qemu/target/arm/mte_helper.c
<<
>>
Prefs
   1/*
   2 * ARM v8.5-MemTag Operations
   3 *
   4 * Copyright (c) 2020 Linaro, Ltd.
   5 *
   6 * This library is free software; you can redistribute it and/or
   7 * modify it under the terms of the GNU Lesser General Public
   8 * License as published by the Free Software Foundation; either
   9 * version 2.1 of the License, or (at your option) any later version.
  10 *
  11 * This library is distributed in the hope that it will be useful,
  12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  14 * Lesser General Public License for more details.
  15 *
  16 * You should have received a copy of the GNU Lesser General Public
  17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
  18 */
  19
  20#include "qemu/osdep.h"
  21#include "cpu.h"
  22#include "internals.h"
  23#include "exec/exec-all.h"
  24#include "exec/ram_addr.h"
  25#include "exec/cpu_ldst.h"
  26#include "exec/helper-proto.h"
  27#include "qapi/error.h"
  28#include "qemu/guest-random.h"
  29
  30
  31static int choose_nonexcluded_tag(int tag, int offset, uint16_t exclude)
  32{
  33    if (exclude == 0xffff) {
  34        return 0;
  35    }
  36    if (offset == 0) {
  37        while (exclude & (1 << tag)) {
  38            tag = (tag + 1) & 15;
  39        }
  40    } else {
  41        do {
  42            do {
  43                tag = (tag + 1) & 15;
  44            } while (exclude & (1 << tag));
  45        } while (--offset > 0);
  46    }
  47    return tag;
  48}
  49
  50/**
  51 * allocation_tag_mem:
  52 * @env: the cpu environment
  53 * @ptr_mmu_idx: the addressing regime to use for the virtual address
  54 * @ptr: the virtual address for which to look up tag memory
  55 * @ptr_access: the access to use for the virtual address
  56 * @ptr_size: the number of bytes in the normal memory access
  57 * @tag_access: the access to use for the tag memory
  58 * @tag_size: the number of bytes in the tag memory access
  59 * @ra: the return address for exception handling
  60 *
  61 * Our tag memory is formatted as a sequence of little-endian nibbles.
  62 * That is, the byte at (addr >> (LOG2_TAG_GRANULE + 1)) contains two
  63 * tags, with the tag at [3:0] for the lower addr and the tag at [7:4]
  64 * for the higher addr.
  65 *
  66 * Here, resolve the physical address from the virtual address, and return
  67 * a pointer to the corresponding tag byte.  Exit with exception if the
  68 * virtual address is not accessible for @ptr_access.
  69 *
  70 * The @ptr_size and @tag_size values may not have an obvious relation
  71 * due to the alignment of @ptr, and the number of tag checks required.
  72 *
  73 * If there is no tag storage corresponding to @ptr, return NULL.
  74 */
  75static uint8_t *allocation_tag_mem(CPUARMState *env, int ptr_mmu_idx,
  76                                   uint64_t ptr, MMUAccessType ptr_access,
  77                                   int ptr_size, MMUAccessType tag_access,
  78                                   int tag_size, uintptr_t ra)
  79{
  80#ifdef CONFIG_USER_ONLY
  81    uint64_t clean_ptr = useronly_clean_ptr(ptr);
  82    int flags = page_get_flags(clean_ptr);
  83    uint8_t *tags;
  84    uintptr_t index;
  85
  86    if (!(flags & (ptr_access == MMU_DATA_STORE ? PAGE_WRITE_ORG : PAGE_READ))) {
  87        cpu_loop_exit_sigsegv(env_cpu(env), ptr, ptr_access,
  88                              !(flags & PAGE_VALID), ra);
  89    }
  90
  91    /* Require both MAP_ANON and PROT_MTE for the page. */
  92    if (!(flags & PAGE_ANON) || !(flags & PAGE_MTE)) {
  93        return NULL;
  94    }
  95
  96    tags = page_get_target_data(clean_ptr);
  97    if (tags == NULL) {
  98        size_t alloc_size = TARGET_PAGE_SIZE >> (LOG2_TAG_GRANULE + 1);
  99        tags = page_alloc_target_data(clean_ptr, alloc_size);
 100        assert(tags != NULL);
 101    }
 102
 103    index = extract32(ptr, LOG2_TAG_GRANULE + 1,
 104                      TARGET_PAGE_BITS - LOG2_TAG_GRANULE - 1);
 105    return tags + index;
 106#else
 107    uintptr_t index;
 108    CPUIOTLBEntry *iotlbentry;
 109    int in_page, flags;
 110    ram_addr_t ptr_ra;
 111    hwaddr ptr_paddr, tag_paddr, xlat;
 112    MemoryRegion *mr;
 113    ARMASIdx tag_asi;
 114    AddressSpace *tag_as;
 115    void *host;
 116
 117    /*
 118     * Probe the first byte of the virtual address.  This raises an
 119     * exception for inaccessible pages, and resolves the virtual address
 120     * into the softmmu tlb.
 121     *
 122     * When RA == 0, this is for mte_probe.  The page is expected to be
 123     * valid.  Indicate to probe_access_flags no-fault, then assert that
 124     * we received a valid page.
 125     */
 126    flags = probe_access_flags(env, ptr, ptr_access, ptr_mmu_idx,
 127                               ra == 0, &host, ra);
 128    assert(!(flags & TLB_INVALID_MASK));
 129
 130    /*
 131     * Find the iotlbentry for ptr.  This *must* be present in the TLB
 132     * because we just found the mapping.
 133     * TODO: Perhaps there should be a cputlb helper that returns a
 134     * matching tlb entry + iotlb entry.
 135     */
 136    index = tlb_index(env, ptr_mmu_idx, ptr);
 137# ifdef CONFIG_DEBUG_TCG
 138    {
 139        CPUTLBEntry *entry = tlb_entry(env, ptr_mmu_idx, ptr);
 140        target_ulong comparator = (ptr_access == MMU_DATA_LOAD
 141                                   ? entry->addr_read
 142                                   : tlb_addr_write(entry));
 143        g_assert(tlb_hit(comparator, ptr));
 144    }
 145# endif
 146    iotlbentry = &env_tlb(env)->d[ptr_mmu_idx].iotlb[index];
 147
 148    /* If the virtual page MemAttr != Tagged, access unchecked. */
 149    if (!arm_tlb_mte_tagged(&iotlbentry->attrs)) {
 150        return NULL;
 151    }
 152
 153    /*
 154     * If not backed by host ram, there is no tag storage: access unchecked.
 155     * This is probably a guest os bug though, so log it.
 156     */
 157    if (unlikely(flags & TLB_MMIO)) {
 158        qemu_log_mask(LOG_GUEST_ERROR,
 159                      "Page @ 0x%" PRIx64 " indicates Tagged Normal memory "
 160                      "but is not backed by host ram\n", ptr);
 161        return NULL;
 162    }
 163
 164    /*
 165     * The Normal memory access can extend to the next page.  E.g. a single
 166     * 8-byte access to the last byte of a page will check only the last
 167     * tag on the first page.
 168     * Any page access exception has priority over tag check exception.
 169     */
 170    in_page = -(ptr | TARGET_PAGE_MASK);
 171    if (unlikely(ptr_size > in_page)) {
 172        void *ignore;
 173        flags |= probe_access_flags(env, ptr + in_page, ptr_access,
 174                                    ptr_mmu_idx, ra == 0, &ignore, ra);
 175        assert(!(flags & TLB_INVALID_MASK));
 176    }
 177
 178    /* Any debug exception has priority over a tag check exception. */
 179    if (unlikely(flags & TLB_WATCHPOINT)) {
 180        int wp = ptr_access == MMU_DATA_LOAD ? BP_MEM_READ : BP_MEM_WRITE;
 181        assert(ra != 0);
 182        cpu_check_watchpoint(env_cpu(env), ptr, ptr_size,
 183                             iotlbentry->attrs, wp, ra);
 184    }
 185
 186    /*
 187     * Find the physical address within the normal mem space.
 188     * The memory region lookup must succeed because TLB_MMIO was
 189     * not set in the cputlb lookup above.
 190     */
 191    mr = memory_region_from_host(host, &ptr_ra);
 192    tcg_debug_assert(mr != NULL);
 193    tcg_debug_assert(memory_region_is_ram(mr));
 194    ptr_paddr = ptr_ra;
 195    do {
 196        ptr_paddr += mr->addr;
 197        mr = mr->container;
 198    } while (mr);
 199
 200    /* Convert to the physical address in tag space.  */
 201    tag_paddr = ptr_paddr >> (LOG2_TAG_GRANULE + 1);
 202
 203    /* Look up the address in tag space. */
 204    tag_asi = iotlbentry->attrs.secure ? ARMASIdx_TagS : ARMASIdx_TagNS;
 205    tag_as = cpu_get_address_space(env_cpu(env), tag_asi);
 206    mr = address_space_translate(tag_as, tag_paddr, &xlat, NULL,
 207                                 tag_access == MMU_DATA_STORE,
 208                                 iotlbentry->attrs);
 209
 210    /*
 211     * Note that @mr will never be NULL.  If there is nothing in the address
 212     * space at @tag_paddr, the translation will return the unallocated memory
 213     * region.  For our purposes, the result must be ram.
 214     */
 215    if (unlikely(!memory_region_is_ram(mr))) {
 216        /* ??? Failure is a board configuration error. */
 217        qemu_log_mask(LOG_UNIMP,
 218                      "Tag Memory @ 0x%" HWADDR_PRIx " not found for "
 219                      "Normal Memory @ 0x%" HWADDR_PRIx "\n",
 220                      tag_paddr, ptr_paddr);
 221        return NULL;
 222    }
 223
 224    /*
 225     * Ensure the tag memory is dirty on write, for migration.
 226     * Tag memory can never contain code or display memory (vga).
 227     */
 228    if (tag_access == MMU_DATA_STORE) {
 229        ram_addr_t tag_ra = memory_region_get_ram_addr(mr) + xlat;
 230        cpu_physical_memory_set_dirty_flag(tag_ra, DIRTY_MEMORY_MIGRATION);
 231    }
 232
 233    return memory_region_get_ram_ptr(mr) + xlat;
 234#endif
 235}
 236
 237uint64_t HELPER(irg)(CPUARMState *env, uint64_t rn, uint64_t rm)
 238{
 239    uint16_t exclude = extract32(rm | env->cp15.gcr_el1, 0, 16);
 240    int rrnd = extract32(env->cp15.gcr_el1, 16, 1);
 241    int start = extract32(env->cp15.rgsr_el1, 0, 4);
 242    int seed = extract32(env->cp15.rgsr_el1, 8, 16);
 243    int offset, i, rtag;
 244
 245    /*
 246     * Our IMPDEF choice for GCR_EL1.RRND==1 is to continue to use the
 247     * deterministic algorithm.  Except that with RRND==1 the kernel is
 248     * not required to have set RGSR_EL1.SEED != 0, which is required for
 249     * the deterministic algorithm to function.  So we force a non-zero
 250     * SEED for that case.
 251     */
 252    if (unlikely(seed == 0) && rrnd) {
 253        do {
 254            Error *err = NULL;
 255            uint16_t two;
 256
 257            if (qemu_guest_getrandom(&two, sizeof(two), &err) < 0) {
 258                /*
 259                 * Failed, for unknown reasons in the crypto subsystem.
 260                 * Best we can do is log the reason and use a constant seed.
 261                 */
 262                qemu_log_mask(LOG_UNIMP, "IRG: Crypto failure: %s\n",
 263                              error_get_pretty(err));
 264                error_free(err);
 265                two = 1;
 266            }
 267            seed = two;
 268        } while (seed == 0);
 269    }
 270
 271    /* RandomTag */
 272    for (i = offset = 0; i < 4; ++i) {
 273        /* NextRandomTagBit */
 274        int top = (extract32(seed, 5, 1) ^ extract32(seed, 3, 1) ^
 275                   extract32(seed, 2, 1) ^ extract32(seed, 0, 1));
 276        seed = (top << 15) | (seed >> 1);
 277        offset |= top << i;
 278    }
 279    rtag = choose_nonexcluded_tag(start, offset, exclude);
 280    env->cp15.rgsr_el1 = rtag | (seed << 8);
 281
 282    return address_with_allocation_tag(rn, rtag);
 283}
 284
 285uint64_t HELPER(addsubg)(CPUARMState *env, uint64_t ptr,
 286                         int32_t offset, uint32_t tag_offset)
 287{
 288    int start_tag = allocation_tag_from_addr(ptr);
 289    uint16_t exclude = extract32(env->cp15.gcr_el1, 0, 16);
 290    int rtag = choose_nonexcluded_tag(start_tag, tag_offset, exclude);
 291
 292    return address_with_allocation_tag(ptr + offset, rtag);
 293}
 294
 295static int load_tag1(uint64_t ptr, uint8_t *mem)
 296{
 297    int ofs = extract32(ptr, LOG2_TAG_GRANULE, 1) * 4;
 298    return extract32(*mem, ofs, 4);
 299}
 300
 301uint64_t HELPER(ldg)(CPUARMState *env, uint64_t ptr, uint64_t xt)
 302{
 303    int mmu_idx = cpu_mmu_index(env, false);
 304    uint8_t *mem;
 305    int rtag = 0;
 306
 307    /* Trap if accessing an invalid page.  */
 308    mem = allocation_tag_mem(env, mmu_idx, ptr, MMU_DATA_LOAD, 1,
 309                             MMU_DATA_LOAD, 1, GETPC());
 310
 311    /* Load if page supports tags. */
 312    if (mem) {
 313        rtag = load_tag1(ptr, mem);
 314    }
 315
 316    return address_with_allocation_tag(xt, rtag);
 317}
 318
 319static void check_tag_aligned(CPUARMState *env, uint64_t ptr, uintptr_t ra)
 320{
 321    if (unlikely(!QEMU_IS_ALIGNED(ptr, TAG_GRANULE))) {
 322        arm_cpu_do_unaligned_access(env_cpu(env), ptr, MMU_DATA_STORE,
 323                                    cpu_mmu_index(env, false), ra);
 324        g_assert_not_reached();
 325    }
 326}
 327
 328/* For use in a non-parallel context, store to the given nibble.  */
 329static void store_tag1(uint64_t ptr, uint8_t *mem, int tag)
 330{
 331    int ofs = extract32(ptr, LOG2_TAG_GRANULE, 1) * 4;
 332    *mem = deposit32(*mem, ofs, 4, tag);
 333}
 334
 335/* For use in a parallel context, atomically store to the given nibble.  */
 336static void store_tag1_parallel(uint64_t ptr, uint8_t *mem, int tag)
 337{
 338    int ofs = extract32(ptr, LOG2_TAG_GRANULE, 1) * 4;
 339    uint8_t old = qatomic_read(mem);
 340
 341    while (1) {
 342        uint8_t new = deposit32(old, ofs, 4, tag);
 343        uint8_t cmp = qatomic_cmpxchg(mem, old, new);
 344        if (likely(cmp == old)) {
 345            return;
 346        }
 347        old = cmp;
 348    }
 349}
 350
 351typedef void stg_store1(uint64_t, uint8_t *, int);
 352
 353static inline void do_stg(CPUARMState *env, uint64_t ptr, uint64_t xt,
 354                          uintptr_t ra, stg_store1 store1)
 355{
 356    int mmu_idx = cpu_mmu_index(env, false);
 357    uint8_t *mem;
 358
 359    check_tag_aligned(env, ptr, ra);
 360
 361    /* Trap if accessing an invalid page.  */
 362    mem = allocation_tag_mem(env, mmu_idx, ptr, MMU_DATA_STORE, TAG_GRANULE,
 363                             MMU_DATA_STORE, 1, ra);
 364
 365    /* Store if page supports tags. */
 366    if (mem) {
 367        store1(ptr, mem, allocation_tag_from_addr(xt));
 368    }
 369}
 370
 371void HELPER(stg)(CPUARMState *env, uint64_t ptr, uint64_t xt)
 372{
 373    do_stg(env, ptr, xt, GETPC(), store_tag1);
 374}
 375
 376void HELPER(stg_parallel)(CPUARMState *env, uint64_t ptr, uint64_t xt)
 377{
 378    do_stg(env, ptr, xt, GETPC(), store_tag1_parallel);
 379}
 380
 381void HELPER(stg_stub)(CPUARMState *env, uint64_t ptr)
 382{
 383    int mmu_idx = cpu_mmu_index(env, false);
 384    uintptr_t ra = GETPC();
 385
 386    check_tag_aligned(env, ptr, ra);
 387    probe_write(env, ptr, TAG_GRANULE, mmu_idx, ra);
 388}
 389
 390static inline void do_st2g(CPUARMState *env, uint64_t ptr, uint64_t xt,
 391                           uintptr_t ra, stg_store1 store1)
 392{
 393    int mmu_idx = cpu_mmu_index(env, false);
 394    int tag = allocation_tag_from_addr(xt);
 395    uint8_t *mem1, *mem2;
 396
 397    check_tag_aligned(env, ptr, ra);
 398
 399    /*
 400     * Trap if accessing an invalid page(s).
 401     * This takes priority over !allocation_tag_access_enabled.
 402     */
 403    if (ptr & TAG_GRANULE) {
 404        /* Two stores unaligned mod TAG_GRANULE*2 -- modify two bytes. */
 405        mem1 = allocation_tag_mem(env, mmu_idx, ptr, MMU_DATA_STORE,
 406                                  TAG_GRANULE, MMU_DATA_STORE, 1, ra);
 407        mem2 = allocation_tag_mem(env, mmu_idx, ptr + TAG_GRANULE,
 408                                  MMU_DATA_STORE, TAG_GRANULE,
 409                                  MMU_DATA_STORE, 1, ra);
 410
 411        /* Store if page(s) support tags. */
 412        if (mem1) {
 413            store1(TAG_GRANULE, mem1, tag);
 414        }
 415        if (mem2) {
 416            store1(0, mem2, tag);
 417        }
 418    } else {
 419        /* Two stores aligned mod TAG_GRANULE*2 -- modify one byte. */
 420        mem1 = allocation_tag_mem(env, mmu_idx, ptr, MMU_DATA_STORE,
 421                                  2 * TAG_GRANULE, MMU_DATA_STORE, 1, ra);
 422        if (mem1) {
 423            tag |= tag << 4;
 424            qatomic_set(mem1, tag);
 425        }
 426    }
 427}
 428
 429void HELPER(st2g)(CPUARMState *env, uint64_t ptr, uint64_t xt)
 430{
 431    do_st2g(env, ptr, xt, GETPC(), store_tag1);
 432}
 433
 434void HELPER(st2g_parallel)(CPUARMState *env, uint64_t ptr, uint64_t xt)
 435{
 436    do_st2g(env, ptr, xt, GETPC(), store_tag1_parallel);
 437}
 438
 439void HELPER(st2g_stub)(CPUARMState *env, uint64_t ptr)
 440{
 441    int mmu_idx = cpu_mmu_index(env, false);
 442    uintptr_t ra = GETPC();
 443    int in_page = -(ptr | TARGET_PAGE_MASK);
 444
 445    check_tag_aligned(env, ptr, ra);
 446
 447    if (likely(in_page >= 2 * TAG_GRANULE)) {
 448        probe_write(env, ptr, 2 * TAG_GRANULE, mmu_idx, ra);
 449    } else {
 450        probe_write(env, ptr, TAG_GRANULE, mmu_idx, ra);
 451        probe_write(env, ptr + TAG_GRANULE, TAG_GRANULE, mmu_idx, ra);
 452    }
 453}
 454
 455#define LDGM_STGM_SIZE  (4 << GMID_EL1_BS)
 456
 457uint64_t HELPER(ldgm)(CPUARMState *env, uint64_t ptr)
 458{
 459    int mmu_idx = cpu_mmu_index(env, false);
 460    uintptr_t ra = GETPC();
 461    void *tag_mem;
 462
 463    ptr = QEMU_ALIGN_DOWN(ptr, LDGM_STGM_SIZE);
 464
 465    /* Trap if accessing an invalid page.  */
 466    tag_mem = allocation_tag_mem(env, mmu_idx, ptr, MMU_DATA_LOAD,
 467                                 LDGM_STGM_SIZE, MMU_DATA_LOAD,
 468                                 LDGM_STGM_SIZE / (2 * TAG_GRANULE), ra);
 469
 470    /* The tag is squashed to zero if the page does not support tags.  */
 471    if (!tag_mem) {
 472        return 0;
 473    }
 474
 475    QEMU_BUILD_BUG_ON(GMID_EL1_BS != 6);
 476    /*
 477     * We are loading 64-bits worth of tags.  The ordering of elements
 478     * within the word corresponds to a 64-bit little-endian operation.
 479     */
 480    return ldq_le_p(tag_mem);
 481}
 482
 483void HELPER(stgm)(CPUARMState *env, uint64_t ptr, uint64_t val)
 484{
 485    int mmu_idx = cpu_mmu_index(env, false);
 486    uintptr_t ra = GETPC();
 487    void *tag_mem;
 488
 489    ptr = QEMU_ALIGN_DOWN(ptr, LDGM_STGM_SIZE);
 490
 491    /* Trap if accessing an invalid page.  */
 492    tag_mem = allocation_tag_mem(env, mmu_idx, ptr, MMU_DATA_STORE,
 493                                 LDGM_STGM_SIZE, MMU_DATA_LOAD,
 494                                 LDGM_STGM_SIZE / (2 * TAG_GRANULE), ra);
 495
 496    /*
 497     * Tag store only happens if the page support tags,
 498     * and if the OS has enabled access to the tags.
 499     */
 500    if (!tag_mem) {
 501        return;
 502    }
 503
 504    QEMU_BUILD_BUG_ON(GMID_EL1_BS != 6);
 505    /*
 506     * We are storing 64-bits worth of tags.  The ordering of elements
 507     * within the word corresponds to a 64-bit little-endian operation.
 508     */
 509    stq_le_p(tag_mem, val);
 510}
 511
 512void HELPER(stzgm_tags)(CPUARMState *env, uint64_t ptr, uint64_t val)
 513{
 514    uintptr_t ra = GETPC();
 515    int mmu_idx = cpu_mmu_index(env, false);
 516    int log2_dcz_bytes, log2_tag_bytes;
 517    intptr_t dcz_bytes, tag_bytes;
 518    uint8_t *mem;
 519
 520    /*
 521     * In arm_cpu_realizefn, we assert that dcz > LOG2_TAG_GRANULE+1,
 522     * i.e. 32 bytes, which is an unreasonably small dcz anyway,
 523     * to make sure that we can access one complete tag byte here.
 524     */
 525    log2_dcz_bytes = env_archcpu(env)->dcz_blocksize + 2;
 526    log2_tag_bytes = log2_dcz_bytes - (LOG2_TAG_GRANULE + 1);
 527    dcz_bytes = (intptr_t)1 << log2_dcz_bytes;
 528    tag_bytes = (intptr_t)1 << log2_tag_bytes;
 529    ptr &= -dcz_bytes;
 530
 531    mem = allocation_tag_mem(env, mmu_idx, ptr, MMU_DATA_STORE, dcz_bytes,
 532                             MMU_DATA_STORE, tag_bytes, ra);
 533    if (mem) {
 534        int tag_pair = (val & 0xf) * 0x11;
 535        memset(mem, tag_pair, tag_bytes);
 536    }
 537}
 538
 539static void mte_sync_check_fail(CPUARMState *env, uint32_t desc,
 540                                uint64_t dirty_ptr, uintptr_t ra)
 541{
 542    int is_write, syn;
 543
 544    env->exception.vaddress = dirty_ptr;
 545
 546    is_write = FIELD_EX32(desc, MTEDESC, WRITE);
 547    syn = syn_data_abort_no_iss(arm_current_el(env) != 0, 0, 0, 0, 0, is_write,
 548                                0x11);
 549    raise_exception_ra(env, EXCP_DATA_ABORT, syn, exception_target_el(env), ra);
 550    g_assert_not_reached();
 551}
 552
 553static void mte_async_check_fail(CPUARMState *env, uint64_t dirty_ptr,
 554                                 uintptr_t ra, ARMMMUIdx arm_mmu_idx, int el)
 555{
 556    int select;
 557
 558    if (regime_has_2_ranges(arm_mmu_idx)) {
 559        select = extract64(dirty_ptr, 55, 1);
 560    } else {
 561        select = 0;
 562    }
 563    env->cp15.tfsr_el[el] |= 1 << select;
 564#ifdef CONFIG_USER_ONLY
 565    /*
 566     * Stand in for a timer irq, setting _TIF_MTE_ASYNC_FAULT,
 567     * which then sends a SIGSEGV when the thread is next scheduled.
 568     * This cpu will return to the main loop at the end of the TB,
 569     * which is rather sooner than "normal".  But the alternative
 570     * is waiting until the next syscall.
 571     */
 572    qemu_cpu_kick(env_cpu(env));
 573#endif
 574}
 575
 576/* Record a tag check failure.  */
 577static void mte_check_fail(CPUARMState *env, uint32_t desc,
 578                           uint64_t dirty_ptr, uintptr_t ra)
 579{
 580    int mmu_idx = FIELD_EX32(desc, MTEDESC, MIDX);
 581    ARMMMUIdx arm_mmu_idx = core_to_aa64_mmu_idx(mmu_idx);
 582    int el, reg_el, tcf;
 583    uint64_t sctlr;
 584
 585    reg_el = regime_el(env, arm_mmu_idx);
 586    sctlr = env->cp15.sctlr_el[reg_el];
 587
 588    switch (arm_mmu_idx) {
 589    case ARMMMUIdx_E10_0:
 590    case ARMMMUIdx_E20_0:
 591        el = 0;
 592        tcf = extract64(sctlr, 38, 2);
 593        break;
 594    default:
 595        el = reg_el;
 596        tcf = extract64(sctlr, 40, 2);
 597    }
 598
 599    switch (tcf) {
 600    case 1:
 601        /* Tag check fail causes a synchronous exception. */
 602        mte_sync_check_fail(env, desc, dirty_ptr, ra);
 603        break;
 604
 605    case 0:
 606        /*
 607         * Tag check fail does not affect the PE.
 608         * We eliminate this case by not setting MTE_ACTIVE
 609         * in tb_flags, so that we never make this runtime call.
 610         */
 611        g_assert_not_reached();
 612
 613    case 2:
 614        /* Tag check fail causes asynchronous flag set.  */
 615        mte_async_check_fail(env, dirty_ptr, ra, arm_mmu_idx, el);
 616        break;
 617
 618    case 3:
 619        /*
 620         * Tag check fail causes asynchronous flag set for stores, or
 621         * a synchronous exception for loads.
 622         */
 623        if (FIELD_EX32(desc, MTEDESC, WRITE)) {
 624            mte_async_check_fail(env, dirty_ptr, ra, arm_mmu_idx, el);
 625        } else {
 626            mte_sync_check_fail(env, desc, dirty_ptr, ra);
 627        }
 628        break;
 629    }
 630}
 631
 632/**
 633 * checkN:
 634 * @tag: tag memory to test
 635 * @odd: true to begin testing at tags at odd nibble
 636 * @cmp: the tag to compare against
 637 * @count: number of tags to test
 638 *
 639 * Return the number of successful tests.
 640 * Thus a return value < @count indicates a failure.
 641 *
 642 * A note about sizes: count is expected to be small.
 643 *
 644 * The most common use will be LDP/STP of two integer registers,
 645 * which means 16 bytes of memory touching at most 2 tags, but
 646 * often the access is aligned and thus just 1 tag.
 647 *
 648 * Using AdvSIMD LD/ST (multiple), one can access 64 bytes of memory,
 649 * touching at most 5 tags.  SVE LDR/STR (vector) with the default
 650 * vector length is also 64 bytes; the maximum architectural length
 651 * is 256 bytes touching at most 9 tags.
 652 *
 653 * The loop below uses 7 logical operations and 1 memory operation
 654 * per tag pair.  An implementation that loads an aligned word and
 655 * uses masking to ignore adjacent tags requires 18 logical operations
 656 * and thus does not begin to pay off until 6 tags.
 657 * Which, according to the survey above, is unlikely to be common.
 658 */
 659static int checkN(uint8_t *mem, int odd, int cmp, int count)
 660{
 661    int n = 0, diff;
 662
 663    /* Replicate the test tag and compare.  */
 664    cmp *= 0x11;
 665    diff = *mem++ ^ cmp;
 666
 667    if (odd) {
 668        goto start_odd;
 669    }
 670
 671    while (1) {
 672        /* Test even tag. */
 673        if (unlikely((diff) & 0x0f)) {
 674            break;
 675        }
 676        if (++n == count) {
 677            break;
 678        }
 679
 680    start_odd:
 681        /* Test odd tag. */
 682        if (unlikely((diff) & 0xf0)) {
 683            break;
 684        }
 685        if (++n == count) {
 686            break;
 687        }
 688
 689        diff = *mem++ ^ cmp;
 690    }
 691    return n;
 692}
 693
 694/**
 695 * mte_probe_int() - helper for mte_probe and mte_check
 696 * @env: CPU environment
 697 * @desc: MTEDESC descriptor
 698 * @ptr: virtual address of the base of the access
 699 * @fault: return virtual address of the first check failure
 700 *
 701 * Internal routine for both mte_probe and mte_check.
 702 * Return zero on failure, filling in *fault.
 703 * Return negative on trivial success for tbi disabled.
 704 * Return positive on success with tbi enabled.
 705 */
 706static int mte_probe_int(CPUARMState *env, uint32_t desc, uint64_t ptr,
 707                         uintptr_t ra, uint64_t *fault)
 708{
 709    int mmu_idx, ptr_tag, bit55;
 710    uint64_t ptr_last, prev_page, next_page;
 711    uint64_t tag_first, tag_last;
 712    uint64_t tag_byte_first, tag_byte_last;
 713    uint32_t sizem1, tag_count, tag_size, n, c;
 714    uint8_t *mem1, *mem2;
 715    MMUAccessType type;
 716
 717    bit55 = extract64(ptr, 55, 1);
 718    *fault = ptr;
 719
 720    /* If TBI is disabled, the access is unchecked, and ptr is not dirty. */
 721    if (unlikely(!tbi_check(desc, bit55))) {
 722        return -1;
 723    }
 724
 725    ptr_tag = allocation_tag_from_addr(ptr);
 726
 727    if (tcma_check(desc, bit55, ptr_tag)) {
 728        return 1;
 729    }
 730
 731    mmu_idx = FIELD_EX32(desc, MTEDESC, MIDX);
 732    type = FIELD_EX32(desc, MTEDESC, WRITE) ? MMU_DATA_STORE : MMU_DATA_LOAD;
 733    sizem1 = FIELD_EX32(desc, MTEDESC, SIZEM1);
 734
 735    /* Find the addr of the end of the access */
 736    ptr_last = ptr + sizem1;
 737
 738    /* Round the bounds to the tag granule, and compute the number of tags. */
 739    tag_first = QEMU_ALIGN_DOWN(ptr, TAG_GRANULE);
 740    tag_last = QEMU_ALIGN_DOWN(ptr_last, TAG_GRANULE);
 741    tag_count = ((tag_last - tag_first) / TAG_GRANULE) + 1;
 742
 743    /* Round the bounds to twice the tag granule, and compute the bytes. */
 744    tag_byte_first = QEMU_ALIGN_DOWN(ptr, 2 * TAG_GRANULE);
 745    tag_byte_last = QEMU_ALIGN_DOWN(ptr_last, 2 * TAG_GRANULE);
 746
 747    /* Locate the page boundaries. */
 748    prev_page = ptr & TARGET_PAGE_MASK;
 749    next_page = prev_page + TARGET_PAGE_SIZE;
 750
 751    if (likely(tag_last - prev_page < TARGET_PAGE_SIZE)) {
 752        /* Memory access stays on one page. */
 753        tag_size = ((tag_byte_last - tag_byte_first) / (2 * TAG_GRANULE)) + 1;
 754        mem1 = allocation_tag_mem(env, mmu_idx, ptr, type, sizem1 + 1,
 755                                  MMU_DATA_LOAD, tag_size, ra);
 756        if (!mem1) {
 757            return 1;
 758        }
 759        /* Perform all of the comparisons. */
 760        n = checkN(mem1, ptr & TAG_GRANULE, ptr_tag, tag_count);
 761    } else {
 762        /* Memory access crosses to next page. */
 763        tag_size = (next_page - tag_byte_first) / (2 * TAG_GRANULE);
 764        mem1 = allocation_tag_mem(env, mmu_idx, ptr, type, next_page - ptr,
 765                                  MMU_DATA_LOAD, tag_size, ra);
 766
 767        tag_size = ((tag_byte_last - next_page) / (2 * TAG_GRANULE)) + 1;
 768        mem2 = allocation_tag_mem(env, mmu_idx, next_page, type,
 769                                  ptr_last - next_page + 1,
 770                                  MMU_DATA_LOAD, tag_size, ra);
 771
 772        /*
 773         * Perform all of the comparisons.
 774         * Note the possible but unlikely case of the operation spanning
 775         * two pages that do not both have tagging enabled.
 776         */
 777        n = c = (next_page - tag_first) / TAG_GRANULE;
 778        if (mem1) {
 779            n = checkN(mem1, ptr & TAG_GRANULE, ptr_tag, c);
 780        }
 781        if (n == c) {
 782            if (!mem2) {
 783                return 1;
 784            }
 785            n += checkN(mem2, 0, ptr_tag, tag_count - c);
 786        }
 787    }
 788
 789    if (likely(n == tag_count)) {
 790        return 1;
 791    }
 792
 793    /*
 794     * If we failed, we know which granule.  For the first granule, the
 795     * failure address is @ptr, the first byte accessed.  Otherwise the
 796     * failure address is the first byte of the nth granule.
 797     */
 798    if (n > 0) {
 799        *fault = tag_first + n * TAG_GRANULE;
 800    }
 801    return 0;
 802}
 803
 804uint64_t mte_check(CPUARMState *env, uint32_t desc, uint64_t ptr, uintptr_t ra)
 805{
 806    uint64_t fault;
 807    int ret = mte_probe_int(env, desc, ptr, ra, &fault);
 808
 809    if (unlikely(ret == 0)) {
 810        mte_check_fail(env, desc, fault, ra);
 811    } else if (ret < 0) {
 812        return ptr;
 813    }
 814    return useronly_clean_ptr(ptr);
 815}
 816
 817uint64_t HELPER(mte_check)(CPUARMState *env, uint32_t desc, uint64_t ptr)
 818{
 819    return mte_check(env, desc, ptr, GETPC());
 820}
 821
 822/*
 823 * No-fault version of mte_check, to be used by SVE for MemSingleNF.
 824 * Returns false if the access is Checked and the check failed.  This
 825 * is only intended to probe the tag -- the validity of the page must
 826 * be checked beforehand.
 827 */
 828bool mte_probe(CPUARMState *env, uint32_t desc, uint64_t ptr)
 829{
 830    uint64_t fault;
 831    int ret = mte_probe_int(env, desc, ptr, 0, &fault);
 832
 833    return ret != 0;
 834}
 835
 836/*
 837 * Perform an MTE checked access for DC_ZVA.
 838 */
 839uint64_t HELPER(mte_check_zva)(CPUARMState *env, uint32_t desc, uint64_t ptr)
 840{
 841    uintptr_t ra = GETPC();
 842    int log2_dcz_bytes, log2_tag_bytes;
 843    int mmu_idx, bit55;
 844    intptr_t dcz_bytes, tag_bytes, i;
 845    void *mem;
 846    uint64_t ptr_tag, mem_tag, align_ptr;
 847
 848    bit55 = extract64(ptr, 55, 1);
 849
 850    /* If TBI is disabled, the access is unchecked, and ptr is not dirty. */
 851    if (unlikely(!tbi_check(desc, bit55))) {
 852        return ptr;
 853    }
 854
 855    ptr_tag = allocation_tag_from_addr(ptr);
 856
 857    if (tcma_check(desc, bit55, ptr_tag)) {
 858        goto done;
 859    }
 860
 861    /*
 862     * In arm_cpu_realizefn, we asserted that dcz > LOG2_TAG_GRANULE+1,
 863     * i.e. 32 bytes, which is an unreasonably small dcz anyway, to make
 864     * sure that we can access one complete tag byte here.
 865     */
 866    log2_dcz_bytes = env_archcpu(env)->dcz_blocksize + 2;
 867    log2_tag_bytes = log2_dcz_bytes - (LOG2_TAG_GRANULE + 1);
 868    dcz_bytes = (intptr_t)1 << log2_dcz_bytes;
 869    tag_bytes = (intptr_t)1 << log2_tag_bytes;
 870    align_ptr = ptr & -dcz_bytes;
 871
 872    /*
 873     * Trap if accessing an invalid page.  DC_ZVA requires that we supply
 874     * the original pointer for an invalid page.  But watchpoints require
 875     * that we probe the actual space.  So do both.
 876     */
 877    mmu_idx = FIELD_EX32(desc, MTEDESC, MIDX);
 878    (void) probe_write(env, ptr, 1, mmu_idx, ra);
 879    mem = allocation_tag_mem(env, mmu_idx, align_ptr, MMU_DATA_STORE,
 880                             dcz_bytes, MMU_DATA_LOAD, tag_bytes, ra);
 881    if (!mem) {
 882        goto done;
 883    }
 884
 885    /*
 886     * Unlike the reasoning for checkN, DC_ZVA is always aligned, and thus
 887     * it is quite easy to perform all of the comparisons at once without
 888     * any extra masking.
 889     *
 890     * The most common zva block size is 64; some of the thunderx cpus use
 891     * a block size of 128.  For user-only, aarch64_max_initfn will set the
 892     * block size to 512.  Fill out the other cases for future-proofing.
 893     *
 894     * In order to be able to find the first miscompare later, we want the
 895     * tag bytes to be in little-endian order.
 896     */
 897    switch (log2_tag_bytes) {
 898    case 0: /* zva_blocksize 32 */
 899        mem_tag = *(uint8_t *)mem;
 900        ptr_tag *= 0x11u;
 901        break;
 902    case 1: /* zva_blocksize 64 */
 903        mem_tag = cpu_to_le16(*(uint16_t *)mem);
 904        ptr_tag *= 0x1111u;
 905        break;
 906    case 2: /* zva_blocksize 128 */
 907        mem_tag = cpu_to_le32(*(uint32_t *)mem);
 908        ptr_tag *= 0x11111111u;
 909        break;
 910    case 3: /* zva_blocksize 256 */
 911        mem_tag = cpu_to_le64(*(uint64_t *)mem);
 912        ptr_tag *= 0x1111111111111111ull;
 913        break;
 914
 915    default: /* zva_blocksize 512, 1024, 2048 */
 916        ptr_tag *= 0x1111111111111111ull;
 917        i = 0;
 918        do {
 919            mem_tag = cpu_to_le64(*(uint64_t *)(mem + i));
 920            if (unlikely(mem_tag != ptr_tag)) {
 921                goto fail;
 922            }
 923            i += 8;
 924            align_ptr += 16 * TAG_GRANULE;
 925        } while (i < tag_bytes);
 926        goto done;
 927    }
 928
 929    if (likely(mem_tag == ptr_tag)) {
 930        goto done;
 931    }
 932
 933 fail:
 934    /* Locate the first nibble that differs. */
 935    i = ctz64(mem_tag ^ ptr_tag) >> 4;
 936    mte_check_fail(env, desc, align_ptr + i * TAG_GRANULE, ra);
 937
 938 done:
 939    return useronly_clean_ptr(ptr);
 940}
 941