qemu/target/ppc/kvm.c
<<
>>
Prefs
   1/*
   2 * PowerPC implementation of KVM hooks
   3 *
   4 * Copyright IBM Corp. 2007
   5 * Copyright (C) 2011 Freescale Semiconductor, Inc.
   6 *
   7 * Authors:
   8 *  Jerone Young <jyoung5@us.ibm.com>
   9 *  Christian Ehrhardt <ehrhardt@linux.vnet.ibm.com>
  10 *  Hollis Blanchard <hollisb@us.ibm.com>
  11 *
  12 * This work is licensed under the terms of the GNU GPL, version 2 or later.
  13 * See the COPYING file in the top-level directory.
  14 *
  15 */
  16
  17#include "qemu/osdep.h"
  18#include <dirent.h>
  19#include <sys/ioctl.h>
  20#include <sys/vfs.h>
  21
  22#include <linux/kvm.h>
  23
  24#include "qemu-common.h"
  25#include "qapi/error.h"
  26#include "qemu/error-report.h"
  27#include "cpu.h"
  28#include "cpu-models.h"
  29#include "qemu/timer.h"
  30#include "sysemu/hw_accel.h"
  31#include "kvm_ppc.h"
  32#include "sysemu/cpus.h"
  33#include "sysemu/device_tree.h"
  34#include "mmu-hash64.h"
  35
  36#include "hw/sysbus.h"
  37#include "hw/ppc/spapr.h"
  38#include "hw/ppc/spapr_cpu_core.h"
  39#include "hw/hw.h"
  40#include "hw/ppc/ppc.h"
  41#include "migration/qemu-file-types.h"
  42#include "sysemu/watchdog.h"
  43#include "trace.h"
  44#include "exec/gdbstub.h"
  45#include "exec/memattrs.h"
  46#include "exec/ram_addr.h"
  47#include "sysemu/hostmem.h"
  48#include "qemu/cutils.h"
  49#include "qemu/main-loop.h"
  50#include "qemu/mmap-alloc.h"
  51#include "elf.h"
  52#include "sysemu/kvm_int.h"
  53
  54#define PROC_DEVTREE_CPU      "/proc/device-tree/cpus/"
  55
  56#define DEBUG_RETURN_GUEST 0
  57#define DEBUG_RETURN_GDB   1
  58
  59const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
  60    KVM_CAP_LAST_INFO
  61};
  62
  63static int cap_interrupt_unset;
  64static int cap_segstate;
  65static int cap_booke_sregs;
  66static int cap_ppc_smt;
  67static int cap_ppc_smt_possible;
  68static int cap_spapr_tce;
  69static int cap_spapr_tce_64;
  70static int cap_spapr_multitce;
  71static int cap_spapr_vfio;
  72static int cap_hior;
  73static int cap_one_reg;
  74static int cap_epr;
  75static int cap_ppc_watchdog;
  76static int cap_papr;
  77static int cap_htab_fd;
  78static int cap_fixup_hcalls;
  79static int cap_htm;             /* Hardware transactional memory support */
  80static int cap_mmu_radix;
  81static int cap_mmu_hash_v3;
  82static int cap_xive;
  83static int cap_resize_hpt;
  84static int cap_ppc_pvr_compat;
  85static int cap_ppc_safe_cache;
  86static int cap_ppc_safe_bounds_check;
  87static int cap_ppc_safe_indirect_branch;
  88static int cap_ppc_count_cache_flush_assist;
  89static int cap_ppc_nested_kvm_hv;
  90static int cap_large_decr;
  91static int cap_fwnmi;
  92static int cap_rpt_invalidate;
  93
  94static uint32_t debug_inst_opcode;
  95
  96/*
  97 * Check whether we are running with KVM-PR (instead of KVM-HV).  This
  98 * should only be used for fallback tests - generally we should use
  99 * explicit capabilities for the features we want, rather than
 100 * assuming what is/isn't available depending on the KVM variant.
 101 */
 102static bool kvmppc_is_pr(KVMState *ks)
 103{
 104    /* Assume KVM-PR if the GET_PVINFO capability is available */
 105    return kvm_vm_check_extension(ks, KVM_CAP_PPC_GET_PVINFO) != 0;
 106}
 107
 108static int kvm_ppc_register_host_cpu_type(void);
 109static void kvmppc_get_cpu_characteristics(KVMState *s);
 110static int kvmppc_get_dec_bits(void);
 111
 112int kvm_arch_init(MachineState *ms, KVMState *s)
 113{
 114    cap_interrupt_unset = kvm_check_extension(s, KVM_CAP_PPC_UNSET_IRQ);
 115    cap_segstate = kvm_check_extension(s, KVM_CAP_PPC_SEGSTATE);
 116    cap_booke_sregs = kvm_check_extension(s, KVM_CAP_PPC_BOOKE_SREGS);
 117    cap_ppc_smt_possible = kvm_vm_check_extension(s, KVM_CAP_PPC_SMT_POSSIBLE);
 118    cap_spapr_tce = kvm_check_extension(s, KVM_CAP_SPAPR_TCE);
 119    cap_spapr_tce_64 = kvm_check_extension(s, KVM_CAP_SPAPR_TCE_64);
 120    cap_spapr_multitce = kvm_check_extension(s, KVM_CAP_SPAPR_MULTITCE);
 121    cap_spapr_vfio = kvm_vm_check_extension(s, KVM_CAP_SPAPR_TCE_VFIO);
 122    cap_one_reg = kvm_check_extension(s, KVM_CAP_ONE_REG);
 123    cap_hior = kvm_check_extension(s, KVM_CAP_PPC_HIOR);
 124    cap_epr = kvm_check_extension(s, KVM_CAP_PPC_EPR);
 125    cap_ppc_watchdog = kvm_check_extension(s, KVM_CAP_PPC_BOOKE_WATCHDOG);
 126    /*
 127     * Note: we don't set cap_papr here, because this capability is
 128     * only activated after this by kvmppc_set_papr()
 129     */
 130    cap_htab_fd = kvm_vm_check_extension(s, KVM_CAP_PPC_HTAB_FD);
 131    cap_fixup_hcalls = kvm_check_extension(s, KVM_CAP_PPC_FIXUP_HCALL);
 132    cap_ppc_smt = kvm_vm_check_extension(s, KVM_CAP_PPC_SMT);
 133    cap_htm = kvm_vm_check_extension(s, KVM_CAP_PPC_HTM);
 134    cap_mmu_radix = kvm_vm_check_extension(s, KVM_CAP_PPC_MMU_RADIX);
 135    cap_mmu_hash_v3 = kvm_vm_check_extension(s, KVM_CAP_PPC_MMU_HASH_V3);
 136    cap_xive = kvm_vm_check_extension(s, KVM_CAP_PPC_IRQ_XIVE);
 137    cap_resize_hpt = kvm_vm_check_extension(s, KVM_CAP_SPAPR_RESIZE_HPT);
 138    kvmppc_get_cpu_characteristics(s);
 139    cap_ppc_nested_kvm_hv = kvm_vm_check_extension(s, KVM_CAP_PPC_NESTED_HV);
 140    cap_large_decr = kvmppc_get_dec_bits();
 141    cap_fwnmi = kvm_vm_check_extension(s, KVM_CAP_PPC_FWNMI);
 142    /*
 143     * Note: setting it to false because there is not such capability
 144     * in KVM at this moment.
 145     *
 146     * TODO: call kvm_vm_check_extension() with the right capability
 147     * after the kernel starts implementing it.
 148     */
 149    cap_ppc_pvr_compat = false;
 150
 151    if (!kvm_check_extension(s, KVM_CAP_PPC_IRQ_LEVEL)) {
 152        error_report("KVM: Host kernel doesn't have level irq capability");
 153        exit(1);
 154    }
 155
 156    cap_rpt_invalidate = kvm_vm_check_extension(s, KVM_CAP_PPC_RPT_INVALIDATE);
 157    kvm_ppc_register_host_cpu_type();
 158
 159    return 0;
 160}
 161
 162int kvm_arch_irqchip_create(KVMState *s)
 163{
 164    return 0;
 165}
 166
 167static int kvm_arch_sync_sregs(PowerPCCPU *cpu)
 168{
 169    CPUPPCState *cenv = &cpu->env;
 170    CPUState *cs = CPU(cpu);
 171    struct kvm_sregs sregs;
 172    int ret;
 173
 174    if (cenv->excp_model == POWERPC_EXCP_BOOKE) {
 175        /*
 176         * What we're really trying to say is "if we're on BookE, we
 177         * use the native PVR for now". This is the only sane way to
 178         * check it though, so we potentially confuse users that they
 179         * can run BookE guests on BookS. Let's hope nobody dares
 180         * enough :)
 181         */
 182        return 0;
 183    } else {
 184        if (!cap_segstate) {
 185            fprintf(stderr, "kvm error: missing PVR setting capability\n");
 186            return -ENOSYS;
 187        }
 188    }
 189
 190    ret = kvm_vcpu_ioctl(cs, KVM_GET_SREGS, &sregs);
 191    if (ret) {
 192        return ret;
 193    }
 194
 195    sregs.pvr = cenv->spr[SPR_PVR];
 196    return kvm_vcpu_ioctl(cs, KVM_SET_SREGS, &sregs);
 197}
 198
 199/* Set up a shared TLB array with KVM */
 200static int kvm_booke206_tlb_init(PowerPCCPU *cpu)
 201{
 202    CPUPPCState *env = &cpu->env;
 203    CPUState *cs = CPU(cpu);
 204    struct kvm_book3e_206_tlb_params params = {};
 205    struct kvm_config_tlb cfg = {};
 206    unsigned int entries = 0;
 207    int ret, i;
 208
 209    if (!kvm_enabled() ||
 210        !kvm_check_extension(cs->kvm_state, KVM_CAP_SW_TLB)) {
 211        return 0;
 212    }
 213
 214    assert(ARRAY_SIZE(params.tlb_sizes) == BOOKE206_MAX_TLBN);
 215
 216    for (i = 0; i < BOOKE206_MAX_TLBN; i++) {
 217        params.tlb_sizes[i] = booke206_tlb_size(env, i);
 218        params.tlb_ways[i] = booke206_tlb_ways(env, i);
 219        entries += params.tlb_sizes[i];
 220    }
 221
 222    assert(entries == env->nb_tlb);
 223    assert(sizeof(struct kvm_book3e_206_tlb_entry) == sizeof(ppcmas_tlb_t));
 224
 225    env->tlb_dirty = true;
 226
 227    cfg.array = (uintptr_t)env->tlb.tlbm;
 228    cfg.array_len = sizeof(ppcmas_tlb_t) * entries;
 229    cfg.params = (uintptr_t)&params;
 230    cfg.mmu_type = KVM_MMU_FSL_BOOKE_NOHV;
 231
 232    ret = kvm_vcpu_enable_cap(cs, KVM_CAP_SW_TLB, 0, (uintptr_t)&cfg);
 233    if (ret < 0) {
 234        fprintf(stderr, "%s: couldn't enable KVM_CAP_SW_TLB: %s\n",
 235                __func__, strerror(-ret));
 236        return ret;
 237    }
 238
 239    env->kvm_sw_tlb = true;
 240    return 0;
 241}
 242
 243
 244#if defined(TARGET_PPC64)
 245static void kvm_get_smmu_info(struct kvm_ppc_smmu_info *info, Error **errp)
 246{
 247    int ret;
 248
 249    assert(kvm_state != NULL);
 250
 251    if (!kvm_check_extension(kvm_state, KVM_CAP_PPC_GET_SMMU_INFO)) {
 252        error_setg(errp, "KVM doesn't expose the MMU features it supports");
 253        error_append_hint(errp, "Consider switching to a newer KVM\n");
 254        return;
 255    }
 256
 257    ret = kvm_vm_ioctl(kvm_state, KVM_PPC_GET_SMMU_INFO, info);
 258    if (ret == 0) {
 259        return;
 260    }
 261
 262    error_setg_errno(errp, -ret,
 263                     "KVM failed to provide the MMU features it supports");
 264}
 265
 266struct ppc_radix_page_info *kvm_get_radix_page_info(void)
 267{
 268    KVMState *s = KVM_STATE(current_accel());
 269    struct ppc_radix_page_info *radix_page_info;
 270    struct kvm_ppc_rmmu_info rmmu_info;
 271    int i;
 272
 273    if (!kvm_check_extension(s, KVM_CAP_PPC_MMU_RADIX)) {
 274        return NULL;
 275    }
 276    if (kvm_vm_ioctl(s, KVM_PPC_GET_RMMU_INFO, &rmmu_info)) {
 277        return NULL;
 278    }
 279    radix_page_info = g_malloc0(sizeof(*radix_page_info));
 280    radix_page_info->count = 0;
 281    for (i = 0; i < PPC_PAGE_SIZES_MAX_SZ; i++) {
 282        if (rmmu_info.ap_encodings[i]) {
 283            radix_page_info->entries[i] = rmmu_info.ap_encodings[i];
 284            radix_page_info->count++;
 285        }
 286    }
 287    return radix_page_info;
 288}
 289
 290target_ulong kvmppc_configure_v3_mmu(PowerPCCPU *cpu,
 291                                     bool radix, bool gtse,
 292                                     uint64_t proc_tbl)
 293{
 294    CPUState *cs = CPU(cpu);
 295    int ret;
 296    uint64_t flags = 0;
 297    struct kvm_ppc_mmuv3_cfg cfg = {
 298        .process_table = proc_tbl,
 299    };
 300
 301    if (radix) {
 302        flags |= KVM_PPC_MMUV3_RADIX;
 303    }
 304    if (gtse) {
 305        flags |= KVM_PPC_MMUV3_GTSE;
 306    }
 307    cfg.flags = flags;
 308    ret = kvm_vm_ioctl(cs->kvm_state, KVM_PPC_CONFIGURE_V3_MMU, &cfg);
 309    switch (ret) {
 310    case 0:
 311        return H_SUCCESS;
 312    case -EINVAL:
 313        return H_PARAMETER;
 314    case -ENODEV:
 315        return H_NOT_AVAILABLE;
 316    default:
 317        return H_HARDWARE;
 318    }
 319}
 320
 321bool kvmppc_hpt_needs_host_contiguous_pages(void)
 322{
 323    static struct kvm_ppc_smmu_info smmu_info;
 324
 325    if (!kvm_enabled()) {
 326        return false;
 327    }
 328
 329    kvm_get_smmu_info(&smmu_info, &error_fatal);
 330    return !!(smmu_info.flags & KVM_PPC_PAGE_SIZES_REAL);
 331}
 332
 333void kvm_check_mmu(PowerPCCPU *cpu, Error **errp)
 334{
 335    struct kvm_ppc_smmu_info smmu_info;
 336    int iq, ik, jq, jk;
 337    Error *local_err = NULL;
 338
 339    /* For now, we only have anything to check on hash64 MMUs */
 340    if (!cpu->hash64_opts || !kvm_enabled()) {
 341        return;
 342    }
 343
 344    kvm_get_smmu_info(&smmu_info, &local_err);
 345    if (local_err) {
 346        error_propagate(errp, local_err);
 347        return;
 348    }
 349
 350    if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)
 351        && !(smmu_info.flags & KVM_PPC_1T_SEGMENTS)) {
 352        error_setg(errp,
 353                   "KVM does not support 1TiB segments which guest expects");
 354        return;
 355    }
 356
 357    if (smmu_info.slb_size < cpu->hash64_opts->slb_size) {
 358        error_setg(errp, "KVM only supports %u SLB entries, but guest needs %u",
 359                   smmu_info.slb_size, cpu->hash64_opts->slb_size);
 360        return;
 361    }
 362
 363    /*
 364     * Verify that every pagesize supported by the cpu model is
 365     * supported by KVM with the same encodings
 366     */
 367    for (iq = 0; iq < ARRAY_SIZE(cpu->hash64_opts->sps); iq++) {
 368        PPCHash64SegmentPageSizes *qsps = &cpu->hash64_opts->sps[iq];
 369        struct kvm_ppc_one_seg_page_size *ksps;
 370
 371        for (ik = 0; ik < ARRAY_SIZE(smmu_info.sps); ik++) {
 372            if (qsps->page_shift == smmu_info.sps[ik].page_shift) {
 373                break;
 374            }
 375        }
 376        if (ik >= ARRAY_SIZE(smmu_info.sps)) {
 377            error_setg(errp, "KVM doesn't support for base page shift %u",
 378                       qsps->page_shift);
 379            return;
 380        }
 381
 382        ksps = &smmu_info.sps[ik];
 383        if (ksps->slb_enc != qsps->slb_enc) {
 384            error_setg(errp,
 385"KVM uses SLB encoding 0x%x for page shift %u, but guest expects 0x%x",
 386                       ksps->slb_enc, ksps->page_shift, qsps->slb_enc);
 387            return;
 388        }
 389
 390        for (jq = 0; jq < ARRAY_SIZE(qsps->enc); jq++) {
 391            for (jk = 0; jk < ARRAY_SIZE(ksps->enc); jk++) {
 392                if (qsps->enc[jq].page_shift == ksps->enc[jk].page_shift) {
 393                    break;
 394                }
 395            }
 396
 397            if (jk >= ARRAY_SIZE(ksps->enc)) {
 398                error_setg(errp, "KVM doesn't support page shift %u/%u",
 399                           qsps->enc[jq].page_shift, qsps->page_shift);
 400                return;
 401            }
 402            if (qsps->enc[jq].pte_enc != ksps->enc[jk].pte_enc) {
 403                error_setg(errp,
 404"KVM uses PTE encoding 0x%x for page shift %u/%u, but guest expects 0x%x",
 405                           ksps->enc[jk].pte_enc, qsps->enc[jq].page_shift,
 406                           qsps->page_shift, qsps->enc[jq].pte_enc);
 407                return;
 408            }
 409        }
 410    }
 411
 412    if (ppc_hash64_has(cpu, PPC_HASH64_CI_LARGEPAGE)) {
 413        /*
 414         * Mostly what guest pagesizes we can use are related to the
 415         * host pages used to map guest RAM, which is handled in the
 416         * platform code. Cache-Inhibited largepages (64k) however are
 417         * used for I/O, so if they're mapped to the host at all it
 418         * will be a normal mapping, not a special hugepage one used
 419         * for RAM.
 420         */
 421        if (qemu_real_host_page_size < 0x10000) {
 422            error_setg(errp,
 423                       "KVM can't supply 64kiB CI pages, which guest expects");
 424        }
 425    }
 426}
 427#endif /* !defined (TARGET_PPC64) */
 428
 429unsigned long kvm_arch_vcpu_id(CPUState *cpu)
 430{
 431    return POWERPC_CPU(cpu)->vcpu_id;
 432}
 433
 434/*
 435 * e500 supports 2 h/w breakpoint and 2 watchpoint.  book3s supports
 436 * only 1 watchpoint, so array size of 4 is sufficient for now.
 437 */
 438#define MAX_HW_BKPTS 4
 439
 440static struct HWBreakpoint {
 441    target_ulong addr;
 442    int type;
 443} hw_debug_points[MAX_HW_BKPTS];
 444
 445static CPUWatchpoint hw_watchpoint;
 446
 447/* Default there is no breakpoint and watchpoint supported */
 448static int max_hw_breakpoint;
 449static int max_hw_watchpoint;
 450static int nb_hw_breakpoint;
 451static int nb_hw_watchpoint;
 452
 453static void kvmppc_hw_debug_points_init(CPUPPCState *cenv)
 454{
 455    if (cenv->excp_model == POWERPC_EXCP_BOOKE) {
 456        max_hw_breakpoint = 2;
 457        max_hw_watchpoint = 2;
 458    }
 459
 460    if ((max_hw_breakpoint + max_hw_watchpoint) > MAX_HW_BKPTS) {
 461        fprintf(stderr, "Error initializing h/w breakpoints\n");
 462        return;
 463    }
 464}
 465
 466int kvm_arch_init_vcpu(CPUState *cs)
 467{
 468    PowerPCCPU *cpu = POWERPC_CPU(cs);
 469    CPUPPCState *cenv = &cpu->env;
 470    int ret;
 471
 472    /* Synchronize sregs with kvm */
 473    ret = kvm_arch_sync_sregs(cpu);
 474    if (ret) {
 475        if (ret == -EINVAL) {
 476            error_report("Register sync failed... If you're using kvm-hv.ko,"
 477                         " only \"-cpu host\" is possible");
 478        }
 479        return ret;
 480    }
 481
 482    switch (cenv->mmu_model) {
 483    case POWERPC_MMU_BOOKE206:
 484        /* This target supports access to KVM's guest TLB */
 485        ret = kvm_booke206_tlb_init(cpu);
 486        break;
 487    case POWERPC_MMU_2_07:
 488        if (!cap_htm && !kvmppc_is_pr(cs->kvm_state)) {
 489            /*
 490             * KVM-HV has transactional memory on POWER8 also without
 491             * the KVM_CAP_PPC_HTM extension, so enable it here
 492             * instead as long as it's available to userspace on the
 493             * host.
 494             */
 495            if (qemu_getauxval(AT_HWCAP2) & PPC_FEATURE2_HAS_HTM) {
 496                cap_htm = true;
 497            }
 498        }
 499        break;
 500    default:
 501        break;
 502    }
 503
 504    kvm_get_one_reg(cs, KVM_REG_PPC_DEBUG_INST, &debug_inst_opcode);
 505    kvmppc_hw_debug_points_init(cenv);
 506
 507    return ret;
 508}
 509
 510int kvm_arch_destroy_vcpu(CPUState *cs)
 511{
 512    return 0;
 513}
 514
 515static void kvm_sw_tlb_put(PowerPCCPU *cpu)
 516{
 517    CPUPPCState *env = &cpu->env;
 518    CPUState *cs = CPU(cpu);
 519    struct kvm_dirty_tlb dirty_tlb;
 520    unsigned char *bitmap;
 521    int ret;
 522
 523    if (!env->kvm_sw_tlb) {
 524        return;
 525    }
 526
 527    bitmap = g_malloc((env->nb_tlb + 7) / 8);
 528    memset(bitmap, 0xFF, (env->nb_tlb + 7) / 8);
 529
 530    dirty_tlb.bitmap = (uintptr_t)bitmap;
 531    dirty_tlb.num_dirty = env->nb_tlb;
 532
 533    ret = kvm_vcpu_ioctl(cs, KVM_DIRTY_TLB, &dirty_tlb);
 534    if (ret) {
 535        fprintf(stderr, "%s: KVM_DIRTY_TLB: %s\n",
 536                __func__, strerror(-ret));
 537    }
 538
 539    g_free(bitmap);
 540}
 541
 542static void kvm_get_one_spr(CPUState *cs, uint64_t id, int spr)
 543{
 544    PowerPCCPU *cpu = POWERPC_CPU(cs);
 545    CPUPPCState *env = &cpu->env;
 546    union {
 547        uint32_t u32;
 548        uint64_t u64;
 549    } val;
 550    struct kvm_one_reg reg = {
 551        .id = id,
 552        .addr = (uintptr_t) &val,
 553    };
 554    int ret;
 555
 556    ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
 557    if (ret != 0) {
 558        trace_kvm_failed_spr_get(spr, strerror(errno));
 559    } else {
 560        switch (id & KVM_REG_SIZE_MASK) {
 561        case KVM_REG_SIZE_U32:
 562            env->spr[spr] = val.u32;
 563            break;
 564
 565        case KVM_REG_SIZE_U64:
 566            env->spr[spr] = val.u64;
 567            break;
 568
 569        default:
 570            /* Don't handle this size yet */
 571            abort();
 572        }
 573    }
 574}
 575
 576static void kvm_put_one_spr(CPUState *cs, uint64_t id, int spr)
 577{
 578    PowerPCCPU *cpu = POWERPC_CPU(cs);
 579    CPUPPCState *env = &cpu->env;
 580    union {
 581        uint32_t u32;
 582        uint64_t u64;
 583    } val;
 584    struct kvm_one_reg reg = {
 585        .id = id,
 586        .addr = (uintptr_t) &val,
 587    };
 588    int ret;
 589
 590    switch (id & KVM_REG_SIZE_MASK) {
 591    case KVM_REG_SIZE_U32:
 592        val.u32 = env->spr[spr];
 593        break;
 594
 595    case KVM_REG_SIZE_U64:
 596        val.u64 = env->spr[spr];
 597        break;
 598
 599    default:
 600        /* Don't handle this size yet */
 601        abort();
 602    }
 603
 604    ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
 605    if (ret != 0) {
 606        trace_kvm_failed_spr_set(spr, strerror(errno));
 607    }
 608}
 609
 610static int kvm_put_fp(CPUState *cs)
 611{
 612    PowerPCCPU *cpu = POWERPC_CPU(cs);
 613    CPUPPCState *env = &cpu->env;
 614    struct kvm_one_reg reg;
 615    int i;
 616    int ret;
 617
 618    if (env->insns_flags & PPC_FLOAT) {
 619        uint64_t fpscr = env->fpscr;
 620        bool vsx = !!(env->insns_flags2 & PPC2_VSX);
 621
 622        reg.id = KVM_REG_PPC_FPSCR;
 623        reg.addr = (uintptr_t)&fpscr;
 624        ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
 625        if (ret < 0) {
 626            trace_kvm_failed_fpscr_set(strerror(errno));
 627            return ret;
 628        }
 629
 630        for (i = 0; i < 32; i++) {
 631            uint64_t vsr[2];
 632            uint64_t *fpr = cpu_fpr_ptr(&cpu->env, i);
 633            uint64_t *vsrl = cpu_vsrl_ptr(&cpu->env, i);
 634
 635#ifdef HOST_WORDS_BIGENDIAN
 636            vsr[0] = float64_val(*fpr);
 637            vsr[1] = *vsrl;
 638#else
 639            vsr[0] = *vsrl;
 640            vsr[1] = float64_val(*fpr);
 641#endif
 642            reg.addr = (uintptr_t) &vsr;
 643            reg.id = vsx ? KVM_REG_PPC_VSR(i) : KVM_REG_PPC_FPR(i);
 644
 645            ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
 646            if (ret < 0) {
 647                trace_kvm_failed_fp_set(vsx ? "VSR" : "FPR", i,
 648                                        strerror(errno));
 649                return ret;
 650            }
 651        }
 652    }
 653
 654    if (env->insns_flags & PPC_ALTIVEC) {
 655        reg.id = KVM_REG_PPC_VSCR;
 656        reg.addr = (uintptr_t)&env->vscr;
 657        ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
 658        if (ret < 0) {
 659            trace_kvm_failed_vscr_set(strerror(errno));
 660            return ret;
 661        }
 662
 663        for (i = 0; i < 32; i++) {
 664            reg.id = KVM_REG_PPC_VR(i);
 665            reg.addr = (uintptr_t)cpu_avr_ptr(env, i);
 666            ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
 667            if (ret < 0) {
 668                trace_kvm_failed_vr_set(i, strerror(errno));
 669                return ret;
 670            }
 671        }
 672    }
 673
 674    return 0;
 675}
 676
 677static int kvm_get_fp(CPUState *cs)
 678{
 679    PowerPCCPU *cpu = POWERPC_CPU(cs);
 680    CPUPPCState *env = &cpu->env;
 681    struct kvm_one_reg reg;
 682    int i;
 683    int ret;
 684
 685    if (env->insns_flags & PPC_FLOAT) {
 686        uint64_t fpscr;
 687        bool vsx = !!(env->insns_flags2 & PPC2_VSX);
 688
 689        reg.id = KVM_REG_PPC_FPSCR;
 690        reg.addr = (uintptr_t)&fpscr;
 691        ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
 692        if (ret < 0) {
 693            trace_kvm_failed_fpscr_get(strerror(errno));
 694            return ret;
 695        } else {
 696            env->fpscr = fpscr;
 697        }
 698
 699        for (i = 0; i < 32; i++) {
 700            uint64_t vsr[2];
 701            uint64_t *fpr = cpu_fpr_ptr(&cpu->env, i);
 702            uint64_t *vsrl = cpu_vsrl_ptr(&cpu->env, i);
 703
 704            reg.addr = (uintptr_t) &vsr;
 705            reg.id = vsx ? KVM_REG_PPC_VSR(i) : KVM_REG_PPC_FPR(i);
 706
 707            ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
 708            if (ret < 0) {
 709                trace_kvm_failed_fp_get(vsx ? "VSR" : "FPR", i,
 710                                        strerror(errno));
 711                return ret;
 712            } else {
 713#ifdef HOST_WORDS_BIGENDIAN
 714                *fpr = vsr[0];
 715                if (vsx) {
 716                    *vsrl = vsr[1];
 717                }
 718#else
 719                *fpr = vsr[1];
 720                if (vsx) {
 721                    *vsrl = vsr[0];
 722                }
 723#endif
 724            }
 725        }
 726    }
 727
 728    if (env->insns_flags & PPC_ALTIVEC) {
 729        reg.id = KVM_REG_PPC_VSCR;
 730        reg.addr = (uintptr_t)&env->vscr;
 731        ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
 732        if (ret < 0) {
 733            trace_kvm_failed_vscr_get(strerror(errno));
 734            return ret;
 735        }
 736
 737        for (i = 0; i < 32; i++) {
 738            reg.id = KVM_REG_PPC_VR(i);
 739            reg.addr = (uintptr_t)cpu_avr_ptr(env, i);
 740            ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
 741            if (ret < 0) {
 742                trace_kvm_failed_vr_get(i, strerror(errno));
 743                return ret;
 744            }
 745        }
 746    }
 747
 748    return 0;
 749}
 750
 751#if defined(TARGET_PPC64)
 752static int kvm_get_vpa(CPUState *cs)
 753{
 754    PowerPCCPU *cpu = POWERPC_CPU(cs);
 755    SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
 756    struct kvm_one_reg reg;
 757    int ret;
 758
 759    reg.id = KVM_REG_PPC_VPA_ADDR;
 760    reg.addr = (uintptr_t)&spapr_cpu->vpa_addr;
 761    ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
 762    if (ret < 0) {
 763        trace_kvm_failed_vpa_addr_get(strerror(errno));
 764        return ret;
 765    }
 766
 767    assert((uintptr_t)&spapr_cpu->slb_shadow_size
 768           == ((uintptr_t)&spapr_cpu->slb_shadow_addr + 8));
 769    reg.id = KVM_REG_PPC_VPA_SLB;
 770    reg.addr = (uintptr_t)&spapr_cpu->slb_shadow_addr;
 771    ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
 772    if (ret < 0) {
 773        trace_kvm_failed_slb_get(strerror(errno));
 774        return ret;
 775    }
 776
 777    assert((uintptr_t)&spapr_cpu->dtl_size
 778           == ((uintptr_t)&spapr_cpu->dtl_addr + 8));
 779    reg.id = KVM_REG_PPC_VPA_DTL;
 780    reg.addr = (uintptr_t)&spapr_cpu->dtl_addr;
 781    ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
 782    if (ret < 0) {
 783        trace_kvm_failed_dtl_get(strerror(errno));
 784        return ret;
 785    }
 786
 787    return 0;
 788}
 789
 790static int kvm_put_vpa(CPUState *cs)
 791{
 792    PowerPCCPU *cpu = POWERPC_CPU(cs);
 793    SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
 794    struct kvm_one_reg reg;
 795    int ret;
 796
 797    /*
 798     * SLB shadow or DTL can't be registered unless a master VPA is
 799     * registered.  That means when restoring state, if a VPA *is*
 800     * registered, we need to set that up first.  If not, we need to
 801     * deregister the others before deregistering the master VPA
 802     */
 803    assert(spapr_cpu->vpa_addr
 804           || !(spapr_cpu->slb_shadow_addr || spapr_cpu->dtl_addr));
 805
 806    if (spapr_cpu->vpa_addr) {
 807        reg.id = KVM_REG_PPC_VPA_ADDR;
 808        reg.addr = (uintptr_t)&spapr_cpu->vpa_addr;
 809        ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
 810        if (ret < 0) {
 811            trace_kvm_failed_vpa_addr_set(strerror(errno));
 812            return ret;
 813        }
 814    }
 815
 816    assert((uintptr_t)&spapr_cpu->slb_shadow_size
 817           == ((uintptr_t)&spapr_cpu->slb_shadow_addr + 8));
 818    reg.id = KVM_REG_PPC_VPA_SLB;
 819    reg.addr = (uintptr_t)&spapr_cpu->slb_shadow_addr;
 820    ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
 821    if (ret < 0) {
 822        trace_kvm_failed_slb_set(strerror(errno));
 823        return ret;
 824    }
 825
 826    assert((uintptr_t)&spapr_cpu->dtl_size
 827           == ((uintptr_t)&spapr_cpu->dtl_addr + 8));
 828    reg.id = KVM_REG_PPC_VPA_DTL;
 829    reg.addr = (uintptr_t)&spapr_cpu->dtl_addr;
 830    ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
 831    if (ret < 0) {
 832        trace_kvm_failed_dtl_set(strerror(errno));
 833        return ret;
 834    }
 835
 836    if (!spapr_cpu->vpa_addr) {
 837        reg.id = KVM_REG_PPC_VPA_ADDR;
 838        reg.addr = (uintptr_t)&spapr_cpu->vpa_addr;
 839        ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
 840        if (ret < 0) {
 841            trace_kvm_failed_null_vpa_addr_set(strerror(errno));
 842            return ret;
 843        }
 844    }
 845
 846    return 0;
 847}
 848#endif /* TARGET_PPC64 */
 849
 850int kvmppc_put_books_sregs(PowerPCCPU *cpu)
 851{
 852    CPUPPCState *env = &cpu->env;
 853    struct kvm_sregs sregs;
 854    int i;
 855
 856    sregs.pvr = env->spr[SPR_PVR];
 857
 858    if (cpu->vhyp) {
 859        PPCVirtualHypervisorClass *vhc =
 860            PPC_VIRTUAL_HYPERVISOR_GET_CLASS(cpu->vhyp);
 861        sregs.u.s.sdr1 = vhc->encode_hpt_for_kvm_pr(cpu->vhyp);
 862    } else {
 863        sregs.u.s.sdr1 = env->spr[SPR_SDR1];
 864    }
 865
 866    /* Sync SLB */
 867#ifdef TARGET_PPC64
 868    for (i = 0; i < ARRAY_SIZE(env->slb); i++) {
 869        sregs.u.s.ppc64.slb[i].slbe = env->slb[i].esid;
 870        if (env->slb[i].esid & SLB_ESID_V) {
 871            sregs.u.s.ppc64.slb[i].slbe |= i;
 872        }
 873        sregs.u.s.ppc64.slb[i].slbv = env->slb[i].vsid;
 874    }
 875#endif
 876
 877    /* Sync SRs */
 878    for (i = 0; i < 16; i++) {
 879        sregs.u.s.ppc32.sr[i] = env->sr[i];
 880    }
 881
 882    /* Sync BATs */
 883    for (i = 0; i < 8; i++) {
 884        /* Beware. We have to swap upper and lower bits here */
 885        sregs.u.s.ppc32.dbat[i] = ((uint64_t)env->DBAT[0][i] << 32)
 886            | env->DBAT[1][i];
 887        sregs.u.s.ppc32.ibat[i] = ((uint64_t)env->IBAT[0][i] << 32)
 888            | env->IBAT[1][i];
 889    }
 890
 891    return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_SREGS, &sregs);
 892}
 893
 894int kvm_arch_put_registers(CPUState *cs, int level)
 895{
 896    PowerPCCPU *cpu = POWERPC_CPU(cs);
 897    CPUPPCState *env = &cpu->env;
 898    struct kvm_regs regs;
 899    int ret;
 900    int i;
 901
 902    ret = kvm_vcpu_ioctl(cs, KVM_GET_REGS, &regs);
 903    if (ret < 0) {
 904        return ret;
 905    }
 906
 907    regs.ctr = env->ctr;
 908    regs.lr  = env->lr;
 909    regs.xer = cpu_read_xer(env);
 910    regs.msr = env->msr;
 911    regs.pc = env->nip;
 912
 913    regs.srr0 = env->spr[SPR_SRR0];
 914    regs.srr1 = env->spr[SPR_SRR1];
 915
 916    regs.sprg0 = env->spr[SPR_SPRG0];
 917    regs.sprg1 = env->spr[SPR_SPRG1];
 918    regs.sprg2 = env->spr[SPR_SPRG2];
 919    regs.sprg3 = env->spr[SPR_SPRG3];
 920    regs.sprg4 = env->spr[SPR_SPRG4];
 921    regs.sprg5 = env->spr[SPR_SPRG5];
 922    regs.sprg6 = env->spr[SPR_SPRG6];
 923    regs.sprg7 = env->spr[SPR_SPRG7];
 924
 925    regs.pid = env->spr[SPR_BOOKE_PID];
 926
 927    for (i = 0; i < 32; i++) {
 928        regs.gpr[i] = env->gpr[i];
 929    }
 930
 931    regs.cr = 0;
 932    for (i = 0; i < 8; i++) {
 933        regs.cr |= (env->crf[i] & 15) << (4 * (7 - i));
 934    }
 935
 936    ret = kvm_vcpu_ioctl(cs, KVM_SET_REGS, &regs);
 937    if (ret < 0) {
 938        return ret;
 939    }
 940
 941    kvm_put_fp(cs);
 942
 943    if (env->tlb_dirty) {
 944        kvm_sw_tlb_put(cpu);
 945        env->tlb_dirty = false;
 946    }
 947
 948    if (cap_segstate && (level >= KVM_PUT_RESET_STATE)) {
 949        ret = kvmppc_put_books_sregs(cpu);
 950        if (ret < 0) {
 951            return ret;
 952        }
 953    }
 954
 955    if (cap_hior && (level >= KVM_PUT_RESET_STATE)) {
 956        kvm_put_one_spr(cs, KVM_REG_PPC_HIOR, SPR_HIOR);
 957    }
 958
 959    if (cap_one_reg) {
 960        int i;
 961
 962        /*
 963         * We deliberately ignore errors here, for kernels which have
 964         * the ONE_REG calls, but don't support the specific
 965         * registers, there's a reasonable chance things will still
 966         * work, at least until we try to migrate.
 967         */
 968        for (i = 0; i < 1024; i++) {
 969            uint64_t id = env->spr_cb[i].one_reg_id;
 970
 971            if (id != 0) {
 972                kvm_put_one_spr(cs, id, i);
 973            }
 974        }
 975
 976#ifdef TARGET_PPC64
 977        if (msr_ts) {
 978            for (i = 0; i < ARRAY_SIZE(env->tm_gpr); i++) {
 979                kvm_set_one_reg(cs, KVM_REG_PPC_TM_GPR(i), &env->tm_gpr[i]);
 980            }
 981            for (i = 0; i < ARRAY_SIZE(env->tm_vsr); i++) {
 982                kvm_set_one_reg(cs, KVM_REG_PPC_TM_VSR(i), &env->tm_vsr[i]);
 983            }
 984            kvm_set_one_reg(cs, KVM_REG_PPC_TM_CR, &env->tm_cr);
 985            kvm_set_one_reg(cs, KVM_REG_PPC_TM_LR, &env->tm_lr);
 986            kvm_set_one_reg(cs, KVM_REG_PPC_TM_CTR, &env->tm_ctr);
 987            kvm_set_one_reg(cs, KVM_REG_PPC_TM_FPSCR, &env->tm_fpscr);
 988            kvm_set_one_reg(cs, KVM_REG_PPC_TM_AMR, &env->tm_amr);
 989            kvm_set_one_reg(cs, KVM_REG_PPC_TM_PPR, &env->tm_ppr);
 990            kvm_set_one_reg(cs, KVM_REG_PPC_TM_VRSAVE, &env->tm_vrsave);
 991            kvm_set_one_reg(cs, KVM_REG_PPC_TM_VSCR, &env->tm_vscr);
 992            kvm_set_one_reg(cs, KVM_REG_PPC_TM_DSCR, &env->tm_dscr);
 993            kvm_set_one_reg(cs, KVM_REG_PPC_TM_TAR, &env->tm_tar);
 994        }
 995
 996        if (cap_papr) {
 997            if (kvm_put_vpa(cs) < 0) {
 998                trace_kvm_failed_put_vpa();
 999            }
1000        }
1001
1002        kvm_set_one_reg(cs, KVM_REG_PPC_TB_OFFSET, &env->tb_env->tb_offset);
1003
1004        if (level > KVM_PUT_RUNTIME_STATE) {
1005            kvm_put_one_spr(cs, KVM_REG_PPC_DPDES, SPR_DPDES);
1006        }
1007#endif /* TARGET_PPC64 */
1008    }
1009
1010    return ret;
1011}
1012
1013static void kvm_sync_excp(CPUPPCState *env, int vector, int ivor)
1014{
1015     env->excp_vectors[vector] = env->spr[ivor] + env->spr[SPR_BOOKE_IVPR];
1016}
1017
1018static int kvmppc_get_booke_sregs(PowerPCCPU *cpu)
1019{
1020    CPUPPCState *env = &cpu->env;
1021    struct kvm_sregs sregs;
1022    int ret;
1023
1024    ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_SREGS, &sregs);
1025    if (ret < 0) {
1026        return ret;
1027    }
1028
1029    if (sregs.u.e.features & KVM_SREGS_E_BASE) {
1030        env->spr[SPR_BOOKE_CSRR0] = sregs.u.e.csrr0;
1031        env->spr[SPR_BOOKE_CSRR1] = sregs.u.e.csrr1;
1032        env->spr[SPR_BOOKE_ESR] = sregs.u.e.esr;
1033        env->spr[SPR_BOOKE_DEAR] = sregs.u.e.dear;
1034        env->spr[SPR_BOOKE_MCSR] = sregs.u.e.mcsr;
1035        env->spr[SPR_BOOKE_TSR] = sregs.u.e.tsr;
1036        env->spr[SPR_BOOKE_TCR] = sregs.u.e.tcr;
1037        env->spr[SPR_DECR] = sregs.u.e.dec;
1038        env->spr[SPR_TBL] = sregs.u.e.tb & 0xffffffff;
1039        env->spr[SPR_TBU] = sregs.u.e.tb >> 32;
1040        env->spr[SPR_VRSAVE] = sregs.u.e.vrsave;
1041    }
1042
1043    if (sregs.u.e.features & KVM_SREGS_E_ARCH206) {
1044        env->spr[SPR_BOOKE_PIR] = sregs.u.e.pir;
1045        env->spr[SPR_BOOKE_MCSRR0] = sregs.u.e.mcsrr0;
1046        env->spr[SPR_BOOKE_MCSRR1] = sregs.u.e.mcsrr1;
1047        env->spr[SPR_BOOKE_DECAR] = sregs.u.e.decar;
1048        env->spr[SPR_BOOKE_IVPR] = sregs.u.e.ivpr;
1049    }
1050
1051    if (sregs.u.e.features & KVM_SREGS_E_64) {
1052        env->spr[SPR_BOOKE_EPCR] = sregs.u.e.epcr;
1053    }
1054
1055    if (sregs.u.e.features & KVM_SREGS_E_SPRG8) {
1056        env->spr[SPR_BOOKE_SPRG8] = sregs.u.e.sprg8;
1057    }
1058
1059    if (sregs.u.e.features & KVM_SREGS_E_IVOR) {
1060        env->spr[SPR_BOOKE_IVOR0] = sregs.u.e.ivor_low[0];
1061        kvm_sync_excp(env, POWERPC_EXCP_CRITICAL,  SPR_BOOKE_IVOR0);
1062        env->spr[SPR_BOOKE_IVOR1] = sregs.u.e.ivor_low[1];
1063        kvm_sync_excp(env, POWERPC_EXCP_MCHECK,  SPR_BOOKE_IVOR1);
1064        env->spr[SPR_BOOKE_IVOR2] = sregs.u.e.ivor_low[2];
1065        kvm_sync_excp(env, POWERPC_EXCP_DSI,  SPR_BOOKE_IVOR2);
1066        env->spr[SPR_BOOKE_IVOR3] = sregs.u.e.ivor_low[3];
1067        kvm_sync_excp(env, POWERPC_EXCP_ISI,  SPR_BOOKE_IVOR3);
1068        env->spr[SPR_BOOKE_IVOR4] = sregs.u.e.ivor_low[4];
1069        kvm_sync_excp(env, POWERPC_EXCP_EXTERNAL,  SPR_BOOKE_IVOR4);
1070        env->spr[SPR_BOOKE_IVOR5] = sregs.u.e.ivor_low[5];
1071        kvm_sync_excp(env, POWERPC_EXCP_ALIGN,  SPR_BOOKE_IVOR5);
1072        env->spr[SPR_BOOKE_IVOR6] = sregs.u.e.ivor_low[6];
1073        kvm_sync_excp(env, POWERPC_EXCP_PROGRAM,  SPR_BOOKE_IVOR6);
1074        env->spr[SPR_BOOKE_IVOR7] = sregs.u.e.ivor_low[7];
1075        kvm_sync_excp(env, POWERPC_EXCP_FPU,  SPR_BOOKE_IVOR7);
1076        env->spr[SPR_BOOKE_IVOR8] = sregs.u.e.ivor_low[8];
1077        kvm_sync_excp(env, POWERPC_EXCP_SYSCALL,  SPR_BOOKE_IVOR8);
1078        env->spr[SPR_BOOKE_IVOR9] = sregs.u.e.ivor_low[9];
1079        kvm_sync_excp(env, POWERPC_EXCP_APU,  SPR_BOOKE_IVOR9);
1080        env->spr[SPR_BOOKE_IVOR10] = sregs.u.e.ivor_low[10];
1081        kvm_sync_excp(env, POWERPC_EXCP_DECR,  SPR_BOOKE_IVOR10);
1082        env->spr[SPR_BOOKE_IVOR11] = sregs.u.e.ivor_low[11];
1083        kvm_sync_excp(env, POWERPC_EXCP_FIT,  SPR_BOOKE_IVOR11);
1084        env->spr[SPR_BOOKE_IVOR12] = sregs.u.e.ivor_low[12];
1085        kvm_sync_excp(env, POWERPC_EXCP_WDT,  SPR_BOOKE_IVOR12);
1086        env->spr[SPR_BOOKE_IVOR13] = sregs.u.e.ivor_low[13];
1087        kvm_sync_excp(env, POWERPC_EXCP_DTLB,  SPR_BOOKE_IVOR13);
1088        env->spr[SPR_BOOKE_IVOR14] = sregs.u.e.ivor_low[14];
1089        kvm_sync_excp(env, POWERPC_EXCP_ITLB,  SPR_BOOKE_IVOR14);
1090        env->spr[SPR_BOOKE_IVOR15] = sregs.u.e.ivor_low[15];
1091        kvm_sync_excp(env, POWERPC_EXCP_DEBUG,  SPR_BOOKE_IVOR15);
1092
1093        if (sregs.u.e.features & KVM_SREGS_E_SPE) {
1094            env->spr[SPR_BOOKE_IVOR32] = sregs.u.e.ivor_high[0];
1095            kvm_sync_excp(env, POWERPC_EXCP_SPEU,  SPR_BOOKE_IVOR32);
1096            env->spr[SPR_BOOKE_IVOR33] = sregs.u.e.ivor_high[1];
1097            kvm_sync_excp(env, POWERPC_EXCP_EFPDI,  SPR_BOOKE_IVOR33);
1098            env->spr[SPR_BOOKE_IVOR34] = sregs.u.e.ivor_high[2];
1099            kvm_sync_excp(env, POWERPC_EXCP_EFPRI,  SPR_BOOKE_IVOR34);
1100        }
1101
1102        if (sregs.u.e.features & KVM_SREGS_E_PM) {
1103            env->spr[SPR_BOOKE_IVOR35] = sregs.u.e.ivor_high[3];
1104            kvm_sync_excp(env, POWERPC_EXCP_EPERFM,  SPR_BOOKE_IVOR35);
1105        }
1106
1107        if (sregs.u.e.features & KVM_SREGS_E_PC) {
1108            env->spr[SPR_BOOKE_IVOR36] = sregs.u.e.ivor_high[4];
1109            kvm_sync_excp(env, POWERPC_EXCP_DOORI,  SPR_BOOKE_IVOR36);
1110            env->spr[SPR_BOOKE_IVOR37] = sregs.u.e.ivor_high[5];
1111            kvm_sync_excp(env, POWERPC_EXCP_DOORCI, SPR_BOOKE_IVOR37);
1112        }
1113    }
1114
1115    if (sregs.u.e.features & KVM_SREGS_E_ARCH206_MMU) {
1116        env->spr[SPR_BOOKE_MAS0] = sregs.u.e.mas0;
1117        env->spr[SPR_BOOKE_MAS1] = sregs.u.e.mas1;
1118        env->spr[SPR_BOOKE_MAS2] = sregs.u.e.mas2;
1119        env->spr[SPR_BOOKE_MAS3] = sregs.u.e.mas7_3 & 0xffffffff;
1120        env->spr[SPR_BOOKE_MAS4] = sregs.u.e.mas4;
1121        env->spr[SPR_BOOKE_MAS6] = sregs.u.e.mas6;
1122        env->spr[SPR_BOOKE_MAS7] = sregs.u.e.mas7_3 >> 32;
1123        env->spr[SPR_MMUCFG] = sregs.u.e.mmucfg;
1124        env->spr[SPR_BOOKE_TLB0CFG] = sregs.u.e.tlbcfg[0];
1125        env->spr[SPR_BOOKE_TLB1CFG] = sregs.u.e.tlbcfg[1];
1126    }
1127
1128    if (sregs.u.e.features & KVM_SREGS_EXP) {
1129        env->spr[SPR_BOOKE_EPR] = sregs.u.e.epr;
1130    }
1131
1132    if (sregs.u.e.features & KVM_SREGS_E_PD) {
1133        env->spr[SPR_BOOKE_EPLC] = sregs.u.e.eplc;
1134        env->spr[SPR_BOOKE_EPSC] = sregs.u.e.epsc;
1135    }
1136
1137    if (sregs.u.e.impl_id == KVM_SREGS_E_IMPL_FSL) {
1138        env->spr[SPR_E500_SVR] = sregs.u.e.impl.fsl.svr;
1139        env->spr[SPR_Exxx_MCAR] = sregs.u.e.impl.fsl.mcar;
1140        env->spr[SPR_HID0] = sregs.u.e.impl.fsl.hid0;
1141
1142        if (sregs.u.e.impl.fsl.features & KVM_SREGS_E_FSL_PIDn) {
1143            env->spr[SPR_BOOKE_PID1] = sregs.u.e.impl.fsl.pid1;
1144            env->spr[SPR_BOOKE_PID2] = sregs.u.e.impl.fsl.pid2;
1145        }
1146    }
1147
1148    return 0;
1149}
1150
1151static int kvmppc_get_books_sregs(PowerPCCPU *cpu)
1152{
1153    CPUPPCState *env = &cpu->env;
1154    struct kvm_sregs sregs;
1155    int ret;
1156    int i;
1157
1158    ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_SREGS, &sregs);
1159    if (ret < 0) {
1160        return ret;
1161    }
1162
1163    if (!cpu->vhyp) {
1164        ppc_store_sdr1(env, sregs.u.s.sdr1);
1165    }
1166
1167    /* Sync SLB */
1168#ifdef TARGET_PPC64
1169    /*
1170     * The packed SLB array we get from KVM_GET_SREGS only contains
1171     * information about valid entries. So we flush our internal copy
1172     * to get rid of stale ones, then put all valid SLB entries back
1173     * in.
1174     */
1175    memset(env->slb, 0, sizeof(env->slb));
1176    for (i = 0; i < ARRAY_SIZE(env->slb); i++) {
1177        target_ulong rb = sregs.u.s.ppc64.slb[i].slbe;
1178        target_ulong rs = sregs.u.s.ppc64.slb[i].slbv;
1179        /*
1180         * Only restore valid entries
1181         */
1182        if (rb & SLB_ESID_V) {
1183            ppc_store_slb(cpu, rb & 0xfff, rb & ~0xfffULL, rs);
1184        }
1185    }
1186#endif
1187
1188    /* Sync SRs */
1189    for (i = 0; i < 16; i++) {
1190        env->sr[i] = sregs.u.s.ppc32.sr[i];
1191    }
1192
1193    /* Sync BATs */
1194    for (i = 0; i < 8; i++) {
1195        env->DBAT[0][i] = sregs.u.s.ppc32.dbat[i] & 0xffffffff;
1196        env->DBAT[1][i] = sregs.u.s.ppc32.dbat[i] >> 32;
1197        env->IBAT[0][i] = sregs.u.s.ppc32.ibat[i] & 0xffffffff;
1198        env->IBAT[1][i] = sregs.u.s.ppc32.ibat[i] >> 32;
1199    }
1200
1201    return 0;
1202}
1203
1204int kvm_arch_get_registers(CPUState *cs)
1205{
1206    PowerPCCPU *cpu = POWERPC_CPU(cs);
1207    CPUPPCState *env = &cpu->env;
1208    struct kvm_regs regs;
1209    uint32_t cr;
1210    int i, ret;
1211
1212    ret = kvm_vcpu_ioctl(cs, KVM_GET_REGS, &regs);
1213    if (ret < 0) {
1214        return ret;
1215    }
1216
1217    cr = regs.cr;
1218    for (i = 7; i >= 0; i--) {
1219        env->crf[i] = cr & 15;
1220        cr >>= 4;
1221    }
1222
1223    env->ctr = regs.ctr;
1224    env->lr = regs.lr;
1225    cpu_write_xer(env, regs.xer);
1226    env->msr = regs.msr;
1227    env->nip = regs.pc;
1228
1229    env->spr[SPR_SRR0] = regs.srr0;
1230    env->spr[SPR_SRR1] = regs.srr1;
1231
1232    env->spr[SPR_SPRG0] = regs.sprg0;
1233    env->spr[SPR_SPRG1] = regs.sprg1;
1234    env->spr[SPR_SPRG2] = regs.sprg2;
1235    env->spr[SPR_SPRG3] = regs.sprg3;
1236    env->spr[SPR_SPRG4] = regs.sprg4;
1237    env->spr[SPR_SPRG5] = regs.sprg5;
1238    env->spr[SPR_SPRG6] = regs.sprg6;
1239    env->spr[SPR_SPRG7] = regs.sprg7;
1240
1241    env->spr[SPR_BOOKE_PID] = regs.pid;
1242
1243    for (i = 0; i < 32; i++) {
1244        env->gpr[i] = regs.gpr[i];
1245    }
1246
1247    kvm_get_fp(cs);
1248
1249    if (cap_booke_sregs) {
1250        ret = kvmppc_get_booke_sregs(cpu);
1251        if (ret < 0) {
1252            return ret;
1253        }
1254    }
1255
1256    if (cap_segstate) {
1257        ret = kvmppc_get_books_sregs(cpu);
1258        if (ret < 0) {
1259            return ret;
1260        }
1261    }
1262
1263    if (cap_hior) {
1264        kvm_get_one_spr(cs, KVM_REG_PPC_HIOR, SPR_HIOR);
1265    }
1266
1267    if (cap_one_reg) {
1268        int i;
1269
1270        /*
1271         * We deliberately ignore errors here, for kernels which have
1272         * the ONE_REG calls, but don't support the specific
1273         * registers, there's a reasonable chance things will still
1274         * work, at least until we try to migrate.
1275         */
1276        for (i = 0; i < 1024; i++) {
1277            uint64_t id = env->spr_cb[i].one_reg_id;
1278
1279            if (id != 0) {
1280                kvm_get_one_spr(cs, id, i);
1281            }
1282        }
1283
1284#ifdef TARGET_PPC64
1285        if (msr_ts) {
1286            for (i = 0; i < ARRAY_SIZE(env->tm_gpr); i++) {
1287                kvm_get_one_reg(cs, KVM_REG_PPC_TM_GPR(i), &env->tm_gpr[i]);
1288            }
1289            for (i = 0; i < ARRAY_SIZE(env->tm_vsr); i++) {
1290                kvm_get_one_reg(cs, KVM_REG_PPC_TM_VSR(i), &env->tm_vsr[i]);
1291            }
1292            kvm_get_one_reg(cs, KVM_REG_PPC_TM_CR, &env->tm_cr);
1293            kvm_get_one_reg(cs, KVM_REG_PPC_TM_LR, &env->tm_lr);
1294            kvm_get_one_reg(cs, KVM_REG_PPC_TM_CTR, &env->tm_ctr);
1295            kvm_get_one_reg(cs, KVM_REG_PPC_TM_FPSCR, &env->tm_fpscr);
1296            kvm_get_one_reg(cs, KVM_REG_PPC_TM_AMR, &env->tm_amr);
1297            kvm_get_one_reg(cs, KVM_REG_PPC_TM_PPR, &env->tm_ppr);
1298            kvm_get_one_reg(cs, KVM_REG_PPC_TM_VRSAVE, &env->tm_vrsave);
1299            kvm_get_one_reg(cs, KVM_REG_PPC_TM_VSCR, &env->tm_vscr);
1300            kvm_get_one_reg(cs, KVM_REG_PPC_TM_DSCR, &env->tm_dscr);
1301            kvm_get_one_reg(cs, KVM_REG_PPC_TM_TAR, &env->tm_tar);
1302        }
1303
1304        if (cap_papr) {
1305            if (kvm_get_vpa(cs) < 0) {
1306                trace_kvm_failed_get_vpa();
1307            }
1308        }
1309
1310        kvm_get_one_reg(cs, KVM_REG_PPC_TB_OFFSET, &env->tb_env->tb_offset);
1311        kvm_get_one_spr(cs, KVM_REG_PPC_DPDES, SPR_DPDES);
1312#endif
1313    }
1314
1315    return 0;
1316}
1317
1318int kvmppc_set_interrupt(PowerPCCPU *cpu, int irq, int level)
1319{
1320    unsigned virq = level ? KVM_INTERRUPT_SET_LEVEL : KVM_INTERRUPT_UNSET;
1321
1322    if (irq != PPC_INTERRUPT_EXT) {
1323        return 0;
1324    }
1325
1326    if (!kvm_enabled() || !cap_interrupt_unset) {
1327        return 0;
1328    }
1329
1330    kvm_vcpu_ioctl(CPU(cpu), KVM_INTERRUPT, &virq);
1331
1332    return 0;
1333}
1334
1335void kvm_arch_pre_run(CPUState *cs, struct kvm_run *run)
1336{
1337    return;
1338}
1339
1340MemTxAttrs kvm_arch_post_run(CPUState *cs, struct kvm_run *run)
1341{
1342    return MEMTXATTRS_UNSPECIFIED;
1343}
1344
1345int kvm_arch_process_async_events(CPUState *cs)
1346{
1347    return cs->halted;
1348}
1349
1350static int kvmppc_handle_halt(PowerPCCPU *cpu)
1351{
1352    CPUState *cs = CPU(cpu);
1353    CPUPPCState *env = &cpu->env;
1354
1355    if (!(cs->interrupt_request & CPU_INTERRUPT_HARD) && (msr_ee)) {
1356        cs->halted = 1;
1357        cs->exception_index = EXCP_HLT;
1358    }
1359
1360    return 0;
1361}
1362
1363/* map dcr access to existing qemu dcr emulation */
1364static int kvmppc_handle_dcr_read(CPUPPCState *env,
1365                                  uint32_t dcrn, uint32_t *data)
1366{
1367    if (ppc_dcr_read(env->dcr_env, dcrn, data) < 0) {
1368        fprintf(stderr, "Read to unhandled DCR (0x%x)\n", dcrn);
1369    }
1370
1371    return 0;
1372}
1373
1374static int kvmppc_handle_dcr_write(CPUPPCState *env,
1375                                   uint32_t dcrn, uint32_t data)
1376{
1377    if (ppc_dcr_write(env->dcr_env, dcrn, data) < 0) {
1378        fprintf(stderr, "Write to unhandled DCR (0x%x)\n", dcrn);
1379    }
1380
1381    return 0;
1382}
1383
1384int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
1385{
1386    /* Mixed endian case is not handled */
1387    uint32_t sc = debug_inst_opcode;
1388
1389    if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn,
1390                            sizeof(sc), 0) ||
1391        cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&sc, sizeof(sc), 1)) {
1392        return -EINVAL;
1393    }
1394
1395    return 0;
1396}
1397
1398int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
1399{
1400    uint32_t sc;
1401
1402    if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&sc, sizeof(sc), 0) ||
1403        sc != debug_inst_opcode ||
1404        cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn,
1405                            sizeof(sc), 1)) {
1406        return -EINVAL;
1407    }
1408
1409    return 0;
1410}
1411
1412static int find_hw_breakpoint(target_ulong addr, int type)
1413{
1414    int n;
1415
1416    assert((nb_hw_breakpoint + nb_hw_watchpoint)
1417           <= ARRAY_SIZE(hw_debug_points));
1418
1419    for (n = 0; n < nb_hw_breakpoint + nb_hw_watchpoint; n++) {
1420        if (hw_debug_points[n].addr == addr &&
1421             hw_debug_points[n].type == type) {
1422            return n;
1423        }
1424    }
1425
1426    return -1;
1427}
1428
1429static int find_hw_watchpoint(target_ulong addr, int *flag)
1430{
1431    int n;
1432
1433    n = find_hw_breakpoint(addr, GDB_WATCHPOINT_ACCESS);
1434    if (n >= 0) {
1435        *flag = BP_MEM_ACCESS;
1436        return n;
1437    }
1438
1439    n = find_hw_breakpoint(addr, GDB_WATCHPOINT_WRITE);
1440    if (n >= 0) {
1441        *flag = BP_MEM_WRITE;
1442        return n;
1443    }
1444
1445    n = find_hw_breakpoint(addr, GDB_WATCHPOINT_READ);
1446    if (n >= 0) {
1447        *flag = BP_MEM_READ;
1448        return n;
1449    }
1450
1451    return -1;
1452}
1453
1454int kvm_arch_insert_hw_breakpoint(target_ulong addr,
1455                                  target_ulong len, int type)
1456{
1457    if ((nb_hw_breakpoint + nb_hw_watchpoint) >= ARRAY_SIZE(hw_debug_points)) {
1458        return -ENOBUFS;
1459    }
1460
1461    hw_debug_points[nb_hw_breakpoint + nb_hw_watchpoint].addr = addr;
1462    hw_debug_points[nb_hw_breakpoint + nb_hw_watchpoint].type = type;
1463
1464    switch (type) {
1465    case GDB_BREAKPOINT_HW:
1466        if (nb_hw_breakpoint >= max_hw_breakpoint) {
1467            return -ENOBUFS;
1468        }
1469
1470        if (find_hw_breakpoint(addr, type) >= 0) {
1471            return -EEXIST;
1472        }
1473
1474        nb_hw_breakpoint++;
1475        break;
1476
1477    case GDB_WATCHPOINT_WRITE:
1478    case GDB_WATCHPOINT_READ:
1479    case GDB_WATCHPOINT_ACCESS:
1480        if (nb_hw_watchpoint >= max_hw_watchpoint) {
1481            return -ENOBUFS;
1482        }
1483
1484        if (find_hw_breakpoint(addr, type) >= 0) {
1485            return -EEXIST;
1486        }
1487
1488        nb_hw_watchpoint++;
1489        break;
1490
1491    default:
1492        return -ENOSYS;
1493    }
1494
1495    return 0;
1496}
1497
1498int kvm_arch_remove_hw_breakpoint(target_ulong addr,
1499                                  target_ulong len, int type)
1500{
1501    int n;
1502
1503    n = find_hw_breakpoint(addr, type);
1504    if (n < 0) {
1505        return -ENOENT;
1506    }
1507
1508    switch (type) {
1509    case GDB_BREAKPOINT_HW:
1510        nb_hw_breakpoint--;
1511        break;
1512
1513    case GDB_WATCHPOINT_WRITE:
1514    case GDB_WATCHPOINT_READ:
1515    case GDB_WATCHPOINT_ACCESS:
1516        nb_hw_watchpoint--;
1517        break;
1518
1519    default:
1520        return -ENOSYS;
1521    }
1522    hw_debug_points[n] = hw_debug_points[nb_hw_breakpoint + nb_hw_watchpoint];
1523
1524    return 0;
1525}
1526
1527void kvm_arch_remove_all_hw_breakpoints(void)
1528{
1529    nb_hw_breakpoint = nb_hw_watchpoint = 0;
1530}
1531
1532void kvm_arch_update_guest_debug(CPUState *cs, struct kvm_guest_debug *dbg)
1533{
1534    int n;
1535
1536    /* Software Breakpoint updates */
1537    if (kvm_sw_breakpoints_active(cs)) {
1538        dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
1539    }
1540
1541    assert((nb_hw_breakpoint + nb_hw_watchpoint)
1542           <= ARRAY_SIZE(hw_debug_points));
1543    assert((nb_hw_breakpoint + nb_hw_watchpoint) <= ARRAY_SIZE(dbg->arch.bp));
1544
1545    if (nb_hw_breakpoint + nb_hw_watchpoint > 0) {
1546        dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
1547        memset(dbg->arch.bp, 0, sizeof(dbg->arch.bp));
1548        for (n = 0; n < nb_hw_breakpoint + nb_hw_watchpoint; n++) {
1549            switch (hw_debug_points[n].type) {
1550            case GDB_BREAKPOINT_HW:
1551                dbg->arch.bp[n].type = KVMPPC_DEBUG_BREAKPOINT;
1552                break;
1553            case GDB_WATCHPOINT_WRITE:
1554                dbg->arch.bp[n].type = KVMPPC_DEBUG_WATCH_WRITE;
1555                break;
1556            case GDB_WATCHPOINT_READ:
1557                dbg->arch.bp[n].type = KVMPPC_DEBUG_WATCH_READ;
1558                break;
1559            case GDB_WATCHPOINT_ACCESS:
1560                dbg->arch.bp[n].type = KVMPPC_DEBUG_WATCH_WRITE |
1561                                        KVMPPC_DEBUG_WATCH_READ;
1562                break;
1563            default:
1564                cpu_abort(cs, "Unsupported breakpoint type\n");
1565            }
1566            dbg->arch.bp[n].addr = hw_debug_points[n].addr;
1567        }
1568    }
1569}
1570
1571static int kvm_handle_hw_breakpoint(CPUState *cs,
1572                                    struct kvm_debug_exit_arch *arch_info)
1573{
1574    int handle = DEBUG_RETURN_GUEST;
1575    int n;
1576    int flag = 0;
1577
1578    if (nb_hw_breakpoint + nb_hw_watchpoint > 0) {
1579        if (arch_info->status & KVMPPC_DEBUG_BREAKPOINT) {
1580            n = find_hw_breakpoint(arch_info->address, GDB_BREAKPOINT_HW);
1581            if (n >= 0) {
1582                handle = DEBUG_RETURN_GDB;
1583            }
1584        } else if (arch_info->status & (KVMPPC_DEBUG_WATCH_READ |
1585                                        KVMPPC_DEBUG_WATCH_WRITE)) {
1586            n = find_hw_watchpoint(arch_info->address,  &flag);
1587            if (n >= 0) {
1588                handle = DEBUG_RETURN_GDB;
1589                cs->watchpoint_hit = &hw_watchpoint;
1590                hw_watchpoint.vaddr = hw_debug_points[n].addr;
1591                hw_watchpoint.flags = flag;
1592            }
1593        }
1594    }
1595    return handle;
1596}
1597
1598static int kvm_handle_singlestep(void)
1599{
1600    return DEBUG_RETURN_GDB;
1601}
1602
1603static int kvm_handle_sw_breakpoint(void)
1604{
1605    return DEBUG_RETURN_GDB;
1606}
1607
1608static int kvm_handle_debug(PowerPCCPU *cpu, struct kvm_run *run)
1609{
1610    CPUState *cs = CPU(cpu);
1611    CPUPPCState *env = &cpu->env;
1612    struct kvm_debug_exit_arch *arch_info = &run->debug.arch;
1613
1614    if (cs->singlestep_enabled) {
1615        return kvm_handle_singlestep();
1616    }
1617
1618    if (arch_info->status) {
1619        return kvm_handle_hw_breakpoint(cs, arch_info);
1620    }
1621
1622    if (kvm_find_sw_breakpoint(cs, arch_info->address)) {
1623        return kvm_handle_sw_breakpoint();
1624    }
1625
1626    /*
1627     * QEMU is not able to handle debug exception, so inject
1628     * program exception to guest;
1629     * Yes program exception NOT debug exception !!
1630     * When QEMU is using debug resources then debug exception must
1631     * be always set. To achieve this we set MSR_DE and also set
1632     * MSRP_DEP so guest cannot change MSR_DE.
1633     * When emulating debug resource for guest we want guest
1634     * to control MSR_DE (enable/disable debug interrupt on need).
1635     * Supporting both configurations are NOT possible.
1636     * So the result is that we cannot share debug resources
1637     * between QEMU and Guest on BOOKE architecture.
1638     * In the current design QEMU gets the priority over guest,
1639     * this means that if QEMU is using debug resources then guest
1640     * cannot use them;
1641     * For software breakpoint QEMU uses a privileged instruction;
1642     * So there cannot be any reason that we are here for guest
1643     * set debug exception, only possibility is guest executed a
1644     * privileged / illegal instruction and that's why we are
1645     * injecting a program interrupt.
1646     */
1647    cpu_synchronize_state(cs);
1648    /*
1649     * env->nip is PC, so increment this by 4 to use
1650     * ppc_cpu_do_interrupt(), which set srr0 = env->nip - 4.
1651     */
1652    env->nip += 4;
1653    cs->exception_index = POWERPC_EXCP_PROGRAM;
1654    env->error_code = POWERPC_EXCP_INVAL;
1655    ppc_cpu_do_interrupt(cs);
1656
1657    return DEBUG_RETURN_GUEST;
1658}
1659
1660int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run)
1661{
1662    PowerPCCPU *cpu = POWERPC_CPU(cs);
1663    CPUPPCState *env = &cpu->env;
1664    int ret;
1665
1666    qemu_mutex_lock_iothread();
1667
1668    switch (run->exit_reason) {
1669    case KVM_EXIT_DCR:
1670        if (run->dcr.is_write) {
1671            trace_kvm_handle_dcr_write();
1672            ret = kvmppc_handle_dcr_write(env, run->dcr.dcrn, run->dcr.data);
1673        } else {
1674            trace_kvm_handle_dcr_read();
1675            ret = kvmppc_handle_dcr_read(env, run->dcr.dcrn, &run->dcr.data);
1676        }
1677        break;
1678    case KVM_EXIT_HLT:
1679        trace_kvm_handle_halt();
1680        ret = kvmppc_handle_halt(cpu);
1681        break;
1682#if defined(TARGET_PPC64)
1683    case KVM_EXIT_PAPR_HCALL:
1684        trace_kvm_handle_papr_hcall();
1685        run->papr_hcall.ret = spapr_hypercall(cpu,
1686                                              run->papr_hcall.nr,
1687                                              run->papr_hcall.args);
1688        ret = 0;
1689        break;
1690#endif
1691    case KVM_EXIT_EPR:
1692        trace_kvm_handle_epr();
1693        run->epr.epr = ldl_phys(cs->as, env->mpic_iack);
1694        ret = 0;
1695        break;
1696    case KVM_EXIT_WATCHDOG:
1697        trace_kvm_handle_watchdog_expiry();
1698        watchdog_perform_action();
1699        ret = 0;
1700        break;
1701
1702    case KVM_EXIT_DEBUG:
1703        trace_kvm_handle_debug_exception();
1704        if (kvm_handle_debug(cpu, run)) {
1705            ret = EXCP_DEBUG;
1706            break;
1707        }
1708        /* re-enter, this exception was guest-internal */
1709        ret = 0;
1710        break;
1711
1712#if defined(TARGET_PPC64)
1713    case KVM_EXIT_NMI:
1714        trace_kvm_handle_nmi_exception();
1715        ret = kvm_handle_nmi(cpu, run);
1716        break;
1717#endif
1718
1719    default:
1720        fprintf(stderr, "KVM: unknown exit reason %d\n", run->exit_reason);
1721        ret = -1;
1722        break;
1723    }
1724
1725    qemu_mutex_unlock_iothread();
1726    return ret;
1727}
1728
1729int kvmppc_or_tsr_bits(PowerPCCPU *cpu, uint32_t tsr_bits)
1730{
1731    CPUState *cs = CPU(cpu);
1732    uint32_t bits = tsr_bits;
1733    struct kvm_one_reg reg = {
1734        .id = KVM_REG_PPC_OR_TSR,
1735        .addr = (uintptr_t) &bits,
1736    };
1737
1738    return kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
1739}
1740
1741int kvmppc_clear_tsr_bits(PowerPCCPU *cpu, uint32_t tsr_bits)
1742{
1743
1744    CPUState *cs = CPU(cpu);
1745    uint32_t bits = tsr_bits;
1746    struct kvm_one_reg reg = {
1747        .id = KVM_REG_PPC_CLEAR_TSR,
1748        .addr = (uintptr_t) &bits,
1749    };
1750
1751    return kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
1752}
1753
1754int kvmppc_set_tcr(PowerPCCPU *cpu)
1755{
1756    CPUState *cs = CPU(cpu);
1757    CPUPPCState *env = &cpu->env;
1758    uint32_t tcr = env->spr[SPR_BOOKE_TCR];
1759
1760    struct kvm_one_reg reg = {
1761        .id = KVM_REG_PPC_TCR,
1762        .addr = (uintptr_t) &tcr,
1763    };
1764
1765    return kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
1766}
1767
1768int kvmppc_booke_watchdog_enable(PowerPCCPU *cpu)
1769{
1770    CPUState *cs = CPU(cpu);
1771    int ret;
1772
1773    if (!kvm_enabled()) {
1774        return -1;
1775    }
1776
1777    if (!cap_ppc_watchdog) {
1778        printf("warning: KVM does not support watchdog");
1779        return -1;
1780    }
1781
1782    ret = kvm_vcpu_enable_cap(cs, KVM_CAP_PPC_BOOKE_WATCHDOG, 0);
1783    if (ret < 0) {
1784        fprintf(stderr, "%s: couldn't enable KVM_CAP_PPC_BOOKE_WATCHDOG: %s\n",
1785                __func__, strerror(-ret));
1786        return ret;
1787    }
1788
1789    return ret;
1790}
1791
1792static int read_cpuinfo(const char *field, char *value, int len)
1793{
1794    FILE *f;
1795    int ret = -1;
1796    int field_len = strlen(field);
1797    char line[512];
1798
1799    f = fopen("/proc/cpuinfo", "r");
1800    if (!f) {
1801        return -1;
1802    }
1803
1804    do {
1805        if (!fgets(line, sizeof(line), f)) {
1806            break;
1807        }
1808        if (!strncmp(line, field, field_len)) {
1809            pstrcpy(value, len, line);
1810            ret = 0;
1811            break;
1812        }
1813    } while (*line);
1814
1815    fclose(f);
1816
1817    return ret;
1818}
1819
1820static uint32_t kvmppc_get_tbfreq_procfs(void)
1821{
1822    char line[512];
1823    char *ns;
1824    uint32_t tbfreq_fallback = NANOSECONDS_PER_SECOND;
1825    uint32_t tbfreq_procfs;
1826
1827    if (read_cpuinfo("timebase", line, sizeof(line))) {
1828        return tbfreq_fallback;
1829    }
1830
1831    ns = strchr(line, ':');
1832    if (!ns) {
1833        return tbfreq_fallback;
1834    }
1835
1836    tbfreq_procfs = atoi(++ns);
1837
1838    /* 0 is certainly not acceptable by the guest, return fallback value */
1839    return tbfreq_procfs ? tbfreq_procfs : tbfreq_fallback;
1840}
1841
1842uint32_t kvmppc_get_tbfreq(void)
1843{
1844    static uint32_t cached_tbfreq;
1845
1846    if (!cached_tbfreq) {
1847        cached_tbfreq = kvmppc_get_tbfreq_procfs();
1848    }
1849
1850    return cached_tbfreq;
1851}
1852
1853bool kvmppc_get_host_serial(char **value)
1854{
1855    return g_file_get_contents("/proc/device-tree/system-id", value, NULL,
1856                               NULL);
1857}
1858
1859bool kvmppc_get_host_model(char **value)
1860{
1861    return g_file_get_contents("/proc/device-tree/model", value, NULL, NULL);
1862}
1863
1864/* Try to find a device tree node for a CPU with clock-frequency property */
1865static int kvmppc_find_cpu_dt(char *buf, int buf_len)
1866{
1867    struct dirent *dirp;
1868    DIR *dp;
1869
1870    dp = opendir(PROC_DEVTREE_CPU);
1871    if (!dp) {
1872        printf("Can't open directory " PROC_DEVTREE_CPU "\n");
1873        return -1;
1874    }
1875
1876    buf[0] = '\0';
1877    while ((dirp = readdir(dp)) != NULL) {
1878        FILE *f;
1879        snprintf(buf, buf_len, "%s%s/clock-frequency", PROC_DEVTREE_CPU,
1880                 dirp->d_name);
1881        f = fopen(buf, "r");
1882        if (f) {
1883            snprintf(buf, buf_len, "%s%s", PROC_DEVTREE_CPU, dirp->d_name);
1884            fclose(f);
1885            break;
1886        }
1887        buf[0] = '\0';
1888    }
1889    closedir(dp);
1890    if (buf[0] == '\0') {
1891        printf("Unknown host!\n");
1892        return -1;
1893    }
1894
1895    return 0;
1896}
1897
1898static uint64_t kvmppc_read_int_dt(const char *filename)
1899{
1900    union {
1901        uint32_t v32;
1902        uint64_t v64;
1903    } u;
1904    FILE *f;
1905    int len;
1906
1907    f = fopen(filename, "rb");
1908    if (!f) {
1909        return -1;
1910    }
1911
1912    len = fread(&u, 1, sizeof(u), f);
1913    fclose(f);
1914    switch (len) {
1915    case 4:
1916        /* property is a 32-bit quantity */
1917        return be32_to_cpu(u.v32);
1918    case 8:
1919        return be64_to_cpu(u.v64);
1920    }
1921
1922    return 0;
1923}
1924
1925/*
1926 * Read a CPU node property from the host device tree that's a single
1927 * integer (32-bit or 64-bit).  Returns 0 if anything goes wrong
1928 * (can't find or open the property, or doesn't understand the format)
1929 */
1930static uint64_t kvmppc_read_int_cpu_dt(const char *propname)
1931{
1932    char buf[PATH_MAX], *tmp;
1933    uint64_t val;
1934
1935    if (kvmppc_find_cpu_dt(buf, sizeof(buf))) {
1936        return -1;
1937    }
1938
1939    tmp = g_strdup_printf("%s/%s", buf, propname);
1940    val = kvmppc_read_int_dt(tmp);
1941    g_free(tmp);
1942
1943    return val;
1944}
1945
1946uint64_t kvmppc_get_clockfreq(void)
1947{
1948    return kvmppc_read_int_cpu_dt("clock-frequency");
1949}
1950
1951static int kvmppc_get_dec_bits(void)
1952{
1953    int nr_bits = kvmppc_read_int_cpu_dt("ibm,dec-bits");
1954
1955    if (nr_bits > 0) {
1956        return nr_bits;
1957    }
1958    return 0;
1959}
1960
1961static int kvmppc_get_pvinfo(CPUPPCState *env, struct kvm_ppc_pvinfo *pvinfo)
1962{
1963    CPUState *cs = env_cpu(env);
1964
1965    if (kvm_vm_check_extension(cs->kvm_state, KVM_CAP_PPC_GET_PVINFO) &&
1966        !kvm_vm_ioctl(cs->kvm_state, KVM_PPC_GET_PVINFO, pvinfo)) {
1967        return 0;
1968    }
1969
1970    return 1;
1971}
1972
1973int kvmppc_get_hasidle(CPUPPCState *env)
1974{
1975    struct kvm_ppc_pvinfo pvinfo;
1976
1977    if (!kvmppc_get_pvinfo(env, &pvinfo) &&
1978        (pvinfo.flags & KVM_PPC_PVINFO_FLAGS_EV_IDLE)) {
1979        return 1;
1980    }
1981
1982    return 0;
1983}
1984
1985int kvmppc_get_hypercall(CPUPPCState *env, uint8_t *buf, int buf_len)
1986{
1987    uint32_t *hc = (uint32_t *)buf;
1988    struct kvm_ppc_pvinfo pvinfo;
1989
1990    if (!kvmppc_get_pvinfo(env, &pvinfo)) {
1991        memcpy(buf, pvinfo.hcall, buf_len);
1992        return 0;
1993    }
1994
1995    /*
1996     * Fallback to always fail hypercalls regardless of endianness:
1997     *
1998     *     tdi 0,r0,72 (becomes b .+8 in wrong endian, nop in good endian)
1999     *     li r3, -1
2000     *     b .+8       (becomes nop in wrong endian)
2001     *     bswap32(li r3, -1)
2002     */
2003
2004    hc[0] = cpu_to_be32(0x08000048);
2005    hc[1] = cpu_to_be32(0x3860ffff);
2006    hc[2] = cpu_to_be32(0x48000008);
2007    hc[3] = cpu_to_be32(bswap32(0x3860ffff));
2008
2009    return 1;
2010}
2011
2012static inline int kvmppc_enable_hcall(KVMState *s, target_ulong hcall)
2013{
2014    return kvm_vm_enable_cap(s, KVM_CAP_PPC_ENABLE_HCALL, 0, hcall, 1);
2015}
2016
2017void kvmppc_enable_logical_ci_hcalls(void)
2018{
2019    /*
2020     * FIXME: it would be nice if we could detect the cases where
2021     * we're using a device which requires the in kernel
2022     * implementation of these hcalls, but the kernel lacks them and
2023     * produce a warning.
2024     */
2025    kvmppc_enable_hcall(kvm_state, H_LOGICAL_CI_LOAD);
2026    kvmppc_enable_hcall(kvm_state, H_LOGICAL_CI_STORE);
2027}
2028
2029void kvmppc_enable_set_mode_hcall(void)
2030{
2031    kvmppc_enable_hcall(kvm_state, H_SET_MODE);
2032}
2033
2034void kvmppc_enable_clear_ref_mod_hcalls(void)
2035{
2036    kvmppc_enable_hcall(kvm_state, H_CLEAR_REF);
2037    kvmppc_enable_hcall(kvm_state, H_CLEAR_MOD);
2038}
2039
2040void kvmppc_enable_h_page_init(void)
2041{
2042    kvmppc_enable_hcall(kvm_state, H_PAGE_INIT);
2043}
2044
2045void kvmppc_enable_h_rpt_invalidate(void)
2046{
2047    kvmppc_enable_hcall(kvm_state, H_RPT_INVALIDATE);
2048}
2049
2050void kvmppc_set_papr(PowerPCCPU *cpu)
2051{
2052    CPUState *cs = CPU(cpu);
2053    int ret;
2054
2055    if (!kvm_enabled()) {
2056        return;
2057    }
2058
2059    ret = kvm_vcpu_enable_cap(cs, KVM_CAP_PPC_PAPR, 0);
2060    if (ret) {
2061        error_report("This vCPU type or KVM version does not support PAPR");
2062        exit(1);
2063    }
2064
2065    /*
2066     * Update the capability flag so we sync the right information
2067     * with kvm
2068     */
2069    cap_papr = 1;
2070}
2071
2072int kvmppc_set_compat(PowerPCCPU *cpu, uint32_t compat_pvr)
2073{
2074    return kvm_set_one_reg(CPU(cpu), KVM_REG_PPC_ARCH_COMPAT, &compat_pvr);
2075}
2076
2077void kvmppc_set_mpic_proxy(PowerPCCPU *cpu, int mpic_proxy)
2078{
2079    CPUState *cs = CPU(cpu);
2080    int ret;
2081
2082    ret = kvm_vcpu_enable_cap(cs, KVM_CAP_PPC_EPR, 0, mpic_proxy);
2083    if (ret && mpic_proxy) {
2084        error_report("This KVM version does not support EPR");
2085        exit(1);
2086    }
2087}
2088
2089bool kvmppc_get_fwnmi(void)
2090{
2091    return cap_fwnmi;
2092}
2093
2094int kvmppc_set_fwnmi(PowerPCCPU *cpu)
2095{
2096    CPUState *cs = CPU(cpu);
2097
2098    return kvm_vcpu_enable_cap(cs, KVM_CAP_PPC_FWNMI, 0);
2099}
2100
2101int kvmppc_smt_threads(void)
2102{
2103    return cap_ppc_smt ? cap_ppc_smt : 1;
2104}
2105
2106int kvmppc_set_smt_threads(int smt)
2107{
2108    int ret;
2109
2110    ret = kvm_vm_enable_cap(kvm_state, KVM_CAP_PPC_SMT, 0, smt, 0);
2111    if (!ret) {
2112        cap_ppc_smt = smt;
2113    }
2114    return ret;
2115}
2116
2117void kvmppc_error_append_smt_possible_hint(Error *const *errp)
2118{
2119    int i;
2120    GString *g;
2121    char *s;
2122
2123    assert(kvm_enabled());
2124    if (cap_ppc_smt_possible) {
2125        g = g_string_new("Available VSMT modes:");
2126        for (i = 63; i >= 0; i--) {
2127            if ((1UL << i) & cap_ppc_smt_possible) {
2128                g_string_append_printf(g, " %lu", (1UL << i));
2129            }
2130        }
2131        s = g_string_free(g, false);
2132        error_append_hint(errp, "%s.\n", s);
2133        g_free(s);
2134    } else {
2135        error_append_hint(errp,
2136                          "This KVM seems to be too old to support VSMT.\n");
2137    }
2138}
2139
2140
2141#ifdef TARGET_PPC64
2142uint64_t kvmppc_vrma_limit(unsigned int hash_shift)
2143{
2144    struct kvm_ppc_smmu_info info;
2145    long rampagesize, best_page_shift;
2146    int i;
2147
2148    /*
2149     * Find the largest hardware supported page size that's less than
2150     * or equal to the (logical) backing page size of guest RAM
2151     */
2152    kvm_get_smmu_info(&info, &error_fatal);
2153    rampagesize = qemu_minrampagesize();
2154    best_page_shift = 0;
2155
2156    for (i = 0; i < KVM_PPC_PAGE_SIZES_MAX_SZ; i++) {
2157        struct kvm_ppc_one_seg_page_size *sps = &info.sps[i];
2158
2159        if (!sps->page_shift) {
2160            continue;
2161        }
2162
2163        if ((sps->page_shift > best_page_shift)
2164            && ((1UL << sps->page_shift) <= rampagesize)) {
2165            best_page_shift = sps->page_shift;
2166        }
2167    }
2168
2169    return 1ULL << (best_page_shift + hash_shift - 7);
2170}
2171#endif
2172
2173bool kvmppc_spapr_use_multitce(void)
2174{
2175    return cap_spapr_multitce;
2176}
2177
2178int kvmppc_spapr_enable_inkernel_multitce(void)
2179{
2180    int ret;
2181
2182    ret = kvm_vm_enable_cap(kvm_state, KVM_CAP_PPC_ENABLE_HCALL, 0,
2183                            H_PUT_TCE_INDIRECT, 1);
2184    if (!ret) {
2185        ret = kvm_vm_enable_cap(kvm_state, KVM_CAP_PPC_ENABLE_HCALL, 0,
2186                                H_STUFF_TCE, 1);
2187    }
2188
2189    return ret;
2190}
2191
2192void *kvmppc_create_spapr_tce(uint32_t liobn, uint32_t page_shift,
2193                              uint64_t bus_offset, uint32_t nb_table,
2194                              int *pfd, bool need_vfio)
2195{
2196    long len;
2197    int fd;
2198    void *table;
2199
2200    /*
2201     * Must set fd to -1 so we don't try to munmap when called for
2202     * destroying the table, which the upper layers -will- do
2203     */
2204    *pfd = -1;
2205    if (!cap_spapr_tce || (need_vfio && !cap_spapr_vfio)) {
2206        return NULL;
2207    }
2208
2209    if (cap_spapr_tce_64) {
2210        struct kvm_create_spapr_tce_64 args = {
2211            .liobn = liobn,
2212            .page_shift = page_shift,
2213            .offset = bus_offset >> page_shift,
2214            .size = nb_table,
2215            .flags = 0
2216        };
2217        fd = kvm_vm_ioctl(kvm_state, KVM_CREATE_SPAPR_TCE_64, &args);
2218        if (fd < 0) {
2219            fprintf(stderr,
2220                    "KVM: Failed to create TCE64 table for liobn 0x%x\n",
2221                    liobn);
2222            return NULL;
2223        }
2224    } else if (cap_spapr_tce) {
2225        uint64_t window_size = (uint64_t) nb_table << page_shift;
2226        struct kvm_create_spapr_tce args = {
2227            .liobn = liobn,
2228            .window_size = window_size,
2229        };
2230        if ((window_size != args.window_size) || bus_offset) {
2231            return NULL;
2232        }
2233        fd = kvm_vm_ioctl(kvm_state, KVM_CREATE_SPAPR_TCE, &args);
2234        if (fd < 0) {
2235            fprintf(stderr, "KVM: Failed to create TCE table for liobn 0x%x\n",
2236                    liobn);
2237            return NULL;
2238        }
2239    } else {
2240        return NULL;
2241    }
2242
2243    len = nb_table * sizeof(uint64_t);
2244    /* FIXME: round this up to page size */
2245
2246    table = mmap(NULL, len, PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0);
2247    if (table == MAP_FAILED) {
2248        fprintf(stderr, "KVM: Failed to map TCE table for liobn 0x%x\n",
2249                liobn);
2250        close(fd);
2251        return NULL;
2252    }
2253
2254    *pfd = fd;
2255    return table;
2256}
2257
2258int kvmppc_remove_spapr_tce(void *table, int fd, uint32_t nb_table)
2259{
2260    long len;
2261
2262    if (fd < 0) {
2263        return -1;
2264    }
2265
2266    len = nb_table * sizeof(uint64_t);
2267    if ((munmap(table, len) < 0) ||
2268        (close(fd) < 0)) {
2269        fprintf(stderr, "KVM: Unexpected error removing TCE table: %s",
2270                strerror(errno));
2271        /* Leak the table */
2272    }
2273
2274    return 0;
2275}
2276
2277int kvmppc_reset_htab(int shift_hint)
2278{
2279    uint32_t shift = shift_hint;
2280
2281    if (!kvm_enabled()) {
2282        /* Full emulation, tell caller to allocate htab itself */
2283        return 0;
2284    }
2285    if (kvm_vm_check_extension(kvm_state, KVM_CAP_PPC_ALLOC_HTAB)) {
2286        int ret;
2287        ret = kvm_vm_ioctl(kvm_state, KVM_PPC_ALLOCATE_HTAB, &shift);
2288        if (ret == -ENOTTY) {
2289            /*
2290             * At least some versions of PR KVM advertise the
2291             * capability, but don't implement the ioctl().  Oops.
2292             * Return 0 so that we allocate the htab in qemu, as is
2293             * correct for PR.
2294             */
2295            return 0;
2296        } else if (ret < 0) {
2297            return ret;
2298        }
2299        return shift;
2300    }
2301
2302    /*
2303     * We have a kernel that predates the htab reset calls.  For PR
2304     * KVM, we need to allocate the htab ourselves, for an HV KVM of
2305     * this era, it has allocated a 16MB fixed size hash table
2306     * already.
2307     */
2308    if (kvmppc_is_pr(kvm_state)) {
2309        /* PR - tell caller to allocate htab */
2310        return 0;
2311    } else {
2312        /* HV - assume 16MB kernel allocated htab */
2313        return 24;
2314    }
2315}
2316
2317static inline uint32_t mfpvr(void)
2318{
2319    uint32_t pvr;
2320
2321    asm ("mfpvr %0"
2322         : "=r"(pvr));
2323    return pvr;
2324}
2325
2326static void alter_insns(uint64_t *word, uint64_t flags, bool on)
2327{
2328    if (on) {
2329        *word |= flags;
2330    } else {
2331        *word &= ~flags;
2332    }
2333}
2334
2335static void kvmppc_host_cpu_class_init(ObjectClass *oc, void *data)
2336{
2337    PowerPCCPUClass *pcc = POWERPC_CPU_CLASS(oc);
2338    uint32_t dcache_size = kvmppc_read_int_cpu_dt("d-cache-size");
2339    uint32_t icache_size = kvmppc_read_int_cpu_dt("i-cache-size");
2340
2341    /* Now fix up the class with information we can query from the host */
2342    pcc->pvr = mfpvr();
2343
2344    alter_insns(&pcc->insns_flags, PPC_ALTIVEC,
2345                qemu_getauxval(AT_HWCAP) & PPC_FEATURE_HAS_ALTIVEC);
2346    alter_insns(&pcc->insns_flags2, PPC2_VSX,
2347                qemu_getauxval(AT_HWCAP) & PPC_FEATURE_HAS_VSX);
2348    alter_insns(&pcc->insns_flags2, PPC2_DFP,
2349                qemu_getauxval(AT_HWCAP) & PPC_FEATURE_HAS_DFP);
2350
2351    if (dcache_size != -1) {
2352        pcc->l1_dcache_size = dcache_size;
2353    }
2354
2355    if (icache_size != -1) {
2356        pcc->l1_icache_size = icache_size;
2357    }
2358
2359#if defined(TARGET_PPC64)
2360    pcc->radix_page_info = kvm_get_radix_page_info();
2361
2362    if ((pcc->pvr & 0xffffff00) == CPU_POWERPC_POWER9_DD1) {
2363        /*
2364         * POWER9 DD1 has some bugs which make it not really ISA 3.00
2365         * compliant.  More importantly, advertising ISA 3.00
2366         * architected mode may prevent guests from activating
2367         * necessary DD1 workarounds.
2368         */
2369        pcc->pcr_supported &= ~(PCR_COMPAT_3_00 | PCR_COMPAT_2_07
2370                                | PCR_COMPAT_2_06 | PCR_COMPAT_2_05);
2371    }
2372#endif /* defined(TARGET_PPC64) */
2373}
2374
2375bool kvmppc_has_cap_epr(void)
2376{
2377    return cap_epr;
2378}
2379
2380bool kvmppc_has_cap_fixup_hcalls(void)
2381{
2382    return cap_fixup_hcalls;
2383}
2384
2385bool kvmppc_has_cap_htm(void)
2386{
2387    return cap_htm;
2388}
2389
2390bool kvmppc_has_cap_mmu_radix(void)
2391{
2392    return cap_mmu_radix;
2393}
2394
2395bool kvmppc_has_cap_mmu_hash_v3(void)
2396{
2397    return cap_mmu_hash_v3;
2398}
2399
2400static bool kvmppc_power8_host(void)
2401{
2402    bool ret = false;
2403#ifdef TARGET_PPC64
2404    {
2405        uint32_t base_pvr = CPU_POWERPC_POWER_SERVER_MASK & mfpvr();
2406        ret = (base_pvr == CPU_POWERPC_POWER8E_BASE) ||
2407              (base_pvr == CPU_POWERPC_POWER8NVL_BASE) ||
2408              (base_pvr == CPU_POWERPC_POWER8_BASE);
2409    }
2410#endif /* TARGET_PPC64 */
2411    return ret;
2412}
2413
2414static int parse_cap_ppc_safe_cache(struct kvm_ppc_cpu_char c)
2415{
2416    bool l1d_thread_priv_req = !kvmppc_power8_host();
2417
2418    if (~c.behaviour & c.behaviour_mask & H_CPU_BEHAV_L1D_FLUSH_PR) {
2419        return 2;
2420    } else if ((!l1d_thread_priv_req ||
2421                c.character & c.character_mask & H_CPU_CHAR_L1D_THREAD_PRIV) &&
2422               (c.character & c.character_mask
2423                & (H_CPU_CHAR_L1D_FLUSH_ORI30 | H_CPU_CHAR_L1D_FLUSH_TRIG2))) {
2424        return 1;
2425    }
2426
2427    return 0;
2428}
2429
2430static int parse_cap_ppc_safe_bounds_check(struct kvm_ppc_cpu_char c)
2431{
2432    if (~c.behaviour & c.behaviour_mask & H_CPU_BEHAV_BNDS_CHK_SPEC_BAR) {
2433        return 2;
2434    } else if (c.character & c.character_mask & H_CPU_CHAR_SPEC_BAR_ORI31) {
2435        return 1;
2436    }
2437
2438    return 0;
2439}
2440
2441static int parse_cap_ppc_safe_indirect_branch(struct kvm_ppc_cpu_char c)
2442{
2443    if ((~c.behaviour & c.behaviour_mask & H_CPU_BEHAV_FLUSH_COUNT_CACHE) &&
2444        (~c.character & c.character_mask & H_CPU_CHAR_CACHE_COUNT_DIS) &&
2445        (~c.character & c.character_mask & H_CPU_CHAR_BCCTRL_SERIALISED)) {
2446        return SPAPR_CAP_FIXED_NA;
2447    } else if (c.behaviour & c.behaviour_mask & H_CPU_BEHAV_FLUSH_COUNT_CACHE) {
2448        return SPAPR_CAP_WORKAROUND;
2449    } else if (c.character & c.character_mask & H_CPU_CHAR_CACHE_COUNT_DIS) {
2450        return  SPAPR_CAP_FIXED_CCD;
2451    } else if (c.character & c.character_mask & H_CPU_CHAR_BCCTRL_SERIALISED) {
2452        return SPAPR_CAP_FIXED_IBS;
2453    }
2454
2455    return 0;
2456}
2457
2458static int parse_cap_ppc_count_cache_flush_assist(struct kvm_ppc_cpu_char c)
2459{
2460    if (c.character & c.character_mask & H_CPU_CHAR_BCCTR_FLUSH_ASSIST) {
2461        return 1;
2462    }
2463    return 0;
2464}
2465
2466bool kvmppc_has_cap_xive(void)
2467{
2468    return cap_xive;
2469}
2470
2471static void kvmppc_get_cpu_characteristics(KVMState *s)
2472{
2473    struct kvm_ppc_cpu_char c;
2474    int ret;
2475
2476    /* Assume broken */
2477    cap_ppc_safe_cache = 0;
2478    cap_ppc_safe_bounds_check = 0;
2479    cap_ppc_safe_indirect_branch = 0;
2480
2481    ret = kvm_vm_check_extension(s, KVM_CAP_PPC_GET_CPU_CHAR);
2482    if (!ret) {
2483        return;
2484    }
2485    ret = kvm_vm_ioctl(s, KVM_PPC_GET_CPU_CHAR, &c);
2486    if (ret < 0) {
2487        return;
2488    }
2489
2490    cap_ppc_safe_cache = parse_cap_ppc_safe_cache(c);
2491    cap_ppc_safe_bounds_check = parse_cap_ppc_safe_bounds_check(c);
2492    cap_ppc_safe_indirect_branch = parse_cap_ppc_safe_indirect_branch(c);
2493    cap_ppc_count_cache_flush_assist =
2494        parse_cap_ppc_count_cache_flush_assist(c);
2495}
2496
2497int kvmppc_get_cap_safe_cache(void)
2498{
2499    return cap_ppc_safe_cache;
2500}
2501
2502int kvmppc_get_cap_safe_bounds_check(void)
2503{
2504    return cap_ppc_safe_bounds_check;
2505}
2506
2507int kvmppc_get_cap_safe_indirect_branch(void)
2508{
2509    return cap_ppc_safe_indirect_branch;
2510}
2511
2512int kvmppc_get_cap_count_cache_flush_assist(void)
2513{
2514    return cap_ppc_count_cache_flush_assist;
2515}
2516
2517bool kvmppc_has_cap_nested_kvm_hv(void)
2518{
2519    return !!cap_ppc_nested_kvm_hv;
2520}
2521
2522int kvmppc_set_cap_nested_kvm_hv(int enable)
2523{
2524    return kvm_vm_enable_cap(kvm_state, KVM_CAP_PPC_NESTED_HV, 0, enable);
2525}
2526
2527bool kvmppc_has_cap_spapr_vfio(void)
2528{
2529    return cap_spapr_vfio;
2530}
2531
2532int kvmppc_get_cap_large_decr(void)
2533{
2534    return cap_large_decr;
2535}
2536
2537int kvmppc_enable_cap_large_decr(PowerPCCPU *cpu, int enable)
2538{
2539    CPUState *cs = CPU(cpu);
2540    uint64_t lpcr;
2541
2542    kvm_get_one_reg(cs, KVM_REG_PPC_LPCR_64, &lpcr);
2543    /* Do we need to modify the LPCR? */
2544    if (!!(lpcr & LPCR_LD) != !!enable) {
2545        if (enable) {
2546            lpcr |= LPCR_LD;
2547        } else {
2548            lpcr &= ~LPCR_LD;
2549        }
2550        kvm_set_one_reg(cs, KVM_REG_PPC_LPCR_64, &lpcr);
2551        kvm_get_one_reg(cs, KVM_REG_PPC_LPCR_64, &lpcr);
2552
2553        if (!!(lpcr & LPCR_LD) != !!enable) {
2554            return -1;
2555        }
2556    }
2557
2558    return 0;
2559}
2560
2561int kvmppc_has_cap_rpt_invalidate(void)
2562{
2563    return cap_rpt_invalidate;
2564}
2565
2566PowerPCCPUClass *kvm_ppc_get_host_cpu_class(void)
2567{
2568    uint32_t host_pvr = mfpvr();
2569    PowerPCCPUClass *pvr_pcc;
2570
2571    pvr_pcc = ppc_cpu_class_by_pvr(host_pvr);
2572    if (pvr_pcc == NULL) {
2573        pvr_pcc = ppc_cpu_class_by_pvr_mask(host_pvr);
2574    }
2575
2576    return pvr_pcc;
2577}
2578
2579static void pseries_machine_class_fixup(ObjectClass *oc, void *opaque)
2580{
2581    MachineClass *mc = MACHINE_CLASS(oc);
2582
2583    mc->default_cpu_type = TYPE_HOST_POWERPC_CPU;
2584}
2585
2586static int kvm_ppc_register_host_cpu_type(void)
2587{
2588    TypeInfo type_info = {
2589        .name = TYPE_HOST_POWERPC_CPU,
2590        .class_init = kvmppc_host_cpu_class_init,
2591    };
2592    PowerPCCPUClass *pvr_pcc;
2593    ObjectClass *oc;
2594    DeviceClass *dc;
2595    int i;
2596
2597    pvr_pcc = kvm_ppc_get_host_cpu_class();
2598    if (pvr_pcc == NULL) {
2599        return -1;
2600    }
2601    type_info.parent = object_class_get_name(OBJECT_CLASS(pvr_pcc));
2602    type_register(&type_info);
2603    /* override TCG default cpu type with 'host' cpu model */
2604    object_class_foreach(pseries_machine_class_fixup, TYPE_SPAPR_MACHINE,
2605                         false, NULL);
2606
2607    oc = object_class_by_name(type_info.name);
2608    g_assert(oc);
2609
2610    /*
2611     * Update generic CPU family class alias (e.g. on a POWER8NVL host,
2612     * we want "POWER8" to be a "family" alias that points to the current
2613     * host CPU type, too)
2614     */
2615    dc = DEVICE_CLASS(ppc_cpu_get_family_class(pvr_pcc));
2616    for (i = 0; ppc_cpu_aliases[i].alias != NULL; i++) {
2617        if (strcasecmp(ppc_cpu_aliases[i].alias, dc->desc) == 0) {
2618            char *suffix;
2619
2620            ppc_cpu_aliases[i].model = g_strdup(object_class_get_name(oc));
2621            suffix = strstr(ppc_cpu_aliases[i].model, POWERPC_CPU_TYPE_SUFFIX);
2622            if (suffix) {
2623                *suffix = 0;
2624            }
2625            break;
2626        }
2627    }
2628
2629    return 0;
2630}
2631
2632int kvmppc_define_rtas_kernel_token(uint32_t token, const char *function)
2633{
2634    struct kvm_rtas_token_args args = {
2635        .token = token,
2636    };
2637
2638    if (!kvm_check_extension(kvm_state, KVM_CAP_PPC_RTAS)) {
2639        return -ENOENT;
2640    }
2641
2642    strncpy(args.name, function, sizeof(args.name) - 1);
2643
2644    return kvm_vm_ioctl(kvm_state, KVM_PPC_RTAS_DEFINE_TOKEN, &args);
2645}
2646
2647int kvmppc_get_htab_fd(bool write, uint64_t index, Error **errp)
2648{
2649    struct kvm_get_htab_fd s = {
2650        .flags = write ? KVM_GET_HTAB_WRITE : 0,
2651        .start_index = index,
2652    };
2653    int ret;
2654
2655    if (!cap_htab_fd) {
2656        error_setg(errp, "KVM version doesn't support %s the HPT",
2657                   write ? "writing" : "reading");
2658        return -ENOTSUP;
2659    }
2660
2661    ret = kvm_vm_ioctl(kvm_state, KVM_PPC_GET_HTAB_FD, &s);
2662    if (ret < 0) {
2663        error_setg(errp, "Unable to open fd for %s HPT %s KVM: %s",
2664                   write ? "writing" : "reading", write ? "to" : "from",
2665                   strerror(errno));
2666        return -errno;
2667    }
2668
2669    return ret;
2670}
2671
2672int kvmppc_save_htab(QEMUFile *f, int fd, size_t bufsize, int64_t max_ns)
2673{
2674    int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
2675    uint8_t buf[bufsize];
2676    ssize_t rc;
2677
2678    do {
2679        rc = read(fd, buf, bufsize);
2680        if (rc < 0) {
2681            fprintf(stderr, "Error reading data from KVM HTAB fd: %s\n",
2682                    strerror(errno));
2683            return rc;
2684        } else if (rc) {
2685            uint8_t *buffer = buf;
2686            ssize_t n = rc;
2687            while (n) {
2688                struct kvm_get_htab_header *head =
2689                    (struct kvm_get_htab_header *) buffer;
2690                size_t chunksize = sizeof(*head) +
2691                     HASH_PTE_SIZE_64 * head->n_valid;
2692
2693                qemu_put_be32(f, head->index);
2694                qemu_put_be16(f, head->n_valid);
2695                qemu_put_be16(f, head->n_invalid);
2696                qemu_put_buffer(f, (void *)(head + 1),
2697                                HASH_PTE_SIZE_64 * head->n_valid);
2698
2699                buffer += chunksize;
2700                n -= chunksize;
2701            }
2702        }
2703    } while ((rc != 0)
2704             && ((max_ns < 0) ||
2705                 ((qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) < max_ns)));
2706
2707    return (rc == 0) ? 1 : 0;
2708}
2709
2710int kvmppc_load_htab_chunk(QEMUFile *f, int fd, uint32_t index,
2711                           uint16_t n_valid, uint16_t n_invalid, Error **errp)
2712{
2713    struct kvm_get_htab_header *buf;
2714    size_t chunksize = sizeof(*buf) + n_valid * HASH_PTE_SIZE_64;
2715    ssize_t rc;
2716
2717    buf = alloca(chunksize);
2718    buf->index = index;
2719    buf->n_valid = n_valid;
2720    buf->n_invalid = n_invalid;
2721
2722    qemu_get_buffer(f, (void *)(buf + 1), HASH_PTE_SIZE_64 * n_valid);
2723
2724    rc = write(fd, buf, chunksize);
2725    if (rc < 0) {
2726        error_setg_errno(errp, errno, "Error writing the KVM hash table");
2727        return -errno;
2728    }
2729    if (rc != chunksize) {
2730        /* We should never get a short write on a single chunk */
2731        error_setg(errp, "Short write while restoring the KVM hash table");
2732        return -ENOSPC;
2733    }
2734    return 0;
2735}
2736
2737bool kvm_arch_stop_on_emulation_error(CPUState *cpu)
2738{
2739    return true;
2740}
2741
2742void kvm_arch_init_irq_routing(KVMState *s)
2743{
2744}
2745
2746void kvmppc_read_hptes(ppc_hash_pte64_t *hptes, hwaddr ptex, int n)
2747{
2748    int fd, rc;
2749    int i;
2750
2751    fd = kvmppc_get_htab_fd(false, ptex, &error_abort);
2752
2753    i = 0;
2754    while (i < n) {
2755        struct kvm_get_htab_header *hdr;
2756        int m = n < HPTES_PER_GROUP ? n : HPTES_PER_GROUP;
2757        char buf[sizeof(*hdr) + m * HASH_PTE_SIZE_64];
2758
2759        rc = read(fd, buf, sizeof(buf));
2760        if (rc < 0) {
2761            hw_error("kvmppc_read_hptes: Unable to read HPTEs");
2762        }
2763
2764        hdr = (struct kvm_get_htab_header *)buf;
2765        while ((i < n) && ((char *)hdr < (buf + rc))) {
2766            int invalid = hdr->n_invalid, valid = hdr->n_valid;
2767
2768            if (hdr->index != (ptex + i)) {
2769                hw_error("kvmppc_read_hptes: Unexpected HPTE index %"PRIu32
2770                         " != (%"HWADDR_PRIu" + %d", hdr->index, ptex, i);
2771            }
2772
2773            if (n - i < valid) {
2774                valid = n - i;
2775            }
2776            memcpy(hptes + i, hdr + 1, HASH_PTE_SIZE_64 * valid);
2777            i += valid;
2778
2779            if ((n - i) < invalid) {
2780                invalid = n - i;
2781            }
2782            memset(hptes + i, 0, invalid * HASH_PTE_SIZE_64);
2783            i += invalid;
2784
2785            hdr = (struct kvm_get_htab_header *)
2786                ((char *)(hdr + 1) + HASH_PTE_SIZE_64 * hdr->n_valid);
2787        }
2788    }
2789
2790    close(fd);
2791}
2792
2793void kvmppc_write_hpte(hwaddr ptex, uint64_t pte0, uint64_t pte1)
2794{
2795    int fd, rc;
2796    struct {
2797        struct kvm_get_htab_header hdr;
2798        uint64_t pte0;
2799        uint64_t pte1;
2800    } buf;
2801
2802    fd = kvmppc_get_htab_fd(true, 0 /* Ignored */, &error_abort);
2803
2804    buf.hdr.n_valid = 1;
2805    buf.hdr.n_invalid = 0;
2806    buf.hdr.index = ptex;
2807    buf.pte0 = cpu_to_be64(pte0);
2808    buf.pte1 = cpu_to_be64(pte1);
2809
2810    rc = write(fd, &buf, sizeof(buf));
2811    if (rc != sizeof(buf)) {
2812        hw_error("kvmppc_write_hpte: Unable to update KVM HPT");
2813    }
2814    close(fd);
2815}
2816
2817int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route,
2818                             uint64_t address, uint32_t data, PCIDevice *dev)
2819{
2820    return 0;
2821}
2822
2823int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry *route,
2824                                int vector, PCIDevice *dev)
2825{
2826    return 0;
2827}
2828
2829int kvm_arch_release_virq_post(int virq)
2830{
2831    return 0;
2832}
2833
2834int kvm_arch_msi_data_to_gsi(uint32_t data)
2835{
2836    return data & 0xffff;
2837}
2838
2839#if defined(TARGET_PPC64)
2840int kvm_handle_nmi(PowerPCCPU *cpu, struct kvm_run *run)
2841{
2842    uint16_t flags = run->flags & KVM_RUN_PPC_NMI_DISP_MASK;
2843
2844    cpu_synchronize_state(CPU(cpu));
2845
2846    spapr_mce_req_event(cpu, flags == KVM_RUN_PPC_NMI_DISP_FULLY_RECOV);
2847
2848    return 0;
2849}
2850#endif
2851
2852int kvmppc_enable_hwrng(void)
2853{
2854    if (!kvm_enabled() || !kvm_check_extension(kvm_state, KVM_CAP_PPC_HWRNG)) {
2855        return -1;
2856    }
2857
2858    return kvmppc_enable_hcall(kvm_state, H_RANDOM);
2859}
2860
2861void kvmppc_check_papr_resize_hpt(Error **errp)
2862{
2863    if (!kvm_enabled()) {
2864        return; /* No KVM, we're good */
2865    }
2866
2867    if (cap_resize_hpt) {
2868        return; /* Kernel has explicit support, we're good */
2869    }
2870
2871    /* Otherwise fallback on looking for PR KVM */
2872    if (kvmppc_is_pr(kvm_state)) {
2873        return;
2874    }
2875
2876    error_setg(errp,
2877               "Hash page table resizing not available with this KVM version");
2878}
2879
2880int kvmppc_resize_hpt_prepare(PowerPCCPU *cpu, target_ulong flags, int shift)
2881{
2882    CPUState *cs = CPU(cpu);
2883    struct kvm_ppc_resize_hpt rhpt = {
2884        .flags = flags,
2885        .shift = shift,
2886    };
2887
2888    if (!cap_resize_hpt) {
2889        return -ENOSYS;
2890    }
2891
2892    return kvm_vm_ioctl(cs->kvm_state, KVM_PPC_RESIZE_HPT_PREPARE, &rhpt);
2893}
2894
2895int kvmppc_resize_hpt_commit(PowerPCCPU *cpu, target_ulong flags, int shift)
2896{
2897    CPUState *cs = CPU(cpu);
2898    struct kvm_ppc_resize_hpt rhpt = {
2899        .flags = flags,
2900        .shift = shift,
2901    };
2902
2903    if (!cap_resize_hpt) {
2904        return -ENOSYS;
2905    }
2906
2907    return kvm_vm_ioctl(cs->kvm_state, KVM_PPC_RESIZE_HPT_COMMIT, &rhpt);
2908}
2909
2910/*
2911 * This is a helper function to detect a post migration scenario
2912 * in which a guest, running as KVM-HV, freezes in cpu_post_load because
2913 * the guest kernel can't handle a PVR value other than the actual host
2914 * PVR in KVM_SET_SREGS, even if pvr_match() returns true.
2915 *
2916 * If we don't have cap_ppc_pvr_compat and we're not running in PR
2917 * (so, we're HV), return true. The workaround itself is done in
2918 * cpu_post_load.
2919 *
2920 * The order here is important: we'll only check for KVM PR as a
2921 * fallback if the guest kernel can't handle the situation itself.
2922 * We need to avoid as much as possible querying the running KVM type
2923 * in QEMU level.
2924 */
2925bool kvmppc_pvr_workaround_required(PowerPCCPU *cpu)
2926{
2927    CPUState *cs = CPU(cpu);
2928
2929    if (!kvm_enabled()) {
2930        return false;
2931    }
2932
2933    if (cap_ppc_pvr_compat) {
2934        return false;
2935    }
2936
2937    return !kvmppc_is_pr(cs->kvm_state);
2938}
2939
2940void kvmppc_set_reg_ppc_online(PowerPCCPU *cpu, unsigned int online)
2941{
2942    CPUState *cs = CPU(cpu);
2943
2944    if (kvm_enabled()) {
2945        kvm_set_one_reg(cs, KVM_REG_PPC_ONLINE, &online);
2946    }
2947}
2948
2949void kvmppc_set_reg_tb_offset(PowerPCCPU *cpu, int64_t tb_offset)
2950{
2951    CPUState *cs = CPU(cpu);
2952
2953    if (kvm_enabled()) {
2954        kvm_set_one_reg(cs, KVM_REG_PPC_TB_OFFSET, &tb_offset);
2955    }
2956}
2957
2958bool kvm_arch_cpu_check_are_resettable(void)
2959{
2960    return true;
2961}
2962