qemu/target/mips/internal.h
<<
>>
Prefs
   1/*
   2 * MIPS internal definitions and helpers
   3 *
   4 * This work is licensed under the terms of the GNU GPL, version 2 or later.
   5 * See the COPYING file in the top-level directory.
   6 */
   7
   8#ifndef MIPS_INTERNAL_H
   9#define MIPS_INTERNAL_H
  10
  11#include "exec/memattrs.h"
  12#ifdef CONFIG_TCG
  13#include "tcg/tcg-internal.h"
  14#endif
  15
  16/*
  17 * MMU types, the first four entries have the same layout as the
  18 * CP0C0_MT field.
  19 */
  20enum mips_mmu_types {
  21    MMU_TYPE_NONE       = 0,
  22    MMU_TYPE_R4000      = 1,    /* Standard TLB */
  23    MMU_TYPE_BAT        = 2,    /* Block Address Translation */
  24    MMU_TYPE_FMT        = 3,    /* Fixed Mapping */
  25    MMU_TYPE_DVF        = 4,    /* Dual VTLB and FTLB */
  26    MMU_TYPE_R3000,
  27    MMU_TYPE_R6000,
  28    MMU_TYPE_R8000
  29};
  30
  31struct mips_def_t {
  32    const char *name;
  33    int32_t CP0_PRid;
  34    int32_t CP0_Config0;
  35    int32_t CP0_Config1;
  36    int32_t CP0_Config2;
  37    int32_t CP0_Config3;
  38    int32_t CP0_Config4;
  39    int32_t CP0_Config4_rw_bitmask;
  40    int32_t CP0_Config5;
  41    int32_t CP0_Config5_rw_bitmask;
  42    int32_t CP0_Config6;
  43    int32_t CP0_Config6_rw_bitmask;
  44    int32_t CP0_Config7;
  45    int32_t CP0_Config7_rw_bitmask;
  46    target_ulong CP0_LLAddr_rw_bitmask;
  47    int CP0_LLAddr_shift;
  48    int32_t SYNCI_Step;
  49    int32_t CCRes;
  50    int32_t CP0_Status_rw_bitmask;
  51    int32_t CP0_TCStatus_rw_bitmask;
  52    int32_t CP0_SRSCtl;
  53    int32_t CP1_fcr0;
  54    int32_t CP1_fcr31_rw_bitmask;
  55    int32_t CP1_fcr31;
  56    int32_t MSAIR;
  57    int32_t SEGBITS;
  58    int32_t PABITS;
  59    int32_t CP0_SRSConf0_rw_bitmask;
  60    int32_t CP0_SRSConf0;
  61    int32_t CP0_SRSConf1_rw_bitmask;
  62    int32_t CP0_SRSConf1;
  63    int32_t CP0_SRSConf2_rw_bitmask;
  64    int32_t CP0_SRSConf2;
  65    int32_t CP0_SRSConf3_rw_bitmask;
  66    int32_t CP0_SRSConf3;
  67    int32_t CP0_SRSConf4_rw_bitmask;
  68    int32_t CP0_SRSConf4;
  69    int32_t CP0_PageGrain_rw_bitmask;
  70    int32_t CP0_PageGrain;
  71    target_ulong CP0_EBaseWG_rw_bitmask;
  72    uint64_t insn_flags;
  73    enum mips_mmu_types mmu_type;
  74    int32_t SAARP;
  75};
  76
  77extern const char regnames[32][3];
  78extern const char fregnames[32][4];
  79
  80extern const struct mips_def_t mips_defs[];
  81extern const int mips_defs_number;
  82
  83int mips_cpu_gdb_read_register(CPUState *cpu, GByteArray *buf, int reg);
  84int mips_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
  85
  86#define USEG_LIMIT      ((target_ulong)(int32_t)0x7FFFFFFFUL)
  87#define KSEG0_BASE      ((target_ulong)(int32_t)0x80000000UL)
  88#define KSEG1_BASE      ((target_ulong)(int32_t)0xA0000000UL)
  89#define KSEG2_BASE      ((target_ulong)(int32_t)0xC0000000UL)
  90#define KSEG3_BASE      ((target_ulong)(int32_t)0xE0000000UL)
  91
  92#define KVM_KSEG0_BASE  ((target_ulong)(int32_t)0x40000000UL)
  93#define KVM_KSEG2_BASE  ((target_ulong)(int32_t)0x60000000UL)
  94
  95#if !defined(CONFIG_USER_ONLY)
  96
  97enum {
  98    TLBRET_XI = -6,
  99    TLBRET_RI = -5,
 100    TLBRET_DIRTY = -4,
 101    TLBRET_INVALID = -3,
 102    TLBRET_NOMATCH = -2,
 103    TLBRET_BADADDR = -1,
 104    TLBRET_MATCH = 0
 105};
 106
 107int get_physical_address(CPUMIPSState *env, hwaddr *physical,
 108                         int *prot, target_ulong real_address,
 109                         MMUAccessType access_type, int mmu_idx);
 110hwaddr mips_cpu_get_phys_page_debug(CPUState *cpu, vaddr addr);
 111
 112typedef struct r4k_tlb_t r4k_tlb_t;
 113struct r4k_tlb_t {
 114    target_ulong VPN;
 115    uint32_t PageMask;
 116    uint16_t ASID;
 117    uint32_t MMID;
 118    unsigned int G:1;
 119    unsigned int C0:3;
 120    unsigned int C1:3;
 121    unsigned int V0:1;
 122    unsigned int V1:1;
 123    unsigned int D0:1;
 124    unsigned int D1:1;
 125    unsigned int XI0:1;
 126    unsigned int XI1:1;
 127    unsigned int RI0:1;
 128    unsigned int RI1:1;
 129    unsigned int EHINV:1;
 130    uint64_t PFN[2];
 131};
 132
 133struct CPUMIPSTLBContext {
 134    uint32_t nb_tlb;
 135    uint32_t tlb_in_use;
 136    int (*map_address)(struct CPUMIPSState *env, hwaddr *physical, int *prot,
 137                       target_ulong address, MMUAccessType access_type);
 138    void (*helper_tlbwi)(struct CPUMIPSState *env);
 139    void (*helper_tlbwr)(struct CPUMIPSState *env);
 140    void (*helper_tlbp)(struct CPUMIPSState *env);
 141    void (*helper_tlbr)(struct CPUMIPSState *env);
 142    void (*helper_tlbinv)(struct CPUMIPSState *env);
 143    void (*helper_tlbinvf)(struct CPUMIPSState *env);
 144    union {
 145        struct {
 146            r4k_tlb_t tlb[MIPS_TLB_MAX];
 147        } r4k;
 148    } mmu;
 149};
 150
 151void sync_c0_status(CPUMIPSState *env, CPUMIPSState *cpu, int tc);
 152void cpu_mips_store_status(CPUMIPSState *env, target_ulong val);
 153void cpu_mips_store_cause(CPUMIPSState *env, target_ulong val);
 154
 155extern const VMStateDescription vmstate_mips_cpu;
 156
 157#endif /* !CONFIG_USER_ONLY */
 158
 159static inline bool cpu_mips_hw_interrupts_enabled(CPUMIPSState *env)
 160{
 161    return (env->CP0_Status & (1 << CP0St_IE)) &&
 162        !(env->CP0_Status & (1 << CP0St_EXL)) &&
 163        !(env->CP0_Status & (1 << CP0St_ERL)) &&
 164        !(env->hflags & MIPS_HFLAG_DM) &&
 165        /*
 166         * Note that the TCStatus IXMT field is initialized to zero,
 167         * and only MT capable cores can set it to one. So we don't
 168         * need to check for MT capabilities here.
 169         */
 170        !(env->active_tc.CP0_TCStatus & (1 << CP0TCSt_IXMT));
 171}
 172
 173/* Check if there is pending and not masked out interrupt */
 174static inline bool cpu_mips_hw_interrupts_pending(CPUMIPSState *env)
 175{
 176    int32_t pending;
 177    int32_t status;
 178    bool r;
 179
 180    pending = env->CP0_Cause & CP0Ca_IP_mask;
 181    status = env->CP0_Status & CP0Ca_IP_mask;
 182
 183    if (env->CP0_Config3 & (1 << CP0C3_VEIC)) {
 184        /*
 185         * A MIPS configured with a vectorizing external interrupt controller
 186         * will feed a vector into the Cause pending lines. The core treats
 187         * the status lines as a vector level, not as individual masks.
 188         */
 189        r = pending > status;
 190    } else {
 191        /*
 192         * A MIPS configured with compatibility or VInt (Vectored Interrupts)
 193         * treats the pending lines as individual interrupt lines, the status
 194         * lines are individual masks.
 195         */
 196        r = (pending & status) != 0;
 197    }
 198    return r;
 199}
 200
 201void msa_reset(CPUMIPSState *env);
 202
 203/* cp0_timer.c */
 204uint32_t cpu_mips_get_count(CPUMIPSState *env);
 205void cpu_mips_store_count(CPUMIPSState *env, uint32_t value);
 206void cpu_mips_store_compare(CPUMIPSState *env, uint32_t value);
 207void cpu_mips_start_count(CPUMIPSState *env);
 208void cpu_mips_stop_count(CPUMIPSState *env);
 209
 210static inline void mips_env_set_pc(CPUMIPSState *env, target_ulong value)
 211{
 212    env->active_tc.PC = value & ~(target_ulong)1;
 213    if (value & 1) {
 214        env->hflags |= MIPS_HFLAG_M16;
 215    } else {
 216        env->hflags &= ~(MIPS_HFLAG_M16);
 217    }
 218}
 219
 220static inline void restore_pamask(CPUMIPSState *env)
 221{
 222    if (env->hflags & MIPS_HFLAG_ELPA) {
 223        env->PAMask = (1ULL << env->PABITS) - 1;
 224    } else {
 225        env->PAMask = PAMASK_BASE;
 226    }
 227}
 228
 229static inline int mips_vpe_active(CPUMIPSState *env)
 230{
 231    int active = 1;
 232
 233    /* Check that the VPE is enabled.  */
 234    if (!(env->mvp->CP0_MVPControl & (1 << CP0MVPCo_EVP))) {
 235        active = 0;
 236    }
 237    /* Check that the VPE is activated.  */
 238    if (!(env->CP0_VPEConf0 & (1 << CP0VPEC0_VPA))) {
 239        active = 0;
 240    }
 241
 242    /*
 243     * Now verify that there are active thread contexts in the VPE.
 244     *
 245     * This assumes the CPU model will internally reschedule threads
 246     * if the active one goes to sleep. If there are no threads available
 247     * the active one will be in a sleeping state, and we can turn off
 248     * the entire VPE.
 249     */
 250    if (!(env->active_tc.CP0_TCStatus & (1 << CP0TCSt_A))) {
 251        /* TC is not activated.  */
 252        active = 0;
 253    }
 254    if (env->active_tc.CP0_TCHalt & 1) {
 255        /* TC is in halt state.  */
 256        active = 0;
 257    }
 258
 259    return active;
 260}
 261
 262static inline int mips_vp_active(CPUMIPSState *env)
 263{
 264    CPUState *other_cs = first_cpu;
 265
 266    /* Check if the VP disabled other VPs (which means the VP is enabled) */
 267    if ((env->CP0_VPControl >> CP0VPCtl_DIS) & 1) {
 268        return 1;
 269    }
 270
 271    /* Check if the virtual processor is disabled due to a DVP */
 272    CPU_FOREACH(other_cs) {
 273        MIPSCPU *other_cpu = MIPS_CPU(other_cs);
 274        if ((&other_cpu->env != env) &&
 275            ((other_cpu->env.CP0_VPControl >> CP0VPCtl_DIS) & 1)) {
 276            return 0;
 277        }
 278    }
 279    return 1;
 280}
 281
 282static inline void compute_hflags(CPUMIPSState *env)
 283{
 284    env->hflags &= ~(MIPS_HFLAG_COP1X | MIPS_HFLAG_64 | MIPS_HFLAG_CP0 |
 285                     MIPS_HFLAG_F64 | MIPS_HFLAG_FPU | MIPS_HFLAG_KSU |
 286                     MIPS_HFLAG_AWRAP | MIPS_HFLAG_DSP | MIPS_HFLAG_DSP_R2 |
 287                     MIPS_HFLAG_DSP_R3 | MIPS_HFLAG_SBRI | MIPS_HFLAG_MSA |
 288                     MIPS_HFLAG_FRE | MIPS_HFLAG_ELPA | MIPS_HFLAG_ERL);
 289    if (env->CP0_Status & (1 << CP0St_ERL)) {
 290        env->hflags |= MIPS_HFLAG_ERL;
 291    }
 292    if (!(env->CP0_Status & (1 << CP0St_EXL)) &&
 293        !(env->CP0_Status & (1 << CP0St_ERL)) &&
 294        !(env->hflags & MIPS_HFLAG_DM)) {
 295        env->hflags |= (env->CP0_Status >> CP0St_KSU) &
 296                       MIPS_HFLAG_KSU;
 297    }
 298#if defined(TARGET_MIPS64)
 299    if ((env->insn_flags & ISA_MIPS3) &&
 300        (((env->hflags & MIPS_HFLAG_KSU) != MIPS_HFLAG_UM) ||
 301         (env->CP0_Status & (1 << CP0St_PX)) ||
 302         (env->CP0_Status & (1 << CP0St_UX)))) {
 303        env->hflags |= MIPS_HFLAG_64;
 304    }
 305
 306    if (!(env->insn_flags & ISA_MIPS3)) {
 307        env->hflags |= MIPS_HFLAG_AWRAP;
 308    } else if (((env->hflags & MIPS_HFLAG_KSU) == MIPS_HFLAG_UM) &&
 309               !(env->CP0_Status & (1 << CP0St_UX))) {
 310        env->hflags |= MIPS_HFLAG_AWRAP;
 311    } else if (env->insn_flags & ISA_MIPS_R6) {
 312        /* Address wrapping for Supervisor and Kernel is specified in R6 */
 313        if ((((env->hflags & MIPS_HFLAG_KSU) == MIPS_HFLAG_SM) &&
 314             !(env->CP0_Status & (1 << CP0St_SX))) ||
 315            (((env->hflags & MIPS_HFLAG_KSU) == MIPS_HFLAG_KM) &&
 316             !(env->CP0_Status & (1 << CP0St_KX)))) {
 317            env->hflags |= MIPS_HFLAG_AWRAP;
 318        }
 319    }
 320#endif
 321    if (((env->CP0_Status & (1 << CP0St_CU0)) &&
 322         !(env->insn_flags & ISA_MIPS_R6)) ||
 323        !(env->hflags & MIPS_HFLAG_KSU)) {
 324        env->hflags |= MIPS_HFLAG_CP0;
 325    }
 326    if (env->CP0_Status & (1 << CP0St_CU1)) {
 327        env->hflags |= MIPS_HFLAG_FPU;
 328    }
 329    if (env->CP0_Status & (1 << CP0St_FR)) {
 330        env->hflags |= MIPS_HFLAG_F64;
 331    }
 332    if (((env->hflags & MIPS_HFLAG_KSU) != MIPS_HFLAG_KM) &&
 333        (env->CP0_Config5 & (1 << CP0C5_SBRI))) {
 334        env->hflags |= MIPS_HFLAG_SBRI;
 335    }
 336    if (env->insn_flags & ASE_DSP_R3) {
 337        /*
 338         * Our cpu supports DSP R3 ASE, so enable
 339         * access to DSP R3 resources.
 340         */
 341        if (env->CP0_Status & (1 << CP0St_MX)) {
 342            env->hflags |= MIPS_HFLAG_DSP | MIPS_HFLAG_DSP_R2 |
 343                           MIPS_HFLAG_DSP_R3;
 344        }
 345    } else if (env->insn_flags & ASE_DSP_R2) {
 346        /*
 347         * Our cpu supports DSP R2 ASE, so enable
 348         * access to DSP R2 resources.
 349         */
 350        if (env->CP0_Status & (1 << CP0St_MX)) {
 351            env->hflags |= MIPS_HFLAG_DSP | MIPS_HFLAG_DSP_R2;
 352        }
 353
 354    } else if (env->insn_flags & ASE_DSP) {
 355        /*
 356         * Our cpu supports DSP ASE, so enable
 357         * access to DSP resources.
 358         */
 359        if (env->CP0_Status & (1 << CP0St_MX)) {
 360            env->hflags |= MIPS_HFLAG_DSP;
 361        }
 362
 363    }
 364    if (env->insn_flags & ISA_MIPS_R2) {
 365        if (env->active_fpu.fcr0 & (1 << FCR0_F64)) {
 366            env->hflags |= MIPS_HFLAG_COP1X;
 367        }
 368    } else if (env->insn_flags & ISA_MIPS_R1) {
 369        if (env->hflags & MIPS_HFLAG_64) {
 370            env->hflags |= MIPS_HFLAG_COP1X;
 371        }
 372    } else if (env->insn_flags & ISA_MIPS4) {
 373        /*
 374         * All supported MIPS IV CPUs use the XX (CU3) to enable
 375         * and disable the MIPS IV extensions to the MIPS III ISA.
 376         * Some other MIPS IV CPUs ignore the bit, so the check here
 377         * would be too restrictive for them.
 378         */
 379        if (env->CP0_Status & (1U << CP0St_CU3)) {
 380            env->hflags |= MIPS_HFLAG_COP1X;
 381        }
 382    }
 383    if (ase_msa_available(env)) {
 384        if (env->CP0_Config5 & (1 << CP0C5_MSAEn)) {
 385            env->hflags |= MIPS_HFLAG_MSA;
 386        }
 387    }
 388    if (env->active_fpu.fcr0 & (1 << FCR0_FREP)) {
 389        if (env->CP0_Config5 & (1 << CP0C5_FRE)) {
 390            env->hflags |= MIPS_HFLAG_FRE;
 391        }
 392    }
 393    if (env->CP0_Config3 & (1 << CP0C3_LPA)) {
 394        if (env->CP0_PageGrain & (1 << CP0PG_ELPA)) {
 395            env->hflags |= MIPS_HFLAG_ELPA;
 396        }
 397    }
 398}
 399
 400#endif
 401