qemu/util/hbitmap.c
<<
>>
Prefs
   1/*
   2 * Hierarchical Bitmap Data Type
   3 *
   4 * Copyright Red Hat, Inc., 2012
   5 *
   6 * Author: Paolo Bonzini <pbonzini@redhat.com>
   7 *
   8 * This work is licensed under the terms of the GNU GPL, version 2 or
   9 * later.  See the COPYING file in the top-level directory.
  10 */
  11
  12#include "qemu/osdep.h"
  13#include "qemu/hbitmap.h"
  14#include "qemu/host-utils.h"
  15#include "trace.h"
  16#include "crypto/hash.h"
  17
  18/* HBitmaps provides an array of bits.  The bits are stored as usual in an
  19 * array of unsigned longs, but HBitmap is also optimized to provide fast
  20 * iteration over set bits; going from one bit to the next is O(logB n)
  21 * worst case, with B = sizeof(long) * CHAR_BIT: the result is low enough
  22 * that the number of levels is in fact fixed.
  23 *
  24 * In order to do this, it stacks multiple bitmaps with progressively coarser
  25 * granularity; in all levels except the last, bit N is set iff the N-th
  26 * unsigned long is nonzero in the immediately next level.  When iteration
  27 * completes on the last level it can examine the 2nd-last level to quickly
  28 * skip entire words, and even do so recursively to skip blocks of 64 words or
  29 * powers thereof (32 on 32-bit machines).
  30 *
  31 * Given an index in the bitmap, it can be split in group of bits like
  32 * this (for the 64-bit case):
  33 *
  34 *   bits 0-57 => word in the last bitmap     | bits 58-63 => bit in the word
  35 *   bits 0-51 => word in the 2nd-last bitmap | bits 52-57 => bit in the word
  36 *   bits 0-45 => word in the 3rd-last bitmap | bits 46-51 => bit in the word
  37 *
  38 * So it is easy to move up simply by shifting the index right by
  39 * log2(BITS_PER_LONG) bits.  To move down, you shift the index left
  40 * similarly, and add the word index within the group.  Iteration uses
  41 * ffs (find first set bit) to find the next word to examine; this
  42 * operation can be done in constant time in most current architectures.
  43 *
  44 * Setting or clearing a range of m bits on all levels, the work to perform
  45 * is O(m + m/W + m/W^2 + ...), which is O(m) like on a regular bitmap.
  46 *
  47 * When iterating on a bitmap, each bit (on any level) is only visited
  48 * once.  Hence, The total cost of visiting a bitmap with m bits in it is
  49 * the number of bits that are set in all bitmaps.  Unless the bitmap is
  50 * extremely sparse, this is also O(m + m/W + m/W^2 + ...), so the amortized
  51 * cost of advancing from one bit to the next is usually constant (worst case
  52 * O(logB n) as in the non-amortized complexity).
  53 */
  54
  55struct HBitmap {
  56    /*
  57     * Size of the bitmap, as requested in hbitmap_alloc or in hbitmap_truncate.
  58     */
  59    uint64_t orig_size;
  60
  61    /* Number of total bits in the bottom level.  */
  62    uint64_t size;
  63
  64    /* Number of set bits in the bottom level.  */
  65    uint64_t count;
  66
  67    /* A scaling factor.  Given a granularity of G, each bit in the bitmap will
  68     * will actually represent a group of 2^G elements.  Each operation on a
  69     * range of bits first rounds the bits to determine which group they land
  70     * in, and then affect the entire page; iteration will only visit the first
  71     * bit of each group.  Here is an example of operations in a size-16,
  72     * granularity-1 HBitmap:
  73     *
  74     *    initial state            00000000
  75     *    set(start=0, count=9)    11111000 (iter: 0, 2, 4, 6, 8)
  76     *    reset(start=1, count=3)  00111000 (iter: 4, 6, 8)
  77     *    set(start=9, count=2)    00111100 (iter: 4, 6, 8, 10)
  78     *    reset(start=5, count=5)  00000000
  79     *
  80     * From an implementation point of view, when setting or resetting bits,
  81     * the bitmap will scale bit numbers right by this amount of bits.  When
  82     * iterating, the bitmap will scale bit numbers left by this amount of
  83     * bits.
  84     */
  85    int granularity;
  86
  87    /* A meta dirty bitmap to track the dirtiness of bits in this HBitmap. */
  88    HBitmap *meta;
  89
  90    /* A number of progressively less coarse bitmaps (i.e. level 0 is the
  91     * coarsest).  Each bit in level N represents a word in level N+1 that
  92     * has a set bit, except the last level where each bit represents the
  93     * actual bitmap.
  94     *
  95     * Note that all bitmaps have the same number of levels.  Even a 1-bit
  96     * bitmap will still allocate HBITMAP_LEVELS arrays.
  97     */
  98    unsigned long *levels[HBITMAP_LEVELS];
  99
 100    /* The length of each levels[] array. */
 101    uint64_t sizes[HBITMAP_LEVELS];
 102};
 103
 104/* Advance hbi to the next nonzero word and return it.  hbi->pos
 105 * is updated.  Returns zero if we reach the end of the bitmap.
 106 */
 107static unsigned long hbitmap_iter_skip_words(HBitmapIter *hbi)
 108{
 109    size_t pos = hbi->pos;
 110    const HBitmap *hb = hbi->hb;
 111    unsigned i = HBITMAP_LEVELS - 1;
 112
 113    unsigned long cur;
 114    do {
 115        i--;
 116        pos >>= BITS_PER_LEVEL;
 117        cur = hbi->cur[i] & hb->levels[i][pos];
 118    } while (cur == 0);
 119
 120    /* Check for end of iteration.  We always use fewer than BITS_PER_LONG
 121     * bits in the level 0 bitmap; thus we can repurpose the most significant
 122     * bit as a sentinel.  The sentinel is set in hbitmap_alloc and ensures
 123     * that the above loop ends even without an explicit check on i.
 124     */
 125
 126    if (i == 0 && cur == (1UL << (BITS_PER_LONG - 1))) {
 127        return 0;
 128    }
 129    for (; i < HBITMAP_LEVELS - 1; i++) {
 130        /* Shift back pos to the left, matching the right shifts above.
 131         * The index of this word's least significant set bit provides
 132         * the low-order bits.
 133         */
 134        assert(cur);
 135        pos = (pos << BITS_PER_LEVEL) + ctzl(cur);
 136        hbi->cur[i] = cur & (cur - 1);
 137
 138        /* Set up next level for iteration.  */
 139        cur = hb->levels[i + 1][pos];
 140    }
 141
 142    hbi->pos = pos;
 143    trace_hbitmap_iter_skip_words(hbi->hb, hbi, pos, cur);
 144
 145    assert(cur);
 146    return cur;
 147}
 148
 149int64_t hbitmap_iter_next(HBitmapIter *hbi)
 150{
 151    unsigned long cur = hbi->cur[HBITMAP_LEVELS - 1] &
 152            hbi->hb->levels[HBITMAP_LEVELS - 1][hbi->pos];
 153    int64_t item;
 154
 155    if (cur == 0) {
 156        cur = hbitmap_iter_skip_words(hbi);
 157        if (cur == 0) {
 158            return -1;
 159        }
 160    }
 161
 162    /* The next call will resume work from the next bit.  */
 163    hbi->cur[HBITMAP_LEVELS - 1] = cur & (cur - 1);
 164    item = ((uint64_t)hbi->pos << BITS_PER_LEVEL) + ctzl(cur);
 165
 166    return item << hbi->granularity;
 167}
 168
 169void hbitmap_iter_init(HBitmapIter *hbi, const HBitmap *hb, uint64_t first)
 170{
 171    unsigned i, bit;
 172    uint64_t pos;
 173
 174    hbi->hb = hb;
 175    pos = first >> hb->granularity;
 176    assert(pos < hb->size);
 177    hbi->pos = pos >> BITS_PER_LEVEL;
 178    hbi->granularity = hb->granularity;
 179
 180    for (i = HBITMAP_LEVELS; i-- > 0; ) {
 181        bit = pos & (BITS_PER_LONG - 1);
 182        pos >>= BITS_PER_LEVEL;
 183
 184        /* Drop bits representing items before first.  */
 185        hbi->cur[i] = hb->levels[i][pos] & ~((1UL << bit) - 1);
 186
 187        /* We have already added level i+1, so the lowest set bit has
 188         * been processed.  Clear it.
 189         */
 190        if (i != HBITMAP_LEVELS - 1) {
 191            hbi->cur[i] &= ~(1UL << bit);
 192        }
 193    }
 194}
 195
 196int64_t hbitmap_next_dirty(const HBitmap *hb, int64_t start, int64_t count)
 197{
 198    HBitmapIter hbi;
 199    int64_t first_dirty_off;
 200    uint64_t end;
 201
 202    assert(start >= 0 && count >= 0);
 203
 204    if (start >= hb->orig_size || count == 0) {
 205        return -1;
 206    }
 207
 208    end = count > hb->orig_size - start ? hb->orig_size : start + count;
 209
 210    hbitmap_iter_init(&hbi, hb, start);
 211    first_dirty_off = hbitmap_iter_next(&hbi);
 212
 213    if (first_dirty_off < 0 || first_dirty_off >= end) {
 214        return -1;
 215    }
 216
 217    return MAX(start, first_dirty_off);
 218}
 219
 220int64_t hbitmap_next_zero(const HBitmap *hb, int64_t start, int64_t count)
 221{
 222    size_t pos = (start >> hb->granularity) >> BITS_PER_LEVEL;
 223    unsigned long *last_lev = hb->levels[HBITMAP_LEVELS - 1];
 224    unsigned long cur = last_lev[pos];
 225    unsigned start_bit_offset;
 226    uint64_t end_bit, sz;
 227    int64_t res;
 228
 229    assert(start >= 0 && count >= 0);
 230
 231    if (start >= hb->orig_size || count == 0) {
 232        return -1;
 233    }
 234
 235    end_bit = count > hb->orig_size - start ?
 236                hb->size :
 237                ((start + count - 1) >> hb->granularity) + 1;
 238    sz = (end_bit + BITS_PER_LONG - 1) >> BITS_PER_LEVEL;
 239
 240    /* There may be some zero bits in @cur before @start. We are not interested
 241     * in them, let's set them.
 242     */
 243    start_bit_offset = (start >> hb->granularity) & (BITS_PER_LONG - 1);
 244    cur |= (1UL << start_bit_offset) - 1;
 245    assert((start >> hb->granularity) < hb->size);
 246
 247    if (cur == (unsigned long)-1) {
 248        do {
 249            pos++;
 250        } while (pos < sz && last_lev[pos] == (unsigned long)-1);
 251
 252        if (pos >= sz) {
 253            return -1;
 254        }
 255
 256        cur = last_lev[pos];
 257    }
 258
 259    res = (pos << BITS_PER_LEVEL) + ctol(cur);
 260    if (res >= end_bit) {
 261        return -1;
 262    }
 263
 264    res = res << hb->granularity;
 265    if (res < start) {
 266        assert(((start - res) >> hb->granularity) == 0);
 267        return start;
 268    }
 269
 270    return res;
 271}
 272
 273bool hbitmap_next_dirty_area(const HBitmap *hb, int64_t start, int64_t end,
 274                             int64_t max_dirty_count,
 275                             int64_t *dirty_start, int64_t *dirty_count)
 276{
 277    int64_t next_zero;
 278
 279    assert(start >= 0 && end >= 0 && max_dirty_count > 0);
 280
 281    end = MIN(end, hb->orig_size);
 282    if (start >= end) {
 283        return false;
 284    }
 285
 286    start = hbitmap_next_dirty(hb, start, end - start);
 287    if (start < 0) {
 288        return false;
 289    }
 290
 291    end = start + MIN(end - start, max_dirty_count);
 292
 293    next_zero = hbitmap_next_zero(hb, start, end - start);
 294    if (next_zero >= 0) {
 295        end = next_zero;
 296    }
 297
 298    *dirty_start = start;
 299    *dirty_count = end - start;
 300
 301    return true;
 302}
 303
 304bool hbitmap_empty(const HBitmap *hb)
 305{
 306    return hb->count == 0;
 307}
 308
 309int hbitmap_granularity(const HBitmap *hb)
 310{
 311    return hb->granularity;
 312}
 313
 314uint64_t hbitmap_count(const HBitmap *hb)
 315{
 316    return hb->count << hb->granularity;
 317}
 318
 319/**
 320 * hbitmap_iter_next_word:
 321 * @hbi: HBitmapIter to operate on.
 322 * @p_cur: Location where to store the next non-zero word.
 323 *
 324 * Return the index of the next nonzero word that is set in @hbi's
 325 * associated HBitmap, and set *p_cur to the content of that word
 326 * (bits before the index that was passed to hbitmap_iter_init are
 327 * trimmed on the first call).  Return -1, and set *p_cur to zero,
 328 * if all remaining words are zero.
 329 */
 330static size_t hbitmap_iter_next_word(HBitmapIter *hbi, unsigned long *p_cur)
 331{
 332    unsigned long cur = hbi->cur[HBITMAP_LEVELS - 1];
 333
 334    if (cur == 0) {
 335        cur = hbitmap_iter_skip_words(hbi);
 336        if (cur == 0) {
 337            *p_cur = 0;
 338            return -1;
 339        }
 340    }
 341
 342    /* The next call will resume work from the next word.  */
 343    hbi->cur[HBITMAP_LEVELS - 1] = 0;
 344    *p_cur = cur;
 345    return hbi->pos;
 346}
 347
 348/* Count the number of set bits between start and end, not accounting for
 349 * the granularity.  Also an example of how to use hbitmap_iter_next_word.
 350 */
 351static uint64_t hb_count_between(HBitmap *hb, uint64_t start, uint64_t last)
 352{
 353    HBitmapIter hbi;
 354    uint64_t count = 0;
 355    uint64_t end = last + 1;
 356    unsigned long cur;
 357    size_t pos;
 358
 359    hbitmap_iter_init(&hbi, hb, start << hb->granularity);
 360    for (;;) {
 361        pos = hbitmap_iter_next_word(&hbi, &cur);
 362        if (pos >= (end >> BITS_PER_LEVEL)) {
 363            break;
 364        }
 365        count += ctpopl(cur);
 366    }
 367
 368    if (pos == (end >> BITS_PER_LEVEL)) {
 369        /* Drop bits representing the END-th and subsequent items.  */
 370        int bit = end & (BITS_PER_LONG - 1);
 371        cur &= (1UL << bit) - 1;
 372        count += ctpopl(cur);
 373    }
 374
 375    return count;
 376}
 377
 378/* Setting starts at the last layer and propagates up if an element
 379 * changes.
 380 */
 381static inline bool hb_set_elem(unsigned long *elem, uint64_t start, uint64_t last)
 382{
 383    unsigned long mask;
 384    unsigned long old;
 385
 386    assert((last >> BITS_PER_LEVEL) == (start >> BITS_PER_LEVEL));
 387    assert(start <= last);
 388
 389    mask = 2UL << (last & (BITS_PER_LONG - 1));
 390    mask -= 1UL << (start & (BITS_PER_LONG - 1));
 391    old = *elem;
 392    *elem |= mask;
 393    return old != *elem;
 394}
 395
 396/* The recursive workhorse (the depth is limited to HBITMAP_LEVELS)...
 397 * Returns true if at least one bit is changed. */
 398static bool hb_set_between(HBitmap *hb, int level, uint64_t start,
 399                           uint64_t last)
 400{
 401    size_t pos = start >> BITS_PER_LEVEL;
 402    size_t lastpos = last >> BITS_PER_LEVEL;
 403    bool changed = false;
 404    size_t i;
 405
 406    i = pos;
 407    if (i < lastpos) {
 408        uint64_t next = (start | (BITS_PER_LONG - 1)) + 1;
 409        changed |= hb_set_elem(&hb->levels[level][i], start, next - 1);
 410        for (;;) {
 411            start = next;
 412            next += BITS_PER_LONG;
 413            if (++i == lastpos) {
 414                break;
 415            }
 416            changed |= (hb->levels[level][i] == 0);
 417            hb->levels[level][i] = ~0UL;
 418        }
 419    }
 420    changed |= hb_set_elem(&hb->levels[level][i], start, last);
 421
 422    /* If there was any change in this layer, we may have to update
 423     * the one above.
 424     */
 425    if (level > 0 && changed) {
 426        hb_set_between(hb, level - 1, pos, lastpos);
 427    }
 428    return changed;
 429}
 430
 431void hbitmap_set(HBitmap *hb, uint64_t start, uint64_t count)
 432{
 433    /* Compute range in the last layer.  */
 434    uint64_t first, n;
 435    uint64_t last = start + count - 1;
 436
 437    if (count == 0) {
 438        return;
 439    }
 440
 441    trace_hbitmap_set(hb, start, count,
 442                      start >> hb->granularity, last >> hb->granularity);
 443
 444    first = start >> hb->granularity;
 445    last >>= hb->granularity;
 446    assert(last < hb->size);
 447    n = last - first + 1;
 448
 449    hb->count += n - hb_count_between(hb, first, last);
 450    if (hb_set_between(hb, HBITMAP_LEVELS - 1, first, last) &&
 451        hb->meta) {
 452        hbitmap_set(hb->meta, start, count);
 453    }
 454}
 455
 456/* Resetting works the other way round: propagate up if the new
 457 * value is zero.
 458 */
 459static inline bool hb_reset_elem(unsigned long *elem, uint64_t start, uint64_t last)
 460{
 461    unsigned long mask;
 462    bool blanked;
 463
 464    assert((last >> BITS_PER_LEVEL) == (start >> BITS_PER_LEVEL));
 465    assert(start <= last);
 466
 467    mask = 2UL << (last & (BITS_PER_LONG - 1));
 468    mask -= 1UL << (start & (BITS_PER_LONG - 1));
 469    blanked = *elem != 0 && ((*elem & ~mask) == 0);
 470    *elem &= ~mask;
 471    return blanked;
 472}
 473
 474/* The recursive workhorse (the depth is limited to HBITMAP_LEVELS)...
 475 * Returns true if at least one bit is changed. */
 476static bool hb_reset_between(HBitmap *hb, int level, uint64_t start,
 477                             uint64_t last)
 478{
 479    size_t pos = start >> BITS_PER_LEVEL;
 480    size_t lastpos = last >> BITS_PER_LEVEL;
 481    bool changed = false;
 482    size_t i;
 483
 484    i = pos;
 485    if (i < lastpos) {
 486        uint64_t next = (start | (BITS_PER_LONG - 1)) + 1;
 487
 488        /* Here we need a more complex test than when setting bits.  Even if
 489         * something was changed, we must not blank bits in the upper level
 490         * unless the lower-level word became entirely zero.  So, remove pos
 491         * from the upper-level range if bits remain set.
 492         */
 493        if (hb_reset_elem(&hb->levels[level][i], start, next - 1)) {
 494            changed = true;
 495        } else {
 496            pos++;
 497        }
 498
 499        for (;;) {
 500            start = next;
 501            next += BITS_PER_LONG;
 502            if (++i == lastpos) {
 503                break;
 504            }
 505            changed |= (hb->levels[level][i] != 0);
 506            hb->levels[level][i] = 0UL;
 507        }
 508    }
 509
 510    /* Same as above, this time for lastpos.  */
 511    if (hb_reset_elem(&hb->levels[level][i], start, last)) {
 512        changed = true;
 513    } else {
 514        lastpos--;
 515    }
 516
 517    if (level > 0 && changed) {
 518        hb_reset_between(hb, level - 1, pos, lastpos);
 519    }
 520
 521    return changed;
 522
 523}
 524
 525void hbitmap_reset(HBitmap *hb, uint64_t start, uint64_t count)
 526{
 527    /* Compute range in the last layer.  */
 528    uint64_t first;
 529    uint64_t last = start + count - 1;
 530    uint64_t gran = 1ULL << hb->granularity;
 531
 532    if (count == 0) {
 533        return;
 534    }
 535
 536    assert(QEMU_IS_ALIGNED(start, gran));
 537    assert(QEMU_IS_ALIGNED(count, gran) || (start + count == hb->orig_size));
 538
 539    trace_hbitmap_reset(hb, start, count,
 540                        start >> hb->granularity, last >> hb->granularity);
 541
 542    first = start >> hb->granularity;
 543    last >>= hb->granularity;
 544    assert(last < hb->size);
 545
 546    hb->count -= hb_count_between(hb, first, last);
 547    if (hb_reset_between(hb, HBITMAP_LEVELS - 1, first, last) &&
 548        hb->meta) {
 549        hbitmap_set(hb->meta, start, count);
 550    }
 551}
 552
 553void hbitmap_reset_all(HBitmap *hb)
 554{
 555    unsigned int i;
 556
 557    /* Same as hbitmap_alloc() except for memset() instead of malloc() */
 558    for (i = HBITMAP_LEVELS; --i >= 1; ) {
 559        memset(hb->levels[i], 0, hb->sizes[i] * sizeof(unsigned long));
 560    }
 561
 562    hb->levels[0][0] = 1UL << (BITS_PER_LONG - 1);
 563    hb->count = 0;
 564}
 565
 566bool hbitmap_is_serializable(const HBitmap *hb)
 567{
 568    /* Every serialized chunk must be aligned to 64 bits so that endianness
 569     * requirements can be fulfilled on both 64 bit and 32 bit hosts.
 570     * We have hbitmap_serialization_align() which converts this
 571     * alignment requirement from bitmap bits to items covered (e.g. sectors).
 572     * That value is:
 573     *    64 << hb->granularity
 574     * Since this value must not exceed UINT64_MAX, hb->granularity must be
 575     * less than 58 (== 64 - 6, where 6 is ld(64), i.e. 1 << 6 == 64).
 576     *
 577     * In order for hbitmap_serialization_align() to always return a
 578     * meaningful value, bitmaps that are to be serialized must have a
 579     * granularity of less than 58. */
 580
 581    return hb->granularity < 58;
 582}
 583
 584bool hbitmap_get(const HBitmap *hb, uint64_t item)
 585{
 586    /* Compute position and bit in the last layer.  */
 587    uint64_t pos = item >> hb->granularity;
 588    unsigned long bit = 1UL << (pos & (BITS_PER_LONG - 1));
 589    assert(pos < hb->size);
 590
 591    return (hb->levels[HBITMAP_LEVELS - 1][pos >> BITS_PER_LEVEL] & bit) != 0;
 592}
 593
 594uint64_t hbitmap_serialization_align(const HBitmap *hb)
 595{
 596    assert(hbitmap_is_serializable(hb));
 597
 598    /* Require at least 64 bit granularity to be safe on both 64 bit and 32 bit
 599     * hosts. */
 600    return UINT64_C(64) << hb->granularity;
 601}
 602
 603/* Start should be aligned to serialization granularity, chunk size should be
 604 * aligned to serialization granularity too, except for last chunk.
 605 */
 606static void serialization_chunk(const HBitmap *hb,
 607                                uint64_t start, uint64_t count,
 608                                unsigned long **first_el, uint64_t *el_count)
 609{
 610    uint64_t last = start + count - 1;
 611    uint64_t gran = hbitmap_serialization_align(hb);
 612
 613    assert((start & (gran - 1)) == 0);
 614    assert((last >> hb->granularity) < hb->size);
 615    if ((last >> hb->granularity) != hb->size - 1) {
 616        assert((count & (gran - 1)) == 0);
 617    }
 618
 619    start = (start >> hb->granularity) >> BITS_PER_LEVEL;
 620    last = (last >> hb->granularity) >> BITS_PER_LEVEL;
 621
 622    *first_el = &hb->levels[HBITMAP_LEVELS - 1][start];
 623    *el_count = last - start + 1;
 624}
 625
 626uint64_t hbitmap_serialization_size(const HBitmap *hb,
 627                                    uint64_t start, uint64_t count)
 628{
 629    uint64_t el_count;
 630    unsigned long *cur;
 631
 632    if (!count) {
 633        return 0;
 634    }
 635    serialization_chunk(hb, start, count, &cur, &el_count);
 636
 637    return el_count * sizeof(unsigned long);
 638}
 639
 640void hbitmap_serialize_part(const HBitmap *hb, uint8_t *buf,
 641                            uint64_t start, uint64_t count)
 642{
 643    uint64_t el_count;
 644    unsigned long *cur, *end;
 645
 646    if (!count) {
 647        return;
 648    }
 649    serialization_chunk(hb, start, count, &cur, &el_count);
 650    end = cur + el_count;
 651
 652    while (cur != end) {
 653        unsigned long el =
 654            (BITS_PER_LONG == 32 ? cpu_to_le32(*cur) : cpu_to_le64(*cur));
 655
 656        memcpy(buf, &el, sizeof(el));
 657        buf += sizeof(el);
 658        cur++;
 659    }
 660}
 661
 662void hbitmap_deserialize_part(HBitmap *hb, uint8_t *buf,
 663                              uint64_t start, uint64_t count,
 664                              bool finish)
 665{
 666    uint64_t el_count;
 667    unsigned long *cur, *end;
 668
 669    if (!count) {
 670        return;
 671    }
 672    serialization_chunk(hb, start, count, &cur, &el_count);
 673    end = cur + el_count;
 674
 675    while (cur != end) {
 676        memcpy(cur, buf, sizeof(*cur));
 677
 678        if (BITS_PER_LONG == 32) {
 679            le32_to_cpus((uint32_t *)cur);
 680        } else {
 681            le64_to_cpus((uint64_t *)cur);
 682        }
 683
 684        buf += sizeof(unsigned long);
 685        cur++;
 686    }
 687    if (finish) {
 688        hbitmap_deserialize_finish(hb);
 689    }
 690}
 691
 692void hbitmap_deserialize_zeroes(HBitmap *hb, uint64_t start, uint64_t count,
 693                                bool finish)
 694{
 695    uint64_t el_count;
 696    unsigned long *first;
 697
 698    if (!count) {
 699        return;
 700    }
 701    serialization_chunk(hb, start, count, &first, &el_count);
 702
 703    memset(first, 0, el_count * sizeof(unsigned long));
 704    if (finish) {
 705        hbitmap_deserialize_finish(hb);
 706    }
 707}
 708
 709void hbitmap_deserialize_ones(HBitmap *hb, uint64_t start, uint64_t count,
 710                              bool finish)
 711{
 712    uint64_t el_count;
 713    unsigned long *first;
 714
 715    if (!count) {
 716        return;
 717    }
 718    serialization_chunk(hb, start, count, &first, &el_count);
 719
 720    memset(first, 0xff, el_count * sizeof(unsigned long));
 721    if (finish) {
 722        hbitmap_deserialize_finish(hb);
 723    }
 724}
 725
 726void hbitmap_deserialize_finish(HBitmap *bitmap)
 727{
 728    int64_t i, size, prev_size;
 729    int lev;
 730
 731    /* restore levels starting from penultimate to zero level, assuming
 732     * that the last level is ok */
 733    size = MAX((bitmap->size + BITS_PER_LONG - 1) >> BITS_PER_LEVEL, 1);
 734    for (lev = HBITMAP_LEVELS - 1; lev-- > 0; ) {
 735        prev_size = size;
 736        size = MAX((size + BITS_PER_LONG - 1) >> BITS_PER_LEVEL, 1);
 737        memset(bitmap->levels[lev], 0, size * sizeof(unsigned long));
 738
 739        for (i = 0; i < prev_size; ++i) {
 740            if (bitmap->levels[lev + 1][i]) {
 741                bitmap->levels[lev][i >> BITS_PER_LEVEL] |=
 742                    1UL << (i & (BITS_PER_LONG - 1));
 743            }
 744        }
 745    }
 746
 747    bitmap->levels[0][0] |= 1UL << (BITS_PER_LONG - 1);
 748    bitmap->count = hb_count_between(bitmap, 0, bitmap->size - 1);
 749}
 750
 751void hbitmap_free(HBitmap *hb)
 752{
 753    unsigned i;
 754    assert(!hb->meta);
 755    for (i = HBITMAP_LEVELS; i-- > 0; ) {
 756        g_free(hb->levels[i]);
 757    }
 758    g_free(hb);
 759}
 760
 761HBitmap *hbitmap_alloc(uint64_t size, int granularity)
 762{
 763    HBitmap *hb = g_new0(struct HBitmap, 1);
 764    unsigned i;
 765
 766    assert(size <= INT64_MAX);
 767    hb->orig_size = size;
 768
 769    assert(granularity >= 0 && granularity < 64);
 770    size = (size + (1ULL << granularity) - 1) >> granularity;
 771    assert(size <= ((uint64_t)1 << HBITMAP_LOG_MAX_SIZE));
 772
 773    hb->size = size;
 774    hb->granularity = granularity;
 775    for (i = HBITMAP_LEVELS; i-- > 0; ) {
 776        size = MAX((size + BITS_PER_LONG - 1) >> BITS_PER_LEVEL, 1);
 777        hb->sizes[i] = size;
 778        hb->levels[i] = g_new0(unsigned long, size);
 779    }
 780
 781    /* We necessarily have free bits in level 0 due to the definition
 782     * of HBITMAP_LEVELS, so use one for a sentinel.  This speeds up
 783     * hbitmap_iter_skip_words.
 784     */
 785    assert(size == 1);
 786    hb->levels[0][0] |= 1UL << (BITS_PER_LONG - 1);
 787    return hb;
 788}
 789
 790void hbitmap_truncate(HBitmap *hb, uint64_t size)
 791{
 792    bool shrink;
 793    unsigned i;
 794    uint64_t num_elements = size;
 795    uint64_t old;
 796
 797    assert(size <= INT64_MAX);
 798    hb->orig_size = size;
 799
 800    /* Size comes in as logical elements, adjust for granularity. */
 801    size = (size + (1ULL << hb->granularity) - 1) >> hb->granularity;
 802    assert(size <= ((uint64_t)1 << HBITMAP_LOG_MAX_SIZE));
 803    shrink = size < hb->size;
 804
 805    /* bit sizes are identical; nothing to do. */
 806    if (size == hb->size) {
 807        return;
 808    }
 809
 810    /* If we're losing bits, let's clear those bits before we invalidate all of
 811     * our invariants. This helps keep the bitcount consistent, and will prevent
 812     * us from carrying around garbage bits beyond the end of the map.
 813     */
 814    if (shrink) {
 815        /* Don't clear partial granularity groups;
 816         * start at the first full one. */
 817        uint64_t start = ROUND_UP(num_elements, UINT64_C(1) << hb->granularity);
 818        uint64_t fix_count = (hb->size << hb->granularity) - start;
 819
 820        assert(fix_count);
 821        hbitmap_reset(hb, start, fix_count);
 822    }
 823
 824    hb->size = size;
 825    for (i = HBITMAP_LEVELS; i-- > 0; ) {
 826        size = MAX(BITS_TO_LONGS(size), 1);
 827        if (hb->sizes[i] == size) {
 828            break;
 829        }
 830        old = hb->sizes[i];
 831        hb->sizes[i] = size;
 832        hb->levels[i] = g_realloc(hb->levels[i], size * sizeof(unsigned long));
 833        if (!shrink) {
 834            memset(&hb->levels[i][old], 0x00,
 835                   (size - old) * sizeof(*hb->levels[i]));
 836        }
 837    }
 838    if (hb->meta) {
 839        hbitmap_truncate(hb->meta, hb->size << hb->granularity);
 840    }
 841}
 842
 843bool hbitmap_can_merge(const HBitmap *a, const HBitmap *b)
 844{
 845    return (a->orig_size == b->orig_size);
 846}
 847
 848/**
 849 * hbitmap_sparse_merge: performs dst = dst | src
 850 * works with differing granularities.
 851 * best used when src is sparsely populated.
 852 */
 853static void hbitmap_sparse_merge(HBitmap *dst, const HBitmap *src)
 854{
 855    int64_t offset;
 856    int64_t count;
 857
 858    for (offset = 0;
 859         hbitmap_next_dirty_area(src, offset, src->orig_size, INT64_MAX,
 860                                 &offset, &count);
 861         offset += count)
 862    {
 863        hbitmap_set(dst, offset, count);
 864    }
 865}
 866
 867/**
 868 * Given HBitmaps A and B, let R := A (BITOR) B.
 869 * Bitmaps A and B will not be modified,
 870 *     except when bitmap R is an alias of A or B.
 871 *
 872 * @return true if the merge was successful,
 873 *         false if it was not attempted.
 874 */
 875bool hbitmap_merge(const HBitmap *a, const HBitmap *b, HBitmap *result)
 876{
 877    int i;
 878    uint64_t j;
 879
 880    if (!hbitmap_can_merge(a, b) || !hbitmap_can_merge(a, result)) {
 881        return false;
 882    }
 883    assert(hbitmap_can_merge(b, result));
 884
 885    if ((!hbitmap_count(a) && result == b) ||
 886        (!hbitmap_count(b) && result == a)) {
 887        return true;
 888    }
 889
 890    if (!hbitmap_count(a) && !hbitmap_count(b)) {
 891        hbitmap_reset_all(result);
 892        return true;
 893    }
 894
 895    if (a->granularity != b->granularity) {
 896        if ((a != result) && (b != result)) {
 897            hbitmap_reset_all(result);
 898        }
 899        if (a != result) {
 900            hbitmap_sparse_merge(result, a);
 901        }
 902        if (b != result) {
 903            hbitmap_sparse_merge(result, b);
 904        }
 905        return true;
 906    }
 907
 908    /* This merge is O(size), as BITS_PER_LONG and HBITMAP_LEVELS are constant.
 909     * It may be possible to improve running times for sparsely populated maps
 910     * by using hbitmap_iter_next, but this is suboptimal for dense maps.
 911     */
 912    assert(a->size == b->size);
 913    for (i = HBITMAP_LEVELS - 1; i >= 0; i--) {
 914        for (j = 0; j < a->sizes[i]; j++) {
 915            result->levels[i][j] = a->levels[i][j] | b->levels[i][j];
 916        }
 917    }
 918
 919    /* Recompute the dirty count */
 920    result->count = hb_count_between(result, 0, result->size - 1);
 921
 922    return true;
 923}
 924
 925char *hbitmap_sha256(const HBitmap *bitmap, Error **errp)
 926{
 927    size_t size = bitmap->sizes[HBITMAP_LEVELS - 1] * sizeof(unsigned long);
 928    char *data = (char *)bitmap->levels[HBITMAP_LEVELS - 1];
 929    char *hash = NULL;
 930    qcrypto_hash_digest(QCRYPTO_HASH_ALG_SHA256, data, size, &hash, errp);
 931
 932    return hash;
 933}
 934