uboot/drivers/mtd/nand/diskonchip.c
<<
>>
Prefs
   1/*
   2 * drivers/mtd/nand/diskonchip.c
   3 *
   4 * (C) 2003 Red Hat, Inc.
   5 * (C) 2004 Dan Brown <dan_brown@ieee.org>
   6 * (C) 2004 Kalev Lember <kalev@smartlink.ee>
   7 *
   8 * Author: David Woodhouse <dwmw2@infradead.org>
   9 * Additional Diskonchip 2000 and Millennium support by Dan Brown <dan_brown@ieee.org>
  10 * Diskonchip Millennium Plus support by Kalev Lember <kalev@smartlink.ee>
  11 *
  12 * Error correction code lifted from the old docecc code
  13 * Author: Fabrice Bellard (fabrice.bellard@netgem.com)
  14 * Copyright (C) 2000 Netgem S.A.
  15 * converted to the generic Reed-Solomon library by Thomas Gleixner <tglx@linutronix.de>
  16 *
  17 * Interface to generic NAND code for M-Systems DiskOnChip devices
  18 */
  19
  20#include <common.h>
  21
  22#if !defined(CONFIG_NAND_LEGACY)
  23
  24#include <linux/kernel.h>
  25#include <linux/init.h>
  26#include <linux/sched.h>
  27#include <linux/delay.h>
  28#include <linux/rslib.h>
  29#include <linux/moduleparam.h>
  30#include <asm/io.h>
  31
  32#include <linux/mtd/mtd.h>
  33#include <linux/mtd/nand.h>
  34#include <linux/mtd/doc2000.h>
  35#include <linux/mtd/compatmac.h>
  36#include <linux/mtd/partitions.h>
  37#include <linux/mtd/inftl.h>
  38
  39/* Where to look for the devices? */
  40#ifndef CONFIG_MTD_NAND_DISKONCHIP_PROBE_ADDRESS
  41#define CONFIG_MTD_NAND_DISKONCHIP_PROBE_ADDRESS 0
  42#endif
  43
  44static unsigned long __initdata doc_locations[] = {
  45#if defined (__alpha__) || defined(__i386__) || defined(__x86_64__)
  46#ifdef CONFIG_MTD_NAND_DISKONCHIP_PROBE_HIGH
  47        0xfffc8000, 0xfffca000, 0xfffcc000, 0xfffce000,
  48        0xfffd0000, 0xfffd2000, 0xfffd4000, 0xfffd6000,
  49        0xfffd8000, 0xfffda000, 0xfffdc000, 0xfffde000,
  50        0xfffe0000, 0xfffe2000, 0xfffe4000, 0xfffe6000,
  51        0xfffe8000, 0xfffea000, 0xfffec000, 0xfffee000,
  52#else /*  CONFIG_MTD_DOCPROBE_HIGH */
  53        0xc8000, 0xca000, 0xcc000, 0xce000,
  54        0xd0000, 0xd2000, 0xd4000, 0xd6000,
  55        0xd8000, 0xda000, 0xdc000, 0xde000,
  56        0xe0000, 0xe2000, 0xe4000, 0xe6000,
  57        0xe8000, 0xea000, 0xec000, 0xee000,
  58#endif /*  CONFIG_MTD_DOCPROBE_HIGH */
  59#else
  60#warning Unknown architecture for DiskOnChip. No default probe locations defined
  61#endif
  62        0xffffffff };
  63
  64static struct mtd_info *doclist = NULL;
  65
  66struct doc_priv {
  67        void __iomem *virtadr;
  68        unsigned long physadr;
  69        u_char ChipID;
  70        u_char CDSNControl;
  71        int chips_per_floor;    /* The number of chips detected on each floor */
  72        int curfloor;
  73        int curchip;
  74        int mh0_page;
  75        int mh1_page;
  76        struct mtd_info *nextdoc;
  77};
  78
  79/* This is the syndrome computed by the HW ecc generator upon reading an empty
  80   page, one with all 0xff for data and stored ecc code. */
  81static u_char empty_read_syndrome[6] = { 0x26, 0xff, 0x6d, 0x47, 0x73, 0x7a };
  82
  83/* This is the ecc value computed by the HW ecc generator upon writing an empty
  84   page, one with all 0xff for data. */
  85static u_char empty_write_ecc[6] = { 0x4b, 0x00, 0xe2, 0x0e, 0x93, 0xf7 };
  86
  87#define INFTL_BBT_RESERVED_BLOCKS 4
  88
  89#define DoC_is_MillenniumPlus(doc) ((doc)->ChipID == DOC_ChipID_DocMilPlus16 || (doc)->ChipID == DOC_ChipID_DocMilPlus32)
  90#define DoC_is_Millennium(doc) ((doc)->ChipID == DOC_ChipID_DocMil)
  91#define DoC_is_2000(doc) ((doc)->ChipID == DOC_ChipID_Doc2k)
  92
  93static void doc200x_hwcontrol(struct mtd_info *mtd, int cmd,
  94                              unsigned int bitmask);
  95static void doc200x_select_chip(struct mtd_info *mtd, int chip);
  96
  97static int debug = 0;
  98module_param(debug, int, 0);
  99
 100static int try_dword = 1;
 101module_param(try_dword, int, 0);
 102
 103static int no_ecc_failures = 0;
 104module_param(no_ecc_failures, int, 0);
 105
 106static int no_autopart = 0;
 107module_param(no_autopart, int, 0);
 108
 109static int show_firmware_partition = 0;
 110module_param(show_firmware_partition, int, 0);
 111
 112#ifdef CONFIG_MTD_NAND_DISKONCHIP_BBTWRITE
 113static int inftl_bbt_write = 1;
 114#else
 115static int inftl_bbt_write = 0;
 116#endif
 117module_param(inftl_bbt_write, int, 0);
 118
 119static unsigned long doc_config_location = CONFIG_MTD_NAND_DISKONCHIP_PROBE_ADDRESS;
 120module_param(doc_config_location, ulong, 0);
 121MODULE_PARM_DESC(doc_config_location, "Physical memory address at which to probe for DiskOnChip");
 122
 123/* Sector size for HW ECC */
 124#define SECTOR_SIZE 512
 125/* The sector bytes are packed into NB_DATA 10 bit words */
 126#define NB_DATA (((SECTOR_SIZE + 1) * 8 + 6) / 10)
 127/* Number of roots */
 128#define NROOTS 4
 129/* First consective root */
 130#define FCR 510
 131/* Number of symbols */
 132#define NN 1023
 133
 134/* the Reed Solomon control structure */
 135static struct rs_control *rs_decoder;
 136
 137/*
 138 * The HW decoder in the DoC ASIC's provides us a error syndrome,
 139 * which we must convert to a standard syndrom usable by the generic
 140 * Reed-Solomon library code.
 141 *
 142 * Fabrice Bellard figured this out in the old docecc code. I added
 143 * some comments, improved a minor bit and converted it to make use
 144 * of the generic Reed-Solomon libary. tglx
 145 */
 146static int doc_ecc_decode(struct rs_control *rs, uint8_t *data, uint8_t *ecc)
 147{
 148        int i, j, nerr, errpos[8];
 149        uint8_t parity;
 150        uint16_t ds[4], s[5], tmp, errval[8], syn[4];
 151
 152        /* Convert the ecc bytes into words */
 153        ds[0] = ((ecc[4] & 0xff) >> 0) | ((ecc[5] & 0x03) << 8);
 154        ds[1] = ((ecc[5] & 0xfc) >> 2) | ((ecc[2] & 0x0f) << 6);
 155        ds[2] = ((ecc[2] & 0xf0) >> 4) | ((ecc[3] & 0x3f) << 4);
 156        ds[3] = ((ecc[3] & 0xc0) >> 6) | ((ecc[0] & 0xff) << 2);
 157        parity = ecc[1];
 158
 159        /* Initialize the syndrom buffer */
 160        for (i = 0; i < NROOTS; i++)
 161                s[i] = ds[0];
 162        /*
 163         *  Evaluate
 164         *  s[i] = ds[3]x^3 + ds[2]x^2 + ds[1]x^1 + ds[0]
 165         *  where x = alpha^(FCR + i)
 166         */
 167        for (j = 1; j < NROOTS; j++) {
 168                if (ds[j] == 0)
 169                        continue;
 170                tmp = rs->index_of[ds[j]];
 171                for (i = 0; i < NROOTS; i++)
 172                        s[i] ^= rs->alpha_to[rs_modnn(rs, tmp + (FCR + i) * j)];
 173        }
 174
 175        /* Calc s[i] = s[i] / alpha^(v + i) */
 176        for (i = 0; i < NROOTS; i++) {
 177                if (syn[i])
 178                        syn[i] = rs_modnn(rs, rs->index_of[s[i]] + (NN - FCR - i));
 179        }
 180        /* Call the decoder library */
 181        nerr = decode_rs16(rs, NULL, NULL, 1019, syn, 0, errpos, 0, errval);
 182
 183        /* Incorrectable errors ? */
 184        if (nerr < 0)
 185                return nerr;
 186
 187        /*
 188         * Correct the errors. The bitpositions are a bit of magic,
 189         * but they are given by the design of the de/encoder circuit
 190         * in the DoC ASIC's.
 191         */
 192        for (i = 0; i < nerr; i++) {
 193                int index, bitpos, pos = 1015 - errpos[i];
 194                uint8_t val;
 195                if (pos >= NB_DATA && pos < 1019)
 196                        continue;
 197                if (pos < NB_DATA) {
 198                        /* extract bit position (MSB first) */
 199                        pos = 10 * (NB_DATA - 1 - pos) - 6;
 200                        /* now correct the following 10 bits. At most two bytes
 201                           can be modified since pos is even */
 202                        index = (pos >> 3) ^ 1;
 203                        bitpos = pos & 7;
 204                        if ((index >= 0 && index < SECTOR_SIZE) || index == (SECTOR_SIZE + 1)) {
 205                                val = (uint8_t) (errval[i] >> (2 + bitpos));
 206                                parity ^= val;
 207                                if (index < SECTOR_SIZE)
 208                                        data[index] ^= val;
 209                        }
 210                        index = ((pos >> 3) + 1) ^ 1;
 211                        bitpos = (bitpos + 10) & 7;
 212                        if (bitpos == 0)
 213                                bitpos = 8;
 214                        if ((index >= 0 && index < SECTOR_SIZE) || index == (SECTOR_SIZE + 1)) {
 215                                val = (uint8_t) (errval[i] << (8 - bitpos));
 216                                parity ^= val;
 217                                if (index < SECTOR_SIZE)
 218                                        data[index] ^= val;
 219                        }
 220                }
 221        }
 222        /* If the parity is wrong, no rescue possible */
 223        return parity ? -EBADMSG : nerr;
 224}
 225
 226static void DoC_Delay(struct doc_priv *doc, unsigned short cycles)
 227{
 228        volatile char dummy;
 229        int i;
 230
 231        for (i = 0; i < cycles; i++) {
 232                if (DoC_is_Millennium(doc))
 233                        dummy = ReadDOC(doc->virtadr, NOP);
 234                else if (DoC_is_MillenniumPlus(doc))
 235                        dummy = ReadDOC(doc->virtadr, Mplus_NOP);
 236                else
 237                        dummy = ReadDOC(doc->virtadr, DOCStatus);
 238        }
 239
 240}
 241
 242#define CDSN_CTRL_FR_B_MASK     (CDSN_CTRL_FR_B0 | CDSN_CTRL_FR_B1)
 243
 244/* DOC_WaitReady: Wait for RDY line to be asserted by the flash chip */
 245static int _DoC_WaitReady(struct doc_priv *doc)
 246{
 247        void __iomem *docptr = doc->virtadr;
 248        unsigned long timeo = jiffies + (HZ * 10);
 249
 250        if (debug)
 251                printk("_DoC_WaitReady...\n");
 252        /* Out-of-line routine to wait for chip response */
 253        if (DoC_is_MillenniumPlus(doc)) {
 254                while ((ReadDOC(docptr, Mplus_FlashControl) & CDSN_CTRL_FR_B_MASK) != CDSN_CTRL_FR_B_MASK) {
 255                        if (time_after(jiffies, timeo)) {
 256                                printk("_DoC_WaitReady timed out.\n");
 257                                return -EIO;
 258                        }
 259                        udelay(1);
 260                        cond_resched();
 261                }
 262        } else {
 263                while (!(ReadDOC(docptr, CDSNControl) & CDSN_CTRL_FR_B)) {
 264                        if (time_after(jiffies, timeo)) {
 265                                printk("_DoC_WaitReady timed out.\n");
 266                                return -EIO;
 267                        }
 268                        udelay(1);
 269                        cond_resched();
 270                }
 271        }
 272
 273        return 0;
 274}
 275
 276static inline int DoC_WaitReady(struct doc_priv *doc)
 277{
 278        void __iomem *docptr = doc->virtadr;
 279        int ret = 0;
 280
 281        if (DoC_is_MillenniumPlus(doc)) {
 282                DoC_Delay(doc, 4);
 283
 284                if ((ReadDOC(docptr, Mplus_FlashControl) & CDSN_CTRL_FR_B_MASK) != CDSN_CTRL_FR_B_MASK)
 285                        /* Call the out-of-line routine to wait */
 286                        ret = _DoC_WaitReady(doc);
 287        } else {
 288                DoC_Delay(doc, 4);
 289
 290                if (!(ReadDOC(docptr, CDSNControl) & CDSN_CTRL_FR_B))
 291                        /* Call the out-of-line routine to wait */
 292                        ret = _DoC_WaitReady(doc);
 293                DoC_Delay(doc, 2);
 294        }
 295
 296        if (debug)
 297                printk("DoC_WaitReady OK\n");
 298        return ret;
 299}
 300
 301static void doc2000_write_byte(struct mtd_info *mtd, u_char datum)
 302{
 303        struct nand_chip *this = mtd->priv;
 304        struct doc_priv *doc = this->priv;
 305        void __iomem *docptr = doc->virtadr;
 306
 307        if (debug)
 308                printk("write_byte %02x\n", datum);
 309        WriteDOC(datum, docptr, CDSNSlowIO);
 310        WriteDOC(datum, docptr, 2k_CDSN_IO);
 311}
 312
 313static u_char doc2000_read_byte(struct mtd_info *mtd)
 314{
 315        struct nand_chip *this = mtd->priv;
 316        struct doc_priv *doc = this->priv;
 317        void __iomem *docptr = doc->virtadr;
 318        u_char ret;
 319
 320        ReadDOC(docptr, CDSNSlowIO);
 321        DoC_Delay(doc, 2);
 322        ret = ReadDOC(docptr, 2k_CDSN_IO);
 323        if (debug)
 324                printk("read_byte returns %02x\n", ret);
 325        return ret;
 326}
 327
 328static void doc2000_writebuf(struct mtd_info *mtd, const u_char *buf, int len)
 329{
 330        struct nand_chip *this = mtd->priv;
 331        struct doc_priv *doc = this->priv;
 332        void __iomem *docptr = doc->virtadr;
 333        int i;
 334        if (debug)
 335                printk("writebuf of %d bytes: ", len);
 336        for (i = 0; i < len; i++) {
 337                WriteDOC_(buf[i], docptr, DoC_2k_CDSN_IO + i);
 338                if (debug && i < 16)
 339                        printk("%02x ", buf[i]);
 340        }
 341        if (debug)
 342                printk("\n");
 343}
 344
 345static void doc2000_readbuf(struct mtd_info *mtd, u_char *buf, int len)
 346{
 347        struct nand_chip *this = mtd->priv;
 348        struct doc_priv *doc = this->priv;
 349        void __iomem *docptr = doc->virtadr;
 350        int i;
 351
 352        if (debug)
 353                printk("readbuf of %d bytes: ", len);
 354
 355        for (i = 0; i < len; i++) {
 356                buf[i] = ReadDOC(docptr, 2k_CDSN_IO + i);
 357        }
 358}
 359
 360static void doc2000_readbuf_dword(struct mtd_info *mtd,
 361                            u_char *buf, int len)
 362{
 363        struct nand_chip *this = mtd->priv;
 364        struct doc_priv *doc = this->priv;
 365        void __iomem *docptr = doc->virtadr;
 366        int i;
 367
 368        if (debug)
 369                printk("readbuf_dword of %d bytes: ", len);
 370
 371        if (unlikely((((unsigned long)buf) | len) & 3)) {
 372                for (i = 0; i < len; i++) {
 373                        *(uint8_t *) (&buf[i]) = ReadDOC(docptr, 2k_CDSN_IO + i);
 374                }
 375        } else {
 376                for (i = 0; i < len; i += 4) {
 377                        *(uint32_t*) (&buf[i]) = readl(docptr + DoC_2k_CDSN_IO + i);
 378                }
 379        }
 380}
 381
 382static int doc2000_verifybuf(struct mtd_info *mtd, const u_char *buf, int len)
 383{
 384        struct nand_chip *this = mtd->priv;
 385        struct doc_priv *doc = this->priv;
 386        void __iomem *docptr = doc->virtadr;
 387        int i;
 388
 389        for (i = 0; i < len; i++)
 390                if (buf[i] != ReadDOC(docptr, 2k_CDSN_IO))
 391                        return -EFAULT;
 392        return 0;
 393}
 394
 395static uint16_t __init doc200x_ident_chip(struct mtd_info *mtd, int nr)
 396{
 397        struct nand_chip *this = mtd->priv;
 398        struct doc_priv *doc = this->priv;
 399        uint16_t ret;
 400
 401        doc200x_select_chip(mtd, nr);
 402        doc200x_hwcontrol(mtd, NAND_CMD_READID,
 403                          NAND_CTRL_CLE | NAND_CTRL_CHANGE);
 404        doc200x_hwcontrol(mtd, 0, NAND_CTRL_ALE | NAND_CTRL_CHANGE);
 405        doc200x_hwcontrol(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
 406
 407        /* We cant' use dev_ready here, but at least we wait for the
 408         * command to complete
 409         */
 410        udelay(50);
 411
 412        ret = this->read_byte(mtd) << 8;
 413        ret |= this->read_byte(mtd);
 414
 415        if (doc->ChipID == DOC_ChipID_Doc2k && try_dword && !nr) {
 416                /* First chip probe. See if we get same results by 32-bit access */
 417                union {
 418                        uint32_t dword;
 419                        uint8_t byte[4];
 420                } ident;
 421                void __iomem *docptr = doc->virtadr;
 422
 423                doc200x_hwcontrol(mtd, NAND_CMD_READID,
 424                                  NAND_CTRL_CLE | NAND_CTRL_CHANGE);
 425                doc200x_hwcontrol(mtd, 0, NAND_CTRL_ALE | NAND_CTRL_CHANGE);
 426                doc200x_hwcontrol(mtd, NAND_CMD_NONE,
 427                                  NAND_NCE | NAND_CTRL_CHANGE);
 428
 429                udelay(50);
 430
 431                ident.dword = readl(docptr + DoC_2k_CDSN_IO);
 432                if (((ident.byte[0] << 8) | ident.byte[1]) == ret) {
 433                        printk(KERN_INFO "DiskOnChip 2000 responds to DWORD access\n");
 434                        this->read_buf = &doc2000_readbuf_dword;
 435                }
 436        }
 437
 438        return ret;
 439}
 440
 441static void __init doc2000_count_chips(struct mtd_info *mtd)
 442{
 443        struct nand_chip *this = mtd->priv;
 444        struct doc_priv *doc = this->priv;
 445        uint16_t mfrid;
 446        int i;
 447
 448        /* Max 4 chips per floor on DiskOnChip 2000 */
 449        doc->chips_per_floor = 4;
 450
 451        /* Find out what the first chip is */
 452        mfrid = doc200x_ident_chip(mtd, 0);
 453
 454        /* Find how many chips in each floor. */
 455        for (i = 1; i < 4; i++) {
 456                if (doc200x_ident_chip(mtd, i) != mfrid)
 457                        break;
 458        }
 459        doc->chips_per_floor = i;
 460        printk(KERN_DEBUG "Detected %d chips per floor.\n", i);
 461}
 462
 463static int doc200x_wait(struct mtd_info *mtd, struct nand_chip *this)
 464{
 465        struct doc_priv *doc = this->priv;
 466
 467        int status;
 468
 469        DoC_WaitReady(doc);
 470        this->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
 471        DoC_WaitReady(doc);
 472        status = (int)this->read_byte(mtd);
 473
 474        return status;
 475}
 476
 477static void doc2001_write_byte(struct mtd_info *mtd, u_char datum)
 478{
 479        struct nand_chip *this = mtd->priv;
 480        struct doc_priv *doc = this->priv;
 481        void __iomem *docptr = doc->virtadr;
 482
 483        WriteDOC(datum, docptr, CDSNSlowIO);
 484        WriteDOC(datum, docptr, Mil_CDSN_IO);
 485        WriteDOC(datum, docptr, WritePipeTerm);
 486}
 487
 488static u_char doc2001_read_byte(struct mtd_info *mtd)
 489{
 490        struct nand_chip *this = mtd->priv;
 491        struct doc_priv *doc = this->priv;
 492        void __iomem *docptr = doc->virtadr;
 493
 494        /*ReadDOC(docptr, CDSNSlowIO); */
 495        /* 11.4.5 -- delay twice to allow extended length cycle */
 496        DoC_Delay(doc, 2);
 497        ReadDOC(docptr, ReadPipeInit);
 498        /*return ReadDOC(docptr, Mil_CDSN_IO); */
 499        return ReadDOC(docptr, LastDataRead);
 500}
 501
 502static void doc2001_writebuf(struct mtd_info *mtd, const u_char *buf, int len)
 503{
 504        struct nand_chip *this = mtd->priv;
 505        struct doc_priv *doc = this->priv;
 506        void __iomem *docptr = doc->virtadr;
 507        int i;
 508
 509        for (i = 0; i < len; i++)
 510                WriteDOC_(buf[i], docptr, DoC_Mil_CDSN_IO + i);
 511        /* Terminate write pipeline */
 512        WriteDOC(0x00, docptr, WritePipeTerm);
 513}
 514
 515static void doc2001_readbuf(struct mtd_info *mtd, u_char *buf, int len)
 516{
 517        struct nand_chip *this = mtd->priv;
 518        struct doc_priv *doc = this->priv;
 519        void __iomem *docptr = doc->virtadr;
 520        int i;
 521
 522        /* Start read pipeline */
 523        ReadDOC(docptr, ReadPipeInit);
 524
 525        for (i = 0; i < len - 1; i++)
 526                buf[i] = ReadDOC(docptr, Mil_CDSN_IO + (i & 0xff));
 527
 528        /* Terminate read pipeline */
 529        buf[i] = ReadDOC(docptr, LastDataRead);
 530}
 531
 532static int doc2001_verifybuf(struct mtd_info *mtd, const u_char *buf, int len)
 533{
 534        struct nand_chip *this = mtd->priv;
 535        struct doc_priv *doc = this->priv;
 536        void __iomem *docptr = doc->virtadr;
 537        int i;
 538
 539        /* Start read pipeline */
 540        ReadDOC(docptr, ReadPipeInit);
 541
 542        for (i = 0; i < len - 1; i++)
 543                if (buf[i] != ReadDOC(docptr, Mil_CDSN_IO)) {
 544                        ReadDOC(docptr, LastDataRead);
 545                        return i;
 546                }
 547        if (buf[i] != ReadDOC(docptr, LastDataRead))
 548                return i;
 549        return 0;
 550}
 551
 552static u_char doc2001plus_read_byte(struct mtd_info *mtd)
 553{
 554        struct nand_chip *this = mtd->priv;
 555        struct doc_priv *doc = this->priv;
 556        void __iomem *docptr = doc->virtadr;
 557        u_char ret;
 558
 559        ReadDOC(docptr, Mplus_ReadPipeInit);
 560        ReadDOC(docptr, Mplus_ReadPipeInit);
 561        ret = ReadDOC(docptr, Mplus_LastDataRead);
 562        if (debug)
 563                printk("read_byte returns %02x\n", ret);
 564        return ret;
 565}
 566
 567static void doc2001plus_writebuf(struct mtd_info *mtd, const u_char *buf, int len)
 568{
 569        struct nand_chip *this = mtd->priv;
 570        struct doc_priv *doc = this->priv;
 571        void __iomem *docptr = doc->virtadr;
 572        int i;
 573
 574        if (debug)
 575                printk("writebuf of %d bytes: ", len);
 576        for (i = 0; i < len; i++) {
 577                WriteDOC_(buf[i], docptr, DoC_Mil_CDSN_IO + i);
 578                if (debug && i < 16)
 579                        printk("%02x ", buf[i]);
 580        }
 581        if (debug)
 582                printk("\n");
 583}
 584
 585static void doc2001plus_readbuf(struct mtd_info *mtd, u_char *buf, int len)
 586{
 587        struct nand_chip *this = mtd->priv;
 588        struct doc_priv *doc = this->priv;
 589        void __iomem *docptr = doc->virtadr;
 590        int i;
 591
 592        if (debug)
 593                printk("readbuf of %d bytes: ", len);
 594
 595        /* Start read pipeline */
 596        ReadDOC(docptr, Mplus_ReadPipeInit);
 597        ReadDOC(docptr, Mplus_ReadPipeInit);
 598
 599        for (i = 0; i < len - 2; i++) {
 600                buf[i] = ReadDOC(docptr, Mil_CDSN_IO);
 601                if (debug && i < 16)
 602                        printk("%02x ", buf[i]);
 603        }
 604
 605        /* Terminate read pipeline */
 606        buf[len - 2] = ReadDOC(docptr, Mplus_LastDataRead);
 607        if (debug && i < 16)
 608                printk("%02x ", buf[len - 2]);
 609        buf[len - 1] = ReadDOC(docptr, Mplus_LastDataRead);
 610        if (debug && i < 16)
 611                printk("%02x ", buf[len - 1]);
 612        if (debug)
 613                printk("\n");
 614}
 615
 616static int doc2001plus_verifybuf(struct mtd_info *mtd, const u_char *buf, int len)
 617{
 618        struct nand_chip *this = mtd->priv;
 619        struct doc_priv *doc = this->priv;
 620        void __iomem *docptr = doc->virtadr;
 621        int i;
 622
 623        if (debug)
 624                printk("verifybuf of %d bytes: ", len);
 625
 626        /* Start read pipeline */
 627        ReadDOC(docptr, Mplus_ReadPipeInit);
 628        ReadDOC(docptr, Mplus_ReadPipeInit);
 629
 630        for (i = 0; i < len - 2; i++)
 631                if (buf[i] != ReadDOC(docptr, Mil_CDSN_IO)) {
 632                        ReadDOC(docptr, Mplus_LastDataRead);
 633                        ReadDOC(docptr, Mplus_LastDataRead);
 634                        return i;
 635                }
 636        if (buf[len - 2] != ReadDOC(docptr, Mplus_LastDataRead))
 637                return len - 2;
 638        if (buf[len - 1] != ReadDOC(docptr, Mplus_LastDataRead))
 639                return len - 1;
 640        return 0;
 641}
 642
 643static void doc2001plus_select_chip(struct mtd_info *mtd, int chip)
 644{
 645        struct nand_chip *this = mtd->priv;
 646        struct doc_priv *doc = this->priv;
 647        void __iomem *docptr = doc->virtadr;
 648        int floor = 0;
 649
 650        if (debug)
 651                printk("select chip (%d)\n", chip);
 652
 653        if (chip == -1) {
 654                /* Disable flash internally */
 655                WriteDOC(0, docptr, Mplus_FlashSelect);
 656                return;
 657        }
 658
 659        floor = chip / doc->chips_per_floor;
 660        chip -= (floor * doc->chips_per_floor);
 661
 662        /* Assert ChipEnable and deassert WriteProtect */
 663        WriteDOC((DOC_FLASH_CE), docptr, Mplus_FlashSelect);
 664        this->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
 665
 666        doc->curchip = chip;
 667        doc->curfloor = floor;
 668}
 669
 670static void doc200x_select_chip(struct mtd_info *mtd, int chip)
 671{
 672        struct nand_chip *this = mtd->priv;
 673        struct doc_priv *doc = this->priv;
 674        void __iomem *docptr = doc->virtadr;
 675        int floor = 0;
 676
 677        if (debug)
 678                printk("select chip (%d)\n", chip);
 679
 680        if (chip == -1)
 681                return;
 682
 683        floor = chip / doc->chips_per_floor;
 684        chip -= (floor * doc->chips_per_floor);
 685
 686        /* 11.4.4 -- deassert CE before changing chip */
 687        doc200x_hwcontrol(mtd, NAND_CMD_NONE, 0 | NAND_CTRL_CHANGE);
 688
 689        WriteDOC(floor, docptr, FloorSelect);
 690        WriteDOC(chip, docptr, CDSNDeviceSelect);
 691
 692        doc200x_hwcontrol(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
 693
 694        doc->curchip = chip;
 695        doc->curfloor = floor;
 696}
 697
 698#define CDSN_CTRL_MSK (CDSN_CTRL_CE | CDSN_CTRL_CLE | CDSN_CTRL_ALE)
 699
 700static void doc200x_hwcontrol(struct mtd_info *mtd, int cmd,
 701                              unsigned int ctrl)
 702{
 703        struct nand_chip *this = mtd->priv;
 704        struct doc_priv *doc = this->priv;
 705        void __iomem *docptr = doc->virtadr;
 706
 707        if (ctrl & NAND_CTRL_CHANGE) {
 708                doc->CDSNControl &= ~CDSN_CTRL_MSK;
 709                doc->CDSNControl |= ctrl & CDSN_CTRL_MSK;
 710                if (debug)
 711                        printk("hwcontrol(%d): %02x\n", cmd, doc->CDSNControl);
 712                WriteDOC(doc->CDSNControl, docptr, CDSNControl);
 713                /* 11.4.3 -- 4 NOPs after CSDNControl write */
 714                DoC_Delay(doc, 4);
 715        }
 716        if (cmd != NAND_CMD_NONE) {
 717                if (DoC_is_2000(doc))
 718                        doc2000_write_byte(mtd, cmd);
 719                else
 720                        doc2001_write_byte(mtd, cmd);
 721        }
 722}
 723
 724static void doc2001plus_command(struct mtd_info *mtd, unsigned command, int column, int page_addr)
 725{
 726        struct nand_chip *this = mtd->priv;
 727        struct doc_priv *doc = this->priv;
 728        void __iomem *docptr = doc->virtadr;
 729
 730        /*
 731         * Must terminate write pipeline before sending any commands
 732         * to the device.
 733         */
 734        if (command == NAND_CMD_PAGEPROG) {
 735                WriteDOC(0x00, docptr, Mplus_WritePipeTerm);
 736                WriteDOC(0x00, docptr, Mplus_WritePipeTerm);
 737        }
 738
 739        /*
 740         * Write out the command to the device.
 741         */
 742        if (command == NAND_CMD_SEQIN) {
 743                int readcmd;
 744
 745                if (column >= mtd->writesize) {
 746                        /* OOB area */
 747                        column -= mtd->writesize;
 748                        readcmd = NAND_CMD_READOOB;
 749                } else if (column < 256) {
 750                        /* First 256 bytes --> READ0 */
 751                        readcmd = NAND_CMD_READ0;
 752                } else {
 753                        column -= 256;
 754                        readcmd = NAND_CMD_READ1;
 755                }
 756                WriteDOC(readcmd, docptr, Mplus_FlashCmd);
 757        }
 758        WriteDOC(command, docptr, Mplus_FlashCmd);
 759        WriteDOC(0, docptr, Mplus_WritePipeTerm);
 760        WriteDOC(0, docptr, Mplus_WritePipeTerm);
 761
 762        if (column != -1 || page_addr != -1) {
 763                /* Serially input address */
 764                if (column != -1) {
 765                        /* Adjust columns for 16 bit buswidth */
 766                        if (this->options & NAND_BUSWIDTH_16)
 767                                column >>= 1;
 768                        WriteDOC(column, docptr, Mplus_FlashAddress);
 769                }
 770                if (page_addr != -1) {
 771                        WriteDOC((unsigned char)(page_addr & 0xff), docptr, Mplus_FlashAddress);
 772                        WriteDOC((unsigned char)((page_addr >> 8) & 0xff), docptr, Mplus_FlashAddress);
 773                        /* One more address cycle for higher density devices */
 774                        if (this->chipsize & 0x0c000000) {
 775                                WriteDOC((unsigned char)((page_addr >> 16) & 0x0f), docptr, Mplus_FlashAddress);
 776                                printk("high density\n");
 777                        }
 778                }
 779                WriteDOC(0, docptr, Mplus_WritePipeTerm);
 780                WriteDOC(0, docptr, Mplus_WritePipeTerm);
 781                /* deassert ALE */
 782                if (command == NAND_CMD_READ0 || command == NAND_CMD_READ1 ||
 783                    command == NAND_CMD_READOOB || command == NAND_CMD_READID)
 784                        WriteDOC(0, docptr, Mplus_FlashControl);
 785        }
 786
 787        /*
 788         * program and erase have their own busy handlers
 789         * status and sequential in needs no delay
 790         */
 791        switch (command) {
 792
 793        case NAND_CMD_PAGEPROG:
 794        case NAND_CMD_ERASE1:
 795        case NAND_CMD_ERASE2:
 796        case NAND_CMD_SEQIN:
 797        case NAND_CMD_STATUS:
 798                return;
 799
 800        case NAND_CMD_RESET:
 801                if (this->dev_ready)
 802                        break;
 803                udelay(this->chip_delay);
 804                WriteDOC(NAND_CMD_STATUS, docptr, Mplus_FlashCmd);
 805                WriteDOC(0, docptr, Mplus_WritePipeTerm);
 806                WriteDOC(0, docptr, Mplus_WritePipeTerm);
 807                while (!(this->read_byte(mtd) & 0x40)) ;
 808                return;
 809
 810                /* This applies to read commands */
 811        default:
 812                /*
 813                 * If we don't have access to the busy pin, we apply the given
 814                 * command delay
 815                 */
 816                if (!this->dev_ready) {
 817                        udelay(this->chip_delay);
 818                        return;
 819                }
 820        }
 821
 822        /* Apply this short delay always to ensure that we do wait tWB in
 823         * any case on any machine. */
 824        ndelay(100);
 825        /* wait until command is processed */
 826        while (!this->dev_ready(mtd)) ;
 827}
 828
 829static int doc200x_dev_ready(struct mtd_info *mtd)
 830{
 831        struct nand_chip *this = mtd->priv;
 832        struct doc_priv *doc = this->priv;
 833        void __iomem *docptr = doc->virtadr;
 834
 835        if (DoC_is_MillenniumPlus(doc)) {
 836                /* 11.4.2 -- must NOP four times before checking FR/B# */
 837                DoC_Delay(doc, 4);
 838                if ((ReadDOC(docptr, Mplus_FlashControl) & CDSN_CTRL_FR_B_MASK) != CDSN_CTRL_FR_B_MASK) {
 839                        if (debug)
 840                                printk("not ready\n");
 841                        return 0;
 842                }
 843                if (debug)
 844                        printk("was ready\n");
 845                return 1;
 846        } else {
 847                /* 11.4.2 -- must NOP four times before checking FR/B# */
 848                DoC_Delay(doc, 4);
 849                if (!(ReadDOC(docptr, CDSNControl) & CDSN_CTRL_FR_B)) {
 850                        if (debug)
 851                                printk("not ready\n");
 852                        return 0;
 853                }
 854                /* 11.4.2 -- Must NOP twice if it's ready */
 855                DoC_Delay(doc, 2);
 856                if (debug)
 857                        printk("was ready\n");
 858                return 1;
 859        }
 860}
 861
 862static int doc200x_block_bad(struct mtd_info *mtd, loff_t ofs, int getchip)
 863{
 864        /* This is our last resort if we couldn't find or create a BBT.  Just
 865           pretend all blocks are good. */
 866        return 0;
 867}
 868
 869static void doc200x_enable_hwecc(struct mtd_info *mtd, int mode)
 870{
 871        struct nand_chip *this = mtd->priv;
 872        struct doc_priv *doc = this->priv;
 873        void __iomem *docptr = doc->virtadr;
 874
 875        /* Prime the ECC engine */
 876        switch (mode) {
 877        case NAND_ECC_READ:
 878                WriteDOC(DOC_ECC_RESET, docptr, ECCConf);
 879                WriteDOC(DOC_ECC_EN, docptr, ECCConf);
 880                break;
 881        case NAND_ECC_WRITE:
 882                WriteDOC(DOC_ECC_RESET, docptr, ECCConf);
 883                WriteDOC(DOC_ECC_EN | DOC_ECC_RW, docptr, ECCConf);
 884                break;
 885        }
 886}
 887
 888static void doc2001plus_enable_hwecc(struct mtd_info *mtd, int mode)
 889{
 890        struct nand_chip *this = mtd->priv;
 891        struct doc_priv *doc = this->priv;
 892        void __iomem *docptr = doc->virtadr;
 893
 894        /* Prime the ECC engine */
 895        switch (mode) {
 896        case NAND_ECC_READ:
 897                WriteDOC(DOC_ECC_RESET, docptr, Mplus_ECCConf);
 898                WriteDOC(DOC_ECC_EN, docptr, Mplus_ECCConf);
 899                break;
 900        case NAND_ECC_WRITE:
 901                WriteDOC(DOC_ECC_RESET, docptr, Mplus_ECCConf);
 902                WriteDOC(DOC_ECC_EN | DOC_ECC_RW, docptr, Mplus_ECCConf);
 903                break;
 904        }
 905}
 906
 907/* This code is only called on write */
 908static int doc200x_calculate_ecc(struct mtd_info *mtd, const u_char *dat, unsigned char *ecc_code)
 909{
 910        struct nand_chip *this = mtd->priv;
 911        struct doc_priv *doc = this->priv;
 912        void __iomem *docptr = doc->virtadr;
 913        int i;
 914        int emptymatch = 1;
 915
 916        /* flush the pipeline */
 917        if (DoC_is_2000(doc)) {
 918                WriteDOC(doc->CDSNControl & ~CDSN_CTRL_FLASH_IO, docptr, CDSNControl);
 919                WriteDOC(0, docptr, 2k_CDSN_IO);
 920                WriteDOC(0, docptr, 2k_CDSN_IO);
 921                WriteDOC(0, docptr, 2k_CDSN_IO);
 922                WriteDOC(doc->CDSNControl, docptr, CDSNControl);
 923        } else if (DoC_is_MillenniumPlus(doc)) {
 924                WriteDOC(0, docptr, Mplus_NOP);
 925                WriteDOC(0, docptr, Mplus_NOP);
 926                WriteDOC(0, docptr, Mplus_NOP);
 927        } else {
 928                WriteDOC(0, docptr, NOP);
 929                WriteDOC(0, docptr, NOP);
 930                WriteDOC(0, docptr, NOP);
 931        }
 932
 933        for (i = 0; i < 6; i++) {
 934                if (DoC_is_MillenniumPlus(doc))
 935                        ecc_code[i] = ReadDOC_(docptr, DoC_Mplus_ECCSyndrome0 + i);
 936                else
 937                        ecc_code[i] = ReadDOC_(docptr, DoC_ECCSyndrome0 + i);
 938                if (ecc_code[i] != empty_write_ecc[i])
 939                        emptymatch = 0;
 940        }
 941        if (DoC_is_MillenniumPlus(doc))
 942                WriteDOC(DOC_ECC_DIS, docptr, Mplus_ECCConf);
 943        else
 944                WriteDOC(DOC_ECC_DIS, docptr, ECCConf);
 945#if 0
 946        /* If emptymatch=1, we might have an all-0xff data buffer.  Check. */
 947        if (emptymatch) {
 948                /* Note: this somewhat expensive test should not be triggered
 949                   often.  It could be optimized away by examining the data in
 950                   the writebuf routine, and remembering the result. */
 951                for (i = 0; i < 512; i++) {
 952                        if (dat[i] == 0xff)
 953                                continue;
 954                        emptymatch = 0;
 955                        break;
 956                }
 957        }
 958        /* If emptymatch still =1, we do have an all-0xff data buffer.
 959           Return all-0xff ecc value instead of the computed one, so
 960           it'll look just like a freshly-erased page. */
 961        if (emptymatch)
 962                memset(ecc_code, 0xff, 6);
 963#endif
 964        return 0;
 965}
 966
 967static int doc200x_correct_data(struct mtd_info *mtd, u_char *dat,
 968                                u_char *read_ecc, u_char *isnull)
 969{
 970        int i, ret = 0;
 971        struct nand_chip *this = mtd->priv;
 972        struct doc_priv *doc = this->priv;
 973        void __iomem *docptr = doc->virtadr;
 974        uint8_t calc_ecc[6];
 975        volatile u_char dummy;
 976        int emptymatch = 1;
 977
 978        /* flush the pipeline */
 979        if (DoC_is_2000(doc)) {
 980                dummy = ReadDOC(docptr, 2k_ECCStatus);
 981                dummy = ReadDOC(docptr, 2k_ECCStatus);
 982                dummy = ReadDOC(docptr, 2k_ECCStatus);
 983        } else if (DoC_is_MillenniumPlus(doc)) {
 984                dummy = ReadDOC(docptr, Mplus_ECCConf);
 985                dummy = ReadDOC(docptr, Mplus_ECCConf);
 986                dummy = ReadDOC(docptr, Mplus_ECCConf);
 987        } else {
 988                dummy = ReadDOC(docptr, ECCConf);
 989                dummy = ReadDOC(docptr, ECCConf);
 990                dummy = ReadDOC(docptr, ECCConf);
 991        }
 992
 993        /* Error occured ? */
 994        if (dummy & 0x80) {
 995                for (i = 0; i < 6; i++) {
 996                        if (DoC_is_MillenniumPlus(doc))
 997                                calc_ecc[i] = ReadDOC_(docptr, DoC_Mplus_ECCSyndrome0 + i);
 998                        else
 999                                calc_ecc[i] = ReadDOC_(docptr, DoC_ECCSyndrome0 + i);
1000                        if (calc_ecc[i] != empty_read_syndrome[i])
1001                                emptymatch = 0;
1002                }
1003                /* If emptymatch=1, the read syndrome is consistent with an
1004                   all-0xff data and stored ecc block.  Check the stored ecc. */
1005                if (emptymatch) {
1006                        for (i = 0; i < 6; i++) {
1007                                if (read_ecc[i] == 0xff)
1008                                        continue;
1009                                emptymatch = 0;
1010                                break;
1011                        }
1012                }
1013                /* If emptymatch still =1, check the data block. */
1014                if (emptymatch) {
1015                        /* Note: this somewhat expensive test should not be triggered
1016                           often.  It could be optimized away by examining the data in
1017                           the readbuf routine, and remembering the result. */
1018                        for (i = 0; i < 512; i++) {
1019                                if (dat[i] == 0xff)
1020                                        continue;
1021                                emptymatch = 0;
1022                                break;
1023                        }
1024                }
1025                /* If emptymatch still =1, this is almost certainly a freshly-
1026                   erased block, in which case the ECC will not come out right.
1027                   We'll suppress the error and tell the caller everything's
1028                   OK.  Because it is. */
1029                if (!emptymatch)
1030                        ret = doc_ecc_decode(rs_decoder, dat, calc_ecc);
1031                if (ret > 0)
1032                        printk(KERN_ERR "doc200x_correct_data corrected %d errors\n", ret);
1033        }
1034        if (DoC_is_MillenniumPlus(doc))
1035                WriteDOC(DOC_ECC_DIS, docptr, Mplus_ECCConf);
1036        else
1037                WriteDOC(DOC_ECC_DIS, docptr, ECCConf);
1038        if (no_ecc_failures && (ret == -EBADMSG)) {
1039                printk(KERN_ERR "suppressing ECC failure\n");
1040                ret = 0;
1041        }
1042        return ret;
1043}
1044
1045/*u_char mydatabuf[528]; */
1046
1047/* The strange out-of-order .oobfree list below is a (possibly unneeded)
1048 * attempt to retain compatibility.  It used to read:
1049 *      .oobfree = { {8, 8} }
1050 * Since that leaves two bytes unusable, it was changed.  But the following
1051 * scheme might affect existing jffs2 installs by moving the cleanmarker:
1052 *      .oobfree = { {6, 10} }
1053 * jffs2 seems to handle the above gracefully, but the current scheme seems
1054 * safer.  The only problem with it is that any code that parses oobfree must
1055 * be able to handle out-of-order segments.
1056 */
1057static struct nand_ecclayout doc200x_oobinfo = {
1058        .eccbytes = 6,
1059        .eccpos = {0, 1, 2, 3, 4, 5},
1060        .oobfree = {{8, 8}, {6, 2}}
1061};
1062
1063/* Find the (I)NFTL Media Header, and optionally also the mirror media header.
1064   On sucessful return, buf will contain a copy of the media header for
1065   further processing.  id is the string to scan for, and will presumably be
1066   either "ANAND" or "BNAND".  If findmirror=1, also look for the mirror media
1067   header.  The page #s of the found media headers are placed in mh0_page and
1068   mh1_page in the DOC private structure. */
1069static int __init find_media_headers(struct mtd_info *mtd, u_char *buf, const char *id, int findmirror)
1070{
1071        struct nand_chip *this = mtd->priv;
1072        struct doc_priv *doc = this->priv;
1073        unsigned offs;
1074        int ret;
1075        size_t retlen;
1076
1077        for (offs = 0; offs < mtd->size; offs += mtd->erasesize) {
1078                ret = mtd->read(mtd, offs, mtd->writesize, &retlen, buf);
1079                if (retlen != mtd->writesize)
1080                        continue;
1081                if (ret) {
1082                        printk(KERN_WARNING "ECC error scanning DOC at 0x%x\n", offs);
1083                }
1084                if (memcmp(buf, id, 6))
1085                        continue;
1086                printk(KERN_INFO "Found DiskOnChip %s Media Header at 0x%x\n", id, offs);
1087                if (doc->mh0_page == -1) {
1088                        doc->mh0_page = offs >> this->page_shift;
1089                        if (!findmirror)
1090                                return 1;
1091                        continue;
1092                }
1093                doc->mh1_page = offs >> this->page_shift;
1094                return 2;
1095        }
1096        if (doc->mh0_page == -1) {
1097                printk(KERN_WARNING "DiskOnChip %s Media Header not found.\n", id);
1098                return 0;
1099        }
1100        /* Only one mediaheader was found.  We want buf to contain a
1101           mediaheader on return, so we'll have to re-read the one we found. */
1102        offs = doc->mh0_page << this->page_shift;
1103        ret = mtd->read(mtd, offs, mtd->writesize, &retlen, buf);
1104        if (retlen != mtd->writesize) {
1105                /* Insanity.  Give up. */
1106                printk(KERN_ERR "Read DiskOnChip Media Header once, but can't reread it???\n");
1107                return 0;
1108        }
1109        return 1;
1110}
1111
1112static inline int __init nftl_partscan(struct mtd_info *mtd, struct mtd_partition *parts)
1113{
1114        struct nand_chip *this = mtd->priv;
1115        struct doc_priv *doc = this->priv;
1116        int ret = 0;
1117        u_char *buf;
1118        struct NFTLMediaHeader *mh;
1119        const unsigned psize = 1 << this->page_shift;
1120        int numparts = 0;
1121        unsigned blocks, maxblocks;
1122        int offs, numheaders;
1123
1124        buf = kmalloc(mtd->writesize, GFP_KERNEL);
1125        if (!buf) {
1126                printk(KERN_ERR "DiskOnChip mediaheader kmalloc failed!\n");
1127                return 0;
1128        }
1129        if (!(numheaders = find_media_headers(mtd, buf, "ANAND", 1)))
1130                goto out;
1131        mh = (struct NFTLMediaHeader *)buf;
1132
1133        le16_to_cpus(&mh->NumEraseUnits);
1134        le16_to_cpus(&mh->FirstPhysicalEUN);
1135        le32_to_cpus(&mh->FormattedSize);
1136
1137        printk(KERN_INFO "    DataOrgID        = %s\n"
1138                         "    NumEraseUnits    = %d\n"
1139                         "    FirstPhysicalEUN = %d\n"
1140                         "    FormattedSize    = %d\n"
1141                         "    UnitSizeFactor   = %d\n",
1142                mh->DataOrgID, mh->NumEraseUnits,
1143                mh->FirstPhysicalEUN, mh->FormattedSize,
1144                mh->UnitSizeFactor);
1145
1146        blocks = mtd->size >> this->phys_erase_shift;
1147        maxblocks = min(32768U, mtd->erasesize - psize);
1148
1149        if (mh->UnitSizeFactor == 0x00) {
1150                /* Auto-determine UnitSizeFactor.  The constraints are:
1151                   - There can be at most 32768 virtual blocks.
1152                   - There can be at most (virtual block size - page size)
1153                   virtual blocks (because MediaHeader+BBT must fit in 1).
1154                 */
1155                mh->UnitSizeFactor = 0xff;
1156                while (blocks > maxblocks) {
1157                        blocks >>= 1;
1158                        maxblocks = min(32768U, (maxblocks << 1) + psize);
1159                        mh->UnitSizeFactor--;
1160                }
1161                printk(KERN_WARNING "UnitSizeFactor=0x00 detected.  Correct value is assumed to be 0x%02x.\n", mh->UnitSizeFactor);
1162        }
1163
1164        /* NOTE: The lines below modify internal variables of the NAND and MTD
1165           layers; variables with have already been configured by nand_scan.
1166           Unfortunately, we didn't know before this point what these values
1167           should be.  Thus, this code is somewhat dependant on the exact
1168           implementation of the NAND layer.  */
1169        if (mh->UnitSizeFactor != 0xff) {
1170                this->bbt_erase_shift += (0xff - mh->UnitSizeFactor);
1171                mtd->erasesize <<= (0xff - mh->UnitSizeFactor);
1172                printk(KERN_INFO "Setting virtual erase size to %d\n", mtd->erasesize);
1173                blocks = mtd->size >> this->bbt_erase_shift;
1174                maxblocks = min(32768U, mtd->erasesize - psize);
1175        }
1176
1177        if (blocks > maxblocks) {
1178                printk(KERN_ERR "UnitSizeFactor of 0x%02x is inconsistent with device size.  Aborting.\n", mh->UnitSizeFactor);
1179                goto out;
1180        }
1181
1182        /* Skip past the media headers. */
1183        offs = max(doc->mh0_page, doc->mh1_page);
1184        offs <<= this->page_shift;
1185        offs += mtd->erasesize;
1186
1187        if (show_firmware_partition == 1) {
1188                parts[0].name = " DiskOnChip Firmware / Media Header partition";
1189                parts[0].offset = 0;
1190                parts[0].size = offs;
1191                numparts = 1;
1192        }
1193
1194        parts[numparts].name = " DiskOnChip BDTL partition";
1195        parts[numparts].offset = offs;
1196        parts[numparts].size = (mh->NumEraseUnits - numheaders) << this->bbt_erase_shift;
1197
1198        offs += parts[numparts].size;
1199        numparts++;
1200
1201        if (offs < mtd->size) {
1202                parts[numparts].name = " DiskOnChip Remainder partition";
1203                parts[numparts].offset = offs;
1204                parts[numparts].size = mtd->size - offs;
1205                numparts++;
1206        }
1207
1208        ret = numparts;
1209 out:
1210        kfree(buf);
1211        return ret;
1212}
1213
1214/* This is a stripped-down copy of the code in inftlmount.c */
1215static inline int __init inftl_partscan(struct mtd_info *mtd, struct mtd_partition *parts)
1216{
1217        struct nand_chip *this = mtd->priv;
1218        struct doc_priv *doc = this->priv;
1219        int ret = 0;
1220        u_char *buf;
1221        struct INFTLMediaHeader *mh;
1222        struct INFTLPartition *ip;
1223        int numparts = 0;
1224        int blocks;
1225        int vshift, lastvunit = 0;
1226        int i;
1227        int end = mtd->size;
1228
1229        if (inftl_bbt_write)
1230                end -= (INFTL_BBT_RESERVED_BLOCKS << this->phys_erase_shift);
1231
1232        buf = kmalloc(mtd->writesize, GFP_KERNEL);
1233        if (!buf) {
1234                printk(KERN_ERR "DiskOnChip mediaheader kmalloc failed!\n");
1235                return 0;
1236        }
1237
1238        if (!find_media_headers(mtd, buf, "BNAND", 0))
1239                goto out;
1240        doc->mh1_page = doc->mh0_page + (4096 >> this->page_shift);
1241        mh = (struct INFTLMediaHeader *)buf;
1242
1243        le32_to_cpus(&mh->NoOfBootImageBlocks);
1244        le32_to_cpus(&mh->NoOfBinaryPartitions);
1245        le32_to_cpus(&mh->NoOfBDTLPartitions);
1246        le32_to_cpus(&mh->BlockMultiplierBits);
1247        le32_to_cpus(&mh->FormatFlags);
1248        le32_to_cpus(&mh->PercentUsed);
1249
1250        printk(KERN_INFO "    bootRecordID          = %s\n"
1251                         "    NoOfBootImageBlocks   = %d\n"
1252                         "    NoOfBinaryPartitions  = %d\n"
1253                         "    NoOfBDTLPartitions    = %d\n"
1254                         "    BlockMultiplerBits    = %d\n"
1255                         "    FormatFlgs            = %d\n"
1256                         "    OsakVersion           = %d.%d.%d.%d\n"
1257                         "    PercentUsed           = %d\n",
1258                mh->bootRecordID, mh->NoOfBootImageBlocks,
1259                mh->NoOfBinaryPartitions,
1260                mh->NoOfBDTLPartitions,
1261                mh->BlockMultiplierBits, mh->FormatFlags,
1262                ((unsigned char *) &mh->OsakVersion)[0] & 0xf,
1263                ((unsigned char *) &mh->OsakVersion)[1] & 0xf,
1264                ((unsigned char *) &mh->OsakVersion)[2] & 0xf,
1265                ((unsigned char *) &mh->OsakVersion)[3] & 0xf,
1266                mh->PercentUsed);
1267
1268        vshift = this->phys_erase_shift + mh->BlockMultiplierBits;
1269
1270        blocks = mtd->size >> vshift;
1271        if (blocks > 32768) {
1272                printk(KERN_ERR "BlockMultiplierBits=%d is inconsistent with device size.  Aborting.\n", mh->BlockMultiplierBits);
1273                goto out;
1274        }
1275
1276        blocks = doc->chips_per_floor << (this->chip_shift - this->phys_erase_shift);
1277        if (inftl_bbt_write && (blocks > mtd->erasesize)) {
1278                printk(KERN_ERR "Writeable BBTs spanning more than one erase block are not yet supported.  FIX ME!\n");
1279                goto out;
1280        }
1281
1282        /* Scan the partitions */
1283        for (i = 0; (i < 4); i++) {
1284                ip = &(mh->Partitions[i]);
1285                le32_to_cpus(&ip->virtualUnits);
1286                le32_to_cpus(&ip->firstUnit);
1287                le32_to_cpus(&ip->lastUnit);
1288                le32_to_cpus(&ip->flags);
1289                le32_to_cpus(&ip->spareUnits);
1290                le32_to_cpus(&ip->Reserved0);
1291
1292                printk(KERN_INFO        "    PARTITION[%d] ->\n"
1293                        "        virtualUnits    = %d\n"
1294                        "        firstUnit       = %d\n"
1295                        "        lastUnit        = %d\n"
1296                        "        flags           = 0x%x\n"
1297                        "        spareUnits      = %d\n",
1298                        i, ip->virtualUnits, ip->firstUnit,
1299                        ip->lastUnit, ip->flags,
1300                        ip->spareUnits);
1301
1302                if ((show_firmware_partition == 1) &&
1303                    (i == 0) && (ip->firstUnit > 0)) {
1304                        parts[0].name = " DiskOnChip IPL / Media Header partition";
1305                        parts[0].offset = 0;
1306                        parts[0].size = mtd->erasesize * ip->firstUnit;
1307                        numparts = 1;
1308                }
1309
1310                if (ip->flags & INFTL_BINARY)
1311                        parts[numparts].name = " DiskOnChip BDK partition";
1312                else
1313                        parts[numparts].name = " DiskOnChip BDTL partition";
1314                parts[numparts].offset = ip->firstUnit << vshift;
1315                parts[numparts].size = (1 + ip->lastUnit - ip->firstUnit) << vshift;
1316                numparts++;
1317                if (ip->lastUnit > lastvunit)
1318                        lastvunit = ip->lastUnit;
1319                if (ip->flags & INFTL_LAST)
1320                        break;
1321        }
1322        lastvunit++;
1323        if ((lastvunit << vshift) < end) {
1324                parts[numparts].name = " DiskOnChip Remainder partition";
1325                parts[numparts].offset = lastvunit << vshift;
1326                parts[numparts].size = end - parts[numparts].offset;
1327                numparts++;
1328        }
1329        ret = numparts;
1330 out:
1331        kfree(buf);
1332        return ret;
1333}
1334
1335static int __init nftl_scan_bbt(struct mtd_info *mtd)
1336{
1337        int ret, numparts;
1338        struct nand_chip *this = mtd->priv;
1339        struct doc_priv *doc = this->priv;
1340        struct mtd_partition parts[2];
1341
1342        memset((char *)parts, 0, sizeof(parts));
1343        /* On NFTL, we have to find the media headers before we can read the
1344           BBTs, since they're stored in the media header eraseblocks. */
1345        numparts = nftl_partscan(mtd, parts);
1346        if (!numparts)
1347                return -EIO;
1348        this->bbt_td->options = NAND_BBT_ABSPAGE | NAND_BBT_8BIT |
1349                                NAND_BBT_SAVECONTENT | NAND_BBT_WRITE |
1350                                NAND_BBT_VERSION;
1351        this->bbt_td->veroffs = 7;
1352        this->bbt_td->pages[0] = doc->mh0_page + 1;
1353        if (doc->mh1_page != -1) {
1354                this->bbt_md->options = NAND_BBT_ABSPAGE | NAND_BBT_8BIT |
1355                                        NAND_BBT_SAVECONTENT | NAND_BBT_WRITE |
1356                                        NAND_BBT_VERSION;
1357                this->bbt_md->veroffs = 7;
1358                this->bbt_md->pages[0] = doc->mh1_page + 1;
1359        } else {
1360                this->bbt_md = NULL;
1361        }
1362
1363        /* It's safe to set bd=NULL below because NAND_BBT_CREATE is not set.
1364           At least as nand_bbt.c is currently written. */
1365        if ((ret = nand_scan_bbt(mtd, NULL)))
1366                return ret;
1367        add_mtd_device(mtd);
1368#ifdef CONFIG_MTD_PARTITIONS
1369        if (!no_autopart)
1370                add_mtd_partitions(mtd, parts, numparts);
1371#endif
1372        return 0;
1373}
1374
1375static int __init inftl_scan_bbt(struct mtd_info *mtd)
1376{
1377        int ret, numparts;
1378        struct nand_chip *this = mtd->priv;
1379        struct doc_priv *doc = this->priv;
1380        struct mtd_partition parts[5];
1381
1382        if (this->numchips > doc->chips_per_floor) {
1383                printk(KERN_ERR "Multi-floor INFTL devices not yet supported.\n");
1384                return -EIO;
1385        }
1386
1387        if (DoC_is_MillenniumPlus(doc)) {
1388                this->bbt_td->options = NAND_BBT_2BIT | NAND_BBT_ABSPAGE;
1389                if (inftl_bbt_write)
1390                        this->bbt_td->options |= NAND_BBT_WRITE;
1391                this->bbt_td->pages[0] = 2;
1392                this->bbt_md = NULL;
1393        } else {
1394                this->bbt_td->options = NAND_BBT_LASTBLOCK | NAND_BBT_8BIT | NAND_BBT_VERSION;
1395                if (inftl_bbt_write)
1396                        this->bbt_td->options |= NAND_BBT_WRITE;
1397                this->bbt_td->offs = 8;
1398                this->bbt_td->len = 8;
1399                this->bbt_td->veroffs = 7;
1400                this->bbt_td->maxblocks = INFTL_BBT_RESERVED_BLOCKS;
1401                this->bbt_td->reserved_block_code = 0x01;
1402                this->bbt_td->pattern = "MSYS_BBT";
1403
1404                this->bbt_md->options = NAND_BBT_LASTBLOCK | NAND_BBT_8BIT | NAND_BBT_VERSION;
1405                if (inftl_bbt_write)
1406                        this->bbt_md->options |= NAND_BBT_WRITE;
1407                this->bbt_md->offs = 8;
1408                this->bbt_md->len = 8;
1409                this->bbt_md->veroffs = 7;
1410                this->bbt_md->maxblocks = INFTL_BBT_RESERVED_BLOCKS;
1411                this->bbt_md->reserved_block_code = 0x01;
1412                this->bbt_md->pattern = "TBB_SYSM";
1413        }
1414
1415        /* It's safe to set bd=NULL below because NAND_BBT_CREATE is not set.
1416           At least as nand_bbt.c is currently written. */
1417        if ((ret = nand_scan_bbt(mtd, NULL)))
1418                return ret;
1419        memset((char *)parts, 0, sizeof(parts));
1420        numparts = inftl_partscan(mtd, parts);
1421        /* At least for now, require the INFTL Media Header.  We could probably
1422           do without it for non-INFTL use, since all it gives us is
1423           autopartitioning, but I want to give it more thought. */
1424        if (!numparts)
1425                return -EIO;
1426        add_mtd_device(mtd);
1427#ifdef CONFIG_MTD_PARTITIONS
1428        if (!no_autopart)
1429                add_mtd_partitions(mtd, parts, numparts);
1430#endif
1431        return 0;
1432}
1433
1434static inline int __init doc2000_init(struct mtd_info *mtd)
1435{
1436        struct nand_chip *this = mtd->priv;
1437        struct doc_priv *doc = this->priv;
1438
1439        this->read_byte = doc2000_read_byte;
1440        this->write_buf = doc2000_writebuf;
1441        this->read_buf = doc2000_readbuf;
1442        this->verify_buf = doc2000_verifybuf;
1443        this->scan_bbt = nftl_scan_bbt;
1444
1445        doc->CDSNControl = CDSN_CTRL_FLASH_IO | CDSN_CTRL_ECC_IO;
1446        doc2000_count_chips(mtd);
1447        mtd->name = "DiskOnChip 2000 (NFTL Model)";
1448        return (4 * doc->chips_per_floor);
1449}
1450
1451static inline int __init doc2001_init(struct mtd_info *mtd)
1452{
1453        struct nand_chip *this = mtd->priv;
1454        struct doc_priv *doc = this->priv;
1455
1456        this->read_byte = doc2001_read_byte;
1457        this->write_buf = doc2001_writebuf;
1458        this->read_buf = doc2001_readbuf;
1459        this->verify_buf = doc2001_verifybuf;
1460
1461        ReadDOC(doc->virtadr, ChipID);
1462        ReadDOC(doc->virtadr, ChipID);
1463        ReadDOC(doc->virtadr, ChipID);
1464        if (ReadDOC(doc->virtadr, ChipID) != DOC_ChipID_DocMil) {
1465                /* It's not a Millennium; it's one of the newer
1466                   DiskOnChip 2000 units with a similar ASIC.
1467                   Treat it like a Millennium, except that it
1468                   can have multiple chips. */
1469                doc2000_count_chips(mtd);
1470                mtd->name = "DiskOnChip 2000 (INFTL Model)";
1471                this->scan_bbt = inftl_scan_bbt;
1472                return (4 * doc->chips_per_floor);
1473        } else {
1474                /* Bog-standard Millennium */
1475                doc->chips_per_floor = 1;
1476                mtd->name = "DiskOnChip Millennium";
1477                this->scan_bbt = nftl_scan_bbt;
1478                return 1;
1479        }
1480}
1481
1482static inline int __init doc2001plus_init(struct mtd_info *mtd)
1483{
1484        struct nand_chip *this = mtd->priv;
1485        struct doc_priv *doc = this->priv;
1486
1487        this->read_byte = doc2001plus_read_byte;
1488        this->write_buf = doc2001plus_writebuf;
1489        this->read_buf = doc2001plus_readbuf;
1490        this->verify_buf = doc2001plus_verifybuf;
1491        this->scan_bbt = inftl_scan_bbt;
1492        this->cmd_ctrl = NULL;
1493        this->select_chip = doc2001plus_select_chip;
1494        this->cmdfunc = doc2001plus_command;
1495        this->ecc.hwctl = doc2001plus_enable_hwecc;
1496
1497        doc->chips_per_floor = 1;
1498        mtd->name = "DiskOnChip Millennium Plus";
1499
1500        return 1;
1501}
1502
1503static int __init doc_probe(unsigned long physadr)
1504{
1505        unsigned char ChipID;
1506        struct mtd_info *mtd;
1507        struct nand_chip *nand;
1508        struct doc_priv *doc;
1509        void __iomem *virtadr;
1510        unsigned char save_control;
1511        unsigned char tmp, tmpb, tmpc;
1512        int reg, len, numchips;
1513        int ret = 0;
1514
1515        virtadr = ioremap(physadr, DOC_IOREMAP_LEN);
1516        if (!virtadr) {
1517                printk(KERN_ERR "Diskonchip ioremap failed: 0x%x bytes at 0x%lx\n", DOC_IOREMAP_LEN, physadr);
1518                return -EIO;
1519        }
1520
1521        /* It's not possible to cleanly detect the DiskOnChip - the
1522         * bootup procedure will put the device into reset mode, and
1523         * it's not possible to talk to it without actually writing
1524         * to the DOCControl register. So we store the current contents
1525         * of the DOCControl register's location, in case we later decide
1526         * that it's not a DiskOnChip, and want to put it back how we
1527         * found it.
1528         */
1529        save_control = ReadDOC(virtadr, DOCControl);
1530
1531        /* Reset the DiskOnChip ASIC */
1532        WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_RESET, virtadr, DOCControl);
1533        WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_RESET, virtadr, DOCControl);
1534
1535        /* Enable the DiskOnChip ASIC */
1536        WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_NORMAL, virtadr, DOCControl);
1537        WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_NORMAL, virtadr, DOCControl);
1538
1539        ChipID = ReadDOC(virtadr, ChipID);
1540
1541        switch (ChipID) {
1542        case DOC_ChipID_Doc2k:
1543                reg = DoC_2k_ECCStatus;
1544                break;
1545        case DOC_ChipID_DocMil:
1546                reg = DoC_ECCConf;
1547                break;
1548        case DOC_ChipID_DocMilPlus16:
1549        case DOC_ChipID_DocMilPlus32:
1550        case 0:
1551                /* Possible Millennium Plus, need to do more checks */
1552                /* Possibly release from power down mode */
1553                for (tmp = 0; (tmp < 4); tmp++)
1554                        ReadDOC(virtadr, Mplus_Power);
1555
1556                /* Reset the Millennium Plus ASIC */
1557                tmp = DOC_MODE_RESET | DOC_MODE_MDWREN | DOC_MODE_RST_LAT | DOC_MODE_BDECT;
1558                WriteDOC(tmp, virtadr, Mplus_DOCControl);
1559                WriteDOC(~tmp, virtadr, Mplus_CtrlConfirm);
1560
1561                mdelay(1);
1562                /* Enable the Millennium Plus ASIC */
1563                tmp = DOC_MODE_NORMAL | DOC_MODE_MDWREN | DOC_MODE_RST_LAT | DOC_MODE_BDECT;
1564                WriteDOC(tmp, virtadr, Mplus_DOCControl);
1565                WriteDOC(~tmp, virtadr, Mplus_CtrlConfirm);
1566                mdelay(1);
1567
1568                ChipID = ReadDOC(virtadr, ChipID);
1569
1570                switch (ChipID) {
1571                case DOC_ChipID_DocMilPlus16:
1572                        reg = DoC_Mplus_Toggle;
1573                        break;
1574                case DOC_ChipID_DocMilPlus32:
1575                        printk(KERN_ERR "DiskOnChip Millennium Plus 32MB is not supported, ignoring.\n");
1576                default:
1577                        ret = -ENODEV;
1578                        goto notfound;
1579                }
1580                break;
1581
1582        default:
1583                ret = -ENODEV;
1584                goto notfound;
1585        }
1586        /* Check the TOGGLE bit in the ECC register */
1587        tmp = ReadDOC_(virtadr, reg) & DOC_TOGGLE_BIT;
1588        tmpb = ReadDOC_(virtadr, reg) & DOC_TOGGLE_BIT;
1589        tmpc = ReadDOC_(virtadr, reg) & DOC_TOGGLE_BIT;
1590        if ((tmp == tmpb) || (tmp != tmpc)) {
1591                printk(KERN_WARNING "Possible DiskOnChip at 0x%lx failed TOGGLE test, dropping.\n", physadr);
1592                ret = -ENODEV;
1593                goto notfound;
1594        }
1595
1596        for (mtd = doclist; mtd; mtd = doc->nextdoc) {
1597                unsigned char oldval;
1598                unsigned char newval;
1599                nand = mtd->priv;
1600                doc = nand->priv;
1601                /* Use the alias resolution register to determine if this is
1602                   in fact the same DOC aliased to a new address.  If writes
1603                   to one chip's alias resolution register change the value on
1604                   the other chip, they're the same chip. */
1605                if (ChipID == DOC_ChipID_DocMilPlus16) {
1606                        oldval = ReadDOC(doc->virtadr, Mplus_AliasResolution);
1607                        newval = ReadDOC(virtadr, Mplus_AliasResolution);
1608                } else {
1609                        oldval = ReadDOC(doc->virtadr, AliasResolution);
1610                        newval = ReadDOC(virtadr, AliasResolution);
1611                }
1612                if (oldval != newval)
1613                        continue;
1614                if (ChipID == DOC_ChipID_DocMilPlus16) {
1615                        WriteDOC(~newval, virtadr, Mplus_AliasResolution);
1616                        oldval = ReadDOC(doc->virtadr, Mplus_AliasResolution);
1617                        WriteDOC(newval, virtadr, Mplus_AliasResolution);       /* restore it */
1618                } else {
1619                        WriteDOC(~newval, virtadr, AliasResolution);
1620                        oldval = ReadDOC(doc->virtadr, AliasResolution);
1621                        WriteDOC(newval, virtadr, AliasResolution);     /* restore it */
1622                }
1623                newval = ~newval;
1624                if (oldval == newval) {
1625                        printk(KERN_DEBUG "Found alias of DOC at 0x%lx to 0x%lx\n", doc->physadr, physadr);
1626                        goto notfound;
1627                }
1628        }
1629
1630        printk(KERN_NOTICE "DiskOnChip found at 0x%lx\n", physadr);
1631
1632        len = sizeof(struct mtd_info) +
1633            sizeof(struct nand_chip) + sizeof(struct doc_priv) + (2 * sizeof(struct nand_bbt_descr));
1634        mtd = kzalloc(len, GFP_KERNEL);
1635        if (!mtd) {
1636                printk(KERN_ERR "DiskOnChip kmalloc (%d bytes) failed!\n", len);
1637                ret = -ENOMEM;
1638                goto fail;
1639        }
1640
1641        nand                    = (struct nand_chip *) (mtd + 1);
1642        doc                     = (struct doc_priv *) (nand + 1);
1643        nand->bbt_td            = (struct nand_bbt_descr *) (doc + 1);
1644        nand->bbt_md            = nand->bbt_td + 1;
1645
1646        mtd->priv               = nand;
1647        mtd->owner              = THIS_MODULE;
1648
1649        nand->priv              = doc;
1650        nand->select_chip       = doc200x_select_chip;
1651        nand->cmd_ctrl          = doc200x_hwcontrol;
1652        nand->dev_ready         = doc200x_dev_ready;
1653        nand->waitfunc          = doc200x_wait;
1654        nand->block_bad         = doc200x_block_bad;
1655        nand->ecc.hwctl         = doc200x_enable_hwecc;
1656        nand->ecc.calculate     = doc200x_calculate_ecc;
1657        nand->ecc.correct       = doc200x_correct_data;
1658
1659        nand->ecc.layout        = &doc200x_oobinfo;
1660        nand->ecc.mode          = NAND_ECC_HW_SYNDROME;
1661        nand->ecc.size          = 512;
1662        nand->ecc.bytes         = 6;
1663        nand->options           = NAND_USE_FLASH_BBT;
1664
1665        doc->physadr            = physadr;
1666        doc->virtadr            = virtadr;
1667        doc->ChipID             = ChipID;
1668        doc->curfloor           = -1;
1669        doc->curchip            = -1;
1670        doc->mh0_page           = -1;
1671        doc->mh1_page           = -1;
1672        doc->nextdoc            = doclist;
1673
1674        if (ChipID == DOC_ChipID_Doc2k)
1675                numchips = doc2000_init(mtd);
1676        else if (ChipID == DOC_ChipID_DocMilPlus16)
1677                numchips = doc2001plus_init(mtd);
1678        else
1679                numchips = doc2001_init(mtd);
1680
1681        if ((ret = nand_scan(mtd, numchips))) {
1682                /* DBB note: i believe nand_release is necessary here, as
1683                   buffers may have been allocated in nand_base.  Check with
1684                   Thomas. FIX ME! */
1685                /* nand_release will call del_mtd_device, but we haven't yet
1686                   added it.  This is handled without incident by
1687                   del_mtd_device, as far as I can tell. */
1688                nand_release(mtd);
1689                kfree(mtd);
1690                goto fail;
1691        }
1692
1693        /* Success! */
1694        doclist = mtd;
1695        return 0;
1696
1697 notfound:
1698        /* Put back the contents of the DOCControl register, in case it's not
1699           actually a DiskOnChip.  */
1700        WriteDOC(save_control, virtadr, DOCControl);
1701 fail:
1702        iounmap(virtadr);
1703        return ret;
1704}
1705
1706static void release_nanddoc(void)
1707{
1708        struct mtd_info *mtd, *nextmtd;
1709        struct nand_chip *nand;
1710        struct doc_priv *doc;
1711
1712        for (mtd = doclist; mtd; mtd = nextmtd) {
1713                nand = mtd->priv;
1714                doc = nand->priv;
1715
1716                nextmtd = doc->nextdoc;
1717                nand_release(mtd);
1718                iounmap(doc->virtadr);
1719                kfree(mtd);
1720        }
1721}
1722
1723static int __init init_nanddoc(void)
1724{
1725        int i, ret = 0;
1726
1727        /* We could create the decoder on demand, if memory is a concern.
1728         * This way we have it handy, if an error happens
1729         *
1730         * Symbolsize is 10 (bits)
1731         * Primitve polynomial is x^10+x^3+1
1732         * first consecutive root is 510
1733         * primitve element to generate roots = 1
1734         * generator polinomial degree = 4
1735         */
1736        rs_decoder = init_rs(10, 0x409, FCR, 1, NROOTS);
1737        if (!rs_decoder) {
1738                printk(KERN_ERR "DiskOnChip: Could not create a RS decoder\n");
1739                return -ENOMEM;
1740        }
1741
1742        if (doc_config_location) {
1743                printk(KERN_INFO "Using configured DiskOnChip probe address 0x%lx\n", doc_config_location);
1744                ret = doc_probe(doc_config_location);
1745                if (ret < 0)
1746                        goto outerr;
1747        } else {
1748                for (i = 0; (doc_locations[i] != 0xffffffff); i++) {
1749                        doc_probe(doc_locations[i]);
1750                }
1751        }
1752        /* No banner message any more. Print a message if no DiskOnChip
1753           found, so the user knows we at least tried. */
1754        if (!doclist) {
1755                printk(KERN_INFO "No valid DiskOnChip devices found\n");
1756                ret = -ENODEV;
1757                goto outerr;
1758        }
1759        return 0;
1760 outerr:
1761        free_rs(rs_decoder);
1762        return ret;
1763}
1764
1765static void __exit cleanup_nanddoc(void)
1766{
1767        /* Cleanup the nand/DoC resources */
1768        release_nanddoc();
1769
1770        /* Free the reed solomon resources */
1771        if (rs_decoder) {
1772                free_rs(rs_decoder);
1773        }
1774}
1775
1776module_init(init_nanddoc);
1777module_exit(cleanup_nanddoc);
1778
1779MODULE_LICENSE("GPL");
1780MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
1781MODULE_DESCRIPTION("M-Systems DiskOnChip 2000, Millennium and Millennium Plus device driver\n");
1782#endif
1783