qemu/tcg/region.c
<<
>>
Prefs
   1/*
   2 * Memory region management for Tiny Code Generator for QEMU
   3 *
   4 * Copyright (c) 2008 Fabrice Bellard
   5 *
   6 * Permission is hereby granted, free of charge, to any person obtaining a copy
   7 * of this software and associated documentation files (the "Software"), to deal
   8 * in the Software without restriction, including without limitation the rights
   9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  10 * copies of the Software, and to permit persons to whom the Software is
  11 * furnished to do so, subject to the following conditions:
  12 *
  13 * The above copyright notice and this permission notice shall be included in
  14 * all copies or substantial portions of the Software.
  15 *
  16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
  22 * THE SOFTWARE.
  23 */
  24
  25#include "qemu/osdep.h"
  26#include "qemu/units.h"
  27#include "qapi/error.h"
  28#include "exec/exec-all.h"
  29#include "tcg/tcg.h"
  30#include "tcg-internal.h"
  31
  32
  33struct tcg_region_tree {
  34    QemuMutex lock;
  35    GTree *tree;
  36    /* padding to avoid false sharing is computed at run-time */
  37};
  38
  39/*
  40 * We divide code_gen_buffer into equally-sized "regions" that TCG threads
  41 * dynamically allocate from as demand dictates. Given appropriate region
  42 * sizing, this minimizes flushes even when some TCG threads generate a lot
  43 * more code than others.
  44 */
  45struct tcg_region_state {
  46    QemuMutex lock;
  47
  48    /* fields set at init time */
  49    void *start_aligned;
  50    void *after_prologue;
  51    size_t n;
  52    size_t size; /* size of one region */
  53    size_t stride; /* .size + guard size */
  54    size_t total_size; /* size of entire buffer, >= n * stride */
  55
  56    /* fields protected by the lock */
  57    size_t current; /* current region index */
  58    size_t agg_size_full; /* aggregate size of full regions */
  59};
  60
  61static struct tcg_region_state region;
  62
  63/*
  64 * This is an array of struct tcg_region_tree's, with padding.
  65 * We use void * to simplify the computation of region_trees[i]; each
  66 * struct is found every tree_size bytes.
  67 */
  68static void *region_trees;
  69static size_t tree_size;
  70
  71bool in_code_gen_buffer(const void *p)
  72{
  73    /*
  74     * Much like it is valid to have a pointer to the byte past the
  75     * end of an array (so long as you don't dereference it), allow
  76     * a pointer to the byte past the end of the code gen buffer.
  77     */
  78    return (size_t)(p - region.start_aligned) <= region.total_size;
  79}
  80
  81#ifdef CONFIG_DEBUG_TCG
  82const void *tcg_splitwx_to_rx(void *rw)
  83{
  84    /* Pass NULL pointers unchanged. */
  85    if (rw) {
  86        g_assert(in_code_gen_buffer(rw));
  87        rw += tcg_splitwx_diff;
  88    }
  89    return rw;
  90}
  91
  92void *tcg_splitwx_to_rw(const void *rx)
  93{
  94    /* Pass NULL pointers unchanged. */
  95    if (rx) {
  96        rx -= tcg_splitwx_diff;
  97        /* Assert that we end with a pointer in the rw region. */
  98        g_assert(in_code_gen_buffer(rx));
  99    }
 100    return (void *)rx;
 101}
 102#endif /* CONFIG_DEBUG_TCG */
 103
 104/* compare a pointer @ptr and a tb_tc @s */
 105static int ptr_cmp_tb_tc(const void *ptr, const struct tb_tc *s)
 106{
 107    if (ptr >= s->ptr + s->size) {
 108        return 1;
 109    } else if (ptr < s->ptr) {
 110        return -1;
 111    }
 112    return 0;
 113}
 114
 115static gint tb_tc_cmp(gconstpointer ap, gconstpointer bp, gpointer userdata)
 116{
 117    const struct tb_tc *a = ap;
 118    const struct tb_tc *b = bp;
 119
 120    /*
 121     * When both sizes are set, we know this isn't a lookup.
 122     * This is the most likely case: every TB must be inserted; lookups
 123     * are a lot less frequent.
 124     */
 125    if (likely(a->size && b->size)) {
 126        if (a->ptr > b->ptr) {
 127            return 1;
 128        } else if (a->ptr < b->ptr) {
 129            return -1;
 130        }
 131        /* a->ptr == b->ptr should happen only on deletions */
 132        g_assert(a->size == b->size);
 133        return 0;
 134    }
 135    /*
 136     * All lookups have either .size field set to 0.
 137     * From the glib sources we see that @ap is always the lookup key. However
 138     * the docs provide no guarantee, so we just mark this case as likely.
 139     */
 140    if (likely(a->size == 0)) {
 141        return ptr_cmp_tb_tc(a->ptr, b);
 142    }
 143    return ptr_cmp_tb_tc(b->ptr, a);
 144}
 145
 146static void tb_destroy(gpointer value)
 147{
 148    TranslationBlock *tb = value;
 149    qemu_spin_destroy(&tb->jmp_lock);
 150}
 151
 152static void tcg_region_trees_init(void)
 153{
 154    size_t i;
 155
 156    tree_size = ROUND_UP(sizeof(struct tcg_region_tree), qemu_dcache_linesize);
 157    region_trees = qemu_memalign(qemu_dcache_linesize, region.n * tree_size);
 158    for (i = 0; i < region.n; i++) {
 159        struct tcg_region_tree *rt = region_trees + i * tree_size;
 160
 161        qemu_mutex_init(&rt->lock);
 162        rt->tree = g_tree_new_full(tb_tc_cmp, NULL, NULL, tb_destroy);
 163    }
 164}
 165
 166static struct tcg_region_tree *tc_ptr_to_region_tree(const void *p)
 167{
 168    size_t region_idx;
 169
 170    /*
 171     * Like tcg_splitwx_to_rw, with no assert.  The pc may come from
 172     * a signal handler over which the caller has no control.
 173     */
 174    if (!in_code_gen_buffer(p)) {
 175        p -= tcg_splitwx_diff;
 176        if (!in_code_gen_buffer(p)) {
 177            return NULL;
 178        }
 179    }
 180
 181    if (p < region.start_aligned) {
 182        region_idx = 0;
 183    } else {
 184        ptrdiff_t offset = p - region.start_aligned;
 185
 186        if (offset > region.stride * (region.n - 1)) {
 187            region_idx = region.n - 1;
 188        } else {
 189            region_idx = offset / region.stride;
 190        }
 191    }
 192    return region_trees + region_idx * tree_size;
 193}
 194
 195void tcg_tb_insert(TranslationBlock *tb)
 196{
 197    struct tcg_region_tree *rt = tc_ptr_to_region_tree(tb->tc.ptr);
 198
 199    g_assert(rt != NULL);
 200    qemu_mutex_lock(&rt->lock);
 201    g_tree_insert(rt->tree, &tb->tc, tb);
 202    qemu_mutex_unlock(&rt->lock);
 203}
 204
 205void tcg_tb_remove(TranslationBlock *tb)
 206{
 207    struct tcg_region_tree *rt = tc_ptr_to_region_tree(tb->tc.ptr);
 208
 209    g_assert(rt != NULL);
 210    qemu_mutex_lock(&rt->lock);
 211    g_tree_remove(rt->tree, &tb->tc);
 212    qemu_mutex_unlock(&rt->lock);
 213}
 214
 215/*
 216 * Find the TB 'tb' such that
 217 * tb->tc.ptr <= tc_ptr < tb->tc.ptr + tb->tc.size
 218 * Return NULL if not found.
 219 */
 220TranslationBlock *tcg_tb_lookup(uintptr_t tc_ptr)
 221{
 222    struct tcg_region_tree *rt = tc_ptr_to_region_tree((void *)tc_ptr);
 223    TranslationBlock *tb;
 224    struct tb_tc s = { .ptr = (void *)tc_ptr };
 225
 226    if (rt == NULL) {
 227        return NULL;
 228    }
 229
 230    qemu_mutex_lock(&rt->lock);
 231    tb = g_tree_lookup(rt->tree, &s);
 232    qemu_mutex_unlock(&rt->lock);
 233    return tb;
 234}
 235
 236static void tcg_region_tree_lock_all(void)
 237{
 238    size_t i;
 239
 240    for (i = 0; i < region.n; i++) {
 241        struct tcg_region_tree *rt = region_trees + i * tree_size;
 242
 243        qemu_mutex_lock(&rt->lock);
 244    }
 245}
 246
 247static void tcg_region_tree_unlock_all(void)
 248{
 249    size_t i;
 250
 251    for (i = 0; i < region.n; i++) {
 252        struct tcg_region_tree *rt = region_trees + i * tree_size;
 253
 254        qemu_mutex_unlock(&rt->lock);
 255    }
 256}
 257
 258void tcg_tb_foreach(GTraverseFunc func, gpointer user_data)
 259{
 260    size_t i;
 261
 262    tcg_region_tree_lock_all();
 263    for (i = 0; i < region.n; i++) {
 264        struct tcg_region_tree *rt = region_trees + i * tree_size;
 265
 266        g_tree_foreach(rt->tree, func, user_data);
 267    }
 268    tcg_region_tree_unlock_all();
 269}
 270
 271size_t tcg_nb_tbs(void)
 272{
 273    size_t nb_tbs = 0;
 274    size_t i;
 275
 276    tcg_region_tree_lock_all();
 277    for (i = 0; i < region.n; i++) {
 278        struct tcg_region_tree *rt = region_trees + i * tree_size;
 279
 280        nb_tbs += g_tree_nnodes(rt->tree);
 281    }
 282    tcg_region_tree_unlock_all();
 283    return nb_tbs;
 284}
 285
 286static void tcg_region_tree_reset_all(void)
 287{
 288    size_t i;
 289
 290    tcg_region_tree_lock_all();
 291    for (i = 0; i < region.n; i++) {
 292        struct tcg_region_tree *rt = region_trees + i * tree_size;
 293
 294        /* Increment the refcount first so that destroy acts as a reset */
 295        g_tree_ref(rt->tree);
 296        g_tree_destroy(rt->tree);
 297    }
 298    tcg_region_tree_unlock_all();
 299}
 300
 301static void tcg_region_bounds(size_t curr_region, void **pstart, void **pend)
 302{
 303    void *start, *end;
 304
 305    start = region.start_aligned + curr_region * region.stride;
 306    end = start + region.size;
 307
 308    if (curr_region == 0) {
 309        start = region.after_prologue;
 310    }
 311    /* The final region may have a few extra pages due to earlier rounding. */
 312    if (curr_region == region.n - 1) {
 313        end = region.start_aligned + region.total_size;
 314    }
 315
 316    *pstart = start;
 317    *pend = end;
 318}
 319
 320static void tcg_region_assign(TCGContext *s, size_t curr_region)
 321{
 322    void *start, *end;
 323
 324    tcg_region_bounds(curr_region, &start, &end);
 325
 326    s->code_gen_buffer = start;
 327    s->code_gen_ptr = start;
 328    s->code_gen_buffer_size = end - start;
 329    s->code_gen_highwater = end - TCG_HIGHWATER;
 330}
 331
 332static bool tcg_region_alloc__locked(TCGContext *s)
 333{
 334    if (region.current == region.n) {
 335        return true;
 336    }
 337    tcg_region_assign(s, region.current);
 338    region.current++;
 339    return false;
 340}
 341
 342/*
 343 * Request a new region once the one in use has filled up.
 344 * Returns true on error.
 345 */
 346bool tcg_region_alloc(TCGContext *s)
 347{
 348    bool err;
 349    /* read the region size now; alloc__locked will overwrite it on success */
 350    size_t size_full = s->code_gen_buffer_size;
 351
 352    qemu_mutex_lock(&region.lock);
 353    err = tcg_region_alloc__locked(s);
 354    if (!err) {
 355        region.agg_size_full += size_full - TCG_HIGHWATER;
 356    }
 357    qemu_mutex_unlock(&region.lock);
 358    return err;
 359}
 360
 361/*
 362 * Perform a context's first region allocation.
 363 * This function does _not_ increment region.agg_size_full.
 364 */
 365static void tcg_region_initial_alloc__locked(TCGContext *s)
 366{
 367    bool err = tcg_region_alloc__locked(s);
 368    g_assert(!err);
 369}
 370
 371void tcg_region_initial_alloc(TCGContext *s)
 372{
 373    qemu_mutex_lock(&region.lock);
 374    tcg_region_initial_alloc__locked(s);
 375    qemu_mutex_unlock(&region.lock);
 376}
 377
 378/* Call from a safe-work context */
 379void tcg_region_reset_all(void)
 380{
 381    unsigned int n_ctxs = qatomic_read(&tcg_cur_ctxs);
 382    unsigned int i;
 383
 384    qemu_mutex_lock(&region.lock);
 385    region.current = 0;
 386    region.agg_size_full = 0;
 387
 388    for (i = 0; i < n_ctxs; i++) {
 389        TCGContext *s = qatomic_read(&tcg_ctxs[i]);
 390        tcg_region_initial_alloc__locked(s);
 391    }
 392    qemu_mutex_unlock(&region.lock);
 393
 394    tcg_region_tree_reset_all();
 395}
 396
 397static size_t tcg_n_regions(size_t tb_size, unsigned max_cpus)
 398{
 399#ifdef CONFIG_USER_ONLY
 400    return 1;
 401#else
 402    size_t n_regions;
 403
 404    /*
 405     * It is likely that some vCPUs will translate more code than others,
 406     * so we first try to set more regions than max_cpus, with those regions
 407     * being of reasonable size. If that's not possible we make do by evenly
 408     * dividing the code_gen_buffer among the vCPUs.
 409     */
 410    /* Use a single region if all we have is one vCPU thread */
 411    if (max_cpus == 1 || !qemu_tcg_mttcg_enabled()) {
 412        return 1;
 413    }
 414
 415    /*
 416     * Try to have more regions than max_cpus, with each region being >= 2 MB.
 417     * If we can't, then just allocate one region per vCPU thread.
 418     */
 419    n_regions = tb_size / (2 * MiB);
 420    if (n_regions <= max_cpus) {
 421        return max_cpus;
 422    }
 423    return MIN(n_regions, max_cpus * 8);
 424#endif
 425}
 426
 427/*
 428 * Minimum size of the code gen buffer.  This number is randomly chosen,
 429 * but not so small that we can't have a fair number of TB's live.
 430 *
 431 * Maximum size, MAX_CODE_GEN_BUFFER_SIZE, is defined in tcg-target.h.
 432 * Unless otherwise indicated, this is constrained by the range of
 433 * direct branches on the host cpu, as used by the TCG implementation
 434 * of goto_tb.
 435 */
 436#define MIN_CODE_GEN_BUFFER_SIZE     (1 * MiB)
 437
 438#if TCG_TARGET_REG_BITS == 32
 439#define DEFAULT_CODE_GEN_BUFFER_SIZE_1 (32 * MiB)
 440#ifdef CONFIG_USER_ONLY
 441/*
 442 * For user mode on smaller 32 bit systems we may run into trouble
 443 * allocating big chunks of data in the right place. On these systems
 444 * we utilise a static code generation buffer directly in the binary.
 445 */
 446#define USE_STATIC_CODE_GEN_BUFFER
 447#endif
 448#else /* TCG_TARGET_REG_BITS == 64 */
 449#ifdef CONFIG_USER_ONLY
 450/*
 451 * As user-mode emulation typically means running multiple instances
 452 * of the translator don't go too nuts with our default code gen
 453 * buffer lest we make things too hard for the OS.
 454 */
 455#define DEFAULT_CODE_GEN_BUFFER_SIZE_1 (128 * MiB)
 456#else
 457/*
 458 * We expect most system emulation to run one or two guests per host.
 459 * Users running large scale system emulation may want to tweak their
 460 * runtime setup via the tb-size control on the command line.
 461 */
 462#define DEFAULT_CODE_GEN_BUFFER_SIZE_1 (1 * GiB)
 463#endif
 464#endif
 465
 466#define DEFAULT_CODE_GEN_BUFFER_SIZE \
 467  (DEFAULT_CODE_GEN_BUFFER_SIZE_1 < MAX_CODE_GEN_BUFFER_SIZE \
 468   ? DEFAULT_CODE_GEN_BUFFER_SIZE_1 : MAX_CODE_GEN_BUFFER_SIZE)
 469
 470#ifdef USE_STATIC_CODE_GEN_BUFFER
 471static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE]
 472    __attribute__((aligned(CODE_GEN_ALIGN)));
 473
 474static int alloc_code_gen_buffer(size_t tb_size, int splitwx, Error **errp)
 475{
 476    void *buf, *end;
 477    size_t size;
 478
 479    if (splitwx > 0) {
 480        error_setg(errp, "jit split-wx not supported");
 481        return -1;
 482    }
 483
 484    /* page-align the beginning and end of the buffer */
 485    buf = static_code_gen_buffer;
 486    end = static_code_gen_buffer + sizeof(static_code_gen_buffer);
 487    buf = QEMU_ALIGN_PTR_UP(buf, qemu_real_host_page_size);
 488    end = QEMU_ALIGN_PTR_DOWN(end, qemu_real_host_page_size);
 489
 490    size = end - buf;
 491
 492    /* Honor a command-line option limiting the size of the buffer.  */
 493    if (size > tb_size) {
 494        size = QEMU_ALIGN_DOWN(tb_size, qemu_real_host_page_size);
 495    }
 496
 497    region.start_aligned = buf;
 498    region.total_size = size;
 499
 500    return PROT_READ | PROT_WRITE;
 501}
 502#elif defined(_WIN32)
 503static int alloc_code_gen_buffer(size_t size, int splitwx, Error **errp)
 504{
 505    void *buf;
 506
 507    if (splitwx > 0) {
 508        error_setg(errp, "jit split-wx not supported");
 509        return -1;
 510    }
 511
 512    buf = VirtualAlloc(NULL, size, MEM_RESERVE | MEM_COMMIT,
 513                             PAGE_EXECUTE_READWRITE);
 514    if (buf == NULL) {
 515        error_setg_win32(errp, GetLastError(),
 516                         "allocate %zu bytes for jit buffer", size);
 517        return false;
 518    }
 519
 520    region.start_aligned = buf;
 521    region.total_size = size;
 522
 523    return PAGE_READ | PAGE_WRITE | PAGE_EXEC;
 524}
 525#else
 526static int alloc_code_gen_buffer_anon(size_t size, int prot,
 527                                      int flags, Error **errp)
 528{
 529    void *buf;
 530
 531    buf = mmap(NULL, size, prot, flags, -1, 0);
 532    if (buf == MAP_FAILED) {
 533        error_setg_errno(errp, errno,
 534                         "allocate %zu bytes for jit buffer", size);
 535        return -1;
 536    }
 537
 538    region.start_aligned = buf;
 539    region.total_size = size;
 540    return prot;
 541}
 542
 543#ifndef CONFIG_TCG_INTERPRETER
 544#ifdef CONFIG_POSIX
 545#include "qemu/memfd.h"
 546
 547static bool alloc_code_gen_buffer_splitwx_memfd(size_t size, Error **errp)
 548{
 549    void *buf_rw = NULL, *buf_rx = MAP_FAILED;
 550    int fd = -1;
 551
 552    buf_rw = qemu_memfd_alloc("tcg-jit", size, 0, &fd, errp);
 553    if (buf_rw == NULL) {
 554        goto fail;
 555    }
 556
 557    buf_rx = mmap(NULL, size, PROT_READ | PROT_EXEC, MAP_SHARED, fd, 0);
 558    if (buf_rx == MAP_FAILED) {
 559        goto fail_rx;
 560    }
 561
 562    close(fd);
 563    region.start_aligned = buf_rw;
 564    region.total_size = size;
 565    tcg_splitwx_diff = buf_rx - buf_rw;
 566
 567    return PROT_READ | PROT_WRITE;
 568
 569 fail_rx:
 570    error_setg_errno(errp, errno, "failed to map shared memory for execute");
 571 fail:
 572    if (buf_rx != MAP_FAILED) {
 573        munmap(buf_rx, size);
 574    }
 575    if (buf_rw) {
 576        munmap(buf_rw, size);
 577    }
 578    if (fd >= 0) {
 579        close(fd);
 580    }
 581    return -1;
 582}
 583#endif /* CONFIG_POSIX */
 584
 585#ifdef CONFIG_DARWIN
 586#include <mach/mach.h>
 587
 588extern kern_return_t mach_vm_remap(vm_map_t target_task,
 589                                   mach_vm_address_t *target_address,
 590                                   mach_vm_size_t size,
 591                                   mach_vm_offset_t mask,
 592                                   int flags,
 593                                   vm_map_t src_task,
 594                                   mach_vm_address_t src_address,
 595                                   boolean_t copy,
 596                                   vm_prot_t *cur_protection,
 597                                   vm_prot_t *max_protection,
 598                                   vm_inherit_t inheritance);
 599
 600static int alloc_code_gen_buffer_splitwx_vmremap(size_t size, Error **errp)
 601{
 602    kern_return_t ret;
 603    mach_vm_address_t buf_rw, buf_rx;
 604    vm_prot_t cur_prot, max_prot;
 605
 606    /* Map the read-write portion via normal anon memory. */
 607    if (!alloc_code_gen_buffer_anon(size, PROT_READ | PROT_WRITE,
 608                                    MAP_PRIVATE | MAP_ANONYMOUS, errp)) {
 609        return -1;
 610    }
 611
 612    buf_rw = (mach_vm_address_t)region.start_aligned;
 613    buf_rx = 0;
 614    ret = mach_vm_remap(mach_task_self(),
 615                        &buf_rx,
 616                        size,
 617                        0,
 618                        VM_FLAGS_ANYWHERE,
 619                        mach_task_self(),
 620                        buf_rw,
 621                        false,
 622                        &cur_prot,
 623                        &max_prot,
 624                        VM_INHERIT_NONE);
 625    if (ret != KERN_SUCCESS) {
 626        /* TODO: Convert "ret" to a human readable error message. */
 627        error_setg(errp, "vm_remap for jit splitwx failed");
 628        munmap((void *)buf_rw, size);
 629        return -1;
 630    }
 631
 632    if (mprotect((void *)buf_rx, size, PROT_READ | PROT_EXEC) != 0) {
 633        error_setg_errno(errp, errno, "mprotect for jit splitwx");
 634        munmap((void *)buf_rx, size);
 635        munmap((void *)buf_rw, size);
 636        return -1;
 637    }
 638
 639    tcg_splitwx_diff = buf_rx - buf_rw;
 640    return PROT_READ | PROT_WRITE;
 641}
 642#endif /* CONFIG_DARWIN */
 643#endif /* CONFIG_TCG_INTERPRETER */
 644
 645static int alloc_code_gen_buffer_splitwx(size_t size, Error **errp)
 646{
 647#ifndef CONFIG_TCG_INTERPRETER
 648# ifdef CONFIG_DARWIN
 649    return alloc_code_gen_buffer_splitwx_vmremap(size, errp);
 650# endif
 651# ifdef CONFIG_POSIX
 652    return alloc_code_gen_buffer_splitwx_memfd(size, errp);
 653# endif
 654#endif
 655    error_setg(errp, "jit split-wx not supported");
 656    return -1;
 657}
 658
 659static int alloc_code_gen_buffer(size_t size, int splitwx, Error **errp)
 660{
 661    ERRP_GUARD();
 662    int prot, flags;
 663
 664    if (splitwx) {
 665        prot = alloc_code_gen_buffer_splitwx(size, errp);
 666        if (prot >= 0) {
 667            return prot;
 668        }
 669        /*
 670         * If splitwx force-on (1), fail;
 671         * if splitwx default-on (-1), fall through to splitwx off.
 672         */
 673        if (splitwx > 0) {
 674            return -1;
 675        }
 676        error_free_or_abort(errp);
 677    }
 678
 679    /*
 680     * macOS 11.2 has a bug (Apple Feedback FB8994773) in which mprotect
 681     * rejects a permission change from RWX -> NONE when reserving the
 682     * guard pages later.  We can go the other way with the same number
 683     * of syscalls, so always begin with PROT_NONE.
 684     */
 685    prot = PROT_NONE;
 686    flags = MAP_PRIVATE | MAP_ANONYMOUS;
 687#ifdef CONFIG_DARWIN
 688    /* Applicable to both iOS and macOS (Apple Silicon). */
 689    if (!splitwx) {
 690        flags |= MAP_JIT;
 691    }
 692#endif
 693
 694    return alloc_code_gen_buffer_anon(size, prot, flags, errp);
 695}
 696#endif /* USE_STATIC_CODE_GEN_BUFFER, WIN32, POSIX */
 697
 698/*
 699 * Initializes region partitioning.
 700 *
 701 * Called at init time from the parent thread (i.e. the one calling
 702 * tcg_context_init), after the target's TCG globals have been set.
 703 *
 704 * Region partitioning works by splitting code_gen_buffer into separate regions,
 705 * and then assigning regions to TCG threads so that the threads can translate
 706 * code in parallel without synchronization.
 707 *
 708 * In softmmu the number of TCG threads is bounded by max_cpus, so we use at
 709 * least max_cpus regions in MTTCG. In !MTTCG we use a single region.
 710 * Note that the TCG options from the command-line (i.e. -accel accel=tcg,[...])
 711 * must have been parsed before calling this function, since it calls
 712 * qemu_tcg_mttcg_enabled().
 713 *
 714 * In user-mode we use a single region.  Having multiple regions in user-mode
 715 * is not supported, because the number of vCPU threads (recall that each thread
 716 * spawned by the guest corresponds to a vCPU thread) is only bounded by the
 717 * OS, and usually this number is huge (tens of thousands is not uncommon).
 718 * Thus, given this large bound on the number of vCPU threads and the fact
 719 * that code_gen_buffer is allocated at compile-time, we cannot guarantee
 720 * that the availability of at least one region per vCPU thread.
 721 *
 722 * However, this user-mode limitation is unlikely to be a significant problem
 723 * in practice. Multi-threaded guests share most if not all of their translated
 724 * code, which makes parallel code generation less appealing than in softmmu.
 725 */
 726void tcg_region_init(size_t tb_size, int splitwx, unsigned max_cpus)
 727{
 728    const size_t page_size = qemu_real_host_page_size;
 729    size_t region_size;
 730    int have_prot, need_prot;
 731
 732    /* Size the buffer.  */
 733    if (tb_size == 0) {
 734        size_t phys_mem = qemu_get_host_physmem();
 735        if (phys_mem == 0) {
 736            tb_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
 737        } else {
 738            tb_size = QEMU_ALIGN_DOWN(phys_mem / 8, page_size);
 739            tb_size = MIN(DEFAULT_CODE_GEN_BUFFER_SIZE, tb_size);
 740        }
 741    }
 742    if (tb_size < MIN_CODE_GEN_BUFFER_SIZE) {
 743        tb_size = MIN_CODE_GEN_BUFFER_SIZE;
 744    }
 745    if (tb_size > MAX_CODE_GEN_BUFFER_SIZE) {
 746        tb_size = MAX_CODE_GEN_BUFFER_SIZE;
 747    }
 748
 749    have_prot = alloc_code_gen_buffer(tb_size, splitwx, &error_fatal);
 750    assert(have_prot >= 0);
 751
 752    /* Request large pages for the buffer and the splitwx.  */
 753    qemu_madvise(region.start_aligned, region.total_size, QEMU_MADV_HUGEPAGE);
 754    if (tcg_splitwx_diff) {
 755        qemu_madvise(region.start_aligned + tcg_splitwx_diff,
 756                     region.total_size, QEMU_MADV_HUGEPAGE);
 757    }
 758
 759    /*
 760     * Make region_size a multiple of page_size, using aligned as the start.
 761     * As a result of this we might end up with a few extra pages at the end of
 762     * the buffer; we will assign those to the last region.
 763     */
 764    region.n = tcg_n_regions(tb_size, max_cpus);
 765    region_size = tb_size / region.n;
 766    region_size = QEMU_ALIGN_DOWN(region_size, page_size);
 767
 768    /* A region must have at least 2 pages; one code, one guard */
 769    g_assert(region_size >= 2 * page_size);
 770    region.stride = region_size;
 771
 772    /* Reserve space for guard pages. */
 773    region.size = region_size - page_size;
 774    region.total_size -= page_size;
 775
 776    /*
 777     * The first region will be smaller than the others, via the prologue,
 778     * which has yet to be allocated.  For now, the first region begins at
 779     * the page boundary.
 780     */
 781    region.after_prologue = region.start_aligned;
 782
 783    /* init the region struct */
 784    qemu_mutex_init(&region.lock);
 785
 786    /*
 787     * Set guard pages in the rw buffer, as that's the one into which
 788     * buffer overruns could occur.  Do not set guard pages in the rx
 789     * buffer -- let that one use hugepages throughout.
 790     * Work with the page protections set up with the initial mapping.
 791     */
 792    need_prot = PAGE_READ | PAGE_WRITE;
 793#ifndef CONFIG_TCG_INTERPRETER
 794    if (tcg_splitwx_diff == 0) {
 795        need_prot |= PAGE_EXEC;
 796    }
 797#endif
 798    for (size_t i = 0, n = region.n; i < n; i++) {
 799        void *start, *end;
 800
 801        tcg_region_bounds(i, &start, &end);
 802        if (have_prot != need_prot) {
 803            int rc;
 804
 805            if (need_prot == (PAGE_READ | PAGE_WRITE | PAGE_EXEC)) {
 806                rc = qemu_mprotect_rwx(start, end - start);
 807            } else if (need_prot == (PAGE_READ | PAGE_WRITE)) {
 808                rc = qemu_mprotect_rw(start, end - start);
 809            } else {
 810                g_assert_not_reached();
 811            }
 812            if (rc) {
 813                error_setg_errno(&error_fatal, errno,
 814                                 "mprotect of jit buffer");
 815            }
 816        }
 817        if (have_prot != 0) {
 818            /* Guard pages are nice for bug detection but are not essential. */
 819            (void)qemu_mprotect_none(end, page_size);
 820        }
 821    }
 822
 823    tcg_region_trees_init();
 824
 825    /*
 826     * Leave the initial context initialized to the first region.
 827     * This will be the context into which we generate the prologue.
 828     * It is also the only context for CONFIG_USER_ONLY.
 829     */
 830    tcg_region_initial_alloc__locked(&tcg_init_ctx);
 831}
 832
 833void tcg_region_prologue_set(TCGContext *s)
 834{
 835    /* Deduct the prologue from the first region.  */
 836    g_assert(region.start_aligned == s->code_gen_buffer);
 837    region.after_prologue = s->code_ptr;
 838
 839    /* Recompute boundaries of the first region. */
 840    tcg_region_assign(s, 0);
 841
 842    /* Register the balance of the buffer with gdb. */
 843    tcg_register_jit(tcg_splitwx_to_rx(region.after_prologue),
 844                     region.start_aligned + region.total_size -
 845                     region.after_prologue);
 846}
 847
 848/*
 849 * Returns the size (in bytes) of all translated code (i.e. from all regions)
 850 * currently in the cache.
 851 * See also: tcg_code_capacity()
 852 * Do not confuse with tcg_current_code_size(); that one applies to a single
 853 * TCG context.
 854 */
 855size_t tcg_code_size(void)
 856{
 857    unsigned int n_ctxs = qatomic_read(&tcg_cur_ctxs);
 858    unsigned int i;
 859    size_t total;
 860
 861    qemu_mutex_lock(&region.lock);
 862    total = region.agg_size_full;
 863    for (i = 0; i < n_ctxs; i++) {
 864        const TCGContext *s = qatomic_read(&tcg_ctxs[i]);
 865        size_t size;
 866
 867        size = qatomic_read(&s->code_gen_ptr) - s->code_gen_buffer;
 868        g_assert(size <= s->code_gen_buffer_size);
 869        total += size;
 870    }
 871    qemu_mutex_unlock(&region.lock);
 872    return total;
 873}
 874
 875/*
 876 * Returns the code capacity (in bytes) of the entire cache, i.e. including all
 877 * regions.
 878 * See also: tcg_code_size()
 879 */
 880size_t tcg_code_capacity(void)
 881{
 882    size_t guard_size, capacity;
 883
 884    /* no need for synchronization; these variables are set at init time */
 885    guard_size = region.stride - region.size;
 886    capacity = region.total_size;
 887    capacity -= (region.n - 1) * guard_size;
 888    capacity -= region.n * TCG_HIGHWATER;
 889
 890    return capacity;
 891}
 892