uboot/board/MAI/AmigaOneG3SE/articiaS.c
<<
>>
Prefs
   1/*
   2 * (C) Copyright 2002
   3 * Hyperion Entertainment, ThomasF@hyperion-entertainment.com
   4 *
   5 * See file CREDITS for list of people who contributed to this
   6 * project.
   7 *
   8 * This program is free software; you can redistribute it and/or
   9 * modify it under the terms of the GNU General Public License as
  10 * published by the Free Software Foundation; either version 2 of
  11 * the License, or (at your option) any later version.
  12 *
  13 * This program is distributed in the hope that it will be useful,
  14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  16 * GNU General Public License for more details.
  17 *
  18 * You should have received a copy of the GNU General Public License
  19 * along with this program; if not, write to the Free Software
  20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
  21 * MA 02111-1307 USA
  22 */
  23
  24#include <common.h>
  25#include <pci.h>
  26#include <asm/processor.h>
  27#include "memio.h"
  28#include "articiaS.h"
  29#include "smbus.h"
  30#include "via686.h"
  31
  32DECLARE_GLOBAL_DATA_PTR;
  33
  34#undef DEBUG
  35
  36struct dimm_bank {
  37        uint8 used;                     /* Bank is populated */
  38        uint32 rows;                    /* Number of row addresses */
  39        uint32 columns;                 /* Number of column addresses */
  40        uint8 registered;               /* SIMM is registered */
  41        uint8 ecc;                      /* SIMM has ecc */
  42        uint8 burst_len;                /* Supported burst lengths */
  43        uint32 cas_lat;                 /* Supported CAS latencies */
  44        uint32 cas_used;                /* CAS to use (not set by user) */
  45        uint32 trcd;                    /* RAS to CAS latency */
  46        uint32 trp;                     /* Precharge latency */
  47        uint32 tclk_hi;                 /* SDRAM cycle time (highest CAS latency) */
  48        uint32 tclk_2hi;                /* SDRAM second highest CAS latency */
  49        uint32 size;                    /* Size of bank in bytes */
  50        uint8 auto_refresh;             /* Module supports auto refresh */
  51        uint32 refresh_time;            /* Refresh time (in ns) */
  52};
  53
  54
  55/*
  56** Based in part on the evb64260 code
  57*/
  58
  59/*
  60 * translate ns.ns/10 coding of SPD timing values
  61 * into 10 ps unit values
  62 */
  63static inline unsigned short NS10to10PS (unsigned char spd_byte)
  64{
  65        unsigned short ns, ns10;
  66
  67        /* isolate upper nibble */
  68        ns = (spd_byte >> 4) & 0x0F;
  69        /* isolate lower nibble */
  70        ns10 = (spd_byte & 0x0F);
  71
  72        return (ns * 100 + ns10 * 10);
  73}
  74
  75/*
  76 * translate ns coding of SPD timing values
  77 * into 10 ps unit values
  78 */
  79static inline unsigned short NSto10PS (unsigned char spd_byte)
  80{
  81        return (spd_byte * 100);
  82}
  83
  84
  85long detect_sdram (uint8 * rom, int dimmNum, struct dimm_bank *banks)
  86{
  87        int dimm_address = (dimmNum == 0) ? SM_DIMM0_ADDR : SM_DIMM1_ADDR;
  88        uint32 busclock = gd->bus_clk;
  89        uint32 memclock = busclock;
  90        uint32 tmemclock = 1000000000 / (memclock / 100);
  91        uint32 datawidth;
  92
  93        if (sm_get_data (rom, dimm_address) == 0) {
  94                /* Nothing in slot, make both banks empty */
  95                debug ("Slot %d: vacant\n", dimmNum);
  96                banks[0].used = 0;
  97                banks[1].used = 0;
  98                return 0;
  99        }
 100
 101        if (rom[2] != 0x04) {
 102                debug ("Slot %d: No SDRAM\n", dimmNum);
 103                banks[0].used = 0;
 104                banks[1].used = 0;
 105                return 0;
 106        }
 107
 108        /* Determine number of banks/rows */
 109        if (rom[5] == 1) {
 110                banks[0].used = 1;
 111                banks[1].used = 0;
 112        } else {
 113                banks[0].used = 1;
 114                banks[1].used = 1;
 115        }
 116
 117        /* Determine number of row addresses */
 118        if (rom[3] & 0xf0) {
 119                /* Different banks sizes */
 120                banks[0].rows = rom[3] & 0x0f;
 121                banks[1].rows = (rom[3] & 0xf0) >> 4;
 122        } else {
 123                /* Equal sized banks */
 124                banks[0].rows = rom[3] & 0x0f;
 125                banks[1].rows = banks[0].rows;
 126        }
 127
 128        /* Determine number of column addresses */
 129        if (rom[4] & 0xf0) {
 130                /* Different bank sizes */
 131                banks[0].columns = rom[4] & 0x0f;
 132                banks[1].columns = (rom[4] & 0xf0) >> 4;
 133        } else {
 134                banks[0].columns = rom[4] & 0x0f;
 135                banks[1].columns = banks[0].columns;
 136        }
 137
 138        /* Check Jedec revision, and modify row/column accordingly */
 139        if (rom[62] > 0x10) {
 140                if (banks[0].rows <= 3)
 141                        banks[0].rows += 15;
 142                if (banks[1].rows <= 3)
 143                        banks[1].rows += 15;
 144                if (banks[0].columns <= 3)
 145                        banks[0].columns += 15;
 146                if (banks[0].columns <= 3)
 147                        banks[0].columns += 15;
 148        }
 149
 150        /* Check registered/unregisterd */
 151        if (rom[21] & 0x12) {
 152                banks[0].registered = 1;
 153                banks[1].registered = 1;
 154        } else {
 155                banks[0].registered = 0;
 156                banks[1].registered = 0;
 157        }
 158
 159#ifdef CONFIG_ECC
 160        /* Check parity/ECC */
 161        banks[0].ecc = (rom[11] == 0x02);
 162        banks[1].ecc = (rom[11] == 0x02);
 163#endif
 164
 165        /* Find burst lengths supported */
 166        banks[0].burst_len = rom[16] & 0x8f;
 167        banks[1].burst_len = rom[16] & 0x8f;
 168
 169        /* Find possible cas latencies */
 170        banks[0].cas_lat = rom[18] & 0x7F;
 171        banks[1].cas_lat = rom[18] & 0x7F;
 172
 173        /* RAS/CAS latency */
 174        banks[0].trcd = (NSto10PS (rom[29]) + (tmemclock - 1)) / tmemclock;
 175        banks[1].trcd = (NSto10PS (rom[29]) + (tmemclock - 1)) / tmemclock;
 176
 177        /* Precharge latency */
 178        banks[0].trp = (NSto10PS (rom[27]) + (tmemclock - 1)) / tmemclock;
 179        banks[1].trp = (NSto10PS (rom[27]) + (tmemclock - 1)) / tmemclock;
 180
 181        /* highest CAS latency */
 182        banks[0].tclk_hi = NS10to10PS (rom[9]);
 183        banks[1].tclk_hi = NS10to10PS (rom[9]);
 184
 185        /* second highest CAS latency */
 186        banks[0].tclk_2hi = NS10to10PS (rom[23]);
 187        banks[1].tclk_2hi = NS10to10PS (rom[23]);
 188
 189        /* bank sizes */
 190        datawidth = rom[13] & 0x7f;
 191        banks[0].size =
 192                        (1L << (banks[0].rows + banks[0].columns)) *
 193                        /* FIXME datawidth */ 8 * rom[17];
 194        if (rom[13] & 0x80)
 195                banks[1].size = 2 * banks[0].size;
 196        else
 197                banks[1].size = (1L << (banks[1].rows + banks[1].columns)) *
 198                                /* FIXME datawidth */ 8 * rom[17];
 199
 200        /* Refresh */
 201        if (rom[12] & 0x80) {
 202                banks[0].auto_refresh = 1;
 203                banks[1].auto_refresh = 1;
 204        } else {
 205                banks[0].auto_refresh = 0;
 206                banks[1].auto_refresh = 0;
 207        }
 208
 209        switch (rom[12] & 0x7f) {
 210        case 0:
 211                banks[0].refresh_time = (1562500 + (tmemclock - 1)) / tmemclock;
 212                banks[1].refresh_time = (1562500 + (tmemclock - 1)) / tmemclock;
 213                break;
 214        case 1:
 215                banks[0].refresh_time = (390600 + (tmemclock - 1)) / tmemclock;
 216                banks[1].refresh_time = (390600 + (tmemclock - 1)) / tmemclock;
 217                break;
 218        case 2:
 219                banks[0].refresh_time = (781200 + (tmemclock - 1)) / tmemclock;
 220                banks[1].refresh_time = (781200 + (tmemclock - 1)) / tmemclock;
 221                break;
 222        case 3:
 223                banks[0].refresh_time = (3125000 + (tmemclock - 1)) / tmemclock;
 224                banks[1].refresh_time = (3125000 + (tmemclock - 1)) / tmemclock;
 225                break;
 226        case 4:
 227                banks[0].refresh_time = (6250000 + (tmemclock - 1)) / tmemclock;
 228                banks[1].refresh_time = (6250000 + (tmemclock - 1)) / tmemclock;
 229                break;
 230        case 5:
 231                banks[0].refresh_time = (12500000 + (tmemclock - 1)) / tmemclock;
 232                banks[1].refresh_time = (12500000 + (tmemclock - 1)) / tmemclock;
 233                break;
 234        default:
 235                banks[0].refresh_time = 0x100;  /* Default of Articia S */
 236                banks[1].refresh_time = 0x100;
 237                break;
 238        }
 239
 240#ifdef DEBUG
 241        printf ("\nInformation for SIMM bank %ld:\n", dimmNum);
 242        printf ("Number of banks: %ld\n", banks[0].used + banks[1].used);
 243        printf ("Number of row addresses: %ld\n", banks[0].rows);
 244        printf ("Number of coumns addresses: %ld\n", banks[0].columns);
 245        printf ("SIMM is %sregistered\n",
 246                        banks[0].registered == 0 ? "not " : "");
 247#ifdef CONFIG_ECC
 248        printf ("SIMM %s ECC\n",
 249                        banks[0].ecc == 1 ? "supports" : "doesn't support");
 250#endif
 251        printf ("Supported burst lenghts: %s %s %s %s %s\n",
 252                        banks[0].burst_len & 0x08 ? "8" : " ",
 253                        banks[0].burst_len & 0x04 ? "4" : " ",
 254                        banks[0].burst_len & 0x02 ? "2" : " ",
 255                        banks[0].burst_len & 0x01 ? "1" : " ",
 256                        banks[0].burst_len & 0x80 ? "PAGE" : "    ");
 257        printf ("Supported CAS latencies: %s %s %s\n",
 258                        banks[0].cas_lat & 0x04 ? "CAS 3" : "     ",
 259                        banks[0].cas_lat & 0x02 ? "CAS 2" : "     ",
 260                        banks[0].cas_lat & 0x01 ? "CAS 1" : "     ");
 261        printf ("RAS to CAS latency: %ld\n", banks[0].trcd);
 262        printf ("Precharge latency: %ld\n", banks[0].trp);
 263        printf ("SDRAM highest CAS latency: %ld\n", banks[0].tclk_hi);
 264        printf ("SDRAM 2nd highest CAS latency: %ld\n", banks[0].tclk_2hi);
 265        printf ("SDRAM data width: %ld\n", datawidth);
 266        printf ("Auto Refresh %ssupported\n",
 267                        banks[0].auto_refresh ? "" : "not ");
 268        printf ("Refresh time: %ld clocks\n", banks[0].refresh_time);
 269        if (banks[0].used)
 270                printf ("Bank 0 size: %ld MB\n", banks[0].size / 1024 / 1024);
 271        if (banks[1].used)
 272                printf ("Bank 1 size: %ld MB\n", banks[1].size / 1024 / 1024);
 273
 274        printf ("\n");
 275#endif
 276
 277        sm_term ();
 278        return 1;
 279}
 280
 281void select_cas (struct dimm_bank *banks, uint8 fast)
 282{
 283        if (!banks[0].used) {
 284                banks[0].cas_used = 0;
 285                banks[0].cas_used = 0;
 286                return;
 287        }
 288
 289        if (fast) {
 290                /* Search for fast CAS */
 291                uint32 i;
 292                uint32 c = 0x01;
 293
 294                for (i = 1; i < 5; i++) {
 295                        if (banks[0].cas_lat & c) {
 296                                banks[0].cas_used = i;
 297                                banks[1].cas_used = i;
 298                                debug ("Using CAS %d (fast)\n", i);
 299                                return;
 300                        }
 301                        c <<= 1;
 302                }
 303
 304                /* Default to CAS 3 */
 305                banks[0].cas_used = 3;
 306                banks[1].cas_used = 3;
 307                debug ("Using CAS 3 (fast)\n");
 308
 309                return;
 310        } else {
 311                /* Search for slow cas */
 312                uint32 i;
 313                uint32 c = 0x08;
 314
 315                for (i = 4; i > 1; i--) {
 316                        if (banks[0].cas_lat & c) {
 317                                banks[0].cas_used = i;
 318                                banks[1].cas_used = i;
 319                                debug ("Using CAS %d (slow)\n", i);
 320                                return;
 321                        }
 322                        c >>= 1;
 323                }
 324
 325                /* Default to CAS 3 */
 326                banks[0].cas_used = 3;
 327                banks[1].cas_used = 3;
 328                debug ("Using CAS 3 (slow)\n");
 329
 330                return;
 331        }
 332
 333        banks[0].cas_used = 3;
 334        banks[1].cas_used = 3;
 335        debug ("Using CAS 3\n");
 336
 337        return;
 338}
 339
 340uint32 get_reg_setting (uint32 banks, uint32 rows, uint32 columns, uint32 size)
 341{
 342        uint32 i;
 343
 344        struct RowColumnSize {
 345                uint32 banks;
 346                uint32 rows;
 347                uint32 columns;
 348                uint32 size;
 349                uint32 register_value;
 350        };
 351
 352        struct RowColumnSize rcs_map[] = {
 353                /*  Sbk Radr Cadr   MB     Value */
 354                {1, 11, 8, 8, 0x00840f00},
 355                {1, 11, 9, 16, 0x00925f00},
 356                {1, 11, 10, 32, 0x00a64f00},
 357                {2, 12, 8, 32, 0x00c55f00},
 358                {2, 12, 9, 64, 0x00d66f00},
 359                {2, 12, 10, 128, 0x00e77f00},
 360                {2, 12, 11, 256, 0x00ff8f00},
 361                {2, 13, 11, 512, 0x00ff9f00},
 362                {0, 0, 0, 0, 0x00000000}
 363        };
 364
 365
 366        i = 0;
 367
 368        while (rcs_map[i].banks != 0) {
 369                if (rows == rcs_map[i].rows
 370                        && columns == rcs_map[i].columns
 371                        && (size / 1024 / 1024) == rcs_map[i].size)
 372                        return rcs_map[i].register_value;
 373
 374                i++;
 375        }
 376
 377        return 0;
 378}
 379
 380uint32 burst_to_len (uint32 support)
 381{
 382        if (support & 0x80)
 383                return 0x7;
 384        else if (support & 0x8)
 385                return 0x3;
 386        else if (support & 0x4)
 387                return 0x2;
 388        else if (support & 0x2)
 389                return 0x1;
 390        else if (support & 0x1)
 391                return 0x0;
 392
 393        return 0;
 394}
 395
 396long articiaS_ram_init (void)
 397{
 398        register uint32 i;
 399        register uint32 value1;
 400        register uint32 value2;
 401        uint8 rom[128];
 402        uint32 burst_len;
 403        uint32 burst_support;
 404        uint32 total_ram = 0;
 405
 406        struct dimm_bank banks[4];      /* FIXME: Move to initram */
 407        uint32 busclock = gd->bus_clk;
 408        uint32 memclock = busclock;
 409        uint32 reg32;
 410        uint32 refresh_clocks;
 411        uint8 auto_refresh;
 412
 413        memset (banks, 0, sizeof (struct dimm_bank) * 4);
 414
 415        detect_sdram (rom, 0, &banks[0]);
 416        detect_sdram (rom, 1, &banks[2]);
 417
 418        for (i = 0; i < 4; i++) {
 419                total_ram = total_ram + (banks[i].used * banks[i].size);
 420        }
 421
 422        pci_write_cfg_long (0, 0, GLOBALINFO0, 0x117430c0);
 423        pci_write_cfg_long (0, 0, HBUSACR0, 0x1f0100b0);
 424        pci_write_cfg_long (0, 0, SRAM_CR, 0x00f12000); /* Note: Might also try 0x00f10000 (original: 0x00f12000) */
 425        pci_write_cfg_byte (0, 0, DRAM_RAS_CTL0, 0x3f);
 426        pci_write_cfg_byte (0, 0, DRAM_RAS_CTL1, 0x00); /*  was: 0x04); */
 427        pci_write_cfg_word (0, 0, DRAM_ECC0, 0x2020);   /*  was: 0x2400);  No ECC yet */
 428
 429        /* FIXME: Move this stuff to seperate function, like setup_dimm_bank */
 430        if (banks[0].used) {
 431                value1 = get_reg_setting (banks[0].used + banks[1].used,
 432                                          banks[0].rows, banks[0].columns,
 433                                          banks[0].size);
 434        } else {
 435                value1 = 0;
 436        }
 437
 438        if (banks[1].used) {
 439                value2 = get_reg_setting (banks[0].used + banks[1].used,
 440                                          banks[1].rows, banks[1].columns,
 441                                          banks[1].size);
 442        } else {
 443                value2 = 0;
 444        }
 445
 446        pci_write_cfg_long (0, 0, DIMM0_B0_SCR0, value1);
 447        pci_write_cfg_long (0, 0, DIMM0_B1_SCR0, value2);
 448
 449        debug ("DIMM0_B0_SCR0 = 0x%08x\n", value1);
 450        debug ("DIMM0_B1_SCR0 = 0x%08x\n", value2);
 451
 452        if (banks[2].used) {
 453                value1 = get_reg_setting (banks[2].used + banks[3].used,
 454                                          banks[2].rows, banks[2].columns,
 455                                          banks[2].size);
 456        } else {
 457                value1 = 0;
 458        }
 459
 460        if (banks[3].used) {
 461                value2 = get_reg_setting (banks[2].used + banks[3].used,
 462                                          banks[3].rows, banks[3].columns,
 463                                          banks[3].size);
 464        } else {
 465                value2 = 0;
 466        }
 467
 468        pci_write_cfg_long (0, 0, DIMM1_B2_SCR0, value1);
 469        pci_write_cfg_long (0, 0, DIMM1_B3_SCR0, value2);
 470
 471        debug ("DIMM0_B2_SCR0 = 0x%08x\n", value1);
 472        debug ("DIMM0_B3_SCR0 = 0x%08x\n", value2);
 473
 474        pci_write_cfg_long (0, 0, DIMM2_B4_SCR0, 0);
 475        pci_write_cfg_long (0, 0, DIMM2_B5_SCR0, 0);
 476        pci_write_cfg_long (0, 0, DIMM3_B6_SCR0, 0);
 477        pci_write_cfg_long (0, 0, DIMM3_B7_SCR0, 0);
 478
 479        /* Determine timing */
 480        select_cas (&banks[0], 0);
 481        select_cas (&banks[2], 0);
 482
 483        /* FIXME: What about write recovery */
 484        /*                    Auto refresh    Precharge */
 485#if 0
 486        reg32 = (0x3 << 13) | (0x7 << 10) | ((banks[0].trp - 2) << 8) |
 487        /*    Write recovery  CAS Latency */
 488                (0x1 << 6) | (banks[0].cas_used << 4) |
 489        /*      RAS/CAS latency */
 490                ((banks[0].trcd - 1) << 0);
 491
 492        reg32 |= ((0x3 << 13) | (0x7 << 10) | ((banks[2].trp - 2) << 8) |
 493                  (0x1 << 6) | (banks[2].cas_used << 4) |
 494                  ((banks[2].trcd - 1) << 0)) << 16;
 495#else
 496        if (100000000 == gd->bus_clk)
 497                reg32 = 0x71737173;
 498        else
 499                reg32 = 0x69736973;
 500#endif
 501        pci_write_cfg_long (0, 0, DIMM0_TCR0, reg32);
 502        debug ("DIMM0_TCR0 = 0x%08x\n", reg32);
 503
 504        /* Write default in DIMM2/3 (not used on A1) */
 505        pci_write_cfg_long (0, 0, DIMM2_TCR0, 0x7d737d73);
 506
 507
 508        /* Determine buffered/unbuffered mode for each SIMM. Uses first bank as reference (second, if present, uses the same) */
 509        reg32 = pci_read_cfg_long (0, 0, DRAM_GCR0);
 510        reg32 &= 0xFF00FFFF;
 511
 512#if 0
 513        if (banks[0].used && banks[0].registered)
 514                reg32 |= 0x1 << 16;
 515
 516        if (banks[2].used && banks[2].registered)
 517                reg32 |= 0x1 << 18;
 518#else
 519        if (banks[0].registered || banks[2].registered)
 520                reg32 |= 0x55 << 16;
 521#endif
 522        pci_write_cfg_long (0, 0, DRAM_GCR0, reg32);
 523        debug ("DRAM_GCR0 = 0x%08x\n", reg32);
 524
 525        /* Determine refresh */
 526        refresh_clocks = 0xffffffff;
 527        auto_refresh = 1;
 528
 529        for (i = 0; i < 4; i++) {
 530                if (banks[i].used) {
 531                        if (banks[i].auto_refresh == 0)
 532                                auto_refresh = 0;
 533                        if (banks[i].refresh_time < refresh_clocks)
 534                                refresh_clocks = banks[i].refresh_time;
 535                }
 536        }
 537
 538
 539#if 1
 540        /*  It seems this is suggested by the ArticiaS data book */
 541        if (100000000 == gd->bus_clk)
 542                refresh_clocks = 1561;
 543        else
 544                refresh_clocks = 2083;
 545#endif
 546
 547
 548        debug ("Refresh set to %ld clocks, auto refresh %s\n",
 549                   refresh_clocks, auto_refresh ? "on" : "off");
 550
 551        pci_write_cfg_long (0, 0, DRAM_REFRESH0,
 552                        (1 << 16) | (1 << 15) | (auto_refresh << 12) |
 553                        (refresh_clocks));
 554        debug ("DRAM_REFRESH0 = 0x%08x\n",
 555                        (1 << 16) | (1 << 15) | (auto_refresh << 12) |
 556                        (refresh_clocks));
 557
 558/*     pci_write_cfg_long(0, 0, DRAM_REFRESH0,   0x00019400);  */
 559
 560        /* Set mode registers */
 561        /* FIXME: For now, set same burst len for all modules. Dunno if that's necessary */
 562        /* Find a common burst len */
 563        burst_support = 0xff;
 564
 565        if (banks[0].used)
 566                burst_support = banks[0].burst_len;
 567        if (banks[1].used)
 568                burst_support = banks[1].burst_len;
 569        if (banks[2].used)
 570                burst_support = banks[2].burst_len;
 571        if (banks[3].used)
 572                burst_support = banks[3].burst_len;
 573
 574        /*
 575           ** Mode register:
 576           ** Bits         Use
 577           ** 0-2          Burst len
 578           ** 3            Burst type (0 = sequential, 1 = interleave)
 579           ** 4-6          CAS latency
 580           ** 7-8          Operation mode (0 = default, all others invalid)
 581           ** 9            Write burst
 582           ** 10-11        Reserved
 583           **
 584           ** Mode register burst table:
 585           ** A2 A1 A0     lenght
 586           ** 0  0  0      1
 587           ** 0  0  1      2
 588           ** 0  1  0      4
 589           ** 0  1  1      8
 590           ** 1  0  0      invalid
 591           ** 1  0  1      invalid
 592           ** 1  1  0      invalid
 593           ** 1  1  1      page (only valid for non-interleaved)
 594         */
 595
 596        burst_len = burst_to_len (burst_support);
 597        burst_len = 2;                          /* FIXME */
 598
 599        if (banks[0].used) {
 600                pci_write_cfg_word (0, 0, DRAM_PCR0,
 601                        0x8000 | burst_len | (banks[0].cas_used << 4));
 602                debug ("Mode bank 0: 0x%08x\n",
 603                        0x8000 | burst_len | (banks[0].cas_used << 4));
 604        } else {
 605                /*  Seems to be needed to disable the bank */
 606                pci_write_cfg_word (0, 0, DRAM_PCR0, 0x0000 | 0x032);
 607        }
 608
 609        if (banks[1].used) {
 610                pci_write_cfg_word (0, 0, DRAM_PCR0,
 611                        0x9000 | burst_len | (banks[1].cas_used << 4));
 612                debug ("Mode bank 1: 0x%08x\n",
 613                        0x8000 | burst_len | (banks[1].cas_used << 4));
 614        } else {
 615                /*  Seems to be needed to disable the bank */
 616                pci_write_cfg_word (0, 0, DRAM_PCR0, 0x1000 | 0x032);
 617        }
 618
 619
 620        if (banks[2].used) {
 621                pci_write_cfg_word (0, 0, DRAM_PCR0,
 622                        0xa000 | burst_len | (banks[2].cas_used << 4));
 623                debug ("Mode bank 2: 0x%08x\n",
 624                        0x8000 | burst_len | (banks[2].cas_used << 4));
 625        } else {
 626                /*  Seems to be needed to disable the bank */
 627                pci_write_cfg_word (0, 0, DRAM_PCR0, 0x2000 | 0x032);
 628        }
 629
 630
 631        if (banks[3].used) {
 632                pci_write_cfg_word (0, 0, DRAM_PCR0,
 633                        0xb000 | burst_len | (banks[3].cas_used << 4));
 634                debug ("Mode bank 3: 0x%08x\n",
 635                        0x8000 | burst_len | (banks[3].cas_used << 4));
 636        } else {
 637                /*  Seems to be needed to disable the bank */
 638                pci_write_cfg_word (0, 0, DRAM_PCR0, 0x3000 | 0x032);
 639        }
 640
 641
 642        pci_write_cfg_word (0, 0, 0xba, 0x00);
 643
 644        return total_ram;
 645}
 646
 647extern int drv_isa_kbd_init (void);
 648
 649int last_stage_init (void)
 650{
 651        drv_isa_kbd_init ();
 652        return 0;
 653}
 654
 655int overwrite_console (void)
 656{
 657        return (0);
 658}
 659
 660#define in_8 read_byte
 661#define out_8 write_byte
 662
 663static __inline__ unsigned long get_msr (void)
 664{
 665        unsigned long msr;
 666
 667        asm volatile ("mfmsr %0":"=r" (msr):);
 668
 669        return msr;
 670}
 671
 672static __inline__ void set_msr (unsigned long msr)
 673{
 674        asm volatile ("mtmsr %0"::"r" (msr));
 675}
 676
 677int board_early_init_f (void)
 678{
 679        unsigned char c_value = 0;
 680        unsigned long msr;
 681
 682        /* Basic init of PS/2 keyboard (needed for some reason)... */
 683        /* Ripped from John's code */
 684        while ((in_8 ((unsigned char *) 0xfe000064) & 0x02) != 0);
 685        out_8 ((unsigned char *) 0xfe000064, 0xaa);
 686        while ((in_8 ((unsigned char *) 0xfe000064) & 0x01) == 0);
 687        c_value = in_8 ((unsigned char *) 0xfe000060);
 688        while ((in_8 ((unsigned char *) 0xfe000064) & 0x02) != 0);
 689        out_8 ((unsigned char *) 0xfe000064, 0xab);
 690        while ((in_8 ((unsigned char *) 0xfe000064) & 0x01) == 0);
 691        c_value = in_8 ((unsigned char *) 0xfe000060);
 692        while ((in_8 ((unsigned char *) 0xfe000064) & 0x02) != 0);
 693        out_8 ((unsigned char *) 0xfe000064, 0xae);
 694/*     while ((in_8((unsigned char *)0xfe000064) & 0x01) == 0); */
 695/*     c_value = in_8((unsigned char *)0xfe000060); */
 696
 697        /*  Enable FPU */
 698        msr = get_msr ();
 699        set_msr (msr | MSR_FP);
 700
 701        via_calibrate_bus_freq ();
 702
 703        return 0;
 704}
 705