 804    uint32_t switched_level;
 805
 806    if (kvm_irqchip_in_kernel()) {
 807        /*
 808         * We only need to sync timer states with user-space interrupt
 809         * controllers, so return early and save cycles if we don't.
 810         */
 811        return MEMTXATTRS_UNSPECIFIED;
 812    }
 813
 814    cpu = ARM_CPU(cs);
 815
 816    /* Synchronize our shadowed in-kernel device irq lines with the kvm ones */
 817    if (run->s.regs.device_irq_level != cpu->device_irq_level) {
 818        switched_level = cpu->device_irq_level ^ run->s.regs.device_irq_level;
 819
 820        qemu_mutex_lock_iothread();
 821
 822        if (switched_level & KVM_ARM_DEV_EL1_VTIMER) {
 823            qemu_set_irq(cpu->gt_timer_outputs[GTIMER_VIRT],
 824                         !!(run->s.regs.device_irq_level &
 825                            KVM_ARM_DEV_EL1_VTIMER));
 826            switched_level &= ~KVM_ARM_DEV_EL1_VTIMER;
 827        }
 828
 829        if (switched_level & KVM_ARM_DEV_EL1_PTIMER) {
 830            qemu_set_irq(cpu->gt_timer_outputs[GTIMER_PHYS],
 831                         !!(run->s.regs.device_irq_level &
 832                            KVM_ARM_DEV_EL1_PTIMER));
 833            switched_level &= ~KVM_ARM_DEV_EL1_PTIMER;
 834        }
 835
 836        if (switched_level & KVM_ARM_DEV_PMU) {
 837            qemu_set_irq(cpu->pmu_interrupt,
 838                         !!(run->s.regs.device_irq_level & KVM_ARM_DEV_PMU));
 839            switched_level &= ~KVM_ARM_DEV_PMU;
 840        }
 841
 842        if (switched_level) {
 843            qemu_log_mask(LOG_UNIMP, "%s: unhandled in-kernel device IRQ %x\n",
 844                          __func__, switched_level);
 845        }
 846
 847        /* We also mark unknown levels as processed to not waste cycles */
 848        cpu->device_irq_level = run->s.regs.device_irq_level;
 849        qemu_mutex_unlock_iothread();
 850    }
 851
 852    return MEMTXATTRS_UNSPECIFIED;
 853}
 854
 855void kvm_arm_vm_state_change(void *opaque, bool running, RunState state)
 856{
 857    CPUState *cs = opaque;
 858    ARMCPU *cpu = ARM_CPU(cs);
 859
 860    if (running) {
 861        if (cpu->kvm_adjvtime) {
 862            kvm_arm_put_virtual_time(cs);
 863        }
 864    } else {
 865        if (cpu->kvm_adjvtime) {
 866            kvm_arm_get_virtual_time(cs);
 867        }
 868    }
 869}
 870
 871/**
 872 * kvm_arm_handle_dabt_nisv:
 873 * @cs: CPUState
 874 * @esr_iss: ISS encoding (limited) for the exception from Data Abort
 875 *           ISV bit set to '0b0' -> no valid instruction syndrome
 876 * @fault_ipa: faulting address for the synchronous data abort
 877 *
 878 * Returns: 0 if the exception has been handled, < 0 otherwise
 879 */
 880static int kvm_arm_handle_dabt_nisv(CPUState *cs, uint64_t esr_iss,
 881                                    uint64_t fault_ipa)
 882{
 883    ARMCPU *cpu = ARM_CPU(cs);
 884    CPUARMState *env = &cpu->env;
 885    /*
 886     * Request KVM to inject the external data abort into the guest
 887     */
 888    if (cap_has_inject_ext_dabt) {
 889        struct kvm_vcpu_events events = { };
 890        /*
 891         * The external data abort event will be handled immediately by KVM
 892         * using the address fault that triggered the exit on given VCPU.
 893         * Requesting injection of the external data abort does not rely
 894         * on any other VCPU state. Therefore, in this particular case, the VCPU
 895         * synchronization can be exceptionally skipped.
 896         */
 897        events.exception.ext_dabt_pending = 1;
 898        /* KVM_CAP_ARM_INJECT_EXT_DABT implies KVM_CAP_VCPU_EVENTS */
 899        if (!kvm_vcpu_ioctl(cs, KVM_SET_VCPU_EVENTS, &events)) {
 900            env->ext_dabt_raised = 1;
 901            return 0;
 902        }
 903    } else {
 904        error_report("Data abort exception triggered by guest memory access "
 905                     "at physical address: 0x"  TARGET_FMT_lx,
 906                     (target_ulong)fault_ipa);
 907        error_printf("KVM unable to emulate faulting instruction.\n");
 908    }
 909    return -1;
 910}
 911
 912int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run)
 913{
 914    int ret = 0;
 915
 916    switch (run->exit_reason) {
 917    case KVM_EXIT_DEBUG:
 918        if (kvm_arm_handle_debug(cs, &run->debug.arch)) {
 919            ret = EXCP_DEBUG;
 920        } /* otherwise return to guest */
 921        break;
 922    case KVM_EXIT_ARM_NISV:
 923        /* External DABT with no valid iss to decode */
 924        ret = kvm_arm_handle_dabt_nisv(cs, run->arm_nisv.esr_iss,
 925                                       run->arm_nisv.fault_ipa);
 926        break;
 927    default:
 928        qemu_log_mask(LOG_UNIMP, "%s: un-handled exit reason %d\n",
 929                      __func__, run->exit_reason);
 930        break;
 931    }
 932    return ret;
 933}
 934
 935bool kvm_arch_stop_on_emulation_error(CPUState *cs)
 936{
 937    return true;
 938}
 939
 940int kvm_arch_process_async_events(CPUState *cs)
 941{
 942    return 0;
 943}
 944
 945void kvm_arch_update_guest_debug(CPUState *cs, struct kvm_guest_debug *dbg)
 946{
 947    if (kvm_sw_breakpoints_active(cs)) {
 948        dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
 949    }
 950    if (kvm_arm_hw_debug_active(cs)) {
 951        dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW;
 952        kvm_arm_copy_hw_debug_data(&dbg->arch);
 953    }
 954}
 955
 956void kvm_arch_init_irq_routing(KVMState *s)
 957{
 958}
 959
 960int kvm_arch_irqchip_create(KVMState *s)
 961{
 962    if (kvm_kernel_irqchip_split()) {
 963        perror("-machine kernel_irqchip=split is not supported on ARM.");
 964        exit(1);
 965    }
 966
 967    /* If we can create the VGIC using the newer device control API, we
 968     * let the device do this when it initializes itself, otherwise we
 969     * fall back to the old API */
 970    return kvm_check_extension(s, KVM_CAP_DEVICE_CTRL);
 971}
 972
 973int kvm_arm_vgic_probe(void)
 974{
 975    int val = 0;
 976
 977    if (kvm_create_device(kvm_state,
 978                          KVM_DEV_TYPE_ARM_VGIC_V3, true) == 0) {
 979        val |= KVM_ARM_VGIC_V3;
 980    }
 981    if (kvm_create_device(kvm_state,
 982                          KVM_DEV_TYPE_ARM_VGIC_V2, true) == 0) {
 983        val |= KVM_ARM_VGIC_V2;
 984    }
 985    return val;
 986}
 987
 988int kvm_arm_set_irq(int cpu, int irqtype, int irq, int level)
 989{
 990    int kvm_irq = (irqtype << KVM_ARM_IRQ_TYPE_SHIFT) | irq;
 991    int cpu_idx1 = cpu % 256;
 992    int cpu_idx2 = cpu / 256;
 993
 994    kvm_irq |= (cpu_idx1 << KVM_ARM_IRQ_VCPU_SHIFT) |
 995               (cpu_idx2 << KVM_ARM_IRQ_VCPU2_SHIFT);
 996
 997    return kvm_set_irq(kvm_state, kvm_irq, !!level);
 998}
 999
1000int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route,
1001                             uint64_t address, uint32_t data, PCIDevice *dev)
1002{
1003    AddressSpace *as = pci_device_iommu_address_space(dev);
1004    hwaddr xlat, len, doorbell_gpa;
1005    MemoryRegionSection mrs;
1006    MemoryRegion *mr;
1007
1008    if (as == &address_space_memory) {
1009        return 0;
1010    }
1011
1012    /* MSI doorbell address is translated by an IOMMU */
1013
1014    RCU_READ_LOCK_GUARD();
1015
1016    mr = address_space_translate(as, address, &xlat, &len, true,
1017                                 MEMTXATTRS_UNSPECIFIED);
1018
1019    if (!mr) {
1020        return 1;
1021    }
1022
1023    mrs = memory_region_find(mr, xlat, 1);
1024
1025    if (!mrs.mr) {
1026        return 1;
1027    }
1028
1029    doorbell_gpa = mrs.offset_within_address_space;
1030    memory_region_unref(mrs.mr);
1031
1032    route->u.msi.address_lo = doorbell_gpa;
1033    route->u.msi.address_hi = doorbell_gpa >> 32;
1034
1035    trace_kvm_arm_fixup_msi_route(address, doorbell_gpa);
1036
1037    return 0;
1038}
1039
1040int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry *route,
1041                                int vector, PCIDevice *dev)
1042{
1043    return 0;
1044}
1045
1046int kvm_arch_release_virq_post(int virq)
1047{
1048    return 0;
1049}
1050
1051int kvm_arch_msi_data_to_gsi(uint32_t data)
1052{
1053    return (data - 32) & 0xffff;
1054}
1055
1056bool kvm_arch_cpu_check_are_resettable(void)
1057{
1058    return true;
1059}
1060