qemu/util/thread-pool.c
<<
>>
Prefs
   1/*
   2 * QEMU block layer thread pool
   3 *
   4 * Copyright IBM, Corp. 2008
   5 * Copyright Red Hat, Inc. 2012
   6 *
   7 * Authors:
   8 *  Anthony Liguori   <aliguori@us.ibm.com>
   9 *  Paolo Bonzini     <pbonzini@redhat.com>
  10 *
  11 * This work is licensed under the terms of the GNU GPL, version 2.  See
  12 * the COPYING file in the top-level directory.
  13 *
  14 * Contributions after 2012-01-13 are licensed under the terms of the
  15 * GNU GPL, version 2 or (at your option) any later version.
  16 */
  17#include "qemu/osdep.h"
  18#include "qemu/defer-call.h"
  19#include "qemu/queue.h"
  20#include "qemu/thread.h"
  21#include "qemu/coroutine.h"
  22#include "trace.h"
  23#include "block/thread-pool.h"
  24#include "qemu/main-loop.h"
  25
  26static void do_spawn_thread(ThreadPoolAio *pool);
  27
  28typedef struct ThreadPoolElementAio ThreadPoolElementAio;
  29
  30enum ThreadState {
  31    THREAD_QUEUED,
  32    THREAD_ACTIVE,
  33    THREAD_DONE,
  34};
  35
  36struct ThreadPoolElementAio {
  37    BlockAIOCB common;
  38    ThreadPoolAio *pool;
  39    ThreadPoolFunc *func;
  40    void *arg;
  41
  42    /* Moving state out of THREAD_QUEUED is protected by lock.  After
  43     * that, only the worker thread can write to it.  Reads and writes
  44     * of state and ret are ordered with memory barriers.
  45     */
  46    enum ThreadState state;
  47    int ret;
  48
  49    /* Access to this list is protected by lock.  */
  50    QTAILQ_ENTRY(ThreadPoolElementAio) reqs;
  51
  52    /* This list is only written by the thread pool's mother thread.  */
  53    QLIST_ENTRY(ThreadPoolElementAio) all;
  54};
  55
  56struct ThreadPoolAio {
  57    AioContext *ctx;
  58    QEMUBH *completion_bh;
  59    QemuMutex lock;
  60    QemuCond worker_stopped;
  61    QemuCond request_cond;
  62    QEMUBH *new_thread_bh;
  63
  64    /* The following variables are only accessed from one AioContext. */
  65    QLIST_HEAD(, ThreadPoolElementAio) head;
  66
  67    /* The following variables are protected by lock.  */
  68    QTAILQ_HEAD(, ThreadPoolElementAio) request_list;
  69    int cur_threads;
  70    int idle_threads;
  71    int new_threads;     /* backlog of threads we need to create */
  72    int pending_threads; /* threads created but not running yet */
  73    int min_threads;
  74    int max_threads;
  75};
  76
  77static void *worker_thread(void *opaque)
  78{
  79    ThreadPoolAio *pool = opaque;
  80
  81    qemu_mutex_lock(&pool->lock);
  82    pool->pending_threads--;
  83    do_spawn_thread(pool);
  84
  85    while (pool->cur_threads <= pool->max_threads) {
  86        ThreadPoolElementAio *req;
  87        int ret;
  88
  89        if (QTAILQ_EMPTY(&pool->request_list)) {
  90            pool->idle_threads++;
  91            ret = qemu_cond_timedwait(&pool->request_cond, &pool->lock, 10000);
  92            pool->idle_threads--;
  93            if (ret == 0 &&
  94                QTAILQ_EMPTY(&pool->request_list) &&
  95                pool->cur_threads > pool->min_threads) {
  96                /* Timed out + no work to do + no need for warm threads = exit.  */
  97                break;
  98            }
  99            /*
 100             * Even if there was some work to do, check if there aren't
 101             * too many worker threads before picking it up.
 102             */
 103            continue;
 104        }
 105
 106        req = QTAILQ_FIRST(&pool->request_list);
 107        QTAILQ_REMOVE(&pool->request_list, req, reqs);
 108        req->state = THREAD_ACTIVE;
 109        qemu_mutex_unlock(&pool->lock);
 110
 111        ret = req->func(req->arg);
 112
 113        req->ret = ret;
 114        /* Write ret before state.  */
 115        smp_wmb();
 116        req->state = THREAD_DONE;
 117
 118        qemu_bh_schedule(pool->completion_bh);
 119        qemu_mutex_lock(&pool->lock);
 120    }
 121
 122    pool->cur_threads--;
 123    qemu_cond_signal(&pool->worker_stopped);
 124
 125    /*
 126     * Wake up another thread, in case we got a wakeup but decided
 127     * to exit due to pool->cur_threads > pool->max_threads.
 128     */
 129    qemu_cond_signal(&pool->request_cond);
 130    qemu_mutex_unlock(&pool->lock);
 131    return NULL;
 132}
 133
 134static void do_spawn_thread(ThreadPoolAio *pool)
 135{
 136    QemuThread t;
 137
 138    /* Runs with lock taken.  */
 139    if (!pool->new_threads) {
 140        return;
 141    }
 142
 143    pool->new_threads--;
 144    pool->pending_threads++;
 145
 146    qemu_thread_create(&t, "worker", worker_thread, pool, QEMU_THREAD_DETACHED);
 147}
 148
 149static void spawn_thread_bh_fn(void *opaque)
 150{
 151    ThreadPoolAio *pool = opaque;
 152
 153    qemu_mutex_lock(&pool->lock);
 154    do_spawn_thread(pool);
 155    qemu_mutex_unlock(&pool->lock);
 156}
 157
 158static void spawn_thread(ThreadPoolAio *pool)
 159{
 160    pool->cur_threads++;
 161    pool->new_threads++;
 162    /* If there are threads being created, they will spawn new workers, so
 163     * we don't spend time creating many threads in a loop holding a mutex or
 164     * starving the current vcpu.
 165     *
 166     * If there are no idle threads, ask the main thread to create one, so we
 167     * inherit the correct affinity instead of the vcpu affinity.
 168     */
 169    if (!pool->pending_threads) {
 170        qemu_bh_schedule(pool->new_thread_bh);
 171    }
 172}
 173
 174static void thread_pool_completion_bh(void *opaque)
 175{
 176    ThreadPoolAio *pool = opaque;
 177    ThreadPoolElementAio *elem, *next;
 178
 179    defer_call_begin(); /* cb() may use defer_call() to coalesce work */
 180
 181restart:
 182    QLIST_FOREACH_SAFE(elem, &pool->head, all, next) {
 183        if (elem->state != THREAD_DONE) {
 184            continue;
 185        }
 186
 187        trace_thread_pool_complete_aio(pool, elem, elem->common.opaque,
 188                                       elem->ret);
 189        QLIST_REMOVE(elem, all);
 190
 191        if (elem->common.cb) {
 192            /* Read state before ret.  */
 193            smp_rmb();
 194
 195            /* Schedule ourselves in case elem->common.cb() calls aio_poll() to
 196             * wait for another request that completed at the same time.
 197             */
 198            qemu_bh_schedule(pool->completion_bh);
 199
 200            elem->common.cb(elem->common.opaque, elem->ret);
 201
 202            /* We can safely cancel the completion_bh here regardless of someone
 203             * else having scheduled it meanwhile because we reenter the
 204             * completion function anyway (goto restart).
 205             */
 206            qemu_bh_cancel(pool->completion_bh);
 207
 208            qemu_aio_unref(elem);
 209            goto restart;
 210        } else {
 211            qemu_aio_unref(elem);
 212        }
 213    }
 214
 215    defer_call_end();
 216}
 217
 218static void thread_pool_cancel(BlockAIOCB *acb)
 219{
 220    ThreadPoolElementAio *elem = (ThreadPoolElementAio *)acb;
 221    ThreadPoolAio *pool = elem->pool;
 222
 223    trace_thread_pool_cancel_aio(elem, elem->common.opaque);
 224
 225    QEMU_LOCK_GUARD(&pool->lock);
 226    if (elem->state == THREAD_QUEUED) {
 227        QTAILQ_REMOVE(&pool->request_list, elem, reqs);
 228        qemu_bh_schedule(pool->completion_bh);
 229
 230        elem->state = THREAD_DONE;
 231        elem->ret = -ECANCELED;
 232    }
 233
 234}
 235
 236static const AIOCBInfo thread_pool_aiocb_info = {
 237    .aiocb_size         = sizeof(ThreadPoolElementAio),
 238    .cancel_async       = thread_pool_cancel,
 239};
 240
 241BlockAIOCB *thread_pool_submit_aio(ThreadPoolFunc *func, void *arg,
 242                                   BlockCompletionFunc *cb, void *opaque)
 243{
 244    ThreadPoolElementAio *req;
 245    AioContext *ctx = qemu_get_current_aio_context();
 246    ThreadPoolAio *pool = aio_get_thread_pool(ctx);
 247
 248    /* Assert that the thread submitting work is the same running the pool */
 249    assert(pool->ctx == qemu_get_current_aio_context());
 250
 251    req = qemu_aio_get(&thread_pool_aiocb_info, NULL, cb, opaque);
 252    req->func = func;
 253    req->arg = arg;
 254    req->state = THREAD_QUEUED;
 255    req->pool = pool;
 256
 257    QLIST_INSERT_HEAD(&pool->head, req, all);
 258
 259    trace_thread_pool_submit_aio(pool, req, arg);
 260
 261    qemu_mutex_lock(&pool->lock);
 262    if (pool->idle_threads == 0 && pool->cur_threads < pool->max_threads) {
 263        spawn_thread(pool);
 264    }
 265    QTAILQ_INSERT_TAIL(&pool->request_list, req, reqs);
 266    qemu_mutex_unlock(&pool->lock);
 267    qemu_cond_signal(&pool->request_cond);
 268    return &req->common;
 269}
 270
 271typedef struct ThreadPoolCo {
 272    Coroutine *co;
 273    int ret;
 274} ThreadPoolCo;
 275
 276static void thread_pool_co_cb(void *opaque, int ret)
 277{
 278    ThreadPoolCo *co = opaque;
 279
 280    co->ret = ret;
 281    aio_co_wake(co->co);
 282}
 283
 284int coroutine_fn thread_pool_submit_co(ThreadPoolFunc *func, void *arg)
 285{
 286    ThreadPoolCo tpc = { .co = qemu_coroutine_self(), .ret = -EINPROGRESS };
 287    assert(qemu_in_coroutine());
 288    thread_pool_submit_aio(func, arg, thread_pool_co_cb, &tpc);
 289    qemu_coroutine_yield();
 290    return tpc.ret;
 291}
 292
 293void thread_pool_update_params(ThreadPoolAio *pool, AioContext *ctx)
 294{
 295    qemu_mutex_lock(&pool->lock);
 296
 297    pool->min_threads = ctx->thread_pool_min;
 298    pool->max_threads = ctx->thread_pool_max;
 299
 300    /*
 301     * We either have to:
 302     *  - Increase the number available of threads until over the min_threads
 303     *    threshold.
 304     *  - Bump the worker threads so that they exit, until under the max_threads
 305     *    threshold.
 306     *  - Do nothing. The current number of threads fall in between the min and
 307     *    max thresholds. We'll let the pool manage itself.
 308     */
 309    for (int i = pool->cur_threads; i < pool->min_threads; i++) {
 310        spawn_thread(pool);
 311    }
 312
 313    for (int i = pool->cur_threads; i > pool->max_threads; i--) {
 314        qemu_cond_signal(&pool->request_cond);
 315    }
 316
 317    qemu_mutex_unlock(&pool->lock);
 318}
 319
 320static void thread_pool_init_one(ThreadPoolAio *pool, AioContext *ctx)
 321{
 322    if (!ctx) {
 323        ctx = qemu_get_aio_context();
 324    }
 325
 326    memset(pool, 0, sizeof(*pool));
 327    pool->ctx = ctx;
 328    pool->completion_bh = aio_bh_new(ctx, thread_pool_completion_bh, pool);
 329    qemu_mutex_init(&pool->lock);
 330    qemu_cond_init(&pool->worker_stopped);
 331    qemu_cond_init(&pool->request_cond);
 332    pool->new_thread_bh = aio_bh_new(ctx, spawn_thread_bh_fn, pool);
 333
 334    QLIST_INIT(&pool->head);
 335    QTAILQ_INIT(&pool->request_list);
 336
 337    thread_pool_update_params(pool, ctx);
 338}
 339
 340ThreadPoolAio *thread_pool_new_aio(AioContext *ctx)
 341{
 342    ThreadPoolAio *pool = g_new(ThreadPoolAio, 1);
 343    thread_pool_init_one(pool, ctx);
 344    return pool;
 345}
 346
 347void thread_pool_free_aio(ThreadPoolAio *pool)
 348{
 349    if (!pool) {
 350        return;
 351    }
 352
 353    assert(QLIST_EMPTY(&pool->head));
 354
 355    qemu_mutex_lock(&pool->lock);
 356
 357    /* Stop new threads from spawning */
 358    qemu_bh_delete(pool->new_thread_bh);
 359    pool->cur_threads -= pool->new_threads;
 360    pool->new_threads = 0;
 361
 362    /* Wait for worker threads to terminate */
 363    pool->max_threads = 0;
 364    qemu_cond_broadcast(&pool->request_cond);
 365    while (pool->cur_threads > 0) {
 366        qemu_cond_wait(&pool->worker_stopped, &pool->lock);
 367    }
 368
 369    qemu_mutex_unlock(&pool->lock);
 370
 371    qemu_bh_delete(pool->completion_bh);
 372    qemu_cond_destroy(&pool->request_cond);
 373    qemu_cond_destroy(&pool->worker_stopped);
 374    qemu_mutex_destroy(&pool->lock);
 375    g_free(pool);
 376}
 377
 378struct ThreadPool {
 379    GThreadPool *t;
 380    size_t cur_work;
 381    QemuMutex cur_work_lock;
 382    QemuCond all_finished_cond;
 383};
 384
 385typedef struct {
 386    ThreadPoolFunc *func;
 387    void *opaque;
 388    GDestroyNotify opaque_destroy;
 389} ThreadPoolElement;
 390
 391static void thread_pool_func(gpointer data, gpointer user_data)
 392{
 393    ThreadPool *pool = user_data;
 394    g_autofree ThreadPoolElement *el = data;
 395
 396    el->func(el->opaque);
 397
 398    if (el->opaque_destroy) {
 399        el->opaque_destroy(el->opaque);
 400    }
 401
 402    QEMU_LOCK_GUARD(&pool->cur_work_lock);
 403
 404    assert(pool->cur_work > 0);
 405    pool->cur_work--;
 406
 407    if (pool->cur_work == 0) {
 408        qemu_cond_signal(&pool->all_finished_cond);
 409    }
 410}
 411
 412ThreadPool *thread_pool_new(void)
 413{
 414    ThreadPool *pool = g_new(ThreadPool, 1);
 415
 416    pool->cur_work = 0;
 417    qemu_mutex_init(&pool->cur_work_lock);
 418    qemu_cond_init(&pool->all_finished_cond);
 419
 420    pool->t = g_thread_pool_new(thread_pool_func, pool, 0, TRUE, NULL);
 421    /*
 422     * g_thread_pool_new() can only return errors if initial thread(s)
 423     * creation fails but we ask for 0 initial threads above.
 424     */
 425    assert(pool->t);
 426
 427    return pool;
 428}
 429
 430void thread_pool_free(ThreadPool *pool)
 431{
 432    /*
 433     * With _wait = TRUE this effectively waits for all
 434     * previously submitted work to complete first.
 435     */
 436    g_thread_pool_free(pool->t, FALSE, TRUE);
 437
 438    qemu_cond_destroy(&pool->all_finished_cond);
 439    qemu_mutex_destroy(&pool->cur_work_lock);
 440
 441    g_free(pool);
 442}
 443
 444void thread_pool_submit(ThreadPool *pool, ThreadPoolFunc *func,
 445                        void *opaque, GDestroyNotify opaque_destroy)
 446{
 447    ThreadPoolElement *el = g_new(ThreadPoolElement, 1);
 448
 449    el->func = func;
 450    el->opaque = opaque;
 451    el->opaque_destroy = opaque_destroy;
 452
 453    WITH_QEMU_LOCK_GUARD(&pool->cur_work_lock) {
 454        pool->cur_work++;
 455    }
 456
 457    /*
 458     * Ignore the return value since this function can only return errors
 459     * if creation of an additional thread fails but even in this case the
 460     * provided work is still getting queued (just for the existing threads).
 461     */
 462    g_thread_pool_push(pool->t, el, NULL);
 463}
 464
 465void thread_pool_submit_immediate(ThreadPool *pool, ThreadPoolFunc *func,
 466                                  void *opaque, GDestroyNotify opaque_destroy)
 467{
 468    thread_pool_submit(pool, func, opaque, opaque_destroy);
 469    thread_pool_adjust_max_threads_to_work(pool);
 470}
 471
 472void thread_pool_wait(ThreadPool *pool)
 473{
 474    QEMU_LOCK_GUARD(&pool->cur_work_lock);
 475
 476    while (pool->cur_work > 0) {
 477        qemu_cond_wait(&pool->all_finished_cond,
 478                       &pool->cur_work_lock);
 479    }
 480}
 481
 482bool thread_pool_set_max_threads(ThreadPool *pool,
 483                                 int max_threads)
 484{
 485    assert(max_threads > 0);
 486
 487    return g_thread_pool_set_max_threads(pool->t, max_threads, NULL);
 488}
 489
 490bool thread_pool_adjust_max_threads_to_work(ThreadPool *pool)
 491{
 492    QEMU_LOCK_GUARD(&pool->cur_work_lock);
 493
 494    return thread_pool_set_max_threads(pool, pool->cur_work);
 495}
 496