qemu/target/hexagon/cpu.c
<<
>>
Prefs
   1/*
   2 *  Copyright(c) 2019-2021 Qualcomm Innovation Center, Inc. All Rights Reserved.
   3 *
   4 *  This program is free software; you can redistribute it and/or modify
   5 *  it under the terms of the GNU General Public License as published by
   6 *  the Free Software Foundation; either version 2 of the License, or
   7 *  (at your option) any later version.
   8 *
   9 *  This program is distributed in the hope that it will be useful,
  10 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
  11 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  12 *  GNU General Public License for more details.
  13 *
  14 *  You should have received a copy of the GNU General Public License
  15 *  along with this program; if not, see <http://www.gnu.org/licenses/>.
  16 */
  17
  18#include "qemu/osdep.h"
  19#include "qemu/qemu-print.h"
  20#include "cpu.h"
  21#include "internal.h"
  22#include "exec/exec-all.h"
  23#include "qapi/error.h"
  24#include "hw/qdev-properties.h"
  25#include "fpu/softfloat-helpers.h"
  26
  27static void hexagon_v67_cpu_init(Object *obj)
  28{
  29}
  30
  31static ObjectClass *hexagon_cpu_class_by_name(const char *cpu_model)
  32{
  33    ObjectClass *oc;
  34    char *typename;
  35    char **cpuname;
  36
  37    cpuname = g_strsplit(cpu_model, ",", 1);
  38    typename = g_strdup_printf(HEXAGON_CPU_TYPE_NAME("%s"), cpuname[0]);
  39    oc = object_class_by_name(typename);
  40    g_strfreev(cpuname);
  41    g_free(typename);
  42    if (!oc || !object_class_dynamic_cast(oc, TYPE_HEXAGON_CPU) ||
  43        object_class_is_abstract(oc)) {
  44        return NULL;
  45    }
  46    return oc;
  47}
  48
  49static Property hexagon_lldb_compat_property =
  50    DEFINE_PROP_BOOL("lldb-compat", HexagonCPU, lldb_compat, false);
  51static Property hexagon_lldb_stack_adjust_property =
  52    DEFINE_PROP_UNSIGNED("lldb-stack-adjust", HexagonCPU, lldb_stack_adjust,
  53                         0, qdev_prop_uint32, target_ulong);
  54
  55const char * const hexagon_regnames[TOTAL_PER_THREAD_REGS] = {
  56   "r0", "r1",  "r2",  "r3",  "r4",   "r5",  "r6",  "r7",
  57   "r8", "r9",  "r10", "r11", "r12",  "r13", "r14", "r15",
  58  "r16", "r17", "r18", "r19", "r20",  "r21", "r22", "r23",
  59  "r24", "r25", "r26", "r27", "r28",  "r29", "r30", "r31",
  60  "sa0", "lc0", "sa1", "lc1", "p3_0", "c5",  "m0",  "m1",
  61  "usr", "pc",  "ugp", "gp",  "cs0",  "cs1", "c14", "c15",
  62  "c16", "c17", "c18", "c19", "pkt_cnt",  "insn_cnt", "hvx_cnt", "c23",
  63  "c24", "c25", "c26", "c27", "c28",  "c29", "c30", "c31",
  64};
  65
  66/*
  67 * One of the main debugging techniques is to use "-d cpu" and compare against
  68 * LLDB output when single stepping.  However, the target and qemu put the
  69 * stacks at different locations.  This is used to compensate so the diff is
  70 * cleaner.
  71 */
  72static target_ulong adjust_stack_ptrs(CPUHexagonState *env, target_ulong addr)
  73{
  74    HexagonCPU *cpu = env_archcpu(env);
  75    target_ulong stack_adjust = cpu->lldb_stack_adjust;
  76    target_ulong stack_start = env->stack_start;
  77    target_ulong stack_size = 0x10000;
  78
  79    if (stack_adjust == 0) {
  80        return addr;
  81    }
  82
  83    if (stack_start + 0x1000 >= addr && addr >= (stack_start - stack_size)) {
  84        return addr - stack_adjust;
  85    }
  86    return addr;
  87}
  88
  89/* HEX_REG_P3_0 (aka C4) is an alias for the predicate registers */
  90static target_ulong read_p3_0(CPUHexagonState *env)
  91{
  92    int32_t control_reg = 0;
  93    int i;
  94    for (i = NUM_PREGS - 1; i >= 0; i--) {
  95        control_reg <<= 8;
  96        control_reg |= env->pred[i] & 0xff;
  97    }
  98    return control_reg;
  99}
 100
 101static void print_reg(FILE *f, CPUHexagonState *env, int regnum)
 102{
 103    target_ulong value;
 104
 105    if (regnum == HEX_REG_P3_0) {
 106        value = read_p3_0(env);
 107    } else {
 108        value = regnum < 32 ? adjust_stack_ptrs(env, env->gpr[regnum])
 109                            : env->gpr[regnum];
 110    }
 111
 112    qemu_fprintf(f, "  %s = 0x" TARGET_FMT_lx "\n",
 113                 hexagon_regnames[regnum], value);
 114}
 115
 116static void print_vreg(FILE *f, CPUHexagonState *env, int regnum,
 117                       bool skip_if_zero)
 118{
 119    if (skip_if_zero) {
 120        bool nonzero_found = false;
 121        for (int i = 0; i < MAX_VEC_SIZE_BYTES; i++) {
 122            if (env->VRegs[regnum].ub[i] != 0) {
 123                nonzero_found = true;
 124                break;
 125            }
 126        }
 127        if (!nonzero_found) {
 128            return;
 129        }
 130    }
 131
 132    qemu_fprintf(f, "  v%d = ( ", regnum);
 133    qemu_fprintf(f, "0x%02x", env->VRegs[regnum].ub[MAX_VEC_SIZE_BYTES - 1]);
 134    for (int i = MAX_VEC_SIZE_BYTES - 2; i >= 0; i--) {
 135        qemu_fprintf(f, ", 0x%02x", env->VRegs[regnum].ub[i]);
 136    }
 137    qemu_fprintf(f, " )\n");
 138}
 139
 140void hexagon_debug_vreg(CPUHexagonState *env, int regnum)
 141{
 142    print_vreg(stdout, env, regnum, false);
 143}
 144
 145static void print_qreg(FILE *f, CPUHexagonState *env, int regnum,
 146                       bool skip_if_zero)
 147{
 148    if (skip_if_zero) {
 149        bool nonzero_found = false;
 150        for (int i = 0; i < MAX_VEC_SIZE_BYTES / 8; i++) {
 151            if (env->QRegs[regnum].ub[i] != 0) {
 152                nonzero_found = true;
 153                break;
 154            }
 155        }
 156        if (!nonzero_found) {
 157            return;
 158        }
 159    }
 160
 161    qemu_fprintf(f, "  q%d = ( ", regnum);
 162    qemu_fprintf(f, "0x%02x",
 163                 env->QRegs[regnum].ub[MAX_VEC_SIZE_BYTES / 8 - 1]);
 164    for (int i = MAX_VEC_SIZE_BYTES / 8 - 2; i >= 0; i--) {
 165        qemu_fprintf(f, ", 0x%02x", env->QRegs[regnum].ub[i]);
 166    }
 167    qemu_fprintf(f, " )\n");
 168}
 169
 170void hexagon_debug_qreg(CPUHexagonState *env, int regnum)
 171{
 172    print_qreg(stdout, env, regnum, false);
 173}
 174
 175static void hexagon_dump(CPUHexagonState *env, FILE *f, int flags)
 176{
 177    HexagonCPU *cpu = env_archcpu(env);
 178
 179    if (cpu->lldb_compat) {
 180        /*
 181         * When comparing with LLDB, it doesn't step through single-cycle
 182         * hardware loops the same way.  So, we just skip them here
 183         */
 184        if (env->gpr[HEX_REG_PC] == env->last_pc_dumped) {
 185            return;
 186        }
 187        env->last_pc_dumped = env->gpr[HEX_REG_PC];
 188    }
 189
 190    qemu_fprintf(f, "General Purpose Registers = {\n");
 191    for (int i = 0; i < 32; i++) {
 192        print_reg(f, env, i);
 193    }
 194    print_reg(f, env, HEX_REG_SA0);
 195    print_reg(f, env, HEX_REG_LC0);
 196    print_reg(f, env, HEX_REG_SA1);
 197    print_reg(f, env, HEX_REG_LC1);
 198    print_reg(f, env, HEX_REG_M0);
 199    print_reg(f, env, HEX_REG_M1);
 200    print_reg(f, env, HEX_REG_USR);
 201    print_reg(f, env, HEX_REG_P3_0);
 202    print_reg(f, env, HEX_REG_GP);
 203    print_reg(f, env, HEX_REG_UGP);
 204    print_reg(f, env, HEX_REG_PC);
 205#ifdef CONFIG_USER_ONLY
 206    /*
 207     * Not modelled in user mode, print junk to minimize the diff's
 208     * with LLDB output
 209     */
 210    qemu_fprintf(f, "  cause = 0x000000db\n");
 211    qemu_fprintf(f, "  badva = 0x00000000\n");
 212    qemu_fprintf(f, "  cs0 = 0x00000000\n");
 213    qemu_fprintf(f, "  cs1 = 0x00000000\n");
 214#else
 215    print_reg(f, env, HEX_REG_CAUSE);
 216    print_reg(f, env, HEX_REG_BADVA);
 217    print_reg(f, env, HEX_REG_CS0);
 218    print_reg(f, env, HEX_REG_CS1);
 219#endif
 220    qemu_fprintf(f, "}\n");
 221
 222    if (flags & CPU_DUMP_FPU) {
 223        qemu_fprintf(f, "Vector Registers = {\n");
 224        for (int i = 0; i < NUM_VREGS; i++) {
 225            print_vreg(f, env, i, true);
 226        }
 227        for (int i = 0; i < NUM_QREGS; i++) {
 228            print_qreg(f, env, i, true);
 229        }
 230        qemu_fprintf(f, "}\n");
 231    }
 232}
 233
 234static void hexagon_dump_state(CPUState *cs, FILE *f, int flags)
 235{
 236    HexagonCPU *cpu = HEXAGON_CPU(cs);
 237    CPUHexagonState *env = &cpu->env;
 238
 239    hexagon_dump(env, f, flags);
 240}
 241
 242void hexagon_debug(CPUHexagonState *env)
 243{
 244    hexagon_dump(env, stdout, CPU_DUMP_FPU);
 245}
 246
 247static void hexagon_cpu_set_pc(CPUState *cs, vaddr value)
 248{
 249    HexagonCPU *cpu = HEXAGON_CPU(cs);
 250    CPUHexagonState *env = &cpu->env;
 251    env->gpr[HEX_REG_PC] = value;
 252}
 253
 254static void hexagon_cpu_synchronize_from_tb(CPUState *cs,
 255                                            const TranslationBlock *tb)
 256{
 257    HexagonCPU *cpu = HEXAGON_CPU(cs);
 258    CPUHexagonState *env = &cpu->env;
 259    env->gpr[HEX_REG_PC] = tb->pc;
 260}
 261
 262static bool hexagon_cpu_has_work(CPUState *cs)
 263{
 264    return true;
 265}
 266
 267void restore_state_to_opc(CPUHexagonState *env, TranslationBlock *tb,
 268                          target_ulong *data)
 269{
 270    env->gpr[HEX_REG_PC] = data[0];
 271}
 272
 273static void hexagon_cpu_reset(DeviceState *dev)
 274{
 275    CPUState *cs = CPU(dev);
 276    HexagonCPU *cpu = HEXAGON_CPU(cs);
 277    HexagonCPUClass *mcc = HEXAGON_CPU_GET_CLASS(cpu);
 278    CPUHexagonState *env = &cpu->env;
 279
 280    mcc->parent_reset(dev);
 281
 282    set_default_nan_mode(1, &env->fp_status);
 283    set_float_detect_tininess(float_tininess_before_rounding, &env->fp_status);
 284}
 285
 286static void hexagon_cpu_disas_set_info(CPUState *s, disassemble_info *info)
 287{
 288    info->print_insn = print_insn_hexagon;
 289}
 290
 291static void hexagon_cpu_realize(DeviceState *dev, Error **errp)
 292{
 293    CPUState *cs = CPU(dev);
 294    HexagonCPUClass *mcc = HEXAGON_CPU_GET_CLASS(dev);
 295    Error *local_err = NULL;
 296
 297    cpu_exec_realizefn(cs, &local_err);
 298    if (local_err != NULL) {
 299        error_propagate(errp, local_err);
 300        return;
 301    }
 302
 303    qemu_init_vcpu(cs);
 304    cpu_reset(cs);
 305
 306    mcc->parent_realize(dev, errp);
 307}
 308
 309static void hexagon_cpu_init(Object *obj)
 310{
 311    HexagonCPU *cpu = HEXAGON_CPU(obj);
 312
 313    cpu_set_cpustate_pointers(cpu);
 314    qdev_property_add_static(DEVICE(obj), &hexagon_lldb_compat_property);
 315    qdev_property_add_static(DEVICE(obj), &hexagon_lldb_stack_adjust_property);
 316}
 317
 318#include "hw/core/tcg-cpu-ops.h"
 319
 320static const struct TCGCPUOps hexagon_tcg_ops = {
 321    .initialize = hexagon_translate_init,
 322    .synchronize_from_tb = hexagon_cpu_synchronize_from_tb,
 323};
 324
 325static void hexagon_cpu_class_init(ObjectClass *c, void *data)
 326{
 327    HexagonCPUClass *mcc = HEXAGON_CPU_CLASS(c);
 328    CPUClass *cc = CPU_CLASS(c);
 329    DeviceClass *dc = DEVICE_CLASS(c);
 330
 331    device_class_set_parent_realize(dc, hexagon_cpu_realize,
 332                                    &mcc->parent_realize);
 333
 334    device_class_set_parent_reset(dc, hexagon_cpu_reset, &mcc->parent_reset);
 335
 336    cc->class_by_name = hexagon_cpu_class_by_name;
 337    cc->has_work = hexagon_cpu_has_work;
 338    cc->dump_state = hexagon_dump_state;
 339    cc->set_pc = hexagon_cpu_set_pc;
 340    cc->gdb_read_register = hexagon_gdb_read_register;
 341    cc->gdb_write_register = hexagon_gdb_write_register;
 342    cc->gdb_num_core_regs = TOTAL_PER_THREAD_REGS + NUM_VREGS + NUM_QREGS;
 343    cc->gdb_stop_before_watchpoint = true;
 344    cc->disas_set_info = hexagon_cpu_disas_set_info;
 345    cc->tcg_ops = &hexagon_tcg_ops;
 346}
 347
 348#define DEFINE_CPU(type_name, initfn)      \
 349    {                                      \
 350        .name = type_name,                 \
 351        .parent = TYPE_HEXAGON_CPU,        \
 352        .instance_init = initfn            \
 353    }
 354
 355static const TypeInfo hexagon_cpu_type_infos[] = {
 356    {
 357        .name = TYPE_HEXAGON_CPU,
 358        .parent = TYPE_CPU,
 359        .instance_size = sizeof(HexagonCPU),
 360        .instance_init = hexagon_cpu_init,
 361        .abstract = true,
 362        .class_size = sizeof(HexagonCPUClass),
 363        .class_init = hexagon_cpu_class_init,
 364    },
 365    DEFINE_CPU(TYPE_HEXAGON_CPU_V67,              hexagon_v67_cpu_init),
 366};
 367
 368DEFINE_TYPES(hexagon_cpu_type_infos)
 369