qemu/target/sparc/ldst_helper.c
<<
>>
Prefs
   1/*
   2 * Helpers for loads and stores
   3 *
   4 *  Copyright (c) 2003-2005 Fabrice Bellard
   5 *
   6 * This library is free software; you can redistribute it and/or
   7 * modify it under the terms of the GNU Lesser General Public
   8 * License as published by the Free Software Foundation; either
   9 * version 2.1 of the License, or (at your option) any later version.
  10 *
  11 * This library is distributed in the hope that it will be useful,
  12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  14 * Lesser General Public License for more details.
  15 *
  16 * You should have received a copy of the GNU Lesser General Public
  17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
  18 */
  19
  20#include "qemu/osdep.h"
  21#include "cpu.h"
  22#include "tcg/tcg.h"
  23#include "exec/helper-proto.h"
  24#include "exec/exec-all.h"
  25#include "exec/cpu_ldst.h"
  26#include "asi.h"
  27
  28//#define DEBUG_MMU
  29//#define DEBUG_MXCC
  30//#define DEBUG_UNASSIGNED
  31//#define DEBUG_ASI
  32//#define DEBUG_CACHE_CONTROL
  33
  34#ifdef DEBUG_MMU
  35#define DPRINTF_MMU(fmt, ...)                                   \
  36    do { printf("MMU: " fmt , ## __VA_ARGS__); } while (0)
  37#else
  38#define DPRINTF_MMU(fmt, ...) do {} while (0)
  39#endif
  40
  41#ifdef DEBUG_MXCC
  42#define DPRINTF_MXCC(fmt, ...)                                  \
  43    do { printf("MXCC: " fmt , ## __VA_ARGS__); } while (0)
  44#else
  45#define DPRINTF_MXCC(fmt, ...) do {} while (0)
  46#endif
  47
  48#ifdef DEBUG_ASI
  49#define DPRINTF_ASI(fmt, ...)                                   \
  50    do { printf("ASI: " fmt , ## __VA_ARGS__); } while (0)
  51#endif
  52
  53#ifdef DEBUG_CACHE_CONTROL
  54#define DPRINTF_CACHE_CONTROL(fmt, ...)                                 \
  55    do { printf("CACHE_CONTROL: " fmt , ## __VA_ARGS__); } while (0)
  56#else
  57#define DPRINTF_CACHE_CONTROL(fmt, ...) do {} while (0)
  58#endif
  59
  60#ifdef TARGET_SPARC64
  61#ifndef TARGET_ABI32
  62#define AM_CHECK(env1) ((env1)->pstate & PS_AM)
  63#else
  64#define AM_CHECK(env1) (1)
  65#endif
  66#endif
  67
  68#define QT0 (env->qt0)
  69#define QT1 (env->qt1)
  70
  71#if defined(TARGET_SPARC64) && !defined(CONFIG_USER_ONLY)
  72/* Calculates TSB pointer value for fault page size
  73 * UltraSPARC IIi has fixed sizes (8k or 64k) for the page pointers
  74 * UA2005 holds the page size configuration in mmu_ctx registers */
  75static uint64_t ultrasparc_tsb_pointer(CPUSPARCState *env,
  76                                       const SparcV9MMU *mmu, const int idx)
  77{
  78    uint64_t tsb_register;
  79    int page_size;
  80    if (cpu_has_hypervisor(env)) {
  81        int tsb_index = 0;
  82        int ctx = mmu->tag_access & 0x1fffULL;
  83        uint64_t ctx_register = mmu->sun4v_ctx_config[ctx ? 1 : 0];
  84        tsb_index = idx;
  85        tsb_index |= ctx ? 2 : 0;
  86        page_size = idx ? ctx_register >> 8 : ctx_register;
  87        page_size &= 7;
  88        tsb_register = mmu->sun4v_tsb_pointers[tsb_index];
  89    } else {
  90        page_size = idx;
  91        tsb_register = mmu->tsb;
  92    }
  93    int tsb_split = (tsb_register & 0x1000ULL) ? 1 : 0;
  94    int tsb_size  = tsb_register & 0xf;
  95
  96    uint64_t tsb_base_mask = (~0x1fffULL) << tsb_size;
  97
  98    /* move va bits to correct position,
  99     * the context bits will be masked out later */
 100    uint64_t va = mmu->tag_access >> (3 * page_size + 9);
 101
 102    /* calculate tsb_base mask and adjust va if split is in use */
 103    if (tsb_split) {
 104        if (idx == 0) {
 105            va &= ~(1ULL << (13 + tsb_size));
 106        } else {
 107            va |= (1ULL << (13 + tsb_size));
 108        }
 109        tsb_base_mask <<= 1;
 110    }
 111
 112    return ((tsb_register & tsb_base_mask) | (va & ~tsb_base_mask)) & ~0xfULL;
 113}
 114
 115/* Calculates tag target register value by reordering bits
 116   in tag access register */
 117static uint64_t ultrasparc_tag_target(uint64_t tag_access_register)
 118{
 119    return ((tag_access_register & 0x1fff) << 48) | (tag_access_register >> 22);
 120}
 121
 122static void replace_tlb_entry(SparcTLBEntry *tlb,
 123                              uint64_t tlb_tag, uint64_t tlb_tte,
 124                              CPUSPARCState *env)
 125{
 126    target_ulong mask, size, va, offset;
 127
 128    /* flush page range if translation is valid */
 129    if (TTE_IS_VALID(tlb->tte)) {
 130        CPUState *cs = env_cpu(env);
 131
 132        size = 8192ULL << 3 * TTE_PGSIZE(tlb->tte);
 133        mask = 1ULL + ~size;
 134
 135        va = tlb->tag & mask;
 136
 137        for (offset = 0; offset < size; offset += TARGET_PAGE_SIZE) {
 138            tlb_flush_page(cs, va + offset);
 139        }
 140    }
 141
 142    tlb->tag = tlb_tag;
 143    tlb->tte = tlb_tte;
 144}
 145
 146static void demap_tlb(SparcTLBEntry *tlb, target_ulong demap_addr,
 147                      const char *strmmu, CPUSPARCState *env1)
 148{
 149    unsigned int i;
 150    target_ulong mask;
 151    uint64_t context;
 152
 153    int is_demap_context = (demap_addr >> 6) & 1;
 154
 155    /* demap context */
 156    switch ((demap_addr >> 4) & 3) {
 157    case 0: /* primary */
 158        context = env1->dmmu.mmu_primary_context;
 159        break;
 160    case 1: /* secondary */
 161        context = env1->dmmu.mmu_secondary_context;
 162        break;
 163    case 2: /* nucleus */
 164        context = 0;
 165        break;
 166    case 3: /* reserved */
 167    default:
 168        return;
 169    }
 170
 171    for (i = 0; i < 64; i++) {
 172        if (TTE_IS_VALID(tlb[i].tte)) {
 173
 174            if (is_demap_context) {
 175                /* will remove non-global entries matching context value */
 176                if (TTE_IS_GLOBAL(tlb[i].tte) ||
 177                    !tlb_compare_context(&tlb[i], context)) {
 178                    continue;
 179                }
 180            } else {
 181                /* demap page
 182                   will remove any entry matching VA */
 183                mask = 0xffffffffffffe000ULL;
 184                mask <<= 3 * ((tlb[i].tte >> 61) & 3);
 185
 186                if (!compare_masked(demap_addr, tlb[i].tag, mask)) {
 187                    continue;
 188                }
 189
 190                /* entry should be global or matching context value */
 191                if (!TTE_IS_GLOBAL(tlb[i].tte) &&
 192                    !tlb_compare_context(&tlb[i], context)) {
 193                    continue;
 194                }
 195            }
 196
 197            replace_tlb_entry(&tlb[i], 0, 0, env1);
 198#ifdef DEBUG_MMU
 199            DPRINTF_MMU("%s demap invalidated entry [%02u]\n", strmmu, i);
 200            dump_mmu(env1);
 201#endif
 202        }
 203    }
 204}
 205
 206static uint64_t sun4v_tte_to_sun4u(CPUSPARCState *env, uint64_t tag,
 207                                   uint64_t sun4v_tte)
 208{
 209    uint64_t sun4u_tte;
 210    if (!(cpu_has_hypervisor(env) && (tag & TLB_UST1_IS_SUN4V_BIT))) {
 211        /* is already in the sun4u format */
 212        return sun4v_tte;
 213    }
 214    sun4u_tte = TTE_PA(sun4v_tte) | (sun4v_tte & TTE_VALID_BIT);
 215    sun4u_tte |= (sun4v_tte & 3ULL) << 61; /* TTE_PGSIZE */
 216    sun4u_tte |= CONVERT_BIT(sun4v_tte, TTE_NFO_BIT_UA2005, TTE_NFO_BIT);
 217    sun4u_tte |= CONVERT_BIT(sun4v_tte, TTE_USED_BIT_UA2005, TTE_USED_BIT);
 218    sun4u_tte |= CONVERT_BIT(sun4v_tte, TTE_W_OK_BIT_UA2005, TTE_W_OK_BIT);
 219    sun4u_tte |= CONVERT_BIT(sun4v_tte, TTE_SIDEEFFECT_BIT_UA2005,
 220                             TTE_SIDEEFFECT_BIT);
 221    sun4u_tte |= CONVERT_BIT(sun4v_tte, TTE_PRIV_BIT_UA2005, TTE_PRIV_BIT);
 222    sun4u_tte |= CONVERT_BIT(sun4v_tte, TTE_LOCKED_BIT_UA2005, TTE_LOCKED_BIT);
 223    return sun4u_tte;
 224}
 225
 226static void replace_tlb_1bit_lru(SparcTLBEntry *tlb,
 227                                 uint64_t tlb_tag, uint64_t tlb_tte,
 228                                 const char *strmmu, CPUSPARCState *env1,
 229                                 uint64_t addr)
 230{
 231    unsigned int i, replace_used;
 232
 233    tlb_tte = sun4v_tte_to_sun4u(env1, addr, tlb_tte);
 234    if (cpu_has_hypervisor(env1)) {
 235        uint64_t new_vaddr = tlb_tag & ~0x1fffULL;
 236        uint64_t new_size = 8192ULL << 3 * TTE_PGSIZE(tlb_tte);
 237        uint32_t new_ctx = tlb_tag & 0x1fffU;
 238        for (i = 0; i < 64; i++) {
 239            uint32_t ctx = tlb[i].tag & 0x1fffU;
 240            /* check if new mapping overlaps an existing one */
 241            if (new_ctx == ctx) {
 242                uint64_t vaddr = tlb[i].tag & ~0x1fffULL;
 243                uint64_t size = 8192ULL << 3 * TTE_PGSIZE(tlb[i].tte);
 244                if (new_vaddr == vaddr
 245                    || (new_vaddr < vaddr + size
 246                        && vaddr < new_vaddr + new_size)) {
 247                    DPRINTF_MMU("auto demap entry [%d] %lx->%lx\n", i, vaddr,
 248                                new_vaddr);
 249                    replace_tlb_entry(&tlb[i], tlb_tag, tlb_tte, env1);
 250                    return;
 251                }
 252            }
 253
 254        }
 255    }
 256    /* Try replacing invalid entry */
 257    for (i = 0; i < 64; i++) {
 258        if (!TTE_IS_VALID(tlb[i].tte)) {
 259            replace_tlb_entry(&tlb[i], tlb_tag, tlb_tte, env1);
 260#ifdef DEBUG_MMU
 261            DPRINTF_MMU("%s lru replaced invalid entry [%i]\n", strmmu, i);
 262            dump_mmu(env1);
 263#endif
 264            return;
 265        }
 266    }
 267
 268    /* All entries are valid, try replacing unlocked entry */
 269
 270    for (replace_used = 0; replace_used < 2; ++replace_used) {
 271
 272        /* Used entries are not replaced on first pass */
 273
 274        for (i = 0; i < 64; i++) {
 275            if (!TTE_IS_LOCKED(tlb[i].tte) && !TTE_IS_USED(tlb[i].tte)) {
 276
 277                replace_tlb_entry(&tlb[i], tlb_tag, tlb_tte, env1);
 278#ifdef DEBUG_MMU
 279                DPRINTF_MMU("%s lru replaced unlocked %s entry [%i]\n",
 280                            strmmu, (replace_used ? "used" : "unused"), i);
 281                dump_mmu(env1);
 282#endif
 283                return;
 284            }
 285        }
 286
 287        /* Now reset used bit and search for unused entries again */
 288
 289        for (i = 0; i < 64; i++) {
 290            TTE_SET_UNUSED(tlb[i].tte);
 291        }
 292    }
 293
 294#ifdef DEBUG_MMU
 295    DPRINTF_MMU("%s lru replacement: no free entries available, "
 296                "replacing the last one\n", strmmu);
 297#endif
 298    /* corner case: the last entry is replaced anyway */
 299    replace_tlb_entry(&tlb[63], tlb_tag, tlb_tte, env1);
 300}
 301
 302#endif
 303
 304#ifdef TARGET_SPARC64
 305/* returns true if access using this ASI is to have address translated by MMU
 306   otherwise access is to raw physical address */
 307/* TODO: check sparc32 bits */
 308static inline int is_translating_asi(int asi)
 309{
 310    /* Ultrasparc IIi translating asi
 311       - note this list is defined by cpu implementation
 312    */
 313    switch (asi) {
 314    case 0x04 ... 0x11:
 315    case 0x16 ... 0x19:
 316    case 0x1E ... 0x1F:
 317    case 0x24 ... 0x2C:
 318    case 0x70 ... 0x73:
 319    case 0x78 ... 0x79:
 320    case 0x80 ... 0xFF:
 321        return 1;
 322
 323    default:
 324        return 0;
 325    }
 326}
 327
 328static inline target_ulong address_mask(CPUSPARCState *env1, target_ulong addr)
 329{
 330    if (AM_CHECK(env1)) {
 331        addr &= 0xffffffffULL;
 332    }
 333    return addr;
 334}
 335
 336static inline target_ulong asi_address_mask(CPUSPARCState *env,
 337                                            int asi, target_ulong addr)
 338{
 339    if (is_translating_asi(asi)) {
 340        addr = address_mask(env, addr);
 341    }
 342    return addr;
 343}
 344
 345#ifndef CONFIG_USER_ONLY
 346static inline void do_check_asi(CPUSPARCState *env, int asi, uintptr_t ra)
 347{
 348    /* ASIs >= 0x80 are user mode.
 349     * ASIs >= 0x30 are hyper mode (or super if hyper is not available).
 350     * ASIs <= 0x2f are super mode.
 351     */
 352    if (asi < 0x80
 353        && !cpu_hypervisor_mode(env)
 354        && (!cpu_supervisor_mode(env)
 355            || (asi >= 0x30 && cpu_has_hypervisor(env)))) {
 356        cpu_raise_exception_ra(env, TT_PRIV_ACT, ra);
 357    }
 358}
 359#endif /* !CONFIG_USER_ONLY */
 360#endif
 361
 362static void do_check_align(CPUSPARCState *env, target_ulong addr,
 363                           uint32_t align, uintptr_t ra)
 364{
 365    if (addr & align) {
 366        cpu_raise_exception_ra(env, TT_UNALIGNED, ra);
 367    }
 368}
 369
 370void helper_check_align(CPUSPARCState *env, target_ulong addr, uint32_t align)
 371{
 372    do_check_align(env, addr, align, GETPC());
 373}
 374
 375#if !defined(TARGET_SPARC64) && !defined(CONFIG_USER_ONLY) &&   \
 376    defined(DEBUG_MXCC)
 377static void dump_mxcc(CPUSPARCState *env)
 378{
 379    printf("mxccdata: %016" PRIx64 " %016" PRIx64 " %016" PRIx64 " %016" PRIx64
 380           "\n",
 381           env->mxccdata[0], env->mxccdata[1],
 382           env->mxccdata[2], env->mxccdata[3]);
 383    printf("mxccregs: %016" PRIx64 " %016" PRIx64 " %016" PRIx64 " %016" PRIx64
 384           "\n"
 385           "          %016" PRIx64 " %016" PRIx64 " %016" PRIx64 " %016" PRIx64
 386           "\n",
 387           env->mxccregs[0], env->mxccregs[1],
 388           env->mxccregs[2], env->mxccregs[3],
 389           env->mxccregs[4], env->mxccregs[5],
 390           env->mxccregs[6], env->mxccregs[7]);
 391}
 392#endif
 393
 394#if (defined(TARGET_SPARC64) || !defined(CONFIG_USER_ONLY))     \
 395    && defined(DEBUG_ASI)
 396static void dump_asi(const char *txt, target_ulong addr, int asi, int size,
 397                     uint64_t r1)
 398{
 399    switch (size) {
 400    case 1:
 401        DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %02" PRIx64 "\n", txt,
 402                    addr, asi, r1 & 0xff);
 403        break;
 404    case 2:
 405        DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %04" PRIx64 "\n", txt,
 406                    addr, asi, r1 & 0xffff);
 407        break;
 408    case 4:
 409        DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %08" PRIx64 "\n", txt,
 410                    addr, asi, r1 & 0xffffffff);
 411        break;
 412    case 8:
 413        DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %016" PRIx64 "\n", txt,
 414                    addr, asi, r1);
 415        break;
 416    }
 417}
 418#endif
 419
 420#ifndef CONFIG_USER_ONLY
 421#ifndef TARGET_SPARC64
 422static void sparc_raise_mmu_fault(CPUState *cs, hwaddr addr,
 423                                  bool is_write, bool is_exec, int is_asi,
 424                                  unsigned size, uintptr_t retaddr)
 425{
 426    SPARCCPU *cpu = SPARC_CPU(cs);
 427    CPUSPARCState *env = &cpu->env;
 428    int fault_type;
 429
 430#ifdef DEBUG_UNASSIGNED
 431    if (is_asi) {
 432        printf("Unassigned mem %s access of %d byte%s to " TARGET_FMT_plx
 433               " asi 0x%02x from " TARGET_FMT_lx "\n",
 434               is_exec ? "exec" : is_write ? "write" : "read", size,
 435               size == 1 ? "" : "s", addr, is_asi, env->pc);
 436    } else {
 437        printf("Unassigned mem %s access of %d byte%s to " TARGET_FMT_plx
 438               " from " TARGET_FMT_lx "\n",
 439               is_exec ? "exec" : is_write ? "write" : "read", size,
 440               size == 1 ? "" : "s", addr, env->pc);
 441    }
 442#endif
 443    /* Don't overwrite translation and access faults */
 444    fault_type = (env->mmuregs[3] & 0x1c) >> 2;
 445    if ((fault_type > 4) || (fault_type == 0)) {
 446        env->mmuregs[3] = 0; /* Fault status register */
 447        if (is_asi) {
 448            env->mmuregs[3] |= 1 << 16;
 449        }
 450        if (env->psrs) {
 451            env->mmuregs[3] |= 1 << 5;
 452        }
 453        if (is_exec) {
 454            env->mmuregs[3] |= 1 << 6;
 455        }
 456        if (is_write) {
 457            env->mmuregs[3] |= 1 << 7;
 458        }
 459        env->mmuregs[3] |= (5 << 2) | 2;
 460        /* SuperSPARC will never place instruction fault addresses in the FAR */
 461        if (!is_exec) {
 462            env->mmuregs[4] = addr; /* Fault address register */
 463        }
 464    }
 465    /* overflow (same type fault was not read before another fault) */
 466    if (fault_type == ((env->mmuregs[3] & 0x1c)) >> 2) {
 467        env->mmuregs[3] |= 1;
 468    }
 469
 470    if ((env->mmuregs[0] & MMU_E) && !(env->mmuregs[0] & MMU_NF)) {
 471        int tt = is_exec ? TT_CODE_ACCESS : TT_DATA_ACCESS;
 472        cpu_raise_exception_ra(env, tt, retaddr);
 473    }
 474
 475    /*
 476     * flush neverland mappings created during no-fault mode,
 477     * so the sequential MMU faults report proper fault types
 478     */
 479    if (env->mmuregs[0] & MMU_NF) {
 480        tlb_flush(cs);
 481    }
 482}
 483#else
 484static void sparc_raise_mmu_fault(CPUState *cs, hwaddr addr,
 485                                  bool is_write, bool is_exec, int is_asi,
 486                                  unsigned size, uintptr_t retaddr)
 487{
 488    SPARCCPU *cpu = SPARC_CPU(cs);
 489    CPUSPARCState *env = &cpu->env;
 490
 491#ifdef DEBUG_UNASSIGNED
 492    printf("Unassigned mem access to " TARGET_FMT_plx " from " TARGET_FMT_lx
 493           "\n", addr, env->pc);
 494#endif
 495
 496    if (is_exec) { /* XXX has_hypervisor */
 497        if (env->lsu & (IMMU_E)) {
 498            cpu_raise_exception_ra(env, TT_CODE_ACCESS, retaddr);
 499        } else if (cpu_has_hypervisor(env) && !(env->hpstate & HS_PRIV)) {
 500            cpu_raise_exception_ra(env, TT_INSN_REAL_TRANSLATION_MISS, retaddr);
 501        }
 502    } else {
 503        if (env->lsu & (DMMU_E)) {
 504            cpu_raise_exception_ra(env, TT_DATA_ACCESS, retaddr);
 505        } else if (cpu_has_hypervisor(env) && !(env->hpstate & HS_PRIV)) {
 506            cpu_raise_exception_ra(env, TT_DATA_REAL_TRANSLATION_MISS, retaddr);
 507        }
 508    }
 509}
 510#endif
 511#endif
 512
 513#ifndef TARGET_SPARC64
 514#ifndef CONFIG_USER_ONLY
 515
 516
 517/* Leon3 cache control */
 518
 519static void leon3_cache_control_st(CPUSPARCState *env, target_ulong addr,
 520                                   uint64_t val, int size)
 521{
 522    DPRINTF_CACHE_CONTROL("st addr:%08x, val:%" PRIx64 ", size:%d\n",
 523                          addr, val, size);
 524
 525    if (size != 4) {
 526        DPRINTF_CACHE_CONTROL("32bits only\n");
 527        return;
 528    }
 529
 530    switch (addr) {
 531    case 0x00:              /* Cache control */
 532
 533        /* These values must always be read as zeros */
 534        val &= ~CACHE_CTRL_FD;
 535        val &= ~CACHE_CTRL_FI;
 536        val &= ~CACHE_CTRL_IB;
 537        val &= ~CACHE_CTRL_IP;
 538        val &= ~CACHE_CTRL_DP;
 539
 540        env->cache_control = val;
 541        break;
 542    case 0x04:              /* Instruction cache configuration */
 543    case 0x08:              /* Data cache configuration */
 544        /* Read Only */
 545        break;
 546    default:
 547        DPRINTF_CACHE_CONTROL("write unknown register %08x\n", addr);
 548        break;
 549    };
 550}
 551
 552static uint64_t leon3_cache_control_ld(CPUSPARCState *env, target_ulong addr,
 553                                       int size)
 554{
 555    uint64_t ret = 0;
 556
 557    if (size != 4) {
 558        DPRINTF_CACHE_CONTROL("32bits only\n");
 559        return 0;
 560    }
 561
 562    switch (addr) {
 563    case 0x00:              /* Cache control */
 564        ret = env->cache_control;
 565        break;
 566
 567        /* Configuration registers are read and only always keep those
 568           predefined values */
 569
 570    case 0x04:              /* Instruction cache configuration */
 571        ret = 0x10220000;
 572        break;
 573    case 0x08:              /* Data cache configuration */
 574        ret = 0x18220000;
 575        break;
 576    default:
 577        DPRINTF_CACHE_CONTROL("read unknown register %08x\n", addr);
 578        break;
 579    };
 580    DPRINTF_CACHE_CONTROL("ld addr:%08x, ret:0x%" PRIx64 ", size:%d\n",
 581                          addr, ret, size);
 582    return ret;
 583}
 584
 585uint64_t helper_ld_asi(CPUSPARCState *env, target_ulong addr,
 586                       int asi, uint32_t memop)
 587{
 588    int size = 1 << (memop & MO_SIZE);
 589    int sign = memop & MO_SIGN;
 590    CPUState *cs = env_cpu(env);
 591    uint64_t ret = 0;
 592#if defined(DEBUG_MXCC) || defined(DEBUG_ASI)
 593    uint32_t last_addr = addr;
 594#endif
 595
 596    do_check_align(env, addr, size - 1, GETPC());
 597    switch (asi) {
 598    case ASI_M_MXCC: /* SuperSparc MXCC registers, or... */
 599    /* case ASI_LEON_CACHEREGS:  Leon3 cache control */
 600        switch (addr) {
 601        case 0x00:          /* Leon3 Cache Control */
 602        case 0x08:          /* Leon3 Instruction Cache config */
 603        case 0x0C:          /* Leon3 Date Cache config */
 604            if (env->def.features & CPU_FEATURE_CACHE_CTRL) {
 605                ret = leon3_cache_control_ld(env, addr, size);
 606            }
 607            break;
 608        case 0x01c00a00: /* MXCC control register */
 609            if (size == 8) {
 610                ret = env->mxccregs[3];
 611            } else {
 612                qemu_log_mask(LOG_UNIMP,
 613                              "%08x: unimplemented access size: %d\n", addr,
 614                              size);
 615            }
 616            break;
 617        case 0x01c00a04: /* MXCC control register */
 618            if (size == 4) {
 619                ret = env->mxccregs[3];
 620            } else {
 621                qemu_log_mask(LOG_UNIMP,
 622                              "%08x: unimplemented access size: %d\n", addr,
 623                              size);
 624            }
 625            break;
 626        case 0x01c00c00: /* Module reset register */
 627            if (size == 8) {
 628                ret = env->mxccregs[5];
 629                /* should we do something here? */
 630            } else {
 631                qemu_log_mask(LOG_UNIMP,
 632                              "%08x: unimplemented access size: %d\n", addr,
 633                              size);
 634            }
 635            break;
 636        case 0x01c00f00: /* MBus port address register */
 637            if (size == 8) {
 638                ret = env->mxccregs[7];
 639            } else {
 640                qemu_log_mask(LOG_UNIMP,
 641                              "%08x: unimplemented access size: %d\n", addr,
 642                              size);
 643            }
 644            break;
 645        default:
 646            qemu_log_mask(LOG_UNIMP,
 647                          "%08x: unimplemented address, size: %d\n", addr,
 648                          size);
 649            break;
 650        }
 651        DPRINTF_MXCC("asi = %d, size = %d, sign = %d, "
 652                     "addr = %08x -> ret = %" PRIx64 ","
 653                     "addr = %08x\n", asi, size, sign, last_addr, ret, addr);
 654#ifdef DEBUG_MXCC
 655        dump_mxcc(env);
 656#endif
 657        break;
 658    case ASI_M_FLUSH_PROBE: /* SuperSparc MMU probe */
 659    case ASI_LEON_MMUFLUSH: /* LEON3 MMU probe */
 660        {
 661            int mmulev;
 662
 663            mmulev = (addr >> 8) & 15;
 664            if (mmulev > 4) {
 665                ret = 0;
 666            } else {
 667                ret = mmu_probe(env, addr, mmulev);
 668            }
 669            DPRINTF_MMU("mmu_probe: 0x%08x (lev %d) -> 0x%08" PRIx64 "\n",
 670                        addr, mmulev, ret);
 671        }
 672        break;
 673    case ASI_M_MMUREGS: /* SuperSparc MMU regs */
 674    case ASI_LEON_MMUREGS: /* LEON3 MMU regs */
 675        {
 676            int reg = (addr >> 8) & 0x1f;
 677
 678            ret = env->mmuregs[reg];
 679            if (reg == 3) { /* Fault status cleared on read */
 680                env->mmuregs[3] = 0;
 681            } else if (reg == 0x13) { /* Fault status read */
 682                ret = env->mmuregs[3];
 683            } else if (reg == 0x14) { /* Fault address read */
 684                ret = env->mmuregs[4];
 685            }
 686            DPRINTF_MMU("mmu_read: reg[%d] = 0x%08" PRIx64 "\n", reg, ret);
 687        }
 688        break;
 689    case ASI_M_TLBDIAG: /* Turbosparc ITLB Diagnostic */
 690    case ASI_M_DIAGS:   /* Turbosparc DTLB Diagnostic */
 691    case ASI_M_IODIAG:  /* Turbosparc IOTLB Diagnostic */
 692        break;
 693    case ASI_KERNELTXT: /* Supervisor code access */
 694        switch (size) {
 695        case 1:
 696            ret = cpu_ldub_code(env, addr);
 697            break;
 698        case 2:
 699            ret = cpu_lduw_code(env, addr);
 700            break;
 701        default:
 702        case 4:
 703            ret = cpu_ldl_code(env, addr);
 704            break;
 705        case 8:
 706            ret = cpu_ldq_code(env, addr);
 707            break;
 708        }
 709        break;
 710    case ASI_M_TXTC_TAG:   /* SparcStation 5 I-cache tag */
 711    case ASI_M_TXTC_DATA:  /* SparcStation 5 I-cache data */
 712    case ASI_M_DATAC_TAG:  /* SparcStation 5 D-cache tag */
 713    case ASI_M_DATAC_DATA: /* SparcStation 5 D-cache data */
 714        break;
 715    case 0x21 ... 0x2f: /* MMU passthrough, 0x100000000 to 0xfffffffff */
 716    {
 717        MemTxResult result;
 718        hwaddr access_addr = (hwaddr)addr | ((hwaddr)(asi & 0xf) << 32);
 719
 720        switch (size) {
 721        case 1:
 722            ret = address_space_ldub(cs->as, access_addr,
 723                                     MEMTXATTRS_UNSPECIFIED, &result);
 724            break;
 725        case 2:
 726            ret = address_space_lduw(cs->as, access_addr,
 727                                     MEMTXATTRS_UNSPECIFIED, &result);
 728            break;
 729        default:
 730        case 4:
 731            ret = address_space_ldl(cs->as, access_addr,
 732                                    MEMTXATTRS_UNSPECIFIED, &result);
 733            break;
 734        case 8:
 735            ret = address_space_ldq(cs->as, access_addr,
 736                                    MEMTXATTRS_UNSPECIFIED, &result);
 737            break;
 738        }
 739
 740        if (result != MEMTX_OK) {
 741            sparc_raise_mmu_fault(cs, access_addr, false, false, false,
 742                                  size, GETPC());
 743        }
 744        break;
 745    }
 746    case 0x30: /* Turbosparc secondary cache diagnostic */
 747    case 0x31: /* Turbosparc RAM snoop */
 748    case 0x32: /* Turbosparc page table descriptor diagnostic */
 749    case 0x39: /* data cache diagnostic register */
 750        ret = 0;
 751        break;
 752    case 0x38: /* SuperSPARC MMU Breakpoint Control Registers */
 753        {
 754            int reg = (addr >> 8) & 3;
 755
 756            switch (reg) {
 757            case 0: /* Breakpoint Value (Addr) */
 758                ret = env->mmubpregs[reg];
 759                break;
 760            case 1: /* Breakpoint Mask */
 761                ret = env->mmubpregs[reg];
 762                break;
 763            case 2: /* Breakpoint Control */
 764                ret = env->mmubpregs[reg];
 765                break;
 766            case 3: /* Breakpoint Status */
 767                ret = env->mmubpregs[reg];
 768                env->mmubpregs[reg] = 0ULL;
 769                break;
 770            }
 771            DPRINTF_MMU("read breakpoint reg[%d] 0x%016" PRIx64 "\n", reg,
 772                        ret);
 773        }
 774        break;
 775    case 0x49: /* SuperSPARC MMU Counter Breakpoint Value */
 776        ret = env->mmubpctrv;
 777        break;
 778    case 0x4a: /* SuperSPARC MMU Counter Breakpoint Control */
 779        ret = env->mmubpctrc;
 780        break;
 781    case 0x4b: /* SuperSPARC MMU Counter Breakpoint Status */
 782        ret = env->mmubpctrs;
 783        break;
 784    case 0x4c: /* SuperSPARC MMU Breakpoint Action */
 785        ret = env->mmubpaction;
 786        break;
 787    case ASI_USERTXT: /* User code access, XXX */
 788    default:
 789        sparc_raise_mmu_fault(cs, addr, false, false, asi, size, GETPC());
 790        ret = 0;
 791        break;
 792
 793    case ASI_USERDATA: /* User data access */
 794    case ASI_KERNELDATA: /* Supervisor data access */
 795    case ASI_P: /* Implicit primary context data access (v9 only?) */
 796    case ASI_M_BYPASS:    /* MMU passthrough */
 797    case ASI_LEON_BYPASS: /* LEON MMU passthrough */
 798        /* These are always handled inline.  */
 799        g_assert_not_reached();
 800    }
 801    if (sign) {
 802        switch (size) {
 803        case 1:
 804            ret = (int8_t) ret;
 805            break;
 806        case 2:
 807            ret = (int16_t) ret;
 808            break;
 809        case 4:
 810            ret = (int32_t) ret;
 811            break;
 812        default:
 813            break;
 814        }
 815    }
 816#ifdef DEBUG_ASI
 817    dump_asi("read ", last_addr, asi, size, ret);
 818#endif
 819    return ret;
 820}
 821
 822void helper_st_asi(CPUSPARCState *env, target_ulong addr, uint64_t val,
 823                   int asi, uint32_t memop)
 824{
 825    int size = 1 << (memop & MO_SIZE);
 826    CPUState *cs = env_cpu(env);
 827
 828    do_check_align(env, addr, size - 1, GETPC());
 829    switch (asi) {
 830    case ASI_M_MXCC: /* SuperSparc MXCC registers, or... */
 831    /* case ASI_LEON_CACHEREGS:  Leon3 cache control */
 832        switch (addr) {
 833        case 0x00:          /* Leon3 Cache Control */
 834        case 0x08:          /* Leon3 Instruction Cache config */
 835        case 0x0C:          /* Leon3 Date Cache config */
 836            if (env->def.features & CPU_FEATURE_CACHE_CTRL) {
 837                leon3_cache_control_st(env, addr, val, size);
 838            }
 839            break;
 840
 841        case 0x01c00000: /* MXCC stream data register 0 */
 842            if (size == 8) {
 843                env->mxccdata[0] = val;
 844            } else {
 845                qemu_log_mask(LOG_UNIMP,
 846                              "%08x: unimplemented access size: %d\n", addr,
 847                              size);
 848            }
 849            break;
 850        case 0x01c00008: /* MXCC stream data register 1 */
 851            if (size == 8) {
 852                env->mxccdata[1] = val;
 853            } else {
 854                qemu_log_mask(LOG_UNIMP,
 855                              "%08x: unimplemented access size: %d\n", addr,
 856                              size);
 857            }
 858            break;
 859        case 0x01c00010: /* MXCC stream data register 2 */
 860            if (size == 8) {
 861                env->mxccdata[2] = val;
 862            } else {
 863                qemu_log_mask(LOG_UNIMP,
 864                              "%08x: unimplemented access size: %d\n", addr,
 865                              size);
 866            }
 867            break;
 868        case 0x01c00018: /* MXCC stream data register 3 */
 869            if (size == 8) {
 870                env->mxccdata[3] = val;
 871            } else {
 872                qemu_log_mask(LOG_UNIMP,
 873                              "%08x: unimplemented access size: %d\n", addr,
 874                              size);
 875            }
 876            break;
 877        case 0x01c00100: /* MXCC stream source */
 878        {
 879            int i;
 880
 881            if (size == 8) {
 882                env->mxccregs[0] = val;
 883            } else {
 884                qemu_log_mask(LOG_UNIMP,
 885                              "%08x: unimplemented access size: %d\n", addr,
 886                              size);
 887            }
 888
 889            for (i = 0; i < 4; i++) {
 890                MemTxResult result;
 891                hwaddr access_addr = (env->mxccregs[0] & 0xffffffffULL) + 8 * i;
 892
 893                env->mxccdata[i] = address_space_ldq(cs->as,
 894                                                     access_addr,
 895                                                     MEMTXATTRS_UNSPECIFIED,
 896                                                     &result);
 897                if (result != MEMTX_OK) {
 898                    /* TODO: investigate whether this is the right behaviour */
 899                    sparc_raise_mmu_fault(cs, access_addr, false, false,
 900                                          false, size, GETPC());
 901                }
 902            }
 903            break;
 904        }
 905        case 0x01c00200: /* MXCC stream destination */
 906        {
 907            int i;
 908
 909            if (size == 8) {
 910                env->mxccregs[1] = val;
 911            } else {
 912                qemu_log_mask(LOG_UNIMP,
 913                              "%08x: unimplemented access size: %d\n", addr,
 914                              size);
 915            }
 916
 917            for (i = 0; i < 4; i++) {
 918                MemTxResult result;
 919                hwaddr access_addr = (env->mxccregs[1] & 0xffffffffULL) + 8 * i;
 920
 921                address_space_stq(cs->as, access_addr, env->mxccdata[i],
 922                                  MEMTXATTRS_UNSPECIFIED, &result);
 923
 924                if (result != MEMTX_OK) {
 925                    /* TODO: investigate whether this is the right behaviour */
 926                    sparc_raise_mmu_fault(cs, access_addr, true, false,
 927                                          false, size, GETPC());
 928                }
 929            }
 930            break;
 931        }
 932        case 0x01c00a00: /* MXCC control register */
 933            if (size == 8) {
 934                env->mxccregs[3] = val;
 935            } else {
 936                qemu_log_mask(LOG_UNIMP,
 937                              "%08x: unimplemented access size: %d\n", addr,
 938                              size);
 939            }
 940            break;
 941        case 0x01c00a04: /* MXCC control register */
 942            if (size == 4) {
 943                env->mxccregs[3] = (env->mxccregs[3] & 0xffffffff00000000ULL)
 944                    | val;
 945            } else {
 946                qemu_log_mask(LOG_UNIMP,
 947                              "%08x: unimplemented access size: %d\n", addr,
 948                              size);
 949            }
 950            break;
 951        case 0x01c00e00: /* MXCC error register  */
 952            /* writing a 1 bit clears the error */
 953            if (size == 8) {
 954                env->mxccregs[6] &= ~val;
 955            } else {
 956                qemu_log_mask(LOG_UNIMP,
 957                              "%08x: unimplemented access size: %d\n", addr,
 958                              size);
 959            }
 960            break;
 961        case 0x01c00f00: /* MBus port address register */
 962            if (size == 8) {
 963                env->mxccregs[7] = val;
 964            } else {
 965                qemu_log_mask(LOG_UNIMP,
 966                              "%08x: unimplemented access size: %d\n", addr,
 967                              size);
 968            }
 969            break;
 970        default:
 971            qemu_log_mask(LOG_UNIMP,
 972                          "%08x: unimplemented address, size: %d\n", addr,
 973                          size);
 974            break;
 975        }
 976        DPRINTF_MXCC("asi = %d, size = %d, addr = %08x, val = %" PRIx64 "\n",
 977                     asi, size, addr, val);
 978#ifdef DEBUG_MXCC
 979        dump_mxcc(env);
 980#endif
 981        break;
 982    case ASI_M_FLUSH_PROBE: /* SuperSparc MMU flush */
 983    case ASI_LEON_MMUFLUSH: /* LEON3 MMU flush */
 984        {
 985            int mmulev;
 986
 987            mmulev = (addr >> 8) & 15;
 988            DPRINTF_MMU("mmu flush level %d\n", mmulev);
 989            switch (mmulev) {
 990            case 0: /* flush page */
 991                tlb_flush_page(cs, addr & 0xfffff000);
 992                break;
 993            case 1: /* flush segment (256k) */
 994            case 2: /* flush region (16M) */
 995            case 3: /* flush context (4G) */
 996            case 4: /* flush entire */
 997                tlb_flush(cs);
 998                break;
 999            default:
1000                break;
1001            }
1002#ifdef DEBUG_MMU
1003            dump_mmu(env);
1004#endif
1005        }
1006        break;
1007    case ASI_M_MMUREGS: /* write MMU regs */
1008    case ASI_LEON_MMUREGS: /* LEON3 write MMU regs */
1009        {
1010            int reg = (addr >> 8) & 0x1f;
1011            uint32_t oldreg;
1012
1013            oldreg = env->mmuregs[reg];
1014            switch (reg) {
1015            case 0: /* Control Register */
1016                env->mmuregs[reg] = (env->mmuregs[reg] & 0xff000000) |
1017                    (val & 0x00ffffff);
1018                /* Mappings generated during no-fault mode
1019                   are invalid in normal mode.  */
1020                if ((oldreg ^ env->mmuregs[reg])
1021                    & (MMU_NF | env->def.mmu_bm)) {
1022                    tlb_flush(cs);
1023                }
1024                break;
1025            case 1: /* Context Table Pointer Register */
1026                env->mmuregs[reg] = val & env->def.mmu_ctpr_mask;
1027                break;
1028            case 2: /* Context Register */
1029                env->mmuregs[reg] = val & env->def.mmu_cxr_mask;
1030                if (oldreg != env->mmuregs[reg]) {
1031                    /* we flush when the MMU context changes because
1032                       QEMU has no MMU context support */
1033                    tlb_flush(cs);
1034                }
1035                break;
1036            case 3: /* Synchronous Fault Status Register with Clear */
1037            case 4: /* Synchronous Fault Address Register */
1038                break;
1039            case 0x10: /* TLB Replacement Control Register */
1040                env->mmuregs[reg] = val & env->def.mmu_trcr_mask;
1041                break;
1042            case 0x13: /* Synchronous Fault Status Register with Read
1043                          and Clear */
1044                env->mmuregs[3] = val & env->def.mmu_sfsr_mask;
1045                break;
1046            case 0x14: /* Synchronous Fault Address Register */
1047                env->mmuregs[4] = val;
1048                break;
1049            default:
1050                env->mmuregs[reg] = val;
1051                break;
1052            }
1053            if (oldreg != env->mmuregs[reg]) {
1054                DPRINTF_MMU("mmu change reg[%d]: 0x%08x -> 0x%08x\n",
1055                            reg, oldreg, env->mmuregs[reg]);
1056            }
1057#ifdef DEBUG_MMU
1058            dump_mmu(env);
1059#endif
1060        }
1061        break;
1062    case ASI_M_TLBDIAG: /* Turbosparc ITLB Diagnostic */
1063    case ASI_M_DIAGS:   /* Turbosparc DTLB Diagnostic */
1064    case ASI_M_IODIAG:  /* Turbosparc IOTLB Diagnostic */
1065        break;
1066    case ASI_M_TXTC_TAG:   /* I-cache tag */
1067    case ASI_M_TXTC_DATA:  /* I-cache data */
1068    case ASI_M_DATAC_TAG:  /* D-cache tag */
1069    case ASI_M_DATAC_DATA: /* D-cache data */
1070    case ASI_M_FLUSH_PAGE:   /* I/D-cache flush page */
1071    case ASI_M_FLUSH_SEG:    /* I/D-cache flush segment */
1072    case ASI_M_FLUSH_REGION: /* I/D-cache flush region */
1073    case ASI_M_FLUSH_CTX:    /* I/D-cache flush context */
1074    case ASI_M_FLUSH_USER:   /* I/D-cache flush user */
1075        break;
1076    case 0x21 ... 0x2f: /* MMU passthrough, 0x100000000 to 0xfffffffff */
1077        {
1078            MemTxResult result;
1079            hwaddr access_addr = (hwaddr)addr | ((hwaddr)(asi & 0xf) << 32);
1080
1081            switch (size) {
1082            case 1:
1083                address_space_stb(cs->as, access_addr, val,
1084                                  MEMTXATTRS_UNSPECIFIED, &result);
1085                break;
1086            case 2:
1087                address_space_stw(cs->as, access_addr, val,
1088                                  MEMTXATTRS_UNSPECIFIED, &result);
1089                break;
1090            case 4:
1091            default:
1092                address_space_stl(cs->as, access_addr, val,
1093                                  MEMTXATTRS_UNSPECIFIED, &result);
1094                break;
1095            case 8:
1096                address_space_stq(cs->as, access_addr, val,
1097                                  MEMTXATTRS_UNSPECIFIED, &result);
1098                break;
1099            }
1100            if (result != MEMTX_OK) {
1101                sparc_raise_mmu_fault(cs, access_addr, true, false, false,
1102                                      size, GETPC());
1103            }
1104        }
1105        break;
1106    case 0x30: /* store buffer tags or Turbosparc secondary cache diagnostic */
1107    case 0x31: /* store buffer data, Ross RT620 I-cache flush or
1108                  Turbosparc snoop RAM */
1109    case 0x32: /* store buffer control or Turbosparc page table
1110                  descriptor diagnostic */
1111    case 0x36: /* I-cache flash clear */
1112    case 0x37: /* D-cache flash clear */
1113        break;
1114    case 0x38: /* SuperSPARC MMU Breakpoint Control Registers*/
1115        {
1116            int reg = (addr >> 8) & 3;
1117
1118            switch (reg) {
1119            case 0: /* Breakpoint Value (Addr) */
1120                env->mmubpregs[reg] = (val & 0xfffffffffULL);
1121                break;
1122            case 1: /* Breakpoint Mask */
1123                env->mmubpregs[reg] = (val & 0xfffffffffULL);
1124                break;
1125            case 2: /* Breakpoint Control */
1126                env->mmubpregs[reg] = (val & 0x7fULL);
1127                break;
1128            case 3: /* Breakpoint Status */
1129                env->mmubpregs[reg] = (val & 0xfULL);
1130                break;
1131            }
1132            DPRINTF_MMU("write breakpoint reg[%d] 0x%016x\n", reg,
1133                        env->mmuregs[reg]);
1134        }
1135        break;
1136    case 0x49: /* SuperSPARC MMU Counter Breakpoint Value */
1137        env->mmubpctrv = val & 0xffffffff;
1138        break;
1139    case 0x4a: /* SuperSPARC MMU Counter Breakpoint Control */
1140        env->mmubpctrc = val & 0x3;
1141        break;
1142    case 0x4b: /* SuperSPARC MMU Counter Breakpoint Status */
1143        env->mmubpctrs = val & 0x3;
1144        break;
1145    case 0x4c: /* SuperSPARC MMU Breakpoint Action */
1146        env->mmubpaction = val & 0x1fff;
1147        break;
1148    case ASI_USERTXT: /* User code access, XXX */
1149    case ASI_KERNELTXT: /* Supervisor code access, XXX */
1150    default:
1151        sparc_raise_mmu_fault(cs, addr, true, false, asi, size, GETPC());
1152        break;
1153
1154    case ASI_USERDATA: /* User data access */
1155    case ASI_KERNELDATA: /* Supervisor data access */
1156    case ASI_P:
1157    case ASI_M_BYPASS:    /* MMU passthrough */
1158    case ASI_LEON_BYPASS: /* LEON MMU passthrough */
1159    case ASI_M_BCOPY: /* Block copy, sta access */
1160    case ASI_M_BFILL: /* Block fill, stda access */
1161        /* These are always handled inline.  */
1162        g_assert_not_reached();
1163    }
1164#ifdef DEBUG_ASI
1165    dump_asi("write", addr, asi, size, val);
1166#endif
1167}
1168
1169#endif /* CONFIG_USER_ONLY */
1170#else /* TARGET_SPARC64 */
1171
1172#ifdef CONFIG_USER_ONLY
1173uint64_t helper_ld_asi(CPUSPARCState *env, target_ulong addr,
1174                       int asi, uint32_t memop)
1175{
1176    int size = 1 << (memop & MO_SIZE);
1177    int sign = memop & MO_SIGN;
1178    uint64_t ret = 0;
1179
1180    if (asi < 0x80) {
1181        cpu_raise_exception_ra(env, TT_PRIV_ACT, GETPC());
1182    }
1183    do_check_align(env, addr, size - 1, GETPC());
1184    addr = asi_address_mask(env, asi, addr);
1185
1186    switch (asi) {
1187    case ASI_PNF:  /* Primary no-fault */
1188    case ASI_PNFL: /* Primary no-fault LE */
1189    case ASI_SNF:  /* Secondary no-fault */
1190    case ASI_SNFL: /* Secondary no-fault LE */
1191        if (page_check_range(addr, size, PAGE_READ) == -1) {
1192            ret = 0;
1193            break;
1194        }
1195        switch (size) {
1196        case 1:
1197            ret = cpu_ldub_data(env, addr);
1198            break;
1199        case 2:
1200            ret = cpu_lduw_data(env, addr);
1201            break;
1202        case 4:
1203            ret = cpu_ldl_data(env, addr);
1204            break;
1205        case 8:
1206            ret = cpu_ldq_data(env, addr);
1207            break;
1208        default:
1209            g_assert_not_reached();
1210        }
1211        break;
1212        break;
1213
1214    case ASI_P: /* Primary */
1215    case ASI_PL: /* Primary LE */
1216    case ASI_S:  /* Secondary */
1217    case ASI_SL: /* Secondary LE */
1218        /* These are always handled inline.  */
1219        g_assert_not_reached();
1220
1221    default:
1222        cpu_raise_exception_ra(env, TT_DATA_ACCESS, GETPC());
1223    }
1224
1225    /* Convert from little endian */
1226    switch (asi) {
1227    case ASI_PNFL: /* Primary no-fault LE */
1228    case ASI_SNFL: /* Secondary no-fault LE */
1229        switch (size) {
1230        case 2:
1231            ret = bswap16(ret);
1232            break;
1233        case 4:
1234            ret = bswap32(ret);
1235            break;
1236        case 8:
1237            ret = bswap64(ret);
1238            break;
1239        }
1240    }
1241
1242    /* Convert to signed number */
1243    if (sign) {
1244        switch (size) {
1245        case 1:
1246            ret = (int8_t) ret;
1247            break;
1248        case 2:
1249            ret = (int16_t) ret;
1250            break;
1251        case 4:
1252            ret = (int32_t) ret;
1253            break;
1254        }
1255    }
1256#ifdef DEBUG_ASI
1257    dump_asi("read", addr, asi, size, ret);
1258#endif
1259    return ret;
1260}
1261
1262void helper_st_asi(CPUSPARCState *env, target_ulong addr, target_ulong val,
1263                   int asi, uint32_t memop)
1264{
1265    int size = 1 << (memop & MO_SIZE);
1266#ifdef DEBUG_ASI
1267    dump_asi("write", addr, asi, size, val);
1268#endif
1269    if (asi < 0x80) {
1270        cpu_raise_exception_ra(env, TT_PRIV_ACT, GETPC());
1271    }
1272    do_check_align(env, addr, size - 1, GETPC());
1273
1274    switch (asi) {
1275    case ASI_P:  /* Primary */
1276    case ASI_PL: /* Primary LE */
1277    case ASI_S:  /* Secondary */
1278    case ASI_SL: /* Secondary LE */
1279        /* These are always handled inline.  */
1280        g_assert_not_reached();
1281
1282    case ASI_PNF:  /* Primary no-fault, RO */
1283    case ASI_SNF:  /* Secondary no-fault, RO */
1284    case ASI_PNFL: /* Primary no-fault LE, RO */
1285    case ASI_SNFL: /* Secondary no-fault LE, RO */
1286    default:
1287        cpu_raise_exception_ra(env, TT_DATA_ACCESS, GETPC());
1288    }
1289}
1290
1291#else /* CONFIG_USER_ONLY */
1292
1293uint64_t helper_ld_asi(CPUSPARCState *env, target_ulong addr,
1294                       int asi, uint32_t memop)
1295{
1296    int size = 1 << (memop & MO_SIZE);
1297    int sign = memop & MO_SIGN;
1298    CPUState *cs = env_cpu(env);
1299    uint64_t ret = 0;
1300#if defined(DEBUG_ASI)
1301    target_ulong last_addr = addr;
1302#endif
1303
1304    asi &= 0xff;
1305
1306    do_check_asi(env, asi, GETPC());
1307    do_check_align(env, addr, size - 1, GETPC());
1308    addr = asi_address_mask(env, asi, addr);
1309
1310    switch (asi) {
1311    case ASI_PNF:
1312    case ASI_PNFL:
1313    case ASI_SNF:
1314    case ASI_SNFL:
1315        {
1316            MemOpIdx oi;
1317            int idx = (env->pstate & PS_PRIV
1318                       ? (asi & 1 ? MMU_KERNEL_SECONDARY_IDX : MMU_KERNEL_IDX)
1319                       : (asi & 1 ? MMU_USER_SECONDARY_IDX : MMU_USER_IDX));
1320
1321            if (cpu_get_phys_page_nofault(env, addr, idx) == -1ULL) {
1322#ifdef DEBUG_ASI
1323                dump_asi("read ", last_addr, asi, size, ret);
1324#endif
1325                /* exception_index is set in get_physical_address_data. */
1326                cpu_raise_exception_ra(env, cs->exception_index, GETPC());
1327            }
1328            oi = make_memop_idx(memop, idx);
1329            switch (size) {
1330            case 1:
1331                ret = cpu_ldb_mmu(env, addr, oi, GETPC());
1332                break;
1333            case 2:
1334                if (asi & 8) {
1335                    ret = cpu_ldw_le_mmu(env, addr, oi, GETPC());
1336                } else {
1337                    ret = cpu_ldw_be_mmu(env, addr, oi, GETPC());
1338                }
1339                break;
1340            case 4:
1341                if (asi & 8) {
1342                    ret = cpu_ldl_le_mmu(env, addr, oi, GETPC());
1343                } else {
1344                    ret = cpu_ldl_be_mmu(env, addr, oi, GETPC());
1345                }
1346                break;
1347            case 8:
1348                if (asi & 8) {
1349                    ret = cpu_ldq_le_mmu(env, addr, oi, GETPC());
1350                } else {
1351                    ret = cpu_ldq_be_mmu(env, addr, oi, GETPC());
1352                }
1353                break;
1354            default:
1355                g_assert_not_reached();
1356            }
1357        }
1358        break;
1359
1360    case ASI_AIUP:  /* As if user primary */
1361    case ASI_AIUS:  /* As if user secondary */
1362    case ASI_AIUPL: /* As if user primary LE */
1363    case ASI_AIUSL: /* As if user secondary LE */
1364    case ASI_P:  /* Primary */
1365    case ASI_S:  /* Secondary */
1366    case ASI_PL: /* Primary LE */
1367    case ASI_SL: /* Secondary LE */
1368    case ASI_REAL:      /* Bypass */
1369    case ASI_REAL_IO:   /* Bypass, non-cacheable */
1370    case ASI_REAL_L:    /* Bypass LE */
1371    case ASI_REAL_IO_L: /* Bypass, non-cacheable LE */
1372    case ASI_N:  /* Nucleus */
1373    case ASI_NL: /* Nucleus Little Endian (LE) */
1374    case ASI_NUCLEUS_QUAD_LDD:   /* Nucleus quad LDD 128 bit atomic */
1375    case ASI_NUCLEUS_QUAD_LDD_L: /* Nucleus quad LDD 128 bit atomic LE */
1376    case ASI_TWINX_AIUP:   /* As if user primary, twinx */
1377    case ASI_TWINX_AIUS:   /* As if user secondary, twinx */
1378    case ASI_TWINX_REAL:   /* Real address, twinx */
1379    case ASI_TWINX_AIUP_L: /* As if user primary, twinx, LE */
1380    case ASI_TWINX_AIUS_L: /* As if user secondary, twinx, LE */
1381    case ASI_TWINX_REAL_L: /* Real address, twinx, LE */
1382    case ASI_TWINX_N:  /* Nucleus, twinx */
1383    case ASI_TWINX_NL: /* Nucleus, twinx, LE */
1384    /* ??? From the UA2011 document; overlaps BLK_INIT_QUAD_LDD_* */
1385    case ASI_TWINX_P:  /* Primary, twinx */
1386    case ASI_TWINX_PL: /* Primary, twinx, LE */
1387    case ASI_TWINX_S:  /* Secondary, twinx */
1388    case ASI_TWINX_SL: /* Secondary, twinx, LE */
1389        /* These are always handled inline.  */
1390        g_assert_not_reached();
1391
1392    case ASI_UPA_CONFIG: /* UPA config */
1393        /* XXX */
1394        break;
1395    case ASI_LSU_CONTROL: /* LSU */
1396        ret = env->lsu;
1397        break;
1398    case ASI_IMMU: /* I-MMU regs */
1399        {
1400            int reg = (addr >> 3) & 0xf;
1401            switch (reg) {
1402            case 0:
1403                /* 0x00 I-TSB Tag Target register */
1404                ret = ultrasparc_tag_target(env->immu.tag_access);
1405                break;
1406            case 3: /* SFSR */
1407                ret = env->immu.sfsr;
1408                break;
1409            case 5: /* TSB access */
1410                ret = env->immu.tsb;
1411                break;
1412            case 6:
1413                /* 0x30 I-TSB Tag Access register */
1414                ret = env->immu.tag_access;
1415                break;
1416            default:
1417                sparc_raise_mmu_fault(cs, addr, false, false, 1, size, GETPC());
1418                ret = 0;
1419            }
1420            break;
1421        }
1422    case ASI_IMMU_TSB_8KB_PTR: /* I-MMU 8k TSB pointer */
1423        {
1424            /* env->immuregs[5] holds I-MMU TSB register value
1425               env->immuregs[6] holds I-MMU Tag Access register value */
1426            ret = ultrasparc_tsb_pointer(env, &env->immu, 0);
1427            break;
1428        }
1429    case ASI_IMMU_TSB_64KB_PTR: /* I-MMU 64k TSB pointer */
1430        {
1431            /* env->immuregs[5] holds I-MMU TSB register value
1432               env->immuregs[6] holds I-MMU Tag Access register value */
1433            ret = ultrasparc_tsb_pointer(env, &env->immu, 1);
1434            break;
1435        }
1436    case ASI_ITLB_DATA_ACCESS: /* I-MMU data access */
1437        {
1438            int reg = (addr >> 3) & 0x3f;
1439
1440            ret = env->itlb[reg].tte;
1441            break;
1442        }
1443    case ASI_ITLB_TAG_READ: /* I-MMU tag read */
1444        {
1445            int reg = (addr >> 3) & 0x3f;
1446
1447            ret = env->itlb[reg].tag;
1448            break;
1449        }
1450    case ASI_DMMU: /* D-MMU regs */
1451        {
1452            int reg = (addr >> 3) & 0xf;
1453            switch (reg) {
1454            case 0:
1455                /* 0x00 D-TSB Tag Target register */
1456                ret = ultrasparc_tag_target(env->dmmu.tag_access);
1457                break;
1458            case 1: /* 0x08 Primary Context */
1459                ret = env->dmmu.mmu_primary_context;
1460                break;
1461            case 2: /* 0x10 Secondary Context */
1462                ret = env->dmmu.mmu_secondary_context;
1463                break;
1464            case 3: /* SFSR */
1465                ret = env->dmmu.sfsr;
1466                break;
1467            case 4: /* 0x20 SFAR */
1468                ret = env->dmmu.sfar;
1469                break;
1470            case 5: /* 0x28 TSB access */
1471                ret = env->dmmu.tsb;
1472                break;
1473            case 6: /* 0x30 D-TSB Tag Access register */
1474                ret = env->dmmu.tag_access;
1475                break;
1476            case 7:
1477                ret = env->dmmu.virtual_watchpoint;
1478                break;
1479            case 8:
1480                ret = env->dmmu.physical_watchpoint;
1481                break;
1482            default:
1483                sparc_raise_mmu_fault(cs, addr, false, false, 1, size, GETPC());
1484                ret = 0;
1485            }
1486            break;
1487        }
1488    case ASI_DMMU_TSB_8KB_PTR: /* D-MMU 8k TSB pointer */
1489        {
1490            /* env->dmmuregs[5] holds D-MMU TSB register value
1491               env->dmmuregs[6] holds D-MMU Tag Access register value */
1492            ret = ultrasparc_tsb_pointer(env, &env->dmmu, 0);
1493            break;
1494        }
1495    case ASI_DMMU_TSB_64KB_PTR: /* D-MMU 64k TSB pointer */
1496        {
1497            /* env->dmmuregs[5] holds D-MMU TSB register value
1498               env->dmmuregs[6] holds D-MMU Tag Access register value */
1499            ret = ultrasparc_tsb_pointer(env, &env->dmmu, 1);
1500            break;
1501        }
1502    case ASI_DTLB_DATA_ACCESS: /* D-MMU data access */
1503        {
1504            int reg = (addr >> 3) & 0x3f;
1505
1506            ret = env->dtlb[reg].tte;
1507            break;
1508        }
1509    case ASI_DTLB_TAG_READ: /* D-MMU tag read */
1510        {
1511            int reg = (addr >> 3) & 0x3f;
1512
1513            ret = env->dtlb[reg].tag;
1514            break;
1515        }
1516    case ASI_INTR_DISPATCH_STAT: /* Interrupt dispatch, RO */
1517        break;
1518    case ASI_INTR_RECEIVE: /* Interrupt data receive */
1519        ret = env->ivec_status;
1520        break;
1521    case ASI_INTR_R: /* Incoming interrupt vector, RO */
1522        {
1523            int reg = (addr >> 4) & 0x3;
1524            if (reg < 3) {
1525                ret = env->ivec_data[reg];
1526            }
1527            break;
1528        }
1529    case ASI_SCRATCHPAD: /* UA2005 privileged scratchpad */
1530        if (unlikely((addr >= 0x20) && (addr < 0x30))) {
1531            /* Hyperprivileged access only */
1532            sparc_raise_mmu_fault(cs, addr, false, false, 1, size, GETPC());
1533        }
1534        /* fall through */
1535    case ASI_HYP_SCRATCHPAD: /* UA2005 hyperprivileged scratchpad */
1536        {
1537            unsigned int i = (addr >> 3) & 0x7;
1538            ret = env->scratch[i];
1539            break;
1540        }
1541    case ASI_MMU: /* UA2005 Context ID registers */
1542        switch ((addr >> 3) & 0x3) {
1543        case 1:
1544            ret = env->dmmu.mmu_primary_context;
1545            break;
1546        case 2:
1547            ret = env->dmmu.mmu_secondary_context;
1548            break;
1549        default:
1550          sparc_raise_mmu_fault(cs, addr, true, false, 1, size, GETPC());
1551        }
1552        break;
1553    case ASI_DCACHE_DATA:     /* D-cache data */
1554    case ASI_DCACHE_TAG:      /* D-cache tag access */
1555    case ASI_ESTATE_ERROR_EN: /* E-cache error enable */
1556    case ASI_AFSR:            /* E-cache asynchronous fault status */
1557    case ASI_AFAR:            /* E-cache asynchronous fault address */
1558    case ASI_EC_TAG_DATA:     /* E-cache tag data */
1559    case ASI_IC_INSTR:        /* I-cache instruction access */
1560    case ASI_IC_TAG:          /* I-cache tag access */
1561    case ASI_IC_PRE_DECODE:   /* I-cache predecode */
1562    case ASI_IC_NEXT_FIELD:   /* I-cache LRU etc. */
1563    case ASI_EC_W:            /* E-cache tag */
1564    case ASI_EC_R:            /* E-cache tag */
1565        break;
1566    case ASI_DMMU_TSB_DIRECT_PTR: /* D-MMU data pointer */
1567    case ASI_ITLB_DATA_IN:        /* I-MMU data in, WO */
1568    case ASI_IMMU_DEMAP:          /* I-MMU demap, WO */
1569    case ASI_DTLB_DATA_IN:        /* D-MMU data in, WO */
1570    case ASI_DMMU_DEMAP:          /* D-MMU demap, WO */
1571    case ASI_INTR_W:              /* Interrupt vector, WO */
1572    default:
1573        sparc_raise_mmu_fault(cs, addr, false, false, 1, size, GETPC());
1574        ret = 0;
1575        break;
1576    }
1577
1578    /* Convert to signed number */
1579    if (sign) {
1580        switch (size) {
1581        case 1:
1582            ret = (int8_t) ret;
1583            break;
1584        case 2:
1585            ret = (int16_t) ret;
1586            break;
1587        case 4:
1588            ret = (int32_t) ret;
1589            break;
1590        default:
1591            break;
1592        }
1593    }
1594#ifdef DEBUG_ASI
1595    dump_asi("read ", last_addr, asi, size, ret);
1596#endif
1597    return ret;
1598}
1599
1600void helper_st_asi(CPUSPARCState *env, target_ulong addr, target_ulong val,
1601                   int asi, uint32_t memop)
1602{
1603    int size = 1 << (memop & MO_SIZE);
1604    CPUState *cs = env_cpu(env);
1605
1606#ifdef DEBUG_ASI
1607    dump_asi("write", addr, asi, size, val);
1608#endif
1609
1610    asi &= 0xff;
1611
1612    do_check_asi(env, asi, GETPC());
1613    do_check_align(env, addr, size - 1, GETPC());
1614    addr = asi_address_mask(env, asi, addr);
1615
1616    switch (asi) {
1617    case ASI_AIUP:  /* As if user primary */
1618    case ASI_AIUS:  /* As if user secondary */
1619    case ASI_AIUPL: /* As if user primary LE */
1620    case ASI_AIUSL: /* As if user secondary LE */
1621    case ASI_P:  /* Primary */
1622    case ASI_S:  /* Secondary */
1623    case ASI_PL: /* Primary LE */
1624    case ASI_SL: /* Secondary LE */
1625    case ASI_REAL:      /* Bypass */
1626    case ASI_REAL_IO:   /* Bypass, non-cacheable */
1627    case ASI_REAL_L:    /* Bypass LE */
1628    case ASI_REAL_IO_L: /* Bypass, non-cacheable LE */
1629    case ASI_N:  /* Nucleus */
1630    case ASI_NL: /* Nucleus Little Endian (LE) */
1631    case ASI_NUCLEUS_QUAD_LDD:   /* Nucleus quad LDD 128 bit atomic */
1632    case ASI_NUCLEUS_QUAD_LDD_L: /* Nucleus quad LDD 128 bit atomic LE */
1633    case ASI_TWINX_AIUP:   /* As if user primary, twinx */
1634    case ASI_TWINX_AIUS:   /* As if user secondary, twinx */
1635    case ASI_TWINX_REAL:   /* Real address, twinx */
1636    case ASI_TWINX_AIUP_L: /* As if user primary, twinx, LE */
1637    case ASI_TWINX_AIUS_L: /* As if user secondary, twinx, LE */
1638    case ASI_TWINX_REAL_L: /* Real address, twinx, LE */
1639    case ASI_TWINX_N:  /* Nucleus, twinx */
1640    case ASI_TWINX_NL: /* Nucleus, twinx, LE */
1641    /* ??? From the UA2011 document; overlaps BLK_INIT_QUAD_LDD_* */
1642    case ASI_TWINX_P:  /* Primary, twinx */
1643    case ASI_TWINX_PL: /* Primary, twinx, LE */
1644    case ASI_TWINX_S:  /* Secondary, twinx */
1645    case ASI_TWINX_SL: /* Secondary, twinx, LE */
1646        /* These are always handled inline.  */
1647        g_assert_not_reached();
1648    /* these ASIs have different functions on UltraSPARC-IIIi
1649     * and UA2005 CPUs. Use the explicit numbers to avoid confusion
1650     */
1651    case 0x31:
1652    case 0x32:
1653    case 0x39:
1654    case 0x3a:
1655        if (cpu_has_hypervisor(env)) {
1656            /* UA2005
1657             * ASI_DMMU_CTX_ZERO_TSB_BASE_PS0
1658             * ASI_DMMU_CTX_ZERO_TSB_BASE_PS1
1659             * ASI_DMMU_CTX_NONZERO_TSB_BASE_PS0
1660             * ASI_DMMU_CTX_NONZERO_TSB_BASE_PS1
1661             */
1662            int idx = ((asi & 2) >> 1) | ((asi & 8) >> 2);
1663            env->dmmu.sun4v_tsb_pointers[idx] = val;
1664        } else {
1665            helper_raise_exception(env, TT_ILL_INSN);
1666        }
1667        break;
1668    case 0x33:
1669    case 0x3b:
1670        if (cpu_has_hypervisor(env)) {
1671            /* UA2005
1672             * ASI_DMMU_CTX_ZERO_CONFIG
1673             * ASI_DMMU_CTX_NONZERO_CONFIG
1674             */
1675            env->dmmu.sun4v_ctx_config[(asi & 8) >> 3] = val;
1676        } else {
1677            helper_raise_exception(env, TT_ILL_INSN);
1678        }
1679        break;
1680    case 0x35:
1681    case 0x36:
1682    case 0x3d:
1683    case 0x3e:
1684        if (cpu_has_hypervisor(env)) {
1685            /* UA2005
1686             * ASI_IMMU_CTX_ZERO_TSB_BASE_PS0
1687             * ASI_IMMU_CTX_ZERO_TSB_BASE_PS1
1688             * ASI_IMMU_CTX_NONZERO_TSB_BASE_PS0
1689             * ASI_IMMU_CTX_NONZERO_TSB_BASE_PS1
1690             */
1691            int idx = ((asi & 2) >> 1) | ((asi & 8) >> 2);
1692            env->immu.sun4v_tsb_pointers[idx] = val;
1693        } else {
1694            helper_raise_exception(env, TT_ILL_INSN);
1695        }
1696      break;
1697    case 0x37:
1698    case 0x3f:
1699        if (cpu_has_hypervisor(env)) {
1700            /* UA2005
1701             * ASI_IMMU_CTX_ZERO_CONFIG
1702             * ASI_IMMU_CTX_NONZERO_CONFIG
1703             */
1704            env->immu.sun4v_ctx_config[(asi & 8) >> 3] = val;
1705        } else {
1706          helper_raise_exception(env, TT_ILL_INSN);
1707        }
1708        break;
1709    case ASI_UPA_CONFIG: /* UPA config */
1710        /* XXX */
1711        return;
1712    case ASI_LSU_CONTROL: /* LSU */
1713        env->lsu = val & (DMMU_E | IMMU_E);
1714        return;
1715    case ASI_IMMU: /* I-MMU regs */
1716        {
1717            int reg = (addr >> 3) & 0xf;
1718            uint64_t oldreg;
1719
1720            oldreg = env->immu.mmuregs[reg];
1721            switch (reg) {
1722            case 0: /* RO */
1723                return;
1724            case 1: /* Not in I-MMU */
1725            case 2:
1726                return;
1727            case 3: /* SFSR */
1728                if ((val & 1) == 0) {
1729                    val = 0; /* Clear SFSR */
1730                }
1731                env->immu.sfsr = val;
1732                break;
1733            case 4: /* RO */
1734                return;
1735            case 5: /* TSB access */
1736                DPRINTF_MMU("immu TSB write: 0x%016" PRIx64 " -> 0x%016"
1737                            PRIx64 "\n", env->immu.tsb, val);
1738                env->immu.tsb = val;
1739                break;
1740            case 6: /* Tag access */
1741                env->immu.tag_access = val;
1742                break;
1743            case 7:
1744            case 8:
1745                return;
1746            default:
1747                sparc_raise_mmu_fault(cs, addr, true, false, 1, size, GETPC());
1748                break;
1749            }
1750
1751            if (oldreg != env->immu.mmuregs[reg]) {
1752                DPRINTF_MMU("immu change reg[%d]: 0x%016" PRIx64 " -> 0x%016"
1753                            PRIx64 "\n", reg, oldreg, env->immuregs[reg]);
1754            }
1755#ifdef DEBUG_MMU
1756            dump_mmu(env);
1757#endif
1758            return;
1759        }
1760    case ASI_ITLB_DATA_IN: /* I-MMU data in */
1761        /* ignore real translation entries */
1762        if (!(addr & TLB_UST1_IS_REAL_BIT)) {
1763            replace_tlb_1bit_lru(env->itlb, env->immu.tag_access,
1764                                 val, "immu", env, addr);
1765        }
1766        return;
1767    case ASI_ITLB_DATA_ACCESS: /* I-MMU data access */
1768        {
1769            /* TODO: auto demap */
1770
1771            unsigned int i = (addr >> 3) & 0x3f;
1772
1773            /* ignore real translation entries */
1774            if (!(addr & TLB_UST1_IS_REAL_BIT)) {
1775                replace_tlb_entry(&env->itlb[i], env->immu.tag_access,
1776                                  sun4v_tte_to_sun4u(env, addr, val), env);
1777            }
1778#ifdef DEBUG_MMU
1779            DPRINTF_MMU("immu data access replaced entry [%i]\n", i);
1780            dump_mmu(env);
1781#endif
1782            return;
1783        }
1784    case ASI_IMMU_DEMAP: /* I-MMU demap */
1785        demap_tlb(env->itlb, addr, "immu", env);
1786        return;
1787    case ASI_DMMU: /* D-MMU regs */
1788        {
1789            int reg = (addr >> 3) & 0xf;
1790            uint64_t oldreg;
1791
1792            oldreg = env->dmmu.mmuregs[reg];
1793            switch (reg) {
1794            case 0: /* RO */
1795            case 4:
1796                return;
1797            case 3: /* SFSR */
1798                if ((val & 1) == 0) {
1799                    val = 0; /* Clear SFSR, Fault address */
1800                    env->dmmu.sfar = 0;
1801                }
1802                env->dmmu.sfsr = val;
1803                break;
1804            case 1: /* Primary context */
1805                env->dmmu.mmu_primary_context = val;
1806                /* can be optimized to only flush MMU_USER_IDX
1807                   and MMU_KERNEL_IDX entries */
1808                tlb_flush(cs);
1809                break;
1810            case 2: /* Secondary context */
1811                env->dmmu.mmu_secondary_context = val;
1812                /* can be optimized to only flush MMU_USER_SECONDARY_IDX
1813                   and MMU_KERNEL_SECONDARY_IDX entries */
1814                tlb_flush(cs);
1815                break;
1816            case 5: /* TSB access */
1817                DPRINTF_MMU("dmmu TSB write: 0x%016" PRIx64 " -> 0x%016"
1818                            PRIx64 "\n", env->dmmu.tsb, val);
1819                env->dmmu.tsb = val;
1820                break;
1821            case 6: /* Tag access */
1822                env->dmmu.tag_access = val;
1823                break;
1824            case 7: /* Virtual Watchpoint */
1825                env->dmmu.virtual_watchpoint = val;
1826                break;
1827            case 8: /* Physical Watchpoint */
1828                env->dmmu.physical_watchpoint = val;
1829                break;
1830            default:
1831                sparc_raise_mmu_fault(cs, addr, true, false, 1, size, GETPC());
1832                break;
1833            }
1834
1835            if (oldreg != env->dmmu.mmuregs[reg]) {
1836                DPRINTF_MMU("dmmu change reg[%d]: 0x%016" PRIx64 " -> 0x%016"
1837                            PRIx64 "\n", reg, oldreg, env->dmmuregs[reg]);
1838            }
1839#ifdef DEBUG_MMU
1840            dump_mmu(env);
1841#endif
1842            return;
1843        }
1844    case ASI_DTLB_DATA_IN: /* D-MMU data in */
1845      /* ignore real translation entries */
1846      if (!(addr & TLB_UST1_IS_REAL_BIT)) {
1847          replace_tlb_1bit_lru(env->dtlb, env->dmmu.tag_access,
1848                               val, "dmmu", env, addr);
1849      }
1850      return;
1851    case ASI_DTLB_DATA_ACCESS: /* D-MMU data access */
1852        {
1853            unsigned int i = (addr >> 3) & 0x3f;
1854
1855            /* ignore real translation entries */
1856            if (!(addr & TLB_UST1_IS_REAL_BIT)) {
1857                replace_tlb_entry(&env->dtlb[i], env->dmmu.tag_access,
1858                                  sun4v_tte_to_sun4u(env, addr, val), env);
1859            }
1860#ifdef DEBUG_MMU
1861            DPRINTF_MMU("dmmu data access replaced entry [%i]\n", i);
1862            dump_mmu(env);
1863#endif
1864            return;
1865        }
1866    case ASI_DMMU_DEMAP: /* D-MMU demap */
1867        demap_tlb(env->dtlb, addr, "dmmu", env);
1868        return;
1869    case ASI_INTR_RECEIVE: /* Interrupt data receive */
1870        env->ivec_status = val & 0x20;
1871        return;
1872    case ASI_SCRATCHPAD: /* UA2005 privileged scratchpad */
1873        if (unlikely((addr >= 0x20) && (addr < 0x30))) {
1874            /* Hyperprivileged access only */
1875            sparc_raise_mmu_fault(cs, addr, true, false, 1, size, GETPC());
1876        }
1877        /* fall through */
1878    case ASI_HYP_SCRATCHPAD: /* UA2005 hyperprivileged scratchpad */
1879        {
1880            unsigned int i = (addr >> 3) & 0x7;
1881            env->scratch[i] = val;
1882            return;
1883        }
1884    case ASI_MMU: /* UA2005 Context ID registers */
1885        {
1886          switch ((addr >> 3) & 0x3) {
1887          case 1:
1888              env->dmmu.mmu_primary_context = val;
1889              env->immu.mmu_primary_context = val;
1890              tlb_flush_by_mmuidx(cs,
1891                                  (1 << MMU_USER_IDX) | (1 << MMU_KERNEL_IDX));
1892              break;
1893          case 2:
1894              env->dmmu.mmu_secondary_context = val;
1895              env->immu.mmu_secondary_context = val;
1896              tlb_flush_by_mmuidx(cs,
1897                                  (1 << MMU_USER_SECONDARY_IDX) |
1898                                  (1 << MMU_KERNEL_SECONDARY_IDX));
1899              break;
1900          default:
1901              sparc_raise_mmu_fault(cs, addr, true, false, 1, size, GETPC());
1902          }
1903        }
1904        return;
1905    case ASI_QUEUE: /* UA2005 CPU mondo queue */
1906    case ASI_DCACHE_DATA: /* D-cache data */
1907    case ASI_DCACHE_TAG: /* D-cache tag access */
1908    case ASI_ESTATE_ERROR_EN: /* E-cache error enable */
1909    case ASI_AFSR: /* E-cache asynchronous fault status */
1910    case ASI_AFAR: /* E-cache asynchronous fault address */
1911    case ASI_EC_TAG_DATA: /* E-cache tag data */
1912    case ASI_IC_INSTR: /* I-cache instruction access */
1913    case ASI_IC_TAG: /* I-cache tag access */
1914    case ASI_IC_PRE_DECODE: /* I-cache predecode */
1915    case ASI_IC_NEXT_FIELD: /* I-cache LRU etc. */
1916    case ASI_EC_W: /* E-cache tag */
1917    case ASI_EC_R: /* E-cache tag */
1918        return;
1919    case ASI_IMMU_TSB_8KB_PTR: /* I-MMU 8k TSB pointer, RO */
1920    case ASI_IMMU_TSB_64KB_PTR: /* I-MMU 64k TSB pointer, RO */
1921    case ASI_ITLB_TAG_READ: /* I-MMU tag read, RO */
1922    case ASI_DMMU_TSB_8KB_PTR: /* D-MMU 8k TSB pointer, RO */
1923    case ASI_DMMU_TSB_64KB_PTR: /* D-MMU 64k TSB pointer, RO */
1924    case ASI_DMMU_TSB_DIRECT_PTR: /* D-MMU data pointer, RO */
1925    case ASI_DTLB_TAG_READ: /* D-MMU tag read, RO */
1926    case ASI_INTR_DISPATCH_STAT: /* Interrupt dispatch, RO */
1927    case ASI_INTR_R: /* Incoming interrupt vector, RO */
1928    case ASI_PNF: /* Primary no-fault, RO */
1929    case ASI_SNF: /* Secondary no-fault, RO */
1930    case ASI_PNFL: /* Primary no-fault LE, RO */
1931    case ASI_SNFL: /* Secondary no-fault LE, RO */
1932    default:
1933        sparc_raise_mmu_fault(cs, addr, true, false, 1, size, GETPC());
1934        return;
1935    }
1936}
1937#endif /* CONFIG_USER_ONLY */
1938#endif /* TARGET_SPARC64 */
1939
1940#if !defined(CONFIG_USER_ONLY)
1941
1942void sparc_cpu_do_transaction_failed(CPUState *cs, hwaddr physaddr,
1943                                     vaddr addr, unsigned size,
1944                                     MMUAccessType access_type,
1945                                     int mmu_idx, MemTxAttrs attrs,
1946                                     MemTxResult response, uintptr_t retaddr)
1947{
1948    bool is_write = access_type == MMU_DATA_STORE;
1949    bool is_exec = access_type == MMU_INST_FETCH;
1950    bool is_asi = false;
1951
1952    sparc_raise_mmu_fault(cs, physaddr, is_write, is_exec,
1953                          is_asi, size, retaddr);
1954}
1955#endif
1956