qemu/target/avr/helper.c
<<
>>
Prefs
   1/*
   2 * QEMU AVR CPU helpers
   3 *
   4 * Copyright (c) 2016-2020 Michael Rolnik
   5 *
   6 * This library is free software; you can redistribute it and/or
   7 * modify it under the terms of the GNU Lesser General Public
   8 * License as published by the Free Software Foundation; either
   9 * version 2.1 of the License, or (at your option) any later version.
  10 *
  11 * This library is distributed in the hope that it will be useful,
  12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  14 * Lesser General Public License for more details.
  15 *
  16 * You should have received a copy of the GNU Lesser General Public
  17 * License along with this library; if not, see
  18 * <http://www.gnu.org/licenses/lgpl-2.1.html>
  19 */
  20
  21#include "qemu/osdep.h"
  22#include "cpu.h"
  23#include "hw/core/tcg-cpu-ops.h"
  24#include "exec/exec-all.h"
  25#include "exec/address-spaces.h"
  26#include "exec/helper-proto.h"
  27
  28bool avr_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
  29{
  30    bool ret = false;
  31    CPUClass *cc = CPU_GET_CLASS(cs);
  32    AVRCPU *cpu = AVR_CPU(cs);
  33    CPUAVRState *env = &cpu->env;
  34
  35    if (interrupt_request & CPU_INTERRUPT_RESET) {
  36        if (cpu_interrupts_enabled(env)) {
  37            cs->exception_index = EXCP_RESET;
  38            cc->tcg_ops->do_interrupt(cs);
  39
  40            cs->interrupt_request &= ~CPU_INTERRUPT_RESET;
  41
  42            ret = true;
  43        }
  44    }
  45    if (interrupt_request & CPU_INTERRUPT_HARD) {
  46        if (cpu_interrupts_enabled(env) && env->intsrc != 0) {
  47            int index = ctz32(env->intsrc);
  48            cs->exception_index = EXCP_INT(index);
  49            cc->tcg_ops->do_interrupt(cs);
  50
  51            env->intsrc &= env->intsrc - 1; /* clear the interrupt */
  52            if (!env->intsrc) {
  53                cs->interrupt_request &= ~CPU_INTERRUPT_HARD;
  54            }
  55
  56            ret = true;
  57        }
  58    }
  59    return ret;
  60}
  61
  62void avr_cpu_do_interrupt(CPUState *cs)
  63{
  64    AVRCPU *cpu = AVR_CPU(cs);
  65    CPUAVRState *env = &cpu->env;
  66
  67    uint32_t ret = env->pc_w;
  68    int vector = 0;
  69    int size = avr_feature(env, AVR_FEATURE_JMP_CALL) ? 2 : 1;
  70    int base = 0;
  71
  72    if (cs->exception_index == EXCP_RESET) {
  73        vector = 0;
  74    } else if (env->intsrc != 0) {
  75        vector = ctz32(env->intsrc) + 1;
  76    }
  77
  78    if (avr_feature(env, AVR_FEATURE_3_BYTE_PC)) {
  79        cpu_stb_data(env, env->sp--, (ret & 0x0000ff));
  80        cpu_stb_data(env, env->sp--, (ret & 0x00ff00) >> 8);
  81        cpu_stb_data(env, env->sp--, (ret & 0xff0000) >> 16);
  82    } else if (avr_feature(env, AVR_FEATURE_2_BYTE_PC)) {
  83        cpu_stb_data(env, env->sp--, (ret & 0x0000ff));
  84        cpu_stb_data(env, env->sp--, (ret & 0x00ff00) >> 8);
  85    } else {
  86        cpu_stb_data(env, env->sp--, (ret & 0x0000ff));
  87    }
  88
  89    env->pc_w = base + vector * size;
  90    env->sregI = 0; /* clear Global Interrupt Flag */
  91
  92    cs->exception_index = -1;
  93}
  94
  95int avr_cpu_memory_rw_debug(CPUState *cs, vaddr addr, uint8_t *buf,
  96                            int len, bool is_write)
  97{
  98    return cpu_memory_rw_debug(cs, addr, buf, len, is_write);
  99}
 100
 101hwaddr avr_cpu_get_phys_page_debug(CPUState *cs, vaddr addr)
 102{
 103    return addr; /* I assume 1:1 address correspondence */
 104}
 105
 106bool avr_cpu_tlb_fill(CPUState *cs, vaddr address, int size,
 107                      MMUAccessType access_type, int mmu_idx,
 108                      bool probe, uintptr_t retaddr)
 109{
 110    int prot = 0;
 111    MemTxAttrs attrs = {};
 112    uint32_t paddr;
 113
 114    address &= TARGET_PAGE_MASK;
 115
 116    if (mmu_idx == MMU_CODE_IDX) {
 117        /* access to code in flash */
 118        paddr = OFFSET_CODE + address;
 119        prot = PAGE_READ | PAGE_EXEC;
 120        if (paddr + TARGET_PAGE_SIZE > OFFSET_DATA) {
 121            error_report("execution left flash memory");
 122            abort();
 123        }
 124    } else if (address < NUMBER_OF_CPU_REGISTERS + NUMBER_OF_IO_REGISTERS) {
 125        /*
 126         * access to CPU registers, exit and rebuilt this TB to use full access
 127         * incase it touches specially handled registers like SREG or SP
 128         */
 129        AVRCPU *cpu = AVR_CPU(cs);
 130        CPUAVRState *env = &cpu->env;
 131        env->fullacc = 1;
 132        cpu_loop_exit_restore(cs, retaddr);
 133    } else {
 134        /* access to memory. nothing special */
 135        paddr = OFFSET_DATA + address;
 136        prot = PAGE_READ | PAGE_WRITE;
 137    }
 138
 139    tlb_set_page_with_attrs(cs, address, paddr, attrs, prot,
 140                            mmu_idx, TARGET_PAGE_SIZE);
 141
 142    return true;
 143}
 144
 145/*
 146 *  helpers
 147 */
 148
 149void helper_sleep(CPUAVRState *env)
 150{
 151    CPUState *cs = env_cpu(env);
 152
 153    cs->exception_index = EXCP_HLT;
 154    cpu_loop_exit(cs);
 155}
 156
 157void helper_unsupported(CPUAVRState *env)
 158{
 159    CPUState *cs = env_cpu(env);
 160
 161    /*
 162     *  I count not find what happens on the real platform, so
 163     *  it's EXCP_DEBUG for meanwhile
 164     */
 165    cs->exception_index = EXCP_DEBUG;
 166    if (qemu_loglevel_mask(LOG_UNIMP)) {
 167        qemu_log("UNSUPPORTED\n");
 168        cpu_dump_state(cs, stderr, 0);
 169    }
 170    cpu_loop_exit(cs);
 171}
 172
 173void helper_debug(CPUAVRState *env)
 174{
 175    CPUState *cs = env_cpu(env);
 176
 177    cs->exception_index = EXCP_DEBUG;
 178    cpu_loop_exit(cs);
 179}
 180
 181void helper_break(CPUAVRState *env)
 182{
 183    CPUState *cs = env_cpu(env);
 184
 185    cs->exception_index = EXCP_DEBUG;
 186    cpu_loop_exit(cs);
 187}
 188
 189void helper_wdr(CPUAVRState *env)
 190{
 191    qemu_log_mask(LOG_UNIMP, "WDG reset (not implemented)\n");
 192}
 193
 194/*
 195 * This function implements IN instruction
 196 *
 197 * It does the following
 198 * a.  if an IO register belongs to CPU, its value is read and returned
 199 * b.  otherwise io address is translated to mem address and physical memory
 200 *     is read.
 201 * c.  it caches the value for sake of SBI, SBIC, SBIS & CBI implementation
 202 *
 203 */
 204target_ulong helper_inb(CPUAVRState *env, uint32_t port)
 205{
 206    target_ulong data = 0;
 207
 208    switch (port) {
 209    case 0x38: /* RAMPD */
 210        data = 0xff & (env->rampD >> 16);
 211        break;
 212    case 0x39: /* RAMPX */
 213        data = 0xff & (env->rampX >> 16);
 214        break;
 215    case 0x3a: /* RAMPY */
 216        data = 0xff & (env->rampY >> 16);
 217        break;
 218    case 0x3b: /* RAMPZ */
 219        data = 0xff & (env->rampZ >> 16);
 220        break;
 221    case 0x3c: /* EIND */
 222        data = 0xff & (env->eind >> 16);
 223        break;
 224    case 0x3d: /* SPL */
 225        data = env->sp & 0x00ff;
 226        break;
 227    case 0x3e: /* SPH */
 228        data = env->sp >> 8;
 229        break;
 230    case 0x3f: /* SREG */
 231        data = cpu_get_sreg(env);
 232        break;
 233    default:
 234        /* not a special register, pass to normal memory access */
 235        data = address_space_ldub(&address_space_memory,
 236                                  OFFSET_IO_REGISTERS + port,
 237                                  MEMTXATTRS_UNSPECIFIED, NULL);
 238    }
 239
 240    return data;
 241}
 242
 243/*
 244 *  This function implements OUT instruction
 245 *
 246 *  It does the following
 247 *  a.  if an IO register belongs to CPU, its value is written into the register
 248 *  b.  otherwise io address is translated to mem address and physical memory
 249 *      is written.
 250 *  c.  it caches the value for sake of SBI, SBIC, SBIS & CBI implementation
 251 *
 252 */
 253void helper_outb(CPUAVRState *env, uint32_t port, uint32_t data)
 254{
 255    data &= 0x000000ff;
 256
 257    switch (port) {
 258    case 0x38: /* RAMPD */
 259        if (avr_feature(env, AVR_FEATURE_RAMPD)) {
 260            env->rampD = (data & 0xff) << 16;
 261        }
 262        break;
 263    case 0x39: /* RAMPX */
 264        if (avr_feature(env, AVR_FEATURE_RAMPX)) {
 265            env->rampX = (data & 0xff) << 16;
 266        }
 267        break;
 268    case 0x3a: /* RAMPY */
 269        if (avr_feature(env, AVR_FEATURE_RAMPY)) {
 270            env->rampY = (data & 0xff) << 16;
 271        }
 272        break;
 273    case 0x3b: /* RAMPZ */
 274        if (avr_feature(env, AVR_FEATURE_RAMPZ)) {
 275            env->rampZ = (data & 0xff) << 16;
 276        }
 277        break;
 278    case 0x3c: /* EIDN */
 279        env->eind = (data & 0xff) << 16;
 280        break;
 281    case 0x3d: /* SPL */
 282        env->sp = (env->sp & 0xff00) | (data);
 283        break;
 284    case 0x3e: /* SPH */
 285        if (avr_feature(env, AVR_FEATURE_2_BYTE_SP)) {
 286            env->sp = (env->sp & 0x00ff) | (data << 8);
 287        }
 288        break;
 289    case 0x3f: /* SREG */
 290        cpu_set_sreg(env, data);
 291        break;
 292    default:
 293        /* not a special register, pass to normal memory access */
 294        address_space_stb(&address_space_memory, OFFSET_IO_REGISTERS + port,
 295                          data, MEMTXATTRS_UNSPECIFIED, NULL);
 296    }
 297}
 298
 299/*
 300 *  this function implements LD instruction when there is a possibility to read
 301 *  from a CPU register
 302 */
 303target_ulong helper_fullrd(CPUAVRState *env, uint32_t addr)
 304{
 305    uint8_t data;
 306
 307    env->fullacc = false;
 308
 309    if (addr < NUMBER_OF_CPU_REGISTERS) {
 310        /* CPU registers */
 311        data = env->r[addr];
 312    } else if (addr < NUMBER_OF_CPU_REGISTERS + NUMBER_OF_IO_REGISTERS) {
 313        /* IO registers */
 314        data = helper_inb(env, addr - NUMBER_OF_CPU_REGISTERS);
 315    } else {
 316        /* memory */
 317        data = address_space_ldub(&address_space_memory, OFFSET_DATA + addr,
 318                                  MEMTXATTRS_UNSPECIFIED, NULL);
 319    }
 320    return data;
 321}
 322
 323/*
 324 *  this function implements ST instruction when there is a possibility to write
 325 *  into a CPU register
 326 */
 327void helper_fullwr(CPUAVRState *env, uint32_t data, uint32_t addr)
 328{
 329    env->fullacc = false;
 330
 331    /* Following logic assumes this: */
 332    assert(OFFSET_CPU_REGISTERS == OFFSET_DATA);
 333    assert(OFFSET_IO_REGISTERS == OFFSET_CPU_REGISTERS +
 334                                  NUMBER_OF_CPU_REGISTERS);
 335
 336    if (addr < NUMBER_OF_CPU_REGISTERS) {
 337        /* CPU registers */
 338        env->r[addr] = data;
 339    } else if (addr < NUMBER_OF_CPU_REGISTERS + NUMBER_OF_IO_REGISTERS) {
 340        /* IO registers */
 341        helper_outb(env, addr - NUMBER_OF_CPU_REGISTERS, data);
 342    } else {
 343        /* memory */
 344        address_space_stb(&address_space_memory, OFFSET_DATA + addr, data,
 345                          MEMTXATTRS_UNSPECIFIED, NULL);
 346    }
 347}
 348