1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19#include "qemu/osdep.h"
20
21#include "cpu.h"
22#include "qemu-common.h"
23#include "x86_decode.h"
24#include "x86_emu.h"
25#include "vmcs.h"
26#include "vmx.h"
27#include "x86_mmu.h"
28#include "x86_descr.h"
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50bool x86_read_segment_descriptor(struct CPUState *cpu,
51 struct x86_segment_descriptor *desc,
52 x68_segment_selector sel)
53{
54 target_ulong base;
55 uint32_t limit;
56
57 memset(desc, 0, sizeof(*desc));
58
59
60 if (!sel.index && GDT_SEL == sel.ti) {
61 return false;
62 }
63
64 if (GDT_SEL == sel.ti) {
65 base = rvmcs(cpu->hvf->fd, VMCS_GUEST_GDTR_BASE);
66 limit = rvmcs(cpu->hvf->fd, VMCS_GUEST_GDTR_LIMIT);
67 } else {
68 base = rvmcs(cpu->hvf->fd, VMCS_GUEST_LDTR_BASE);
69 limit = rvmcs(cpu->hvf->fd, VMCS_GUEST_LDTR_LIMIT);
70 }
71
72 if (sel.index * 8 >= limit) {
73 return false;
74 }
75
76 vmx_read_mem(cpu, desc, base + sel.index * 8, sizeof(*desc));
77 return true;
78}
79
80bool x86_write_segment_descriptor(struct CPUState *cpu,
81 struct x86_segment_descriptor *desc,
82 x68_segment_selector sel)
83{
84 target_ulong base;
85 uint32_t limit;
86
87 if (GDT_SEL == sel.ti) {
88 base = rvmcs(cpu->hvf->fd, VMCS_GUEST_GDTR_BASE);
89 limit = rvmcs(cpu->hvf->fd, VMCS_GUEST_GDTR_LIMIT);
90 } else {
91 base = rvmcs(cpu->hvf->fd, VMCS_GUEST_LDTR_BASE);
92 limit = rvmcs(cpu->hvf->fd, VMCS_GUEST_LDTR_LIMIT);
93 }
94
95 if (sel.index * 8 >= limit) {
96 printf("%s: gdt limit\n", __func__);
97 return false;
98 }
99 vmx_write_mem(cpu, base + sel.index * 8, desc, sizeof(*desc));
100 return true;
101}
102
103bool x86_read_call_gate(struct CPUState *cpu, struct x86_call_gate *idt_desc,
104 int gate)
105{
106 target_ulong base = rvmcs(cpu->hvf->fd, VMCS_GUEST_IDTR_BASE);
107 uint32_t limit = rvmcs(cpu->hvf->fd, VMCS_GUEST_IDTR_LIMIT);
108
109 memset(idt_desc, 0, sizeof(*idt_desc));
110 if (gate * 8 >= limit) {
111 printf("%s: idt limit\n", __func__);
112 return false;
113 }
114
115 vmx_read_mem(cpu, idt_desc, base + gate * 8, sizeof(*idt_desc));
116 return true;
117}
118
119bool x86_is_protected(struct CPUState *cpu)
120{
121 uint64_t cr0 = rvmcs(cpu->hvf->fd, VMCS_GUEST_CR0);
122 return cr0 & CR0_PE;
123}
124
125bool x86_is_real(struct CPUState *cpu)
126{
127 return !x86_is_protected(cpu);
128}
129
130bool x86_is_v8086(struct CPUState *cpu)
131{
132 X86CPU *x86_cpu = X86_CPU(cpu);
133 CPUX86State *env = &x86_cpu->env;
134 return x86_is_protected(cpu) && (env->eflags & VM_MASK);
135}
136
137bool x86_is_long_mode(struct CPUState *cpu)
138{
139 return rvmcs(cpu->hvf->fd, VMCS_GUEST_IA32_EFER) & MSR_EFER_LMA;
140}
141
142bool x86_is_long64_mode(struct CPUState *cpu)
143{
144 struct vmx_segment desc;
145 vmx_read_segment_descriptor(cpu, &desc, R_CS);
146
147 return x86_is_long_mode(cpu) && ((desc.ar >> 13) & 1);
148}
149
150bool x86_is_paging_mode(struct CPUState *cpu)
151{
152 uint64_t cr0 = rvmcs(cpu->hvf->fd, VMCS_GUEST_CR0);
153 return cr0 & CR0_PG;
154}
155
156bool x86_is_pae_enabled(struct CPUState *cpu)
157{
158 uint64_t cr4 = rvmcs(cpu->hvf->fd, VMCS_GUEST_CR4);
159 return cr4 & CR4_PAE;
160}
161
162target_ulong linear_addr(struct CPUState *cpu, target_ulong addr, X86Seg seg)
163{
164 return vmx_read_segment_base(cpu, seg) + addr;
165}
166
167target_ulong linear_addr_size(struct CPUState *cpu, target_ulong addr, int size,
168 X86Seg seg)
169{
170 switch (size) {
171 case 2:
172 addr = (uint16_t)addr;
173 break;
174 case 4:
175 addr = (uint32_t)addr;
176 break;
177 default:
178 break;
179 }
180 return linear_addr(cpu, addr, seg);
181}
182
183target_ulong linear_rip(struct CPUState *cpu, target_ulong rip)
184{
185 return linear_addr(cpu, rip, R_CS);
186}
187