qemu/util/bufferiszero.c
<<
>>
Prefs
   1/*
   2 * Simple C functions to supplement the C library
   3 *
   4 * Copyright (c) 2006 Fabrice Bellard
   5 *
   6 * Permission is hereby granted, free of charge, to any person obtaining a copy
   7 * of this software and associated documentation files (the "Software"), to deal
   8 * in the Software without restriction, including without limitation the rights
   9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  10 * copies of the Software, and to permit persons to whom the Software is
  11 * furnished to do so, subject to the following conditions:
  12 *
  13 * The above copyright notice and this permission notice shall be included in
  14 * all copies or substantial portions of the Software.
  15 *
  16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
  22 * THE SOFTWARE.
  23 */
  24#include "qemu/osdep.h"
  25#include "qemu/cutils.h"
  26#include "qemu/bswap.h"
  27
  28static bool
  29buffer_zero_int(const void *buf, size_t len)
  30{
  31    if (unlikely(len < 8)) {
  32        /* For a very small buffer, simply accumulate all the bytes.  */
  33        const unsigned char *p = buf;
  34        const unsigned char *e = buf + len;
  35        unsigned char t = 0;
  36
  37        do {
  38            t |= *p++;
  39        } while (p < e);
  40
  41        return t == 0;
  42    } else {
  43        /* Otherwise, use the unaligned memory access functions to
  44           handle the beginning and end of the buffer, with a couple
  45           of loops handling the middle aligned section.  */
  46        uint64_t t = ldq_he_p(buf);
  47        const uint64_t *p = (uint64_t *)(((uintptr_t)buf + 8) & -8);
  48        const uint64_t *e = (uint64_t *)(((uintptr_t)buf + len) & -8);
  49
  50        for (; p + 8 <= e; p += 8) {
  51            __builtin_prefetch(p + 8);
  52            if (t) {
  53                return false;
  54            }
  55            t = p[0] | p[1] | p[2] | p[3] | p[4] | p[5] | p[6] | p[7];
  56        }
  57        while (p < e) {
  58            t |= *p++;
  59        }
  60        t |= ldq_he_p(buf + len - 8);
  61
  62        return t == 0;
  63    }
  64}
  65
  66#if defined(CONFIG_AVX512F_OPT) || defined(CONFIG_AVX2_OPT) || defined(__SSE2__)
  67/* Do not use push_options pragmas unnecessarily, because clang
  68 * does not support them.
  69 */
  70#if defined(CONFIG_AVX512F_OPT) || defined(CONFIG_AVX2_OPT)
  71#pragma GCC push_options
  72#pragma GCC target("sse2")
  73#endif
  74#include <emmintrin.h>
  75
  76/* Note that each of these vectorized functions require len >= 64.  */
  77
  78static bool
  79buffer_zero_sse2(const void *buf, size_t len)
  80{
  81    __m128i t = _mm_loadu_si128(buf);
  82    __m128i *p = (__m128i *)(((uintptr_t)buf + 5 * 16) & -16);
  83    __m128i *e = (__m128i *)(((uintptr_t)buf + len) & -16);
  84    __m128i zero = _mm_setzero_si128();
  85
  86    /* Loop over 16-byte aligned blocks of 64.  */
  87    while (likely(p <= e)) {
  88        __builtin_prefetch(p);
  89        t = _mm_cmpeq_epi8(t, zero);
  90        if (unlikely(_mm_movemask_epi8(t) != 0xFFFF)) {
  91            return false;
  92        }
  93        t = p[-4] | p[-3] | p[-2] | p[-1];
  94        p += 4;
  95    }
  96
  97    /* Finish the aligned tail.  */
  98    t |= e[-3];
  99    t |= e[-2];
 100    t |= e[-1];
 101
 102    /* Finish the unaligned tail.  */
 103    t |= _mm_loadu_si128(buf + len - 16);
 104
 105    return _mm_movemask_epi8(_mm_cmpeq_epi8(t, zero)) == 0xFFFF;
 106}
 107#if defined(CONFIG_AVX512F_OPT) || defined(CONFIG_AVX2_OPT)
 108#pragma GCC pop_options
 109#endif
 110
 111#ifdef CONFIG_AVX2_OPT
 112/* Note that due to restrictions/bugs wrt __builtin functions in gcc <= 4.8,
 113 * the includes have to be within the corresponding push_options region, and
 114 * therefore the regions themselves have to be ordered with increasing ISA.
 115 */
 116#pragma GCC push_options
 117#pragma GCC target("sse4")
 118#include <smmintrin.h>
 119
 120static bool
 121buffer_zero_sse4(const void *buf, size_t len)
 122{
 123    __m128i t = _mm_loadu_si128(buf);
 124    __m128i *p = (__m128i *)(((uintptr_t)buf + 5 * 16) & -16);
 125    __m128i *e = (__m128i *)(((uintptr_t)buf + len) & -16);
 126
 127    /* Loop over 16-byte aligned blocks of 64.  */
 128    while (likely(p <= e)) {
 129        __builtin_prefetch(p);
 130        if (unlikely(!_mm_testz_si128(t, t))) {
 131            return false;
 132        }
 133        t = p[-4] | p[-3] | p[-2] | p[-1];
 134        p += 4;
 135    }
 136
 137    /* Finish the aligned tail.  */
 138    t |= e[-3];
 139    t |= e[-2];
 140    t |= e[-1];
 141
 142    /* Finish the unaligned tail.  */
 143    t |= _mm_loadu_si128(buf + len - 16);
 144
 145    return _mm_testz_si128(t, t);
 146}
 147
 148#pragma GCC pop_options
 149#pragma GCC push_options
 150#pragma GCC target("avx2")
 151#include <immintrin.h>
 152
 153static bool
 154buffer_zero_avx2(const void *buf, size_t len)
 155{
 156    /* Begin with an unaligned head of 32 bytes.  */
 157    __m256i t = _mm256_loadu_si256(buf);
 158    __m256i *p = (__m256i *)(((uintptr_t)buf + 5 * 32) & -32);
 159    __m256i *e = (__m256i *)(((uintptr_t)buf + len) & -32);
 160
 161    /* Loop over 32-byte aligned blocks of 128.  */
 162    while (p <= e) {
 163        __builtin_prefetch(p);
 164        if (unlikely(!_mm256_testz_si256(t, t))) {
 165            return false;
 166        }
 167        t = p[-4] | p[-3] | p[-2] | p[-1];
 168        p += 4;
 169    } ;
 170
 171    /* Finish the last block of 128 unaligned.  */
 172    t |= _mm256_loadu_si256(buf + len - 4 * 32);
 173    t |= _mm256_loadu_si256(buf + len - 3 * 32);
 174    t |= _mm256_loadu_si256(buf + len - 2 * 32);
 175    t |= _mm256_loadu_si256(buf + len - 1 * 32);
 176
 177    return _mm256_testz_si256(t, t);
 178}
 179#pragma GCC pop_options
 180#endif /* CONFIG_AVX2_OPT */
 181
 182#ifdef CONFIG_AVX512F_OPT
 183#pragma GCC push_options
 184#pragma GCC target("avx512f")
 185#include <immintrin.h>
 186
 187static bool
 188buffer_zero_avx512(const void *buf, size_t len)
 189{
 190    /* Begin with an unaligned head of 64 bytes.  */
 191    __m512i t = _mm512_loadu_si512(buf);
 192    __m512i *p = (__m512i *)(((uintptr_t)buf + 5 * 64) & -64);
 193    __m512i *e = (__m512i *)(((uintptr_t)buf + len) & -64);
 194
 195    /* Loop over 64-byte aligned blocks of 256.  */
 196    while (p <= e) {
 197        __builtin_prefetch(p);
 198        if (unlikely(_mm512_test_epi64_mask(t, t))) {
 199            return false;
 200        }
 201        t = p[-4] | p[-3] | p[-2] | p[-1];
 202        p += 4;
 203    }
 204
 205    t |= _mm512_loadu_si512(buf + len - 4 * 64);
 206    t |= _mm512_loadu_si512(buf + len - 3 * 64);
 207    t |= _mm512_loadu_si512(buf + len - 2 * 64);
 208    t |= _mm512_loadu_si512(buf + len - 1 * 64);
 209
 210    return !_mm512_test_epi64_mask(t, t);
 211
 212}
 213#pragma GCC pop_options
 214#endif
 215
 216
 217/* Note that for test_buffer_is_zero_next_accel, the most preferred
 218 * ISA must have the least significant bit.
 219 */
 220#define CACHE_AVX512F 1
 221#define CACHE_AVX2    2
 222#define CACHE_SSE4    4
 223#define CACHE_SSE2    8
 224
 225/* Make sure that these variables are appropriately initialized when
 226 * SSE2 is enabled on the compiler command-line, but the compiler is
 227 * too old to support CONFIG_AVX2_OPT.
 228 */
 229#if defined(CONFIG_AVX512F_OPT) || defined(CONFIG_AVX2_OPT)
 230# define INIT_CACHE 0
 231# define INIT_ACCEL buffer_zero_int
 232#else
 233# ifndef __SSE2__
 234#  error "ISA selection confusion"
 235# endif
 236# define INIT_CACHE CACHE_SSE2
 237# define INIT_ACCEL buffer_zero_sse2
 238#endif
 239
 240static unsigned cpuid_cache = INIT_CACHE;
 241static bool (*buffer_accel)(const void *, size_t) = INIT_ACCEL;
 242static int length_to_accel = 64;
 243
 244static void init_accel(unsigned cache)
 245{
 246    bool (*fn)(const void *, size_t) = buffer_zero_int;
 247    if (cache & CACHE_SSE2) {
 248        fn = buffer_zero_sse2;
 249        length_to_accel = 64;
 250    }
 251#ifdef CONFIG_AVX2_OPT
 252    if (cache & CACHE_SSE4) {
 253        fn = buffer_zero_sse4;
 254        length_to_accel = 64;
 255    }
 256    if (cache & CACHE_AVX2) {
 257        fn = buffer_zero_avx2;
 258        length_to_accel = 128;
 259    }
 260#endif
 261#ifdef CONFIG_AVX512F_OPT
 262    if (cache & CACHE_AVX512F) {
 263        fn = buffer_zero_avx512;
 264        length_to_accel = 256;
 265    }
 266#endif
 267    buffer_accel = fn;
 268}
 269
 270#if defined(CONFIG_AVX512F_OPT) || defined(CONFIG_AVX2_OPT)
 271#include "qemu/cpuid.h"
 272
 273static void __attribute__((constructor)) init_cpuid_cache(void)
 274{
 275    int max = __get_cpuid_max(0, NULL);
 276    int a, b, c, d;
 277    unsigned cache = 0;
 278
 279    if (max >= 1) {
 280        __cpuid(1, a, b, c, d);
 281        if (d & bit_SSE2) {
 282            cache |= CACHE_SSE2;
 283        }
 284        if (c & bit_SSE4_1) {
 285            cache |= CACHE_SSE4;
 286        }
 287
 288        /* We must check that AVX is not just available, but usable.  */
 289        if ((c & bit_OSXSAVE) && (c & bit_AVX) && max >= 7) {
 290            int bv;
 291            __asm("xgetbv" : "=a"(bv), "=d"(d) : "c"(0));
 292            __cpuid_count(7, 0, a, b, c, d);
 293            if ((bv & 0x6) == 0x6 && (b & bit_AVX2)) {
 294                cache |= CACHE_AVX2;
 295            }
 296            /* 0xe6:
 297            *  XCR0[7:5] = 111b (OPMASK state, upper 256-bit of ZMM0-ZMM15
 298            *                    and ZMM16-ZMM31 state are enabled by OS)
 299            *  XCR0[2:1] = 11b (XMM state and YMM state are enabled by OS)
 300            */
 301            if ((bv & 0xe6) == 0xe6 && (b & bit_AVX512F)) {
 302                cache |= CACHE_AVX512F;
 303            }
 304        }
 305    }
 306    cpuid_cache = cache;
 307    init_accel(cache);
 308}
 309#endif /* CONFIG_AVX2_OPT */
 310
 311bool test_buffer_is_zero_next_accel(void)
 312{
 313    /* If no bits set, we just tested buffer_zero_int, and there
 314       are no more acceleration options to test.  */
 315    if (cpuid_cache == 0) {
 316        return false;
 317    }
 318    /* Disable the accelerator we used before and select a new one.  */
 319    cpuid_cache &= cpuid_cache - 1;
 320    init_accel(cpuid_cache);
 321    return true;
 322}
 323
 324static bool select_accel_fn(const void *buf, size_t len)
 325{
 326    if (likely(len >= length_to_accel)) {
 327        return buffer_accel(buf, len);
 328    }
 329    return buffer_zero_int(buf, len);
 330}
 331
 332#else
 333#define select_accel_fn  buffer_zero_int
 334bool test_buffer_is_zero_next_accel(void)
 335{
 336    return false;
 337}
 338#endif
 339
 340/*
 341 * Checks if a buffer is all zeroes
 342 */
 343bool buffer_is_zero(const void *buf, size_t len)
 344{
 345    if (unlikely(len == 0)) {
 346        return true;
 347    }
 348
 349    /* Fetch the beginning of the buffer while we select the accelerator.  */
 350    __builtin_prefetch(buf);
 351
 352    /* Use an optimized zero check if possible.  Note that this also
 353       includes a check for an unrolled loop over 64-bit integers.  */
 354    return select_accel_fn(buf, len);
 355}
 356