qemu/target/arm/kvm_arm.h
<<
>>
Prefs
   1/*
   2 * QEMU KVM support -- ARM specific functions.
   3 *
   4 * Copyright (c) 2012 Linaro Limited
   5 *
   6 * This work is licensed under the terms of the GNU GPL, version 2 or later.
   7 * See the COPYING file in the top-level directory.
   8 *
   9 */
  10
  11#ifndef QEMU_KVM_ARM_H
  12#define QEMU_KVM_ARM_H
  13
  14#include "sysemu/kvm.h"
  15#include "exec/memory.h"
  16#include "qemu/error-report.h"
  17
  18#define KVM_ARM_VGIC_V2   (1 << 0)
  19#define KVM_ARM_VGIC_V3   (1 << 1)
  20
  21/**
  22 * kvm_arm_vcpu_init:
  23 * @cs: CPUState
  24 *
  25 * Initialize (or reinitialize) the VCPU by invoking the
  26 * KVM_ARM_VCPU_INIT ioctl with the CPU type and feature
  27 * bitmask specified in the CPUState.
  28 *
  29 * Returns: 0 if success else < 0 error code
  30 */
  31int kvm_arm_vcpu_init(CPUState *cs);
  32
  33/**
  34 * kvm_arm_vcpu_finalize:
  35 * @cs: CPUState
  36 * @feature: feature to finalize
  37 *
  38 * Finalizes the configuration of the specified VCPU feature by
  39 * invoking the KVM_ARM_VCPU_FINALIZE ioctl. Features requiring
  40 * this are documented in the "KVM_ARM_VCPU_FINALIZE" section of
  41 * KVM's API documentation.
  42 *
  43 * Returns: 0 if success else < 0 error code
  44 */
  45int kvm_arm_vcpu_finalize(CPUState *cs, int feature);
  46
  47/**
  48 * kvm_arm_register_device:
  49 * @mr: memory region for this device
  50 * @devid: the KVM device ID
  51 * @group: device control API group for setting addresses
  52 * @attr: device control API address type
  53 * @dev_fd: device control device file descriptor (or -1 if not supported)
  54 * @addr_ormask: value to be OR'ed with resolved address
  55 *
  56 * Remember the memory region @mr, and when it is mapped by the
  57 * machine model, tell the kernel that base address using the
  58 * KVM_ARM_SET_DEVICE_ADDRESS ioctl or the newer device control API.  @devid
  59 * should be the ID of the device as defined by KVM_ARM_SET_DEVICE_ADDRESS or
  60 * the arm-vgic device in the device control API.
  61 * The machine model may map
  62 * and unmap the device multiple times; the kernel will only be told the final
  63 * address at the point where machine init is complete.
  64 */
  65void kvm_arm_register_device(MemoryRegion *mr, uint64_t devid, uint64_t group,
  66                             uint64_t attr, int dev_fd, uint64_t addr_ormask);
  67
  68/**
  69 * kvm_arm_init_cpreg_list:
  70 * @cpu: ARMCPU
  71 *
  72 * Initialize the ARMCPU cpreg list according to the kernel's
  73 * definition of what CPU registers it knows about (and throw away
  74 * the previous TCG-created cpreg list).
  75 *
  76 * Returns: 0 if success, else < 0 error code
  77 */
  78int kvm_arm_init_cpreg_list(ARMCPU *cpu);
  79
  80/**
  81 * kvm_arm_reg_syncs_via_cpreg_list:
  82 * @regidx: KVM register index
  83 *
  84 * Return true if this KVM register should be synchronized via the
  85 * cpreg list of arbitrary system registers, false if it is synchronized
  86 * by hand using code in kvm_arch_get/put_registers().
  87 */
  88bool kvm_arm_reg_syncs_via_cpreg_list(uint64_t regidx);
  89
  90/**
  91 * kvm_arm_cpreg_level:
  92 * @regidx: KVM register index
  93 *
  94 * Return the level of this coprocessor/system register.  Return value is
  95 * either KVM_PUT_RUNTIME_STATE, KVM_PUT_RESET_STATE, or KVM_PUT_FULL_STATE.
  96 */
  97int kvm_arm_cpreg_level(uint64_t regidx);
  98
  99/**
 100 * write_list_to_kvmstate:
 101 * @cpu: ARMCPU
 102 * @level: the state level to sync
 103 *
 104 * For each register listed in the ARMCPU cpreg_indexes list, write
 105 * its value from the cpreg_values list into the kernel (via ioctl).
 106 * This updates KVM's working data structures from TCG data or
 107 * from incoming migration state.
 108 *
 109 * Returns: true if all register values were updated correctly,
 110 * false if some register was unknown to the kernel or could not
 111 * be written (eg constant register with the wrong value).
 112 * Note that we do not stop early on failure -- we will attempt
 113 * writing all registers in the list.
 114 */
 115bool write_list_to_kvmstate(ARMCPU *cpu, int level);
 116
 117/**
 118 * write_kvmstate_to_list:
 119 * @cpu: ARMCPU
 120 *
 121 * For each register listed in the ARMCPU cpreg_indexes list, write
 122 * its value from the kernel into the cpreg_values list. This is used to
 123 * copy info from KVM's working data structures into TCG or
 124 * for outbound migration.
 125 *
 126 * Returns: true if all register values were read correctly,
 127 * false if some register was unknown or could not be read.
 128 * Note that we do not stop early on failure -- we will attempt
 129 * reading all registers in the list.
 130 */
 131bool write_kvmstate_to_list(ARMCPU *cpu);
 132
 133/**
 134 * kvm_arm_cpu_pre_save:
 135 * @cpu: ARMCPU
 136 *
 137 * Called after write_kvmstate_to_list() from cpu_pre_save() to update
 138 * the cpreg list with KVM CPU state.
 139 */
 140void kvm_arm_cpu_pre_save(ARMCPU *cpu);
 141
 142/**
 143 * kvm_arm_cpu_post_load:
 144 * @cpu: ARMCPU
 145 *
 146 * Called from cpu_post_load() to update KVM CPU state from the cpreg list.
 147 */
 148void kvm_arm_cpu_post_load(ARMCPU *cpu);
 149
 150/**
 151 * kvm_arm_reset_vcpu:
 152 * @cpu: ARMCPU
 153 *
 154 * Called at reset time to kernel registers to their initial values.
 155 */
 156void kvm_arm_reset_vcpu(ARMCPU *cpu);
 157
 158/**
 159 * kvm_arm_init_serror_injection:
 160 * @cs: CPUState
 161 *
 162 * Check whether KVM can set guest SError syndrome.
 163 */
 164void kvm_arm_init_serror_injection(CPUState *cs);
 165
 166/**
 167 * kvm_get_vcpu_events:
 168 * @cpu: ARMCPU
 169 *
 170 * Get VCPU related state from kvm.
 171 *
 172 * Returns: 0 if success else < 0 error code
 173 */
 174int kvm_get_vcpu_events(ARMCPU *cpu);
 175
 176/**
 177 * kvm_put_vcpu_events:
 178 * @cpu: ARMCPU
 179 *
 180 * Put VCPU related state to kvm.
 181 *
 182 * Returns: 0 if success else < 0 error code
 183 */
 184int kvm_put_vcpu_events(ARMCPU *cpu);
 185
 186#ifdef CONFIG_KVM
 187/**
 188 * kvm_arm_create_scratch_host_vcpu:
 189 * @cpus_to_try: array of QEMU_KVM_ARM_TARGET_* values (terminated with
 190 * QEMU_KVM_ARM_TARGET_NONE) to try as fallback if the kernel does not
 191 * know the PREFERRED_TARGET ioctl. Passing NULL is the same as passing
 192 * an empty array.
 193 * @fdarray: filled in with kvmfd, vmfd, cpufd file descriptors in that order
 194 * @init: filled in with the necessary values for creating a host
 195 * vcpu. If NULL is provided, will not init the vCPU (though the cpufd
 196 * will still be set up).
 197 *
 198 * Create a scratch vcpu in its own VM of the type preferred by the host
 199 * kernel (as would be used for '-cpu host'), for purposes of probing it
 200 * for capabilities.
 201 *
 202 * Returns: true on success (and fdarray and init are filled in),
 203 * false on failure (and fdarray and init are not valid).
 204 */
 205bool kvm_arm_create_scratch_host_vcpu(const uint32_t *cpus_to_try,
 206                                      int *fdarray,
 207                                      struct kvm_vcpu_init *init);
 208
 209/**
 210 * kvm_arm_destroy_scratch_host_vcpu:
 211 * @fdarray: array of fds as set up by kvm_arm_create_scratch_host_vcpu
 212 *
 213 * Tear down the scratch vcpu created by kvm_arm_create_scratch_host_vcpu.
 214 */
 215void kvm_arm_destroy_scratch_host_vcpu(int *fdarray);
 216
 217/**
 218 * ARMHostCPUFeatures: information about the host CPU (identified
 219 * by asking the host kernel)
 220 */
 221typedef struct ARMHostCPUFeatures {
 222    ARMISARegisters isar;
 223    uint64_t features;
 224    uint32_t target;
 225    const char *dtb_compatible;
 226} ARMHostCPUFeatures;
 227
 228/**
 229 * kvm_arm_get_host_cpu_features:
 230 * @ahcf: ARMHostCPUClass to fill in
 231 *
 232 * Probe the capabilities of the host kernel's preferred CPU and fill
 233 * in the ARMHostCPUClass struct accordingly.
 234 *
 235 * Returns true on success and false otherwise.
 236 */
 237bool kvm_arm_get_host_cpu_features(ARMHostCPUFeatures *ahcf);
 238
 239/**
 240 * kvm_arm_sve_get_vls:
 241 * @cs: CPUState
 242 * @map: bitmap to fill in
 243 *
 244 * Get all the SVE vector lengths supported by the KVM host, setting
 245 * the bits corresponding to their length in quadwords minus one
 246 * (vq - 1) in @map up to ARM_MAX_VQ.
 247 */
 248void kvm_arm_sve_get_vls(CPUState *cs, unsigned long *map);
 249
 250/**
 251 * kvm_arm_set_cpu_features_from_host:
 252 * @cpu: ARMCPU to set the features for
 253 *
 254 * Set up the ARMCPU struct fields up to match the information probed
 255 * from the host CPU.
 256 */
 257void kvm_arm_set_cpu_features_from_host(ARMCPU *cpu);
 258
 259/**
 260 * kvm_arm_add_vcpu_properties:
 261 * @obj: The CPU object to add the properties to
 262 *
 263 * Add all KVM specific CPU properties to the CPU object. These
 264 * are the CPU properties with "kvm-" prefixed names.
 265 */
 266void kvm_arm_add_vcpu_properties(Object *obj);
 267
 268/**
 269 * kvm_arm_steal_time_finalize:
 270 * @cpu: ARMCPU for which to finalize kvm-steal-time
 271 * @errp: Pointer to Error* for error propagation
 272 *
 273 * Validate the kvm-steal-time property selection and set its default
 274 * based on KVM support and guest configuration.
 275 */
 276void kvm_arm_steal_time_finalize(ARMCPU *cpu, Error **errp);
 277
 278/**
 279 * kvm_arm_steal_time_supported:
 280 *
 281 * Returns: true if KVM can enable steal time reporting
 282 * and false otherwise.
 283 */
 284bool kvm_arm_steal_time_supported(void);
 285
 286/**
 287 * kvm_arm_aarch32_supported:
 288 *
 289 * Returns: true if KVM can enable AArch32 mode
 290 * and false otherwise.
 291 */
 292bool kvm_arm_aarch32_supported(void);
 293
 294/**
 295 * kvm_arm_pmu_supported:
 296 *
 297 * Returns: true if KVM can enable the PMU
 298 * and false otherwise.
 299 */
 300bool kvm_arm_pmu_supported(void);
 301
 302/**
 303 * kvm_arm_sve_supported:
 304 *
 305 * Returns true if KVM can enable SVE and false otherwise.
 306 */
 307bool kvm_arm_sve_supported(void);
 308
 309/**
 310 * kvm_arm_get_max_vm_ipa_size:
 311 * @ms: Machine state handle
 312 * @fixed_ipa: True when the IPA limit is fixed at 40. This is the case
 313 * for legacy KVM.
 314 *
 315 * Returns the number of bits in the IPA address space supported by KVM
 316 */
 317int kvm_arm_get_max_vm_ipa_size(MachineState *ms, bool *fixed_ipa);
 318
 319/**
 320 * kvm_arm_sync_mpstate_to_kvm:
 321 * @cpu: ARMCPU
 322 *
 323 * If supported set the KVM MP_STATE based on QEMU's model.
 324 *
 325 * Returns 0 on success and -1 on failure.
 326 */
 327int kvm_arm_sync_mpstate_to_kvm(ARMCPU *cpu);
 328
 329/**
 330 * kvm_arm_sync_mpstate_to_qemu:
 331 * @cpu: ARMCPU
 332 *
 333 * If supported get the MP_STATE from KVM and store in QEMU's model.
 334 *
 335 * Returns 0 on success and aborts on failure.
 336 */
 337int kvm_arm_sync_mpstate_to_qemu(ARMCPU *cpu);
 338
 339/**
 340 * kvm_arm_get_virtual_time:
 341 * @cs: CPUState
 342 *
 343 * Gets the VCPU's virtual counter and stores it in the KVM CPU state.
 344 */
 345void kvm_arm_get_virtual_time(CPUState *cs);
 346
 347/**
 348 * kvm_arm_put_virtual_time:
 349 * @cs: CPUState
 350 *
 351 * Sets the VCPU's virtual counter to the value stored in the KVM CPU state.
 352 */
 353void kvm_arm_put_virtual_time(CPUState *cs);
 354
 355void kvm_arm_vm_state_change(void *opaque, bool running, RunState state);
 356
 357int kvm_arm_vgic_probe(void);
 358
 359void kvm_arm_pmu_set_irq(CPUState *cs, int irq);
 360void kvm_arm_pmu_init(CPUState *cs);
 361
 362/**
 363 * kvm_arm_pvtime_init:
 364 * @cs: CPUState
 365 * @ipa: Per-vcpu guest physical base address of the pvtime structures
 366 *
 367 * Initializes PVTIME for the VCPU, setting the PVTIME IPA to @ipa.
 368 */
 369void kvm_arm_pvtime_init(CPUState *cs, uint64_t ipa);
 370
 371int kvm_arm_set_irq(int cpu, int irqtype, int irq, int level);
 372
 373#else
 374
 375/*
 376 * It's safe to call these functions without KVM support.
 377 * They should either do nothing or return "not supported".
 378 */
 379static inline bool kvm_arm_aarch32_supported(void)
 380{
 381    return false;
 382}
 383
 384static inline bool kvm_arm_pmu_supported(void)
 385{
 386    return false;
 387}
 388
 389static inline bool kvm_arm_sve_supported(void)
 390{
 391    return false;
 392}
 393
 394static inline bool kvm_arm_steal_time_supported(void)
 395{
 396    return false;
 397}
 398
 399/*
 400 * These functions should never actually be called without KVM support.
 401 */
 402static inline void kvm_arm_set_cpu_features_from_host(ARMCPU *cpu)
 403{
 404    g_assert_not_reached();
 405}
 406
 407static inline void kvm_arm_add_vcpu_properties(Object *obj)
 408{
 409    g_assert_not_reached();
 410}
 411
 412static inline int kvm_arm_get_max_vm_ipa_size(MachineState *ms, bool *fixed_ipa)
 413{
 414    g_assert_not_reached();
 415}
 416
 417static inline int kvm_arm_vgic_probe(void)
 418{
 419    g_assert_not_reached();
 420}
 421
 422static inline void kvm_arm_pmu_set_irq(CPUState *cs, int irq)
 423{
 424    g_assert_not_reached();
 425}
 426
 427static inline void kvm_arm_pmu_init(CPUState *cs)
 428{
 429    g_assert_not_reached();
 430}
 431
 432static inline void kvm_arm_pvtime_init(CPUState *cs, uint64_t ipa)
 433{
 434    g_assert_not_reached();
 435}
 436
 437static inline void kvm_arm_steal_time_finalize(ARMCPU *cpu, Error **errp)
 438{
 439    g_assert_not_reached();
 440}
 441
 442static inline void kvm_arm_sve_get_vls(CPUState *cs, unsigned long *map)
 443{
 444    g_assert_not_reached();
 445}
 446
 447#endif
 448
 449static inline const char *gic_class_name(void)
 450{
 451    return kvm_irqchip_in_kernel() ? "kvm-arm-gic" : "arm_gic";
 452}
 453
 454/**
 455 * gicv3_class_name
 456 *
 457 * Return name of GICv3 class to use depending on whether KVM acceleration is
 458 * in use. May throw an error if the chosen implementation is not available.
 459 *
 460 * Returns: class name to use
 461 */
 462static inline const char *gicv3_class_name(void)
 463{
 464    if (kvm_irqchip_in_kernel()) {
 465        return "kvm-arm-gicv3";
 466    } else {
 467        if (kvm_enabled()) {
 468            error_report("Userspace GICv3 is not supported with KVM");
 469            exit(1);
 470        }
 471        return "arm-gicv3";
 472    }
 473}
 474
 475/**
 476 * kvm_arm_handle_debug:
 477 * @cs: CPUState
 478 * @debug_exit: debug part of the KVM exit structure
 479 *
 480 * Returns: TRUE if the debug exception was handled.
 481 */
 482bool kvm_arm_handle_debug(CPUState *cs, struct kvm_debug_exit_arch *debug_exit);
 483
 484/**
 485 * kvm_arm_hw_debug_active:
 486 * @cs: CPU State
 487 *
 488 * Return: TRUE if any hardware breakpoints in use.
 489 */
 490bool kvm_arm_hw_debug_active(CPUState *cs);
 491
 492/**
 493 * kvm_arm_copy_hw_debug_data:
 494 * @ptr: kvm_guest_debug_arch structure
 495 *
 496 * Copy the architecture specific debug registers into the
 497 * kvm_guest_debug ioctl structure.
 498 */
 499struct kvm_guest_debug_arch;
 500void kvm_arm_copy_hw_debug_data(struct kvm_guest_debug_arch *ptr);
 501
 502/**
 503 * kvm_arm_verify_ext_dabt_pending:
 504 * @cs: CPUState
 505 *
 506 * Verify the fault status code wrt the Ext DABT injection
 507 *
 508 * Returns: true if the fault status code is as expected, false otherwise
 509 */
 510bool kvm_arm_verify_ext_dabt_pending(CPUState *cs);
 511
 512/**
 513 * its_class_name:
 514 *
 515 * Return the ITS class name to use depending on whether KVM acceleration
 516 * and KVM CAP_SIGNAL_MSI are supported
 517 *
 518 * Returns: class name to use or NULL
 519 */
 520static inline const char *its_class_name(void)
 521{
 522    if (kvm_irqchip_in_kernel()) {
 523        /* KVM implementation requires this capability */
 524        return kvm_direct_msi_enabled() ? "arm-its-kvm" : NULL;
 525    } else {
 526        /* Software emulation based model */
 527        return "arm-gicv3-its";
 528    }
 529}
 530
 531#endif
 532