qemu/target/xtensa/mmu_helper.c
<<
>>
Prefs
   1/*
   2 * Copyright (c) 2011 - 2019, Max Filippov, Open Source and Linux Lab.
   3 * All rights reserved.
   4 *
   5 * Redistribution and use in source and binary forms, with or without
   6 * modification, are permitted provided that the following conditions are met:
   7 *     * Redistributions of source code must retain the above copyright
   8 *       notice, this list of conditions and the following disclaimer.
   9 *     * Redistributions in binary form must reproduce the above copyright
  10 *       notice, this list of conditions and the following disclaimer in the
  11 *       documentation and/or other materials provided with the distribution.
  12 *     * Neither the name of the Open Source and Linux Lab nor the
  13 *       names of its contributors may be used to endorse or promote products
  14 *       derived from this software without specific prior written permission.
  15 *
  16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
  17 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
  19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
  20 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
  21 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
  22 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
  23 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  24 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
  25 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  26 */
  27
  28#include "qemu/osdep.h"
  29#include "qemu/main-loop.h"
  30#include "qemu/qemu-print.h"
  31#include "qemu/units.h"
  32#include "cpu.h"
  33#include "exec/helper-proto.h"
  34#include "qemu/host-utils.h"
  35#include "exec/exec-all.h"
  36#include "exec/cpu_ldst.h"
  37
  38#define XTENSA_MPU_SEGMENT_MASK 0x0000001f
  39#define XTENSA_MPU_ACC_RIGHTS_MASK 0x00000f00
  40#define XTENSA_MPU_ACC_RIGHTS_SHIFT 8
  41#define XTENSA_MPU_MEM_TYPE_MASK 0x001ff000
  42#define XTENSA_MPU_MEM_TYPE_SHIFT 12
  43#define XTENSA_MPU_ATTR_MASK 0x001fff00
  44
  45#define XTENSA_MPU_PROBE_B 0x40000000
  46#define XTENSA_MPU_PROBE_V 0x80000000
  47
  48#define XTENSA_MPU_SYSTEM_TYPE_DEVICE 0x0001
  49#define XTENSA_MPU_SYSTEM_TYPE_NC     0x0002
  50#define XTENSA_MPU_SYSTEM_TYPE_C      0x0003
  51#define XTENSA_MPU_SYSTEM_TYPE_MASK   0x0003
  52
  53#define XTENSA_MPU_TYPE_SYS_C     0x0010
  54#define XTENSA_MPU_TYPE_SYS_W     0x0020
  55#define XTENSA_MPU_TYPE_SYS_R     0x0040
  56#define XTENSA_MPU_TYPE_CPU_C     0x0100
  57#define XTENSA_MPU_TYPE_CPU_W     0x0200
  58#define XTENSA_MPU_TYPE_CPU_R     0x0400
  59#define XTENSA_MPU_TYPE_CPU_CACHE 0x0800
  60#define XTENSA_MPU_TYPE_B         0x1000
  61#define XTENSA_MPU_TYPE_INT       0x2000
  62
  63void HELPER(itlb_hit_test)(CPUXtensaState *env, uint32_t vaddr)
  64{
  65    /*
  66     * Probe the memory; we don't care about the result but
  67     * only the side-effects (ie any MMU or other exception)
  68     */
  69    probe_access(env, vaddr, 1, MMU_INST_FETCH,
  70                 cpu_mmu_index(env, true), GETPC());
  71}
  72
  73void HELPER(wsr_rasid)(CPUXtensaState *env, uint32_t v)
  74{
  75    v = (v & 0xffffff00) | 0x1;
  76    if (v != env->sregs[RASID]) {
  77        env->sregs[RASID] = v;
  78        tlb_flush(env_cpu(env));
  79    }
  80}
  81
  82static uint32_t get_page_size(const CPUXtensaState *env,
  83                              bool dtlb, uint32_t way)
  84{
  85    uint32_t tlbcfg = env->sregs[dtlb ? DTLBCFG : ITLBCFG];
  86
  87    switch (way) {
  88    case 4:
  89        return (tlbcfg >> 16) & 0x3;
  90
  91    case 5:
  92        return (tlbcfg >> 20) & 0x1;
  93
  94    case 6:
  95        return (tlbcfg >> 24) & 0x1;
  96
  97    default:
  98        return 0;
  99    }
 100}
 101
 102/*!
 103 * Get bit mask for the virtual address bits translated by the TLB way
 104 */
 105static uint32_t xtensa_tlb_get_addr_mask(const CPUXtensaState *env,
 106                                         bool dtlb, uint32_t way)
 107{
 108    if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
 109        bool varway56 = dtlb ?
 110            env->config->dtlb.varway56 :
 111            env->config->itlb.varway56;
 112
 113        switch (way) {
 114        case 4:
 115            return 0xfff00000 << get_page_size(env, dtlb, way) * 2;
 116
 117        case 5:
 118            if (varway56) {
 119                return 0xf8000000 << get_page_size(env, dtlb, way);
 120            } else {
 121                return 0xf8000000;
 122            }
 123
 124        case 6:
 125            if (varway56) {
 126                return 0xf0000000 << (1 - get_page_size(env, dtlb, way));
 127            } else {
 128                return 0xf0000000;
 129            }
 130
 131        default:
 132            return 0xfffff000;
 133        }
 134    } else {
 135        return REGION_PAGE_MASK;
 136    }
 137}
 138
 139/*!
 140 * Get bit mask for the 'VPN without index' field.
 141 * See ISA, 4.6.5.6, data format for RxTLB0
 142 */
 143static uint32_t get_vpn_mask(const CPUXtensaState *env, bool dtlb, uint32_t way)
 144{
 145    if (way < 4) {
 146        bool is32 = (dtlb ?
 147                env->config->dtlb.nrefillentries :
 148                env->config->itlb.nrefillentries) == 32;
 149        return is32 ? 0xffff8000 : 0xffffc000;
 150    } else if (way == 4) {
 151        return xtensa_tlb_get_addr_mask(env, dtlb, way) << 2;
 152    } else if (way <= 6) {
 153        uint32_t mask = xtensa_tlb_get_addr_mask(env, dtlb, way);
 154        bool varway56 = dtlb ?
 155            env->config->dtlb.varway56 :
 156            env->config->itlb.varway56;
 157
 158        if (varway56) {
 159            return mask << (way == 5 ? 2 : 3);
 160        } else {
 161            return mask << 1;
 162        }
 163    } else {
 164        return 0xfffff000;
 165    }
 166}
 167
 168/*!
 169 * Split virtual address into VPN (with index) and entry index
 170 * for the given TLB way
 171 */
 172static void split_tlb_entry_spec_way(const CPUXtensaState *env, uint32_t v,
 173                                     bool dtlb, uint32_t *vpn,
 174                                     uint32_t wi, uint32_t *ei)
 175{
 176    bool varway56 = dtlb ?
 177        env->config->dtlb.varway56 :
 178        env->config->itlb.varway56;
 179
 180    if (!dtlb) {
 181        wi &= 7;
 182    }
 183
 184    if (wi < 4) {
 185        bool is32 = (dtlb ?
 186                env->config->dtlb.nrefillentries :
 187                env->config->itlb.nrefillentries) == 32;
 188        *ei = (v >> 12) & (is32 ? 0x7 : 0x3);
 189    } else {
 190        switch (wi) {
 191        case 4:
 192            {
 193                uint32_t eibase = 20 + get_page_size(env, dtlb, wi) * 2;
 194                *ei = (v >> eibase) & 0x3;
 195            }
 196            break;
 197
 198        case 5:
 199            if (varway56) {
 200                uint32_t eibase = 27 + get_page_size(env, dtlb, wi);
 201                *ei = (v >> eibase) & 0x3;
 202            } else {
 203                *ei = (v >> 27) & 0x1;
 204            }
 205            break;
 206
 207        case 6:
 208            if (varway56) {
 209                uint32_t eibase = 29 - get_page_size(env, dtlb, wi);
 210                *ei = (v >> eibase) & 0x7;
 211            } else {
 212                *ei = (v >> 28) & 0x1;
 213            }
 214            break;
 215
 216        default:
 217            *ei = 0;
 218            break;
 219        }
 220    }
 221    *vpn = v & xtensa_tlb_get_addr_mask(env, dtlb, wi);
 222}
 223
 224/*!
 225 * Split TLB address into TLB way, entry index and VPN (with index).
 226 * See ISA, 4.6.5.5 - 4.6.5.8 for the TLB addressing format
 227 */
 228static void split_tlb_entry_spec(CPUXtensaState *env, uint32_t v, bool dtlb,
 229        uint32_t *vpn, uint32_t *wi, uint32_t *ei)
 230{
 231    if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
 232        *wi = v & (dtlb ? 0xf : 0x7);
 233        split_tlb_entry_spec_way(env, v, dtlb, vpn, *wi, ei);
 234    } else {
 235        *vpn = v & REGION_PAGE_MASK;
 236        *wi = 0;
 237        *ei = (v >> 29) & 0x7;
 238    }
 239}
 240
 241static xtensa_tlb_entry *xtensa_tlb_get_entry(CPUXtensaState *env, bool dtlb,
 242                                              unsigned wi, unsigned ei)
 243{
 244    return dtlb ?
 245        env->dtlb[wi] + ei :
 246        env->itlb[wi] + ei;
 247}
 248
 249static xtensa_tlb_entry *get_tlb_entry(CPUXtensaState *env,
 250        uint32_t v, bool dtlb, uint32_t *pwi)
 251{
 252    uint32_t vpn;
 253    uint32_t wi;
 254    uint32_t ei;
 255
 256    split_tlb_entry_spec(env, v, dtlb, &vpn, &wi, &ei);
 257    if (pwi) {
 258        *pwi = wi;
 259    }
 260    return xtensa_tlb_get_entry(env, dtlb, wi, ei);
 261}
 262
 263static void xtensa_tlb_set_entry_mmu(const CPUXtensaState *env,
 264                                     xtensa_tlb_entry *entry, bool dtlb,
 265                                     unsigned wi, unsigned ei, uint32_t vpn,
 266                                     uint32_t pte)
 267{
 268    entry->vaddr = vpn;
 269    entry->paddr = pte & xtensa_tlb_get_addr_mask(env, dtlb, wi);
 270    entry->asid = (env->sregs[RASID] >> ((pte >> 1) & 0x18)) & 0xff;
 271    entry->attr = pte & 0xf;
 272}
 273
 274static void xtensa_tlb_set_entry(CPUXtensaState *env, bool dtlb,
 275                                 unsigned wi, unsigned ei,
 276                                 uint32_t vpn, uint32_t pte)
 277{
 278    CPUState *cs = env_cpu(env);
 279    xtensa_tlb_entry *entry = xtensa_tlb_get_entry(env, dtlb, wi, ei);
 280
 281    if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
 282        if (entry->variable) {
 283            if (entry->asid) {
 284                tlb_flush_page(cs, entry->vaddr);
 285            }
 286            xtensa_tlb_set_entry_mmu(env, entry, dtlb, wi, ei, vpn, pte);
 287            tlb_flush_page(cs, entry->vaddr);
 288        } else {
 289            qemu_log_mask(LOG_GUEST_ERROR,
 290                          "%s %d, %d, %d trying to set immutable entry\n",
 291                          __func__, dtlb, wi, ei);
 292        }
 293    } else {
 294        tlb_flush_page(cs, entry->vaddr);
 295        if (xtensa_option_enabled(env->config,
 296                    XTENSA_OPTION_REGION_TRANSLATION)) {
 297            entry->paddr = pte & REGION_PAGE_MASK;
 298        }
 299        entry->attr = pte & 0xf;
 300    }
 301}
 302
 303hwaddr xtensa_cpu_get_phys_page_debug(CPUState *cs, vaddr addr)
 304{
 305    XtensaCPU *cpu = XTENSA_CPU(cs);
 306    uint32_t paddr;
 307    uint32_t page_size;
 308    unsigned access;
 309
 310    if (xtensa_get_physical_addr(&cpu->env, false, addr, 0, 0,
 311                &paddr, &page_size, &access) == 0) {
 312        return paddr;
 313    }
 314    if (xtensa_get_physical_addr(&cpu->env, false, addr, 2, 0,
 315                &paddr, &page_size, &access) == 0) {
 316        return paddr;
 317    }
 318    return ~0;
 319}
 320
 321static void reset_tlb_mmu_all_ways(CPUXtensaState *env,
 322                                   const xtensa_tlb *tlb,
 323                                   xtensa_tlb_entry entry[][MAX_TLB_WAY_SIZE])
 324{
 325    unsigned wi, ei;
 326
 327    for (wi = 0; wi < tlb->nways; ++wi) {
 328        for (ei = 0; ei < tlb->way_size[wi]; ++ei) {
 329            entry[wi][ei].asid = 0;
 330            entry[wi][ei].variable = true;
 331        }
 332    }
 333}
 334
 335static void reset_tlb_mmu_ways56(CPUXtensaState *env,
 336                                 const xtensa_tlb *tlb,
 337                                 xtensa_tlb_entry entry[][MAX_TLB_WAY_SIZE])
 338{
 339    if (!tlb->varway56) {
 340        static const xtensa_tlb_entry way5[] = {
 341            {
 342                .vaddr = 0xd0000000,
 343                .paddr = 0,
 344                .asid = 1,
 345                .attr = 7,
 346                .variable = false,
 347            }, {
 348                .vaddr = 0xd8000000,
 349                .paddr = 0,
 350                .asid = 1,
 351                .attr = 3,
 352                .variable = false,
 353            }
 354        };
 355        static const xtensa_tlb_entry way6[] = {
 356            {
 357                .vaddr = 0xe0000000,
 358                .paddr = 0xf0000000,
 359                .asid = 1,
 360                .attr = 7,
 361                .variable = false,
 362            }, {
 363                .vaddr = 0xf0000000,
 364                .paddr = 0xf0000000,
 365                .asid = 1,
 366                .attr = 3,
 367                .variable = false,
 368            }
 369        };
 370        memcpy(entry[5], way5, sizeof(way5));
 371        memcpy(entry[6], way6, sizeof(way6));
 372    } else {
 373        uint32_t ei;
 374        for (ei = 0; ei < 8; ++ei) {
 375            entry[6][ei].vaddr = ei << 29;
 376            entry[6][ei].paddr = ei << 29;
 377            entry[6][ei].asid = 1;
 378            entry[6][ei].attr = 3;
 379        }
 380    }
 381}
 382
 383static void reset_tlb_region_way0(CPUXtensaState *env,
 384                                  xtensa_tlb_entry entry[][MAX_TLB_WAY_SIZE])
 385{
 386    unsigned ei;
 387
 388    for (ei = 0; ei < 8; ++ei) {
 389        entry[0][ei].vaddr = ei << 29;
 390        entry[0][ei].paddr = ei << 29;
 391        entry[0][ei].asid = 1;
 392        entry[0][ei].attr = 2;
 393        entry[0][ei].variable = true;
 394    }
 395}
 396
 397void reset_mmu(CPUXtensaState *env)
 398{
 399    if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
 400        env->sregs[RASID] = 0x04030201;
 401        env->sregs[ITLBCFG] = 0;
 402        env->sregs[DTLBCFG] = 0;
 403        env->autorefill_idx = 0;
 404        reset_tlb_mmu_all_ways(env, &env->config->itlb, env->itlb);
 405        reset_tlb_mmu_all_ways(env, &env->config->dtlb, env->dtlb);
 406        reset_tlb_mmu_ways56(env, &env->config->itlb, env->itlb);
 407        reset_tlb_mmu_ways56(env, &env->config->dtlb, env->dtlb);
 408    } else if (xtensa_option_enabled(env->config, XTENSA_OPTION_MPU)) {
 409        unsigned i;
 410
 411        env->sregs[MPUENB] = 0;
 412        env->sregs[MPUCFG] = env->config->n_mpu_fg_segments;
 413        env->sregs[CACHEADRDIS] = 0;
 414        assert(env->config->n_mpu_bg_segments > 0 &&
 415               env->config->mpu_bg[0].vaddr == 0);
 416        for (i = 1; i < env->config->n_mpu_bg_segments; ++i) {
 417            assert(env->config->mpu_bg[i].vaddr >=
 418                   env->config->mpu_bg[i - 1].vaddr);
 419        }
 420    } else {
 421        env->sregs[CACHEATTR] = 0x22222222;
 422        reset_tlb_region_way0(env, env->itlb);
 423        reset_tlb_region_way0(env, env->dtlb);
 424    }
 425}
 426
 427static unsigned get_ring(const CPUXtensaState *env, uint8_t asid)
 428{
 429    unsigned i;
 430    for (i = 0; i < 4; ++i) {
 431        if (((env->sregs[RASID] >> i * 8) & 0xff) == asid) {
 432            return i;
 433        }
 434    }
 435    return 0xff;
 436}
 437
 438/*!
 439 * Lookup xtensa TLB for the given virtual address.
 440 * See ISA, 4.6.2.2
 441 *
 442 * \param pwi: [out] way index
 443 * \param pei: [out] entry index
 444 * \param pring: [out] access ring
 445 * \return 0 if ok, exception cause code otherwise
 446 */
 447static int xtensa_tlb_lookup(const CPUXtensaState *env,
 448                             uint32_t addr, bool dtlb,
 449                             uint32_t *pwi, uint32_t *pei, uint8_t *pring)
 450{
 451    const xtensa_tlb *tlb = dtlb ?
 452        &env->config->dtlb : &env->config->itlb;
 453    const xtensa_tlb_entry (*entry)[MAX_TLB_WAY_SIZE] = dtlb ?
 454        env->dtlb : env->itlb;
 455
 456    int nhits = 0;
 457    unsigned wi;
 458
 459    for (wi = 0; wi < tlb->nways; ++wi) {
 460        uint32_t vpn;
 461        uint32_t ei;
 462        split_tlb_entry_spec_way(env, addr, dtlb, &vpn, wi, &ei);
 463        if (entry[wi][ei].vaddr == vpn && entry[wi][ei].asid) {
 464            unsigned ring = get_ring(env, entry[wi][ei].asid);
 465            if (ring < 4) {
 466                if (++nhits > 1) {
 467                    return dtlb ?
 468                        LOAD_STORE_TLB_MULTI_HIT_CAUSE :
 469                        INST_TLB_MULTI_HIT_CAUSE;
 470                }
 471                *pwi = wi;
 472                *pei = ei;
 473                *pring = ring;
 474            }
 475        }
 476    }
 477    return nhits ? 0 :
 478        (dtlb ? LOAD_STORE_TLB_MISS_CAUSE : INST_TLB_MISS_CAUSE);
 479}
 480
 481uint32_t HELPER(rtlb0)(CPUXtensaState *env, uint32_t v, uint32_t dtlb)
 482{
 483    if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
 484        uint32_t wi;
 485        const xtensa_tlb_entry *entry = get_tlb_entry(env, v, dtlb, &wi);
 486        return (entry->vaddr & get_vpn_mask(env, dtlb, wi)) | entry->asid;
 487    } else {
 488        return v & REGION_PAGE_MASK;
 489    }
 490}
 491
 492uint32_t HELPER(rtlb1)(CPUXtensaState *env, uint32_t v, uint32_t dtlb)
 493{
 494    const xtensa_tlb_entry *entry = get_tlb_entry(env, v, dtlb, NULL);
 495    return entry->paddr | entry->attr;
 496}
 497
 498void HELPER(itlb)(CPUXtensaState *env, uint32_t v, uint32_t dtlb)
 499{
 500    if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
 501        uint32_t wi;
 502        xtensa_tlb_entry *entry = get_tlb_entry(env, v, dtlb, &wi);
 503        if (entry->variable && entry->asid) {
 504            tlb_flush_page(env_cpu(env), entry->vaddr);
 505            entry->asid = 0;
 506        }
 507    }
 508}
 509
 510uint32_t HELPER(ptlb)(CPUXtensaState *env, uint32_t v, uint32_t dtlb)
 511{
 512    if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
 513        uint32_t wi;
 514        uint32_t ei;
 515        uint8_t ring;
 516        int res = xtensa_tlb_lookup(env, v, dtlb, &wi, &ei, &ring);
 517
 518        switch (res) {
 519        case 0:
 520            if (ring >= xtensa_get_ring(env)) {
 521                return (v & 0xfffff000) | wi | (dtlb ? 0x10 : 0x8);
 522            }
 523            break;
 524
 525        case INST_TLB_MULTI_HIT_CAUSE:
 526        case LOAD_STORE_TLB_MULTI_HIT_CAUSE:
 527            HELPER(exception_cause_vaddr)(env, env->pc, res, v);
 528            break;
 529        }
 530        return 0;
 531    } else {
 532        return (v & REGION_PAGE_MASK) | 0x1;
 533    }
 534}
 535
 536void HELPER(wtlb)(CPUXtensaState *env, uint32_t p, uint32_t v, uint32_t dtlb)
 537{
 538    uint32_t vpn;
 539    uint32_t wi;
 540    uint32_t ei;
 541    split_tlb_entry_spec(env, v, dtlb, &vpn, &wi, &ei);
 542    xtensa_tlb_set_entry(env, dtlb, wi, ei, vpn, p);
 543}
 544
 545/*!
 546 * Convert MMU ATTR to PAGE_{READ,WRITE,EXEC} mask.
 547 * See ISA, 4.6.5.10
 548 */
 549static unsigned mmu_attr_to_access(uint32_t attr)
 550{
 551    unsigned access = 0;
 552
 553    if (attr < 12) {
 554        access |= PAGE_READ;
 555        if (attr & 0x1) {
 556            access |= PAGE_EXEC;
 557        }
 558        if (attr & 0x2) {
 559            access |= PAGE_WRITE;
 560        }
 561
 562        switch (attr & 0xc) {
 563        case 0:
 564            access |= PAGE_CACHE_BYPASS;
 565            break;
 566
 567        case 4:
 568            access |= PAGE_CACHE_WB;
 569            break;
 570
 571        case 8:
 572            access |= PAGE_CACHE_WT;
 573            break;
 574        }
 575    } else if (attr == 13) {
 576        access |= PAGE_READ | PAGE_WRITE | PAGE_CACHE_ISOLATE;
 577    }
 578    return access;
 579}
 580
 581/*!
 582 * Convert region protection ATTR to PAGE_{READ,WRITE,EXEC} mask.
 583 * See ISA, 4.6.3.3
 584 */
 585static unsigned region_attr_to_access(uint32_t attr)
 586{
 587    static const unsigned access[16] = {
 588         [0] = PAGE_READ | PAGE_WRITE             | PAGE_CACHE_WT,
 589         [1] = PAGE_READ | PAGE_WRITE | PAGE_EXEC | PAGE_CACHE_WT,
 590         [2] = PAGE_READ | PAGE_WRITE | PAGE_EXEC | PAGE_CACHE_BYPASS,
 591         [3] =                          PAGE_EXEC | PAGE_CACHE_WB,
 592         [4] = PAGE_READ | PAGE_WRITE | PAGE_EXEC | PAGE_CACHE_WB,
 593         [5] = PAGE_READ | PAGE_WRITE | PAGE_EXEC | PAGE_CACHE_WB,
 594        [14] = PAGE_READ | PAGE_WRITE             | PAGE_CACHE_ISOLATE,
 595    };
 596
 597    return access[attr & 0xf];
 598}
 599
 600/*!
 601 * Convert cacheattr to PAGE_{READ,WRITE,EXEC} mask.
 602 * See ISA, A.2.14 The Cache Attribute Register
 603 */
 604static unsigned cacheattr_attr_to_access(uint32_t attr)
 605{
 606    static const unsigned access[16] = {
 607         [0] = PAGE_READ | PAGE_WRITE             | PAGE_CACHE_WT,
 608         [1] = PAGE_READ | PAGE_WRITE | PAGE_EXEC | PAGE_CACHE_WT,
 609         [2] = PAGE_READ | PAGE_WRITE | PAGE_EXEC | PAGE_CACHE_BYPASS,
 610         [3] =                          PAGE_EXEC | PAGE_CACHE_WB,
 611         [4] = PAGE_READ | PAGE_WRITE | PAGE_EXEC | PAGE_CACHE_WB,
 612        [14] = PAGE_READ | PAGE_WRITE             | PAGE_CACHE_ISOLATE,
 613    };
 614
 615    return access[attr & 0xf];
 616}
 617
 618struct attr_pattern {
 619    uint32_t mask;
 620    uint32_t value;
 621};
 622
 623static int attr_pattern_match(uint32_t attr,
 624                              const struct attr_pattern *pattern,
 625                              size_t n)
 626{
 627    size_t i;
 628
 629    for (i = 0; i < n; ++i) {
 630        if ((attr & pattern[i].mask) == pattern[i].value) {
 631            return 1;
 632        }
 633    }
 634    return 0;
 635}
 636
 637static unsigned mpu_attr_to_cpu_cache(uint32_t attr)
 638{
 639    static const struct attr_pattern cpu_c[] = {
 640        { .mask = 0x18f, .value = 0x089 },
 641        { .mask = 0x188, .value = 0x080 },
 642        { .mask = 0x180, .value = 0x180 },
 643    };
 644
 645    unsigned type = 0;
 646
 647    if (attr_pattern_match(attr, cpu_c, ARRAY_SIZE(cpu_c))) {
 648        type |= XTENSA_MPU_TYPE_CPU_CACHE;
 649        if (attr & 0x10) {
 650            type |= XTENSA_MPU_TYPE_CPU_C;
 651        }
 652        if (attr & 0x20) {
 653            type |= XTENSA_MPU_TYPE_CPU_W;
 654        }
 655        if (attr & 0x40) {
 656            type |= XTENSA_MPU_TYPE_CPU_R;
 657        }
 658    }
 659    return type;
 660}
 661
 662static unsigned mpu_attr_to_type(uint32_t attr)
 663{
 664    static const struct attr_pattern device_type[] = {
 665        { .mask = 0x1f6, .value = 0x000 },
 666        { .mask = 0x1f6, .value = 0x006 },
 667    };
 668    static const struct attr_pattern sys_nc_type[] = {
 669        { .mask = 0x1fe, .value = 0x018 },
 670        { .mask = 0x1fe, .value = 0x01e },
 671        { .mask = 0x18f, .value = 0x089 },
 672    };
 673    static const struct attr_pattern sys_c_type[] = {
 674        { .mask = 0x1f8, .value = 0x010 },
 675        { .mask = 0x188, .value = 0x080 },
 676        { .mask = 0x1f0, .value = 0x030 },
 677        { .mask = 0x180, .value = 0x180 },
 678    };
 679    static const struct attr_pattern b[] = {
 680        { .mask = 0x1f7, .value = 0x001 },
 681        { .mask = 0x1f7, .value = 0x007 },
 682        { .mask = 0x1ff, .value = 0x019 },
 683        { .mask = 0x1ff, .value = 0x01f },
 684    };
 685
 686    unsigned type = 0;
 687
 688    attr = (attr & XTENSA_MPU_MEM_TYPE_MASK) >> XTENSA_MPU_MEM_TYPE_SHIFT;
 689    if (attr_pattern_match(attr, device_type, ARRAY_SIZE(device_type))) {
 690        type |= XTENSA_MPU_SYSTEM_TYPE_DEVICE;
 691        if (attr & 0x80) {
 692            type |= XTENSA_MPU_TYPE_INT;
 693        }
 694    }
 695    if (attr_pattern_match(attr, sys_nc_type, ARRAY_SIZE(sys_nc_type))) {
 696        type |= XTENSA_MPU_SYSTEM_TYPE_NC;
 697    }
 698    if (attr_pattern_match(attr, sys_c_type, ARRAY_SIZE(sys_c_type))) {
 699        type |= XTENSA_MPU_SYSTEM_TYPE_C;
 700        if (attr & 0x1) {
 701            type |= XTENSA_MPU_TYPE_SYS_C;
 702        }
 703        if (attr & 0x2) {
 704            type |= XTENSA_MPU_TYPE_SYS_W;
 705        }
 706        if (attr & 0x4) {
 707            type |= XTENSA_MPU_TYPE_SYS_R;
 708        }
 709    }
 710    if (attr_pattern_match(attr, b, ARRAY_SIZE(b))) {
 711        type |= XTENSA_MPU_TYPE_B;
 712    }
 713    type |= mpu_attr_to_cpu_cache(attr);
 714
 715    return type;
 716}
 717
 718static unsigned mpu_attr_to_access(uint32_t attr, unsigned ring)
 719{
 720    static const unsigned access[2][16] = {
 721        [0] = {
 722             [4] = PAGE_READ,
 723             [5] = PAGE_READ              | PAGE_EXEC,
 724             [6] = PAGE_READ | PAGE_WRITE,
 725             [7] = PAGE_READ | PAGE_WRITE | PAGE_EXEC,
 726             [8] =             PAGE_WRITE,
 727             [9] = PAGE_READ | PAGE_WRITE,
 728            [10] = PAGE_READ | PAGE_WRITE,
 729            [11] = PAGE_READ | PAGE_WRITE | PAGE_EXEC,
 730            [12] = PAGE_READ,
 731            [13] = PAGE_READ              | PAGE_EXEC,
 732            [14] = PAGE_READ | PAGE_WRITE,
 733            [15] = PAGE_READ | PAGE_WRITE | PAGE_EXEC,
 734        },
 735        [1] = {
 736             [8] =             PAGE_WRITE,
 737             [9] = PAGE_READ | PAGE_WRITE | PAGE_EXEC,
 738            [10] = PAGE_READ,
 739            [11] = PAGE_READ              | PAGE_EXEC,
 740            [12] = PAGE_READ,
 741            [13] = PAGE_READ              | PAGE_EXEC,
 742            [14] = PAGE_READ | PAGE_WRITE,
 743            [15] = PAGE_READ | PAGE_WRITE | PAGE_EXEC,
 744        },
 745    };
 746    unsigned rv;
 747    unsigned type;
 748
 749    type = mpu_attr_to_cpu_cache(attr);
 750    rv = access[ring != 0][(attr & XTENSA_MPU_ACC_RIGHTS_MASK) >>
 751        XTENSA_MPU_ACC_RIGHTS_SHIFT];
 752
 753    if (type & XTENSA_MPU_TYPE_CPU_CACHE) {
 754        rv |= (type & XTENSA_MPU_TYPE_CPU_C) ? PAGE_CACHE_WB : PAGE_CACHE_WT;
 755    } else {
 756        rv |= PAGE_CACHE_BYPASS;
 757    }
 758    return rv;
 759}
 760
 761static bool is_access_granted(unsigned access, int is_write)
 762{
 763    switch (is_write) {
 764    case 0:
 765        return access & PAGE_READ;
 766
 767    case 1:
 768        return access & PAGE_WRITE;
 769
 770    case 2:
 771        return access & PAGE_EXEC;
 772
 773    default:
 774        return 0;
 775    }
 776}
 777
 778static bool get_pte(CPUXtensaState *env, uint32_t vaddr, uint32_t *pte);
 779
 780static int get_physical_addr_mmu(CPUXtensaState *env, bool update_tlb,
 781                                 uint32_t vaddr, int is_write, int mmu_idx,
 782                                 uint32_t *paddr, uint32_t *page_size,
 783                                 unsigned *access, bool may_lookup_pt)
 784{
 785    bool dtlb = is_write != 2;
 786    uint32_t wi;
 787    uint32_t ei;
 788    uint8_t ring;
 789    uint32_t vpn;
 790    uint32_t pte;
 791    const xtensa_tlb_entry *entry = NULL;
 792    xtensa_tlb_entry tmp_entry;
 793    int ret = xtensa_tlb_lookup(env, vaddr, dtlb, &wi, &ei, &ring);
 794
 795    if ((ret == INST_TLB_MISS_CAUSE || ret == LOAD_STORE_TLB_MISS_CAUSE) &&
 796        may_lookup_pt && get_pte(env, vaddr, &pte)) {
 797        ring = (pte >> 4) & 0x3;
 798        wi = 0;
 799        split_tlb_entry_spec_way(env, vaddr, dtlb, &vpn, wi, &ei);
 800
 801        if (update_tlb) {
 802            wi = ++env->autorefill_idx & 0x3;
 803            xtensa_tlb_set_entry(env, dtlb, wi, ei, vpn, pte);
 804            env->sregs[EXCVADDR] = vaddr;
 805            qemu_log_mask(CPU_LOG_MMU, "%s: autorefill(%08x): %08x -> %08x\n",
 806                          __func__, vaddr, vpn, pte);
 807        } else {
 808            xtensa_tlb_set_entry_mmu(env, &tmp_entry, dtlb, wi, ei, vpn, pte);
 809            entry = &tmp_entry;
 810        }
 811        ret = 0;
 812    }
 813    if (ret != 0) {
 814        return ret;
 815    }
 816
 817    if (entry == NULL) {
 818        entry = xtensa_tlb_get_entry(env, dtlb, wi, ei);
 819    }
 820
 821    if (ring < mmu_idx) {
 822        return dtlb ?
 823            LOAD_STORE_PRIVILEGE_CAUSE :
 824            INST_FETCH_PRIVILEGE_CAUSE;
 825    }
 826
 827    *access = mmu_attr_to_access(entry->attr) &
 828        ~(dtlb ? PAGE_EXEC : PAGE_READ | PAGE_WRITE);
 829    if (!is_access_granted(*access, is_write)) {
 830        return dtlb ?
 831            (is_write ?
 832             STORE_PROHIBITED_CAUSE :
 833             LOAD_PROHIBITED_CAUSE) :
 834            INST_FETCH_PROHIBITED_CAUSE;
 835    }
 836
 837    *paddr = entry->paddr | (vaddr & ~xtensa_tlb_get_addr_mask(env, dtlb, wi));
 838    *page_size = ~xtensa_tlb_get_addr_mask(env, dtlb, wi) + 1;
 839
 840    return 0;
 841}
 842
 843static bool get_pte(CPUXtensaState *env, uint32_t vaddr, uint32_t *pte)
 844{
 845    CPUState *cs = env_cpu(env);
 846    uint32_t paddr;
 847    uint32_t page_size;
 848    unsigned access;
 849    uint32_t pt_vaddr =
 850        (env->sregs[PTEVADDR] | (vaddr >> 10)) & 0xfffffffc;
 851    int ret = get_physical_addr_mmu(env, false, pt_vaddr, 0, 0,
 852                                    &paddr, &page_size, &access, false);
 853
 854    if (ret == 0) {
 855        qemu_log_mask(CPU_LOG_MMU,
 856                      "%s: autorefill(%08x): PTE va = %08x, pa = %08x\n",
 857                      __func__, vaddr, pt_vaddr, paddr);
 858    } else {
 859        qemu_log_mask(CPU_LOG_MMU,
 860                      "%s: autorefill(%08x): PTE va = %08x, failed (%d)\n",
 861                      __func__, vaddr, pt_vaddr, ret);
 862    }
 863
 864    if (ret == 0) {
 865        MemTxResult result;
 866
 867        *pte = address_space_ldl(cs->as, paddr, MEMTXATTRS_UNSPECIFIED,
 868                                 &result);
 869        if (result != MEMTX_OK) {
 870            qemu_log_mask(CPU_LOG_MMU,
 871                          "%s: couldn't load PTE: transaction failed (%u)\n",
 872                          __func__, (unsigned)result);
 873            ret = 1;
 874        }
 875    }
 876    return ret == 0;
 877}
 878
 879static int get_physical_addr_region(CPUXtensaState *env,
 880                                    uint32_t vaddr, int is_write, int mmu_idx,
 881                                    uint32_t *paddr, uint32_t *page_size,
 882                                    unsigned *access)
 883{
 884    bool dtlb = is_write != 2;
 885    uint32_t wi = 0;
 886    uint32_t ei = (vaddr >> 29) & 0x7;
 887    const xtensa_tlb_entry *entry =
 888        xtensa_tlb_get_entry(env, dtlb, wi, ei);
 889
 890    *access = region_attr_to_access(entry->attr);
 891    if (!is_access_granted(*access, is_write)) {
 892        return dtlb ?
 893            (is_write ?
 894             STORE_PROHIBITED_CAUSE :
 895             LOAD_PROHIBITED_CAUSE) :
 896            INST_FETCH_PROHIBITED_CAUSE;
 897    }
 898
 899    *paddr = entry->paddr | (vaddr & ~REGION_PAGE_MASK);
 900    *page_size = ~REGION_PAGE_MASK + 1;
 901
 902    return 0;
 903}
 904
 905static int xtensa_mpu_lookup(const xtensa_mpu_entry *entry, unsigned n,
 906                             uint32_t vaddr, unsigned *segment)
 907{
 908    unsigned nhits = 0;
 909    unsigned i;
 910
 911    for (i = 0; i < n; ++i) {
 912        if (vaddr >= entry[i].vaddr &&
 913            (i == n - 1 || vaddr < entry[i + 1].vaddr)) {
 914            if (nhits++) {
 915                break;
 916            }
 917            *segment = i;
 918        }
 919    }
 920    return nhits;
 921}
 922
 923void HELPER(wsr_mpuenb)(CPUXtensaState *env, uint32_t v)
 924{
 925    v &= (2u << (env->config->n_mpu_fg_segments - 1)) - 1;
 926
 927    if (v != env->sregs[MPUENB]) {
 928        env->sregs[MPUENB] = v;
 929        tlb_flush(env_cpu(env));
 930    }
 931}
 932
 933void HELPER(wptlb)(CPUXtensaState *env, uint32_t p, uint32_t v)
 934{
 935    unsigned segment = p & XTENSA_MPU_SEGMENT_MASK;
 936
 937    if (segment < env->config->n_mpu_fg_segments) {
 938        env->mpu_fg[segment].vaddr = v & -env->config->mpu_align;
 939        env->mpu_fg[segment].attr = p & XTENSA_MPU_ATTR_MASK;
 940        env->sregs[MPUENB] = deposit32(env->sregs[MPUENB], segment, 1, v);
 941        tlb_flush(env_cpu(env));
 942    }
 943}
 944
 945uint32_t HELPER(rptlb0)(CPUXtensaState *env, uint32_t s)
 946{
 947    unsigned segment = s & XTENSA_MPU_SEGMENT_MASK;
 948
 949    if (segment < env->config->n_mpu_fg_segments) {
 950        return env->mpu_fg[segment].vaddr |
 951            extract32(env->sregs[MPUENB], segment, 1);
 952    } else {
 953        return 0;
 954    }
 955}
 956
 957uint32_t HELPER(rptlb1)(CPUXtensaState *env, uint32_t s)
 958{
 959    unsigned segment = s & XTENSA_MPU_SEGMENT_MASK;
 960
 961    if (segment < env->config->n_mpu_fg_segments) {
 962        return env->mpu_fg[segment].attr;
 963    } else {
 964        return 0;
 965    }
 966}
 967
 968uint32_t HELPER(pptlb)(CPUXtensaState *env, uint32_t v)
 969{
 970    unsigned nhits;
 971    unsigned segment = XTENSA_MPU_PROBE_B;
 972    unsigned bg_segment;
 973
 974    nhits = xtensa_mpu_lookup(env->mpu_fg, env->config->n_mpu_fg_segments,
 975                              v, &segment);
 976    if (nhits > 1) {
 977        HELPER(exception_cause_vaddr)(env, env->pc,
 978                                      LOAD_STORE_TLB_MULTI_HIT_CAUSE, v);
 979    } else if (nhits == 1 && (env->sregs[MPUENB] & (1u << segment))) {
 980        return env->mpu_fg[segment].attr | segment | XTENSA_MPU_PROBE_V;
 981    } else {
 982        xtensa_mpu_lookup(env->config->mpu_bg,
 983                          env->config->n_mpu_bg_segments,
 984                          v, &bg_segment);
 985        return env->config->mpu_bg[bg_segment].attr | segment;
 986    }
 987}
 988
 989static int get_physical_addr_mpu(CPUXtensaState *env,
 990                                 uint32_t vaddr, int is_write, int mmu_idx,
 991                                 uint32_t *paddr, uint32_t *page_size,
 992                                 unsigned *access)
 993{
 994    unsigned nhits;
 995    unsigned segment;
 996    uint32_t attr;
 997
 998    nhits = xtensa_mpu_lookup(env->mpu_fg, env->config->n_mpu_fg_segments,
 999                              vaddr, &segment);
1000    if (nhits > 1) {
1001        return is_write < 2 ?
1002            LOAD_STORE_TLB_MULTI_HIT_CAUSE :
1003            INST_TLB_MULTI_HIT_CAUSE;
1004    } else if (nhits == 1 && (env->sregs[MPUENB] & (1u << segment))) {
1005        attr = env->mpu_fg[segment].attr;
1006    } else {
1007        xtensa_mpu_lookup(env->config->mpu_bg,
1008                          env->config->n_mpu_bg_segments,
1009                          vaddr, &segment);
1010        attr = env->config->mpu_bg[segment].attr;
1011    }
1012
1013    *access = mpu_attr_to_access(attr, mmu_idx);
1014    if (!is_access_granted(*access, is_write)) {
1015        return is_write < 2 ?
1016            (is_write ?
1017             STORE_PROHIBITED_CAUSE :
1018             LOAD_PROHIBITED_CAUSE) :
1019            INST_FETCH_PROHIBITED_CAUSE;
1020    }
1021    *paddr = vaddr;
1022    *page_size = env->config->mpu_align;
1023    return 0;
1024}
1025
1026/*!
1027 * Convert virtual address to physical addr.
1028 * MMU may issue pagewalk and change xtensa autorefill TLB way entry.
1029 *
1030 * \return 0 if ok, exception cause code otherwise
1031 */
1032int xtensa_get_physical_addr(CPUXtensaState *env, bool update_tlb,
1033                             uint32_t vaddr, int is_write, int mmu_idx,
1034                             uint32_t *paddr, uint32_t *page_size,
1035                             unsigned *access)
1036{
1037    if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
1038        return get_physical_addr_mmu(env, update_tlb,
1039                                     vaddr, is_write, mmu_idx, paddr,
1040                                     page_size, access, true);
1041    } else if (xtensa_option_bits_enabled(env->config,
1042                XTENSA_OPTION_BIT(XTENSA_OPTION_REGION_PROTECTION) |
1043                XTENSA_OPTION_BIT(XTENSA_OPTION_REGION_TRANSLATION))) {
1044        return get_physical_addr_region(env, vaddr, is_write, mmu_idx,
1045                                        paddr, page_size, access);
1046    } else if (xtensa_option_enabled(env->config, XTENSA_OPTION_MPU)) {
1047        return get_physical_addr_mpu(env, vaddr, is_write, mmu_idx,
1048                                     paddr, page_size, access);
1049    } else {
1050        *paddr = vaddr;
1051        *page_size = TARGET_PAGE_SIZE;
1052        *access = cacheattr_attr_to_access(env->sregs[CACHEATTR] >>
1053                                           ((vaddr & 0xe0000000) >> 27));
1054        return 0;
1055    }
1056}
1057
1058static void dump_tlb(CPUXtensaState *env, bool dtlb)
1059{
1060    unsigned wi, ei;
1061    const xtensa_tlb *conf =
1062        dtlb ? &env->config->dtlb : &env->config->itlb;
1063    unsigned (*attr_to_access)(uint32_t) =
1064        xtensa_option_enabled(env->config, XTENSA_OPTION_MMU) ?
1065        mmu_attr_to_access : region_attr_to_access;
1066
1067    for (wi = 0; wi < conf->nways; ++wi) {
1068        uint32_t sz = ~xtensa_tlb_get_addr_mask(env, dtlb, wi) + 1;
1069        const char *sz_text;
1070        bool print_header = true;
1071
1072        if (sz >= 0x100000) {
1073            sz /= MiB;
1074            sz_text = "MB";
1075        } else {
1076            sz /= KiB;
1077            sz_text = "KB";
1078        }
1079
1080        for (ei = 0; ei < conf->way_size[wi]; ++ei) {
1081            const xtensa_tlb_entry *entry =
1082                xtensa_tlb_get_entry(env, dtlb, wi, ei);
1083
1084            if (entry->asid) {
1085                static const char * const cache_text[8] = {
1086                    [PAGE_CACHE_BYPASS >> PAGE_CACHE_SHIFT] = "Bypass",
1087                    [PAGE_CACHE_WT >> PAGE_CACHE_SHIFT] = "WT",
1088                    [PAGE_CACHE_WB >> PAGE_CACHE_SHIFT] = "WB",
1089                    [PAGE_CACHE_ISOLATE >> PAGE_CACHE_SHIFT] = "Isolate",
1090                };
1091                unsigned access = attr_to_access(entry->attr);
1092                unsigned cache_idx = (access & PAGE_CACHE_MASK) >>
1093                    PAGE_CACHE_SHIFT;
1094
1095                if (print_header) {
1096                    print_header = false;
1097                    qemu_printf("Way %u (%d %s)\n", wi, sz, sz_text);
1098                    qemu_printf("\tVaddr       Paddr       ASID  Attr RWX Cache\n"
1099                                "\t----------  ----------  ----  ---- --- -------\n");
1100                }
1101                qemu_printf("\t0x%08x  0x%08x  0x%02x  0x%02x %c%c%c %s\n",
1102                            entry->vaddr,
1103                            entry->paddr,
1104                            entry->asid,
1105                            entry->attr,
1106                            (access & PAGE_READ) ? 'R' : '-',
1107                            (access & PAGE_WRITE) ? 'W' : '-',
1108                            (access & PAGE_EXEC) ? 'X' : '-',
1109                            cache_text[cache_idx] ?
1110                            cache_text[cache_idx] : "Invalid");
1111            }
1112        }
1113    }
1114}
1115
1116static void dump_mpu(CPUXtensaState *env,
1117                     const xtensa_mpu_entry *entry, unsigned n)
1118{
1119    unsigned i;
1120
1121    qemu_printf("\t%s  Vaddr       Attr        Ring0  Ring1  System Type    CPU cache\n"
1122                "\t%s  ----------  ----------  -----  -----  -------------  ---------\n",
1123                env ? "En" : "  ",
1124                env ? "--" : "  ");
1125
1126    for (i = 0; i < n; ++i) {
1127        uint32_t attr = entry[i].attr;
1128        unsigned access0 = mpu_attr_to_access(attr, 0);
1129        unsigned access1 = mpu_attr_to_access(attr, 1);
1130        unsigned type = mpu_attr_to_type(attr);
1131        char cpu_cache = (type & XTENSA_MPU_TYPE_CPU_CACHE) ? '-' : ' ';
1132
1133        qemu_printf("\t %c  0x%08x  0x%08x   %c%c%c    %c%c%c   ",
1134                    env ?
1135                    ((env->sregs[MPUENB] & (1u << i)) ? '+' : '-') : ' ',
1136                    entry[i].vaddr, attr,
1137                    (access0 & PAGE_READ) ? 'R' : '-',
1138                    (access0 & PAGE_WRITE) ? 'W' : '-',
1139                    (access0 & PAGE_EXEC) ? 'X' : '-',
1140                    (access1 & PAGE_READ) ? 'R' : '-',
1141                    (access1 & PAGE_WRITE) ? 'W' : '-',
1142                    (access1 & PAGE_EXEC) ? 'X' : '-');
1143
1144        switch (type & XTENSA_MPU_SYSTEM_TYPE_MASK) {
1145        case XTENSA_MPU_SYSTEM_TYPE_DEVICE:
1146            qemu_printf("Device %cB %3s\n",
1147                        (type & XTENSA_MPU_TYPE_B) ? ' ' : 'n',
1148                        (type & XTENSA_MPU_TYPE_INT) ? "int" : "");
1149            break;
1150        case XTENSA_MPU_SYSTEM_TYPE_NC:
1151            qemu_printf("Sys NC %cB      %c%c%c\n",
1152                        (type & XTENSA_MPU_TYPE_B) ? ' ' : 'n',
1153                        (type & XTENSA_MPU_TYPE_CPU_R) ? 'r' : cpu_cache,
1154                        (type & XTENSA_MPU_TYPE_CPU_W) ? 'w' : cpu_cache,
1155                        (type & XTENSA_MPU_TYPE_CPU_C) ? 'c' : cpu_cache);
1156            break;
1157        case XTENSA_MPU_SYSTEM_TYPE_C:
1158            qemu_printf("Sys  C %c%c%c     %c%c%c\n",
1159                        (type & XTENSA_MPU_TYPE_SYS_R) ? 'R' : '-',
1160                        (type & XTENSA_MPU_TYPE_SYS_W) ? 'W' : '-',
1161                        (type & XTENSA_MPU_TYPE_SYS_C) ? 'C' : '-',
1162                        (type & XTENSA_MPU_TYPE_CPU_R) ? 'r' : cpu_cache,
1163                        (type & XTENSA_MPU_TYPE_CPU_W) ? 'w' : cpu_cache,
1164                        (type & XTENSA_MPU_TYPE_CPU_C) ? 'c' : cpu_cache);
1165            break;
1166        default:
1167            qemu_printf("Unknown\n");
1168            break;
1169        }
1170    }
1171}
1172
1173void dump_mmu(CPUXtensaState *env)
1174{
1175    if (xtensa_option_bits_enabled(env->config,
1176                XTENSA_OPTION_BIT(XTENSA_OPTION_REGION_PROTECTION) |
1177                XTENSA_OPTION_BIT(XTENSA_OPTION_REGION_TRANSLATION) |
1178                XTENSA_OPTION_BIT(XTENSA_OPTION_MMU))) {
1179
1180        qemu_printf("ITLB:\n");
1181        dump_tlb(env, false);
1182        qemu_printf("\nDTLB:\n");
1183        dump_tlb(env, true);
1184    } else if (xtensa_option_enabled(env->config, XTENSA_OPTION_MPU)) {
1185        qemu_printf("Foreground map:\n");
1186        dump_mpu(env, env->mpu_fg, env->config->n_mpu_fg_segments);
1187        qemu_printf("\nBackground map:\n");
1188        dump_mpu(NULL, env->config->mpu_bg, env->config->n_mpu_bg_segments);
1189    } else {
1190        qemu_printf("No TLB for this CPU core\n");
1191    }
1192}
1193