uboot/drivers/net/e1000.c
<<
>>
Prefs
   1/**************************************************************************
   2Intel Pro 1000 for ppcboot/das-u-boot
   3Drivers are port from Intel's Linux driver e1000-4.3.15
   4and from Etherboot pro 1000 driver by mrakes at vivato dot net
   5tested on both gig copper and gig fiber boards
   6***************************************************************************/
   7/*******************************************************************************
   8
   9
  10  Copyright(c) 1999 - 2002 Intel Corporation. All rights reserved.
  11
  12  This program is free software; you can redistribute it and/or modify it
  13  under the terms of the GNU General Public License as published by the Free
  14  Software Foundation; either version 2 of the License, or (at your option)
  15  any later version.
  16
  17  This program is distributed in the hope that it will be useful, but WITHOUT
  18  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  19  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  20  more details.
  21
  22  You should have received a copy of the GNU General Public License along with
  23  this program; if not, write to the Free Software Foundation, Inc., 59
  24  Temple Place - Suite 330, Boston, MA  02111-1307, USA.
  25
  26  The full GNU General Public License is included in this distribution in the
  27  file called LICENSE.
  28
  29  Contact Information:
  30  Linux NICS <linux.nics@intel.com>
  31  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
  32
  33*******************************************************************************/
  34/*
  35 *  Copyright (C) Archway Digital Solutions.
  36 *
  37 *  written by Chrsitopher Li <cli at arcyway dot com> or <chrisl at gnuchina dot org>
  38 *  2/9/2002
  39 *
  40 *  Copyright (C) Linux Networx.
  41 *  Massive upgrade to work with the new intel gigabit NICs.
  42 *  <ebiederman at lnxi dot com>
  43 */
  44
  45#include "e1000.h"
  46
  47#define TOUT_LOOP   100000
  48
  49#define virt_to_bus(devno, v)   pci_virt_to_mem(devno, (void *) (v))
  50#define bus_to_phys(devno, a)   pci_mem_to_phys(devno, a)
  51#define mdelay(n)       udelay((n)*1000)
  52
  53#define E1000_DEFAULT_PBA    0x000a0026
  54
  55/* NIC specific static variables go here */
  56
  57static char tx_pool[128 + 16];
  58static char rx_pool[128 + 16];
  59static char packet[2096];
  60
  61static struct e1000_tx_desc *tx_base;
  62static struct e1000_rx_desc *rx_base;
  63
  64static int tx_tail;
  65static int rx_tail, rx_last;
  66
  67static struct pci_device_id supported[] = {
  68        {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82542},
  69        {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82543GC_FIBER},
  70        {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82543GC_COPPER},
  71        {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82544EI_COPPER},
  72        {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82544EI_FIBER},
  73        {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82544GC_COPPER},
  74        {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82544GC_LOM},
  75        {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82540EM},
  76        {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82545EM_COPPER},
  77        {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82545GM_COPPER},
  78        {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82546EB_COPPER},
  79        {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82545EM_FIBER},
  80        {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82546EB_FIBER},
  81        {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82540EM_LOM},
  82        {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82541ER},
  83        {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82541GI_LF},
  84        /* E1000 PCIe card */
  85        {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_COPPER},
  86        {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_FIBER      },
  87        {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_SERDES     },
  88        {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_QUAD_COPPER},
  89        {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571PT_QUAD_COPPER},
  90        {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_QUAD_FIBER},
  91        {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_QUAD_COPPER_LOWPROFILE},
  92        {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_SERDES_DUAL},
  93        {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_SERDES_QUAD},
  94        {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82572EI_COPPER},
  95        {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82572EI_FIBER},
  96        {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82572EI_SERDES},
  97        {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82572EI},
  98        {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82573E},
  99        {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82573E_IAMT},
 100        {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82573L},
 101        {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82546GB_QUAD_COPPER_KSP3},
 102        {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_80003ES2LAN_COPPER_DPT},
 103        {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_80003ES2LAN_SERDES_DPT},
 104        {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_80003ES2LAN_COPPER_SPT},
 105        {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_80003ES2LAN_SERDES_SPT},
 106        {}
 107};
 108
 109/* Function forward declarations */
 110static int e1000_setup_link(struct eth_device *nic);
 111static int e1000_setup_fiber_link(struct eth_device *nic);
 112static int e1000_setup_copper_link(struct eth_device *nic);
 113static int e1000_phy_setup_autoneg(struct e1000_hw *hw);
 114static void e1000_config_collision_dist(struct e1000_hw *hw);
 115static int e1000_config_mac_to_phy(struct e1000_hw *hw);
 116static int e1000_config_fc_after_link_up(struct e1000_hw *hw);
 117static int e1000_check_for_link(struct eth_device *nic);
 118static int e1000_wait_autoneg(struct e1000_hw *hw);
 119static int e1000_get_speed_and_duplex(struct e1000_hw *hw, uint16_t * speed,
 120                                       uint16_t * duplex);
 121static int e1000_read_phy_reg(struct e1000_hw *hw, uint32_t reg_addr,
 122                              uint16_t * phy_data);
 123static int e1000_write_phy_reg(struct e1000_hw *hw, uint32_t reg_addr,
 124                               uint16_t phy_data);
 125static int32_t e1000_phy_hw_reset(struct e1000_hw *hw);
 126static int e1000_phy_reset(struct e1000_hw *hw);
 127static int e1000_detect_gig_phy(struct e1000_hw *hw);
 128static void e1000_put_hw_eeprom_semaphore(struct e1000_hw *hw);
 129static void e1000_set_media_type(struct e1000_hw *hw);
 130
 131static int32_t e1000_swfw_sync_acquire(struct e1000_hw *hw, uint16_t mask);
 132static int32_t e1000_check_phy_reset_block(struct e1000_hw *hw);
 133#define E1000_WRITE_REG(a, reg, value) (writel((value), ((a)->hw_addr + E1000_##reg)))
 134#define E1000_READ_REG(a, reg) (readl((a)->hw_addr + E1000_##reg))
 135#define E1000_WRITE_REG_ARRAY(a, reg, offset, value) (\
 136                        writel((value), ((a)->hw_addr + E1000_##reg + ((offset) << 2))))
 137#define E1000_READ_REG_ARRAY(a, reg, offset) ( \
 138        readl((a)->hw_addr + E1000_##reg + ((offset) << 2)))
 139#define E1000_WRITE_FLUSH(a) {uint32_t x; x = E1000_READ_REG(a, STATUS);}
 140
 141#ifndef CONFIG_AP1000 /* remove for warnings */
 142static int32_t e1000_read_eeprom(struct e1000_hw *hw, uint16_t offset,
 143                uint16_t words,
 144                uint16_t *data);
 145/******************************************************************************
 146 * Raises the EEPROM's clock input.
 147 *
 148 * hw - Struct containing variables accessed by shared code
 149 * eecd - EECD's current value
 150 *****************************************************************************/
 151static void
 152e1000_raise_ee_clk(struct e1000_hw *hw, uint32_t * eecd)
 153{
 154        /* Raise the clock input to the EEPROM (by setting the SK bit), and then
 155         * wait 50 microseconds.
 156         */
 157        *eecd = *eecd | E1000_EECD_SK;
 158        E1000_WRITE_REG(hw, EECD, *eecd);
 159        E1000_WRITE_FLUSH(hw);
 160        udelay(50);
 161}
 162
 163/******************************************************************************
 164 * Lowers the EEPROM's clock input.
 165 *
 166 * hw - Struct containing variables accessed by shared code
 167 * eecd - EECD's current value
 168 *****************************************************************************/
 169static void
 170e1000_lower_ee_clk(struct e1000_hw *hw, uint32_t * eecd)
 171{
 172        /* Lower the clock input to the EEPROM (by clearing the SK bit), and then
 173         * wait 50 microseconds.
 174         */
 175        *eecd = *eecd & ~E1000_EECD_SK;
 176        E1000_WRITE_REG(hw, EECD, *eecd);
 177        E1000_WRITE_FLUSH(hw);
 178        udelay(50);
 179}
 180
 181/******************************************************************************
 182 * Shift data bits out to the EEPROM.
 183 *
 184 * hw - Struct containing variables accessed by shared code
 185 * data - data to send to the EEPROM
 186 * count - number of bits to shift out
 187 *****************************************************************************/
 188static void
 189e1000_shift_out_ee_bits(struct e1000_hw *hw, uint16_t data, uint16_t count)
 190{
 191        uint32_t eecd;
 192        uint32_t mask;
 193
 194        /* We need to shift "count" bits out to the EEPROM. So, value in the
 195         * "data" parameter will be shifted out to the EEPROM one bit at a time.
 196         * In order to do this, "data" must be broken down into bits.
 197         */
 198        mask = 0x01 << (count - 1);
 199        eecd = E1000_READ_REG(hw, EECD);
 200        eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
 201        do {
 202                /* A "1" is shifted out to the EEPROM by setting bit "DI" to a "1",
 203                 * and then raising and then lowering the clock (the SK bit controls
 204                 * the clock input to the EEPROM).  A "0" is shifted out to the EEPROM
 205                 * by setting "DI" to "0" and then raising and then lowering the clock.
 206                 */
 207                eecd &= ~E1000_EECD_DI;
 208
 209                if (data & mask)
 210                        eecd |= E1000_EECD_DI;
 211
 212                E1000_WRITE_REG(hw, EECD, eecd);
 213                E1000_WRITE_FLUSH(hw);
 214
 215                udelay(50);
 216
 217                e1000_raise_ee_clk(hw, &eecd);
 218                e1000_lower_ee_clk(hw, &eecd);
 219
 220                mask = mask >> 1;
 221
 222        } while (mask);
 223
 224        /* We leave the "DI" bit set to "0" when we leave this routine. */
 225        eecd &= ~E1000_EECD_DI;
 226        E1000_WRITE_REG(hw, EECD, eecd);
 227}
 228
 229/******************************************************************************
 230 * Shift data bits in from the EEPROM
 231 *
 232 * hw - Struct containing variables accessed by shared code
 233 *****************************************************************************/
 234static uint16_t
 235e1000_shift_in_ee_bits(struct e1000_hw *hw, uint16_t count)
 236{
 237        uint32_t eecd;
 238        uint32_t i;
 239        uint16_t data;
 240
 241        /* In order to read a register from the EEPROM, we need to shift 'count'
 242         * bits in from the EEPROM. Bits are "shifted in" by raising the clock
 243         * input to the EEPROM (setting the SK bit), and then reading the
 244         * value of the "DO" bit.  During this "shifting in" process the
 245         * "DI" bit should always be clear.
 246         */
 247
 248        eecd = E1000_READ_REG(hw, EECD);
 249
 250        eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
 251        data = 0;
 252
 253        for (i = 0; i < count; i++) {
 254                data = data << 1;
 255                e1000_raise_ee_clk(hw, &eecd);
 256
 257                eecd = E1000_READ_REG(hw, EECD);
 258
 259                eecd &= ~(E1000_EECD_DI);
 260                if (eecd & E1000_EECD_DO)
 261                        data |= 1;
 262
 263                e1000_lower_ee_clk(hw, &eecd);
 264        }
 265
 266        return data;
 267}
 268
 269/******************************************************************************
 270 * Returns EEPROM to a "standby" state
 271 *
 272 * hw - Struct containing variables accessed by shared code
 273 *****************************************************************************/
 274static void
 275e1000_standby_eeprom(struct e1000_hw *hw)
 276{
 277        struct e1000_eeprom_info *eeprom = &hw->eeprom;
 278        uint32_t eecd;
 279
 280        eecd = E1000_READ_REG(hw, EECD);
 281
 282        if (eeprom->type == e1000_eeprom_microwire) {
 283                eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
 284                E1000_WRITE_REG(hw, EECD, eecd);
 285                E1000_WRITE_FLUSH(hw);
 286                udelay(eeprom->delay_usec);
 287
 288                /* Clock high */
 289                eecd |= E1000_EECD_SK;
 290                E1000_WRITE_REG(hw, EECD, eecd);
 291                E1000_WRITE_FLUSH(hw);
 292                udelay(eeprom->delay_usec);
 293
 294                /* Select EEPROM */
 295                eecd |= E1000_EECD_CS;
 296                E1000_WRITE_REG(hw, EECD, eecd);
 297                E1000_WRITE_FLUSH(hw);
 298                udelay(eeprom->delay_usec);
 299
 300                /* Clock low */
 301                eecd &= ~E1000_EECD_SK;
 302                E1000_WRITE_REG(hw, EECD, eecd);
 303                E1000_WRITE_FLUSH(hw);
 304                udelay(eeprom->delay_usec);
 305        } else if (eeprom->type == e1000_eeprom_spi) {
 306                /* Toggle CS to flush commands */
 307                eecd |= E1000_EECD_CS;
 308                E1000_WRITE_REG(hw, EECD, eecd);
 309                E1000_WRITE_FLUSH(hw);
 310                udelay(eeprom->delay_usec);
 311                eecd &= ~E1000_EECD_CS;
 312                E1000_WRITE_REG(hw, EECD, eecd);
 313                E1000_WRITE_FLUSH(hw);
 314                udelay(eeprom->delay_usec);
 315        }
 316}
 317
 318/***************************************************************************
 319* Description:     Determines if the onboard NVM is FLASH or EEPROM.
 320*
 321* hw - Struct containing variables accessed by shared code
 322****************************************************************************/
 323static boolean_t e1000_is_onboard_nvm_eeprom(struct e1000_hw *hw)
 324{
 325        uint32_t eecd = 0;
 326
 327        DEBUGFUNC();
 328
 329        if (hw->mac_type == e1000_ich8lan)
 330                return FALSE;
 331
 332        if (hw->mac_type == e1000_82573) {
 333                eecd = E1000_READ_REG(hw, EECD);
 334
 335                /* Isolate bits 15 & 16 */
 336                eecd = ((eecd >> 15) & 0x03);
 337
 338                /* If both bits are set, device is Flash type */
 339                if (eecd == 0x03)
 340                        return FALSE;
 341        }
 342        return TRUE;
 343}
 344
 345/******************************************************************************
 346 * Prepares EEPROM for access
 347 *
 348 * hw - Struct containing variables accessed by shared code
 349 *
 350 * Lowers EEPROM clock. Clears input pin. Sets the chip select pin. This
 351 * function should be called before issuing a command to the EEPROM.
 352 *****************************************************************************/
 353static int32_t
 354e1000_acquire_eeprom(struct e1000_hw *hw)
 355{
 356        struct e1000_eeprom_info *eeprom = &hw->eeprom;
 357        uint32_t eecd, i = 0;
 358
 359        DEBUGFUNC();
 360
 361        if (e1000_swfw_sync_acquire(hw, E1000_SWFW_EEP_SM))
 362                return -E1000_ERR_SWFW_SYNC;
 363        eecd = E1000_READ_REG(hw, EECD);
 364
 365        if (hw->mac_type != e1000_82573) {
 366                /* Request EEPROM Access */
 367                if (hw->mac_type > e1000_82544) {
 368                        eecd |= E1000_EECD_REQ;
 369                        E1000_WRITE_REG(hw, EECD, eecd);
 370                        eecd = E1000_READ_REG(hw, EECD);
 371                        while ((!(eecd & E1000_EECD_GNT)) &&
 372                                (i < E1000_EEPROM_GRANT_ATTEMPTS)) {
 373                                i++;
 374                                udelay(5);
 375                                eecd = E1000_READ_REG(hw, EECD);
 376                        }
 377                        if (!(eecd & E1000_EECD_GNT)) {
 378                                eecd &= ~E1000_EECD_REQ;
 379                                E1000_WRITE_REG(hw, EECD, eecd);
 380                                DEBUGOUT("Could not acquire EEPROM grant\n");
 381                                return -E1000_ERR_EEPROM;
 382                        }
 383                }
 384        }
 385
 386        /* Setup EEPROM for Read/Write */
 387
 388        if (eeprom->type == e1000_eeprom_microwire) {
 389                /* Clear SK and DI */
 390                eecd &= ~(E1000_EECD_DI | E1000_EECD_SK);
 391                E1000_WRITE_REG(hw, EECD, eecd);
 392
 393                /* Set CS */
 394                eecd |= E1000_EECD_CS;
 395                E1000_WRITE_REG(hw, EECD, eecd);
 396        } else if (eeprom->type == e1000_eeprom_spi) {
 397                /* Clear SK and CS */
 398                eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
 399                E1000_WRITE_REG(hw, EECD, eecd);
 400                udelay(1);
 401        }
 402
 403        return E1000_SUCCESS;
 404}
 405
 406/******************************************************************************
 407 * Sets up eeprom variables in the hw struct.  Must be called after mac_type
 408 * is configured.  Additionally, if this is ICH8, the flash controller GbE
 409 * registers must be mapped, or this will crash.
 410 *
 411 * hw - Struct containing variables accessed by shared code
 412 *****************************************************************************/
 413static int32_t e1000_init_eeprom_params(struct e1000_hw *hw)
 414{
 415        struct e1000_eeprom_info *eeprom = &hw->eeprom;
 416        uint32_t eecd = E1000_READ_REG(hw, EECD);
 417        int32_t ret_val = E1000_SUCCESS;
 418        uint16_t eeprom_size;
 419
 420        DEBUGFUNC();
 421
 422        switch (hw->mac_type) {
 423        case e1000_82542_rev2_0:
 424        case e1000_82542_rev2_1:
 425        case e1000_82543:
 426        case e1000_82544:
 427                eeprom->type = e1000_eeprom_microwire;
 428                eeprom->word_size = 64;
 429                eeprom->opcode_bits = 3;
 430                eeprom->address_bits = 6;
 431                eeprom->delay_usec = 50;
 432                eeprom->use_eerd = FALSE;
 433                eeprom->use_eewr = FALSE;
 434        break;
 435        case e1000_82540:
 436        case e1000_82545:
 437        case e1000_82545_rev_3:
 438        case e1000_82546:
 439        case e1000_82546_rev_3:
 440                eeprom->type = e1000_eeprom_microwire;
 441                eeprom->opcode_bits = 3;
 442                eeprom->delay_usec = 50;
 443                if (eecd & E1000_EECD_SIZE) {
 444                        eeprom->word_size = 256;
 445                        eeprom->address_bits = 8;
 446                } else {
 447                        eeprom->word_size = 64;
 448                        eeprom->address_bits = 6;
 449                }
 450                eeprom->use_eerd = FALSE;
 451                eeprom->use_eewr = FALSE;
 452                break;
 453        case e1000_82541:
 454        case e1000_82541_rev_2:
 455        case e1000_82547:
 456        case e1000_82547_rev_2:
 457                if (eecd & E1000_EECD_TYPE) {
 458                        eeprom->type = e1000_eeprom_spi;
 459                        eeprom->opcode_bits = 8;
 460                        eeprom->delay_usec = 1;
 461                        if (eecd & E1000_EECD_ADDR_BITS) {
 462                                eeprom->page_size = 32;
 463                                eeprom->address_bits = 16;
 464                        } else {
 465                                eeprom->page_size = 8;
 466                                eeprom->address_bits = 8;
 467                        }
 468                } else {
 469                        eeprom->type = e1000_eeprom_microwire;
 470                        eeprom->opcode_bits = 3;
 471                        eeprom->delay_usec = 50;
 472                        if (eecd & E1000_EECD_ADDR_BITS) {
 473                                eeprom->word_size = 256;
 474                                eeprom->address_bits = 8;
 475                        } else {
 476                                eeprom->word_size = 64;
 477                                eeprom->address_bits = 6;
 478                        }
 479                }
 480                eeprom->use_eerd = FALSE;
 481                eeprom->use_eewr = FALSE;
 482                break;
 483        case e1000_82571:
 484        case e1000_82572:
 485                eeprom->type = e1000_eeprom_spi;
 486                eeprom->opcode_bits = 8;
 487                eeprom->delay_usec = 1;
 488                if (eecd & E1000_EECD_ADDR_BITS) {
 489                        eeprom->page_size = 32;
 490                        eeprom->address_bits = 16;
 491                } else {
 492                        eeprom->page_size = 8;
 493                        eeprom->address_bits = 8;
 494                }
 495                eeprom->use_eerd = FALSE;
 496                eeprom->use_eewr = FALSE;
 497                break;
 498        case e1000_82573:
 499                eeprom->type = e1000_eeprom_spi;
 500                eeprom->opcode_bits = 8;
 501                eeprom->delay_usec = 1;
 502                if (eecd & E1000_EECD_ADDR_BITS) {
 503                        eeprom->page_size = 32;
 504                        eeprom->address_bits = 16;
 505                } else {
 506                        eeprom->page_size = 8;
 507                        eeprom->address_bits = 8;
 508                }
 509                eeprom->use_eerd = TRUE;
 510                eeprom->use_eewr = TRUE;
 511                if (e1000_is_onboard_nvm_eeprom(hw) == FALSE) {
 512                        eeprom->type = e1000_eeprom_flash;
 513                        eeprom->word_size = 2048;
 514
 515                /* Ensure that the Autonomous FLASH update bit is cleared due to
 516                 * Flash update issue on parts which use a FLASH for NVM. */
 517                        eecd &= ~E1000_EECD_AUPDEN;
 518                        E1000_WRITE_REG(hw, EECD, eecd);
 519                }
 520                break;
 521        case e1000_80003es2lan:
 522                eeprom->type = e1000_eeprom_spi;
 523                eeprom->opcode_bits = 8;
 524                eeprom->delay_usec = 1;
 525                if (eecd & E1000_EECD_ADDR_BITS) {
 526                        eeprom->page_size = 32;
 527                        eeprom->address_bits = 16;
 528                } else {
 529                        eeprom->page_size = 8;
 530                        eeprom->address_bits = 8;
 531                }
 532                eeprom->use_eerd = TRUE;
 533                eeprom->use_eewr = FALSE;
 534                break;
 535
 536        /* ich8lan does not support currently. if needed, please
 537         * add corresponding code and functions.
 538         */
 539#if 0
 540        case e1000_ich8lan:
 541                {
 542                int32_t  i = 0;
 543
 544                eeprom->type = e1000_eeprom_ich8;
 545                eeprom->use_eerd = FALSE;
 546                eeprom->use_eewr = FALSE;
 547                eeprom->word_size = E1000_SHADOW_RAM_WORDS;
 548                uint32_t flash_size = E1000_READ_ICH_FLASH_REG(hw,
 549                                ICH_FLASH_GFPREG);
 550                /* Zero the shadow RAM structure. But don't load it from NVM
 551                 * so as to save time for driver init */
 552                if (hw->eeprom_shadow_ram != NULL) {
 553                        for (i = 0; i < E1000_SHADOW_RAM_WORDS; i++) {
 554                                hw->eeprom_shadow_ram[i].modified = FALSE;
 555                                hw->eeprom_shadow_ram[i].eeprom_word = 0xFFFF;
 556                        }
 557                }
 558
 559                hw->flash_base_addr = (flash_size & ICH_GFPREG_BASE_MASK) *
 560                                ICH_FLASH_SECTOR_SIZE;
 561
 562                hw->flash_bank_size = ((flash_size >> 16)
 563                                & ICH_GFPREG_BASE_MASK) + 1;
 564                hw->flash_bank_size -= (flash_size & ICH_GFPREG_BASE_MASK);
 565
 566                hw->flash_bank_size *= ICH_FLASH_SECTOR_SIZE;
 567
 568                hw->flash_bank_size /= 2 * sizeof(uint16_t);
 569                break;
 570                }
 571#endif
 572        default:
 573                break;
 574        }
 575
 576        if (eeprom->type == e1000_eeprom_spi) {
 577                /* eeprom_size will be an enum [0..8] that maps
 578                 * to eeprom sizes 128B to
 579                 * 32KB (incremented by powers of 2).
 580                 */
 581                if (hw->mac_type <= e1000_82547_rev_2) {
 582                        /* Set to default value for initial eeprom read. */
 583                        eeprom->word_size = 64;
 584                        ret_val = e1000_read_eeprom(hw, EEPROM_CFG, 1,
 585                                        &eeprom_size);
 586                        if (ret_val)
 587                                return ret_val;
 588                        eeprom_size = (eeprom_size & EEPROM_SIZE_MASK)
 589                                >> EEPROM_SIZE_SHIFT;
 590                        /* 256B eeprom size was not supported in earlier
 591                         * hardware, so we bump eeprom_size up one to
 592                         * ensure that "1" (which maps to 256B) is never
 593                         * the result used in the shifting logic below. */
 594                        if (eeprom_size)
 595                                eeprom_size++;
 596                } else {
 597                        eeprom_size = (uint16_t)((eecd &
 598                                E1000_EECD_SIZE_EX_MASK) >>
 599                                E1000_EECD_SIZE_EX_SHIFT);
 600                }
 601
 602                eeprom->word_size = 1 << (eeprom_size + EEPROM_WORD_SIZE_SHIFT);
 603        }
 604        return ret_val;
 605}
 606
 607/******************************************************************************
 608 * Polls the status bit (bit 1) of the EERD to determine when the read is done.
 609 *
 610 * hw - Struct containing variables accessed by shared code
 611 *****************************************************************************/
 612static int32_t
 613e1000_poll_eerd_eewr_done(struct e1000_hw *hw, int eerd)
 614{
 615        uint32_t attempts = 100000;
 616        uint32_t i, reg = 0;
 617        int32_t done = E1000_ERR_EEPROM;
 618
 619        for (i = 0; i < attempts; i++) {
 620                if (eerd == E1000_EEPROM_POLL_READ)
 621                        reg = E1000_READ_REG(hw, EERD);
 622                else
 623                        reg = E1000_READ_REG(hw, EEWR);
 624
 625                if (reg & E1000_EEPROM_RW_REG_DONE) {
 626                        done = E1000_SUCCESS;
 627                        break;
 628                }
 629                udelay(5);
 630        }
 631
 632        return done;
 633}
 634
 635/******************************************************************************
 636 * Reads a 16 bit word from the EEPROM using the EERD register.
 637 *
 638 * hw - Struct containing variables accessed by shared code
 639 * offset - offset of  word in the EEPROM to read
 640 * data - word read from the EEPROM
 641 * words - number of words to read
 642 *****************************************************************************/
 643static int32_t
 644e1000_read_eeprom_eerd(struct e1000_hw *hw,
 645                        uint16_t offset,
 646                        uint16_t words,
 647                        uint16_t *data)
 648{
 649        uint32_t i, eerd = 0;
 650        int32_t error = 0;
 651
 652        for (i = 0; i < words; i++) {
 653                eerd = ((offset+i) << E1000_EEPROM_RW_ADDR_SHIFT) +
 654                        E1000_EEPROM_RW_REG_START;
 655
 656                E1000_WRITE_REG(hw, EERD, eerd);
 657                error = e1000_poll_eerd_eewr_done(hw, E1000_EEPROM_POLL_READ);
 658
 659                if (error)
 660                        break;
 661                data[i] = (E1000_READ_REG(hw, EERD) >>
 662                                E1000_EEPROM_RW_REG_DATA);
 663
 664        }
 665
 666        return error;
 667}
 668
 669static void
 670e1000_release_eeprom(struct e1000_hw *hw)
 671{
 672        uint32_t eecd;
 673
 674        DEBUGFUNC();
 675
 676        eecd = E1000_READ_REG(hw, EECD);
 677
 678        if (hw->eeprom.type == e1000_eeprom_spi) {
 679                eecd |= E1000_EECD_CS;  /* Pull CS high */
 680                eecd &= ~E1000_EECD_SK; /* Lower SCK */
 681
 682                E1000_WRITE_REG(hw, EECD, eecd);
 683
 684                udelay(hw->eeprom.delay_usec);
 685        } else if (hw->eeprom.type == e1000_eeprom_microwire) {
 686                /* cleanup eeprom */
 687
 688                /* CS on Microwire is active-high */
 689                eecd &= ~(E1000_EECD_CS | E1000_EECD_DI);
 690
 691                E1000_WRITE_REG(hw, EECD, eecd);
 692
 693                /* Rising edge of clock */
 694                eecd |= E1000_EECD_SK;
 695                E1000_WRITE_REG(hw, EECD, eecd);
 696                E1000_WRITE_FLUSH(hw);
 697                udelay(hw->eeprom.delay_usec);
 698
 699                /* Falling edge of clock */
 700                eecd &= ~E1000_EECD_SK;
 701                E1000_WRITE_REG(hw, EECD, eecd);
 702                E1000_WRITE_FLUSH(hw);
 703                udelay(hw->eeprom.delay_usec);
 704        }
 705
 706        /* Stop requesting EEPROM access */
 707        if (hw->mac_type > e1000_82544) {
 708                eecd &= ~E1000_EECD_REQ;
 709                E1000_WRITE_REG(hw, EECD, eecd);
 710        }
 711}
 712/******************************************************************************
 713 * Reads a 16 bit word from the EEPROM.
 714 *
 715 * hw - Struct containing variables accessed by shared code
 716 *****************************************************************************/
 717static int32_t
 718e1000_spi_eeprom_ready(struct e1000_hw *hw)
 719{
 720        uint16_t retry_count = 0;
 721        uint8_t spi_stat_reg;
 722
 723        DEBUGFUNC();
 724
 725        /* Read "Status Register" repeatedly until the LSB is cleared.  The
 726         * EEPROM will signal that the command has been completed by clearing
 727         * bit 0 of the internal status register.  If it's not cleared within
 728         * 5 milliseconds, then error out.
 729         */
 730        retry_count = 0;
 731        do {
 732                e1000_shift_out_ee_bits(hw, EEPROM_RDSR_OPCODE_SPI,
 733                        hw->eeprom.opcode_bits);
 734                spi_stat_reg = (uint8_t)e1000_shift_in_ee_bits(hw, 8);
 735                if (!(spi_stat_reg & EEPROM_STATUS_RDY_SPI))
 736                        break;
 737
 738                udelay(5);
 739                retry_count += 5;
 740
 741                e1000_standby_eeprom(hw);
 742        } while (retry_count < EEPROM_MAX_RETRY_SPI);
 743
 744        /* ATMEL SPI write time could vary from 0-20mSec on 3.3V devices (and
 745         * only 0-5mSec on 5V devices)
 746         */
 747        if (retry_count >= EEPROM_MAX_RETRY_SPI) {
 748                DEBUGOUT("SPI EEPROM Status error\n");
 749                return -E1000_ERR_EEPROM;
 750        }
 751
 752        return E1000_SUCCESS;
 753}
 754
 755/******************************************************************************
 756 * Reads a 16 bit word from the EEPROM.
 757 *
 758 * hw - Struct containing variables accessed by shared code
 759 * offset - offset of  word in the EEPROM to read
 760 * data - word read from the EEPROM
 761 *****************************************************************************/
 762static int32_t
 763e1000_read_eeprom(struct e1000_hw *hw, uint16_t offset,
 764                uint16_t words, uint16_t *data)
 765{
 766        struct e1000_eeprom_info *eeprom = &hw->eeprom;
 767        uint32_t i = 0;
 768
 769        DEBUGFUNC();
 770
 771        /* If eeprom is not yet detected, do so now */
 772        if (eeprom->word_size == 0)
 773                e1000_init_eeprom_params(hw);
 774
 775        /* A check for invalid values:  offset too large, too many words,
 776         * and not enough words.
 777         */
 778        if ((offset >= eeprom->word_size) ||
 779                (words > eeprom->word_size - offset) ||
 780                (words == 0)) {
 781                DEBUGOUT("\"words\" parameter out of bounds."
 782                        "Words = %d, size = %d\n", offset, eeprom->word_size);
 783                return -E1000_ERR_EEPROM;
 784        }
 785
 786        /* EEPROM's that don't use EERD to read require us to bit-bang the SPI
 787         * directly. In this case, we need to acquire the EEPROM so that
 788         * FW or other port software does not interrupt.
 789         */
 790        if (e1000_is_onboard_nvm_eeprom(hw) == TRUE &&
 791                hw->eeprom.use_eerd == FALSE) {
 792
 793                /* Prepare the EEPROM for bit-bang reading */
 794                if (e1000_acquire_eeprom(hw) != E1000_SUCCESS)
 795                        return -E1000_ERR_EEPROM;
 796        }
 797
 798        /* Eerd register EEPROM access requires no eeprom aquire/release */
 799        if (eeprom->use_eerd == TRUE)
 800                return e1000_read_eeprom_eerd(hw, offset, words, data);
 801
 802        /* ich8lan does not support currently. if needed, please
 803         * add corresponding code and functions.
 804         */
 805#if 0
 806        /* ICH EEPROM access is done via the ICH flash controller */
 807        if (eeprom->type == e1000_eeprom_ich8)
 808                return e1000_read_eeprom_ich8(hw, offset, words, data);
 809#endif
 810        /* Set up the SPI or Microwire EEPROM for bit-bang reading.  We have
 811         * acquired the EEPROM at this point, so any returns should relase it */
 812        if (eeprom->type == e1000_eeprom_spi) {
 813                uint16_t word_in;
 814                uint8_t read_opcode = EEPROM_READ_OPCODE_SPI;
 815
 816                if (e1000_spi_eeprom_ready(hw)) {
 817                        e1000_release_eeprom(hw);
 818                        return -E1000_ERR_EEPROM;
 819                }
 820
 821                e1000_standby_eeprom(hw);
 822
 823                /* Some SPI eeproms use the 8th address bit embedded in
 824                 * the opcode */
 825                if ((eeprom->address_bits == 8) && (offset >= 128))
 826                        read_opcode |= EEPROM_A8_OPCODE_SPI;
 827
 828                /* Send the READ command (opcode + addr)  */
 829                e1000_shift_out_ee_bits(hw, read_opcode, eeprom->opcode_bits);
 830                e1000_shift_out_ee_bits(hw, (uint16_t)(offset*2),
 831                                eeprom->address_bits);
 832
 833                /* Read the data.  The address of the eeprom internally
 834                 * increments with each byte (spi) being read, saving on the
 835                 * overhead of eeprom setup and tear-down.  The address
 836                 * counter will roll over if reading beyond the size of
 837                 * the eeprom, thus allowing the entire memory to be read
 838                 * starting from any offset. */
 839                for (i = 0; i < words; i++) {
 840                        word_in = e1000_shift_in_ee_bits(hw, 16);
 841                        data[i] = (word_in >> 8) | (word_in << 8);
 842                }
 843        } else if (eeprom->type == e1000_eeprom_microwire) {
 844                for (i = 0; i < words; i++) {
 845                        /* Send the READ command (opcode + addr)  */
 846                        e1000_shift_out_ee_bits(hw,
 847                                EEPROM_READ_OPCODE_MICROWIRE,
 848                                eeprom->opcode_bits);
 849                        e1000_shift_out_ee_bits(hw, (uint16_t)(offset + i),
 850                                eeprom->address_bits);
 851
 852                        /* Read the data.  For microwire, each word requires
 853                         * the overhead of eeprom setup and tear-down. */
 854                        data[i] = e1000_shift_in_ee_bits(hw, 16);
 855                        e1000_standby_eeprom(hw);
 856                }
 857        }
 858
 859        /* End this read operation */
 860        e1000_release_eeprom(hw);
 861
 862        return E1000_SUCCESS;
 863}
 864
 865/******************************************************************************
 866 * Verifies that the EEPROM has a valid checksum
 867 *
 868 * hw - Struct containing variables accessed by shared code
 869 *
 870 * Reads the first 64 16 bit words of the EEPROM and sums the values read.
 871 * If the the sum of the 64 16 bit words is 0xBABA, the EEPROM's checksum is
 872 * valid.
 873 *****************************************************************************/
 874static int
 875e1000_validate_eeprom_checksum(struct eth_device *nic)
 876{
 877        struct e1000_hw *hw = nic->priv;
 878        uint16_t checksum = 0;
 879        uint16_t i, eeprom_data;
 880
 881        DEBUGFUNC();
 882
 883        for (i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) {
 884                if (e1000_read_eeprom(hw, i, 1,  &eeprom_data) < 0) {
 885                        DEBUGOUT("EEPROM Read Error\n");
 886                        return -E1000_ERR_EEPROM;
 887                }
 888                checksum += eeprom_data;
 889        }
 890
 891        if (checksum == (uint16_t) EEPROM_SUM) {
 892                return 0;
 893        } else {
 894                DEBUGOUT("EEPROM Checksum Invalid\n");
 895                return -E1000_ERR_EEPROM;
 896        }
 897}
 898
 899/*****************************************************************************
 900 * Set PHY to class A mode
 901 * Assumes the following operations will follow to enable the new class mode.
 902 *  1. Do a PHY soft reset
 903 *  2. Restart auto-negotiation or force link.
 904 *
 905 * hw - Struct containing variables accessed by shared code
 906 ****************************************************************************/
 907static int32_t
 908e1000_set_phy_mode(struct e1000_hw *hw)
 909{
 910        int32_t ret_val;
 911        uint16_t eeprom_data;
 912
 913        DEBUGFUNC();
 914
 915        if ((hw->mac_type == e1000_82545_rev_3) &&
 916                (hw->media_type == e1000_media_type_copper)) {
 917                ret_val = e1000_read_eeprom(hw, EEPROM_PHY_CLASS_WORD,
 918                                1, &eeprom_data);
 919                if (ret_val)
 920                        return ret_val;
 921
 922                if ((eeprom_data != EEPROM_RESERVED_WORD) &&
 923                        (eeprom_data & EEPROM_PHY_CLASS_A)) {
 924                        ret_val = e1000_write_phy_reg(hw,
 925                                        M88E1000_PHY_PAGE_SELECT, 0x000B);
 926                        if (ret_val)
 927                                return ret_val;
 928                        ret_val = e1000_write_phy_reg(hw,
 929                                        M88E1000_PHY_GEN_CONTROL, 0x8104);
 930                        if (ret_val)
 931                                return ret_val;
 932
 933                        hw->phy_reset_disable = FALSE;
 934                }
 935        }
 936
 937        return E1000_SUCCESS;
 938}
 939#endif /* #ifndef CONFIG_AP1000 */
 940
 941/***************************************************************************
 942 *
 943 * Obtaining software semaphore bit (SMBI) before resetting PHY.
 944 *
 945 * hw: Struct containing variables accessed by shared code
 946 *
 947 * returns: - E1000_ERR_RESET if fail to obtain semaphore.
 948 *            E1000_SUCCESS at any other case.
 949 *
 950 ***************************************************************************/
 951static int32_t
 952e1000_get_software_semaphore(struct e1000_hw *hw)
 953{
 954         int32_t timeout = hw->eeprom.word_size + 1;
 955         uint32_t swsm;
 956
 957        DEBUGFUNC();
 958
 959        if (hw->mac_type != e1000_80003es2lan)
 960                return E1000_SUCCESS;
 961
 962        while (timeout) {
 963                swsm = E1000_READ_REG(hw, SWSM);
 964                /* If SMBI bit cleared, it is now set and we hold
 965                 * the semaphore */
 966                if (!(swsm & E1000_SWSM_SMBI))
 967                        break;
 968                mdelay(1);
 969                timeout--;
 970        }
 971
 972        if (!timeout) {
 973                DEBUGOUT("Driver can't access device - SMBI bit is set.\n");
 974                return -E1000_ERR_RESET;
 975        }
 976
 977        return E1000_SUCCESS;
 978}
 979
 980/***************************************************************************
 981 * This function clears HW semaphore bits.
 982 *
 983 * hw: Struct containing variables accessed by shared code
 984 *
 985 * returns: - None.
 986 *
 987 ***************************************************************************/
 988static void
 989e1000_put_hw_eeprom_semaphore(struct e1000_hw *hw)
 990{
 991         uint32_t swsm;
 992
 993        DEBUGFUNC();
 994
 995        if (!hw->eeprom_semaphore_present)
 996                return;
 997
 998        swsm = E1000_READ_REG(hw, SWSM);
 999        if (hw->mac_type == e1000_80003es2lan) {
1000                /* Release both semaphores. */
1001                swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
1002        } else
1003                swsm &= ~(E1000_SWSM_SWESMBI);
1004        E1000_WRITE_REG(hw, SWSM, swsm);
1005}
1006
1007/***************************************************************************
1008 *
1009 * Using the combination of SMBI and SWESMBI semaphore bits when resetting
1010 * adapter or Eeprom access.
1011 *
1012 * hw: Struct containing variables accessed by shared code
1013 *
1014 * returns: - E1000_ERR_EEPROM if fail to access EEPROM.
1015 *            E1000_SUCCESS at any other case.
1016 *
1017 ***************************************************************************/
1018static int32_t
1019e1000_get_hw_eeprom_semaphore(struct e1000_hw *hw)
1020{
1021        int32_t timeout;
1022        uint32_t swsm;
1023
1024        DEBUGFUNC();
1025
1026        if (!hw->eeprom_semaphore_present)
1027                return E1000_SUCCESS;
1028
1029        if (hw->mac_type == e1000_80003es2lan) {
1030                /* Get the SW semaphore. */
1031                if (e1000_get_software_semaphore(hw) != E1000_SUCCESS)
1032                        return -E1000_ERR_EEPROM;
1033        }
1034
1035        /* Get the FW semaphore. */
1036        timeout = hw->eeprom.word_size + 1;
1037        while (timeout) {
1038                swsm = E1000_READ_REG(hw, SWSM);
1039                swsm |= E1000_SWSM_SWESMBI;
1040                E1000_WRITE_REG(hw, SWSM, swsm);
1041                /* if we managed to set the bit we got the semaphore. */
1042                swsm = E1000_READ_REG(hw, SWSM);
1043                if (swsm & E1000_SWSM_SWESMBI)
1044                        break;
1045
1046                udelay(50);
1047                timeout--;
1048        }
1049
1050        if (!timeout) {
1051                /* Release semaphores */
1052                e1000_put_hw_eeprom_semaphore(hw);
1053                DEBUGOUT("Driver can't access the Eeprom - "
1054                                "SWESMBI bit is set.\n");
1055                return -E1000_ERR_EEPROM;
1056        }
1057
1058        return E1000_SUCCESS;
1059}
1060
1061static int32_t
1062e1000_swfw_sync_acquire(struct e1000_hw *hw, uint16_t mask)
1063{
1064        uint32_t swfw_sync = 0;
1065        uint32_t swmask = mask;
1066        uint32_t fwmask = mask << 16;
1067        int32_t timeout = 200;
1068
1069        DEBUGFUNC();
1070        while (timeout) {
1071                if (e1000_get_hw_eeprom_semaphore(hw))
1072                        return -E1000_ERR_SWFW_SYNC;
1073
1074                swfw_sync = E1000_READ_REG(hw, SW_FW_SYNC);
1075                if (!(swfw_sync & (fwmask | swmask)))
1076                        break;
1077
1078                /* firmware currently using resource (fwmask) */
1079                /* or other software thread currently using resource (swmask) */
1080                e1000_put_hw_eeprom_semaphore(hw);
1081                mdelay(5);
1082                timeout--;
1083        }
1084
1085        if (!timeout) {
1086                DEBUGOUT("Driver can't access resource, SW_FW_SYNC timeout.\n");
1087                return -E1000_ERR_SWFW_SYNC;
1088        }
1089
1090        swfw_sync |= swmask;
1091        E1000_WRITE_REG(hw, SW_FW_SYNC, swfw_sync);
1092
1093        e1000_put_hw_eeprom_semaphore(hw);
1094        return E1000_SUCCESS;
1095}
1096
1097/******************************************************************************
1098 * Reads the adapter's MAC address from the EEPROM and inverts the LSB for the
1099 * second function of dual function devices
1100 *
1101 * nic - Struct containing variables accessed by shared code
1102 *****************************************************************************/
1103static int
1104e1000_read_mac_addr(struct eth_device *nic)
1105{
1106#ifndef CONFIG_AP1000
1107        struct e1000_hw *hw = nic->priv;
1108        uint16_t offset;
1109        uint16_t eeprom_data;
1110        int i;
1111
1112        DEBUGFUNC();
1113
1114        for (i = 0; i < NODE_ADDRESS_SIZE; i += 2) {
1115                offset = i >> 1;
1116                if (e1000_read_eeprom(hw, offset, 1, &eeprom_data) < 0) {
1117                        DEBUGOUT("EEPROM Read Error\n");
1118                        return -E1000_ERR_EEPROM;
1119                }
1120                nic->enetaddr[i] = eeprom_data & 0xff;
1121                nic->enetaddr[i + 1] = (eeprom_data >> 8) & 0xff;
1122        }
1123        if ((hw->mac_type == e1000_82546) &&
1124            (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)) {
1125                /* Invert the last bit if this is the second device */
1126                nic->enetaddr[5] += 1;
1127        }
1128#ifdef CONFIG_E1000_FALLBACK_MAC
1129        if ( *(u32*)(nic->enetaddr) == 0 || *(u32*)(nic->enetaddr) == ~0 ) {
1130                unsigned char fb_mac[NODE_ADDRESS_SIZE] = CONFIG_E1000_FALLBACK_MAC;
1131
1132                memcpy (nic->enetaddr, fb_mac, NODE_ADDRESS_SIZE);
1133        }
1134#endif
1135#else
1136        /*
1137         * The AP1000's e1000 has no eeprom; the MAC address is stored in the
1138         * environment variables.  Currently this does not support the addition
1139         * of a PMC e1000 card, which is certainly a possibility, so this should
1140         * be updated to properly use the env variable only for the onboard e1000
1141         */
1142
1143        int ii;
1144        char *s, *e;
1145
1146        DEBUGFUNC();
1147
1148        s = getenv ("ethaddr");
1149        if (s == NULL) {
1150                return -E1000_ERR_EEPROM;
1151        } else {
1152                for(ii = 0; ii < 6; ii++) {
1153                        nic->enetaddr[ii] = s ? simple_strtoul (s, &e, 16) : 0;
1154                        if (s){
1155                                s = (*e) ? e + 1 : e;
1156                        }
1157                }
1158        }
1159#endif
1160        return 0;
1161}
1162
1163/******************************************************************************
1164 * Initializes receive address filters.
1165 *
1166 * hw - Struct containing variables accessed by shared code
1167 *
1168 * Places the MAC address in receive address register 0 and clears the rest
1169 * of the receive addresss registers. Clears the multicast table. Assumes
1170 * the receiver is in reset when the routine is called.
1171 *****************************************************************************/
1172static void
1173e1000_init_rx_addrs(struct eth_device *nic)
1174{
1175        struct e1000_hw *hw = nic->priv;
1176        uint32_t i;
1177        uint32_t addr_low;
1178        uint32_t addr_high;
1179
1180        DEBUGFUNC();
1181
1182        /* Setup the receive address. */
1183        DEBUGOUT("Programming MAC Address into RAR[0]\n");
1184        addr_low = (nic->enetaddr[0] |
1185                    (nic->enetaddr[1] << 8) |
1186                    (nic->enetaddr[2] << 16) | (nic->enetaddr[3] << 24));
1187
1188        addr_high = (nic->enetaddr[4] | (nic->enetaddr[5] << 8) | E1000_RAH_AV);
1189
1190        E1000_WRITE_REG_ARRAY(hw, RA, 0, addr_low);
1191        E1000_WRITE_REG_ARRAY(hw, RA, 1, addr_high);
1192
1193        /* Zero out the other 15 receive addresses. */
1194        DEBUGOUT("Clearing RAR[1-15]\n");
1195        for (i = 1; i < E1000_RAR_ENTRIES; i++) {
1196                E1000_WRITE_REG_ARRAY(hw, RA, (i << 1), 0);
1197                E1000_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0);
1198        }
1199}
1200
1201/******************************************************************************
1202 * Clears the VLAN filer table
1203 *
1204 * hw - Struct containing variables accessed by shared code
1205 *****************************************************************************/
1206static void
1207e1000_clear_vfta(struct e1000_hw *hw)
1208{
1209        uint32_t offset;
1210
1211        for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++)
1212                E1000_WRITE_REG_ARRAY(hw, VFTA, offset, 0);
1213}
1214
1215/******************************************************************************
1216 * Set the mac type member in the hw struct.
1217 *
1218 * hw - Struct containing variables accessed by shared code
1219 *****************************************************************************/
1220int32_t
1221e1000_set_mac_type(struct e1000_hw *hw)
1222{
1223        DEBUGFUNC();
1224
1225        switch (hw->device_id) {
1226        case E1000_DEV_ID_82542:
1227                switch (hw->revision_id) {
1228                case E1000_82542_2_0_REV_ID:
1229                        hw->mac_type = e1000_82542_rev2_0;
1230                        break;
1231                case E1000_82542_2_1_REV_ID:
1232                        hw->mac_type = e1000_82542_rev2_1;
1233                        break;
1234                default:
1235                        /* Invalid 82542 revision ID */
1236                        return -E1000_ERR_MAC_TYPE;
1237                }
1238                break;
1239        case E1000_DEV_ID_82543GC_FIBER:
1240        case E1000_DEV_ID_82543GC_COPPER:
1241                hw->mac_type = e1000_82543;
1242                break;
1243        case E1000_DEV_ID_82544EI_COPPER:
1244        case E1000_DEV_ID_82544EI_FIBER:
1245        case E1000_DEV_ID_82544GC_COPPER:
1246        case E1000_DEV_ID_82544GC_LOM:
1247                hw->mac_type = e1000_82544;
1248                break;
1249        case E1000_DEV_ID_82540EM:
1250        case E1000_DEV_ID_82540EM_LOM:
1251        case E1000_DEV_ID_82540EP:
1252        case E1000_DEV_ID_82540EP_LOM:
1253        case E1000_DEV_ID_82540EP_LP:
1254                hw->mac_type = e1000_82540;
1255                break;
1256        case E1000_DEV_ID_82545EM_COPPER:
1257        case E1000_DEV_ID_82545EM_FIBER:
1258                hw->mac_type = e1000_82545;
1259                break;
1260        case E1000_DEV_ID_82545GM_COPPER:
1261        case E1000_DEV_ID_82545GM_FIBER:
1262        case E1000_DEV_ID_82545GM_SERDES:
1263                hw->mac_type = e1000_82545_rev_3;
1264                break;
1265        case E1000_DEV_ID_82546EB_COPPER:
1266        case E1000_DEV_ID_82546EB_FIBER:
1267        case E1000_DEV_ID_82546EB_QUAD_COPPER:
1268                hw->mac_type = e1000_82546;
1269                break;
1270        case E1000_DEV_ID_82546GB_COPPER:
1271        case E1000_DEV_ID_82546GB_FIBER:
1272        case E1000_DEV_ID_82546GB_SERDES:
1273        case E1000_DEV_ID_82546GB_PCIE:
1274        case E1000_DEV_ID_82546GB_QUAD_COPPER:
1275        case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1276                hw->mac_type = e1000_82546_rev_3;
1277                break;
1278        case E1000_DEV_ID_82541EI:
1279        case E1000_DEV_ID_82541EI_MOBILE:
1280        case E1000_DEV_ID_82541ER_LOM:
1281                hw->mac_type = e1000_82541;
1282                break;
1283        case E1000_DEV_ID_82541ER:
1284        case E1000_DEV_ID_82541GI:
1285        case E1000_DEV_ID_82541GI_LF:
1286        case E1000_DEV_ID_82541GI_MOBILE:
1287                hw->mac_type = e1000_82541_rev_2;
1288                break;
1289        case E1000_DEV_ID_82547EI:
1290        case E1000_DEV_ID_82547EI_MOBILE:
1291                hw->mac_type = e1000_82547;
1292                break;
1293        case E1000_DEV_ID_82547GI:
1294                hw->mac_type = e1000_82547_rev_2;
1295                break;
1296        case E1000_DEV_ID_82571EB_COPPER:
1297        case E1000_DEV_ID_82571EB_FIBER:
1298        case E1000_DEV_ID_82571EB_SERDES:
1299        case E1000_DEV_ID_82571EB_SERDES_DUAL:
1300        case E1000_DEV_ID_82571EB_SERDES_QUAD:
1301        case E1000_DEV_ID_82571EB_QUAD_COPPER:
1302        case E1000_DEV_ID_82571PT_QUAD_COPPER:
1303        case E1000_DEV_ID_82571EB_QUAD_FIBER:
1304        case E1000_DEV_ID_82571EB_QUAD_COPPER_LOWPROFILE:
1305                hw->mac_type = e1000_82571;
1306                break;
1307        case E1000_DEV_ID_82572EI_COPPER:
1308        case E1000_DEV_ID_82572EI_FIBER:
1309        case E1000_DEV_ID_82572EI_SERDES:
1310        case E1000_DEV_ID_82572EI:
1311                hw->mac_type = e1000_82572;
1312                break;
1313        case E1000_DEV_ID_82573E:
1314        case E1000_DEV_ID_82573E_IAMT:
1315        case E1000_DEV_ID_82573L:
1316                hw->mac_type = e1000_82573;
1317                break;
1318        case E1000_DEV_ID_80003ES2LAN_COPPER_SPT:
1319        case E1000_DEV_ID_80003ES2LAN_SERDES_SPT:
1320        case E1000_DEV_ID_80003ES2LAN_COPPER_DPT:
1321        case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
1322                hw->mac_type = e1000_80003es2lan;
1323                break;
1324        case E1000_DEV_ID_ICH8_IGP_M_AMT:
1325        case E1000_DEV_ID_ICH8_IGP_AMT:
1326        case E1000_DEV_ID_ICH8_IGP_C:
1327        case E1000_DEV_ID_ICH8_IFE:
1328        case E1000_DEV_ID_ICH8_IFE_GT:
1329        case E1000_DEV_ID_ICH8_IFE_G:
1330        case E1000_DEV_ID_ICH8_IGP_M:
1331                hw->mac_type = e1000_ich8lan;
1332                break;
1333        default:
1334                /* Should never have loaded on this device */
1335                return -E1000_ERR_MAC_TYPE;
1336        }
1337        return E1000_SUCCESS;
1338}
1339
1340/******************************************************************************
1341 * Reset the transmit and receive units; mask and clear all interrupts.
1342 *
1343 * hw - Struct containing variables accessed by shared code
1344 *****************************************************************************/
1345void
1346e1000_reset_hw(struct e1000_hw *hw)
1347{
1348        uint32_t ctrl;
1349        uint32_t ctrl_ext;
1350        uint32_t icr;
1351        uint32_t manc;
1352
1353        DEBUGFUNC();
1354
1355        /* For 82542 (rev 2.0), disable MWI before issuing a device reset */
1356        if (hw->mac_type == e1000_82542_rev2_0) {
1357                DEBUGOUT("Disabling MWI on 82542 rev 2.0\n");
1358                pci_write_config_word(hw->pdev, PCI_COMMAND,
1359                                hw->pci_cmd_word & ~PCI_COMMAND_INVALIDATE);
1360        }
1361
1362        /* Clear interrupt mask to stop board from generating interrupts */
1363        DEBUGOUT("Masking off all interrupts\n");
1364        E1000_WRITE_REG(hw, IMC, 0xffffffff);
1365
1366        /* Disable the Transmit and Receive units.  Then delay to allow
1367         * any pending transactions to complete before we hit the MAC with
1368         * the global reset.
1369         */
1370        E1000_WRITE_REG(hw, RCTL, 0);
1371        E1000_WRITE_REG(hw, TCTL, E1000_TCTL_PSP);
1372        E1000_WRITE_FLUSH(hw);
1373
1374        /* The tbi_compatibility_on Flag must be cleared when Rctl is cleared. */
1375        hw->tbi_compatibility_on = FALSE;
1376
1377        /* Delay to allow any outstanding PCI transactions to complete before
1378         * resetting the device
1379         */
1380        mdelay(10);
1381
1382        /* Issue a global reset to the MAC.  This will reset the chip's
1383         * transmit, receive, DMA, and link units.  It will not effect
1384         * the current PCI configuration.  The global reset bit is self-
1385         * clearing, and should clear within a microsecond.
1386         */
1387        DEBUGOUT("Issuing a global reset to MAC\n");
1388        ctrl = E1000_READ_REG(hw, CTRL);
1389
1390        E1000_WRITE_REG(hw, CTRL, (ctrl | E1000_CTRL_RST));
1391
1392        /* Force a reload from the EEPROM if necessary */
1393        if (hw->mac_type < e1000_82540) {
1394                /* Wait for reset to complete */
1395                udelay(10);
1396                ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
1397                ctrl_ext |= E1000_CTRL_EXT_EE_RST;
1398                E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
1399                E1000_WRITE_FLUSH(hw);
1400                /* Wait for EEPROM reload */
1401                mdelay(2);
1402        } else {
1403                /* Wait for EEPROM reload (it happens automatically) */
1404                mdelay(4);
1405                /* Dissable HW ARPs on ASF enabled adapters */
1406                manc = E1000_READ_REG(hw, MANC);
1407                manc &= ~(E1000_MANC_ARP_EN);
1408                E1000_WRITE_REG(hw, MANC, manc);
1409        }
1410
1411        /* Clear interrupt mask to stop board from generating interrupts */
1412        DEBUGOUT("Masking off all interrupts\n");
1413        E1000_WRITE_REG(hw, IMC, 0xffffffff);
1414
1415        /* Clear any pending interrupt events. */
1416        icr = E1000_READ_REG(hw, ICR);
1417
1418        /* If MWI was previously enabled, reenable it. */
1419        if (hw->mac_type == e1000_82542_rev2_0) {
1420                pci_write_config_word(hw->pdev, PCI_COMMAND, hw->pci_cmd_word);
1421        }
1422        E1000_WRITE_REG(hw, PBA, E1000_DEFAULT_PBA);
1423}
1424
1425/******************************************************************************
1426 *
1427 * Initialize a number of hardware-dependent bits
1428 *
1429 * hw: Struct containing variables accessed by shared code
1430 *
1431 * This function contains hardware limitation workarounds for PCI-E adapters
1432 *
1433 *****************************************************************************/
1434static void
1435e1000_initialize_hardware_bits(struct e1000_hw *hw)
1436{
1437        if ((hw->mac_type >= e1000_82571) &&
1438                        (!hw->initialize_hw_bits_disable)) {
1439                /* Settings common to all PCI-express silicon */
1440                uint32_t reg_ctrl, reg_ctrl_ext;
1441                uint32_t reg_tarc0, reg_tarc1;
1442                uint32_t reg_tctl;
1443                uint32_t reg_txdctl, reg_txdctl1;
1444
1445                /* link autonegotiation/sync workarounds */
1446                reg_tarc0 = E1000_READ_REG(hw, TARC0);
1447                reg_tarc0 &= ~((1 << 30)|(1 << 29)|(1 << 28)|(1 << 27));
1448
1449                /* Enable not-done TX descriptor counting */
1450                reg_txdctl = E1000_READ_REG(hw, TXDCTL);
1451                reg_txdctl |= E1000_TXDCTL_COUNT_DESC;
1452                E1000_WRITE_REG(hw, TXDCTL, reg_txdctl);
1453
1454                reg_txdctl1 = E1000_READ_REG(hw, TXDCTL1);
1455                reg_txdctl1 |= E1000_TXDCTL_COUNT_DESC;
1456                E1000_WRITE_REG(hw, TXDCTL1, reg_txdctl1);
1457
1458                switch (hw->mac_type) {
1459                case e1000_82571:
1460                case e1000_82572:
1461                        /* Clear PHY TX compatible mode bits */
1462                        reg_tarc1 = E1000_READ_REG(hw, TARC1);
1463                        reg_tarc1 &= ~((1 << 30)|(1 << 29));
1464
1465                        /* link autonegotiation/sync workarounds */
1466                        reg_tarc0 |= ((1 << 26)|(1 << 25)|(1 << 24)|(1 << 23));
1467
1468                        /* TX ring control fixes */
1469                        reg_tarc1 |= ((1 << 26)|(1 << 25)|(1 << 24));
1470
1471                        /* Multiple read bit is reversed polarity */
1472                        reg_tctl = E1000_READ_REG(hw, TCTL);
1473                        if (reg_tctl & E1000_TCTL_MULR)
1474                                reg_tarc1 &= ~(1 << 28);
1475                        else
1476                                reg_tarc1 |= (1 << 28);
1477
1478                        E1000_WRITE_REG(hw, TARC1, reg_tarc1);
1479                        break;
1480                case e1000_82573:
1481                        reg_ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
1482                        reg_ctrl_ext &= ~(1 << 23);
1483                        reg_ctrl_ext |= (1 << 22);
1484
1485                        /* TX byte count fix */
1486                        reg_ctrl = E1000_READ_REG(hw, CTRL);
1487                        reg_ctrl &= ~(1 << 29);
1488
1489                        E1000_WRITE_REG(hw, CTRL_EXT, reg_ctrl_ext);
1490                        E1000_WRITE_REG(hw, CTRL, reg_ctrl);
1491                        break;
1492                case e1000_80003es2lan:
1493        /* improve small packet performace for fiber/serdes */
1494                        if ((hw->media_type == e1000_media_type_fiber)
1495                        || (hw->media_type ==
1496                                e1000_media_type_internal_serdes)) {
1497                                reg_tarc0 &= ~(1 << 20);
1498                        }
1499
1500                /* Multiple read bit is reversed polarity */
1501                        reg_tctl = E1000_READ_REG(hw, TCTL);
1502                        reg_tarc1 = E1000_READ_REG(hw, TARC1);
1503                        if (reg_tctl & E1000_TCTL_MULR)
1504                                reg_tarc1 &= ~(1 << 28);
1505                        else
1506                                reg_tarc1 |= (1 << 28);
1507
1508                        E1000_WRITE_REG(hw, TARC1, reg_tarc1);
1509                        break;
1510                case e1000_ich8lan:
1511                        /* Reduce concurrent DMA requests to 3 from 4 */
1512                        if ((hw->revision_id < 3) ||
1513                        ((hw->device_id != E1000_DEV_ID_ICH8_IGP_M_AMT) &&
1514                                (hw->device_id != E1000_DEV_ID_ICH8_IGP_M)))
1515                                reg_tarc0 |= ((1 << 29)|(1 << 28));
1516
1517                        reg_ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
1518                        reg_ctrl_ext |= (1 << 22);
1519                        E1000_WRITE_REG(hw, CTRL_EXT, reg_ctrl_ext);
1520
1521                        /* workaround TX hang with TSO=on */
1522                        reg_tarc0 |= ((1 << 27)|(1 << 26)|(1 << 24)|(1 << 23));
1523
1524                        /* Multiple read bit is reversed polarity */
1525                        reg_tctl = E1000_READ_REG(hw, TCTL);
1526                        reg_tarc1 = E1000_READ_REG(hw, TARC1);
1527                        if (reg_tctl & E1000_TCTL_MULR)
1528                                reg_tarc1 &= ~(1 << 28);
1529                        else
1530                                reg_tarc1 |= (1 << 28);
1531
1532                        /* workaround TX hang with TSO=on */
1533                        reg_tarc1 |= ((1 << 30)|(1 << 26)|(1 << 24));
1534
1535                        E1000_WRITE_REG(hw, TARC1, reg_tarc1);
1536                        break;
1537                default:
1538                        break;
1539                }
1540
1541                E1000_WRITE_REG(hw, TARC0, reg_tarc0);
1542        }
1543}
1544
1545/******************************************************************************
1546 * Performs basic configuration of the adapter.
1547 *
1548 * hw - Struct containing variables accessed by shared code
1549 *
1550 * Assumes that the controller has previously been reset and is in a
1551 * post-reset uninitialized state. Initializes the receive address registers,
1552 * multicast table, and VLAN filter table. Calls routines to setup link
1553 * configuration and flow control settings. Clears all on-chip counters. Leaves
1554 * the transmit and receive units disabled and uninitialized.
1555 *****************************************************************************/
1556static int
1557e1000_init_hw(struct eth_device *nic)
1558{
1559        struct e1000_hw *hw = nic->priv;
1560        uint32_t ctrl;
1561        uint32_t i;
1562        int32_t ret_val;
1563        uint16_t pcix_cmd_word;
1564        uint16_t pcix_stat_hi_word;
1565        uint16_t cmd_mmrbc;
1566        uint16_t stat_mmrbc;
1567        uint32_t mta_size;
1568        uint32_t reg_data;
1569        uint32_t ctrl_ext;
1570        DEBUGFUNC();
1571        /* force full DMA clock frequency for 10/100 on ICH8 A0-B0 */
1572        if ((hw->mac_type == e1000_ich8lan) &&
1573                ((hw->revision_id < 3) ||
1574                ((hw->device_id != E1000_DEV_ID_ICH8_IGP_M_AMT) &&
1575                (hw->device_id != E1000_DEV_ID_ICH8_IGP_M)))) {
1576                        reg_data = E1000_READ_REG(hw, STATUS);
1577                        reg_data &= ~0x80000000;
1578                        E1000_WRITE_REG(hw, STATUS, reg_data);
1579        }
1580        /* Do not need initialize Identification LED */
1581
1582        /* Set the media type and TBI compatibility */
1583        e1000_set_media_type(hw);
1584
1585        /* Must be called after e1000_set_media_type
1586         * because media_type is used */
1587        e1000_initialize_hardware_bits(hw);
1588
1589        /* Disabling VLAN filtering. */
1590        DEBUGOUT("Initializing the IEEE VLAN\n");
1591        /* VET hardcoded to standard value and VFTA removed in ICH8 LAN */
1592        if (hw->mac_type != e1000_ich8lan) {
1593                if (hw->mac_type < e1000_82545_rev_3)
1594                        E1000_WRITE_REG(hw, VET, 0);
1595                e1000_clear_vfta(hw);
1596        }
1597
1598        /* For 82542 (rev 2.0), disable MWI and put the receiver into reset */
1599        if (hw->mac_type == e1000_82542_rev2_0) {
1600                DEBUGOUT("Disabling MWI on 82542 rev 2.0\n");
1601                pci_write_config_word(hw->pdev, PCI_COMMAND,
1602                                      hw->
1603                                      pci_cmd_word & ~PCI_COMMAND_INVALIDATE);
1604                E1000_WRITE_REG(hw, RCTL, E1000_RCTL_RST);
1605                E1000_WRITE_FLUSH(hw);
1606                mdelay(5);
1607        }
1608
1609        /* Setup the receive address. This involves initializing all of the Receive
1610         * Address Registers (RARs 0 - 15).
1611         */
1612        e1000_init_rx_addrs(nic);
1613
1614        /* For 82542 (rev 2.0), take the receiver out of reset and enable MWI */
1615        if (hw->mac_type == e1000_82542_rev2_0) {
1616                E1000_WRITE_REG(hw, RCTL, 0);
1617                E1000_WRITE_FLUSH(hw);
1618                mdelay(1);
1619                pci_write_config_word(hw->pdev, PCI_COMMAND, hw->pci_cmd_word);
1620        }
1621
1622        /* Zero out the Multicast HASH table */
1623        DEBUGOUT("Zeroing the MTA\n");
1624        mta_size = E1000_MC_TBL_SIZE;
1625        if (hw->mac_type == e1000_ich8lan)
1626                mta_size = E1000_MC_TBL_SIZE_ICH8LAN;
1627        for (i = 0; i < mta_size; i++) {
1628                E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
1629                /* use write flush to prevent Memory Write Block (MWB) from
1630                 * occuring when accessing our register space */
1631                E1000_WRITE_FLUSH(hw);
1632        }
1633#if 0
1634        /* Set the PCI priority bit correctly in the CTRL register.  This
1635         * determines if the adapter gives priority to receives, or if it
1636         * gives equal priority to transmits and receives.  Valid only on
1637         * 82542 and 82543 silicon.
1638         */
1639        if (hw->dma_fairness && hw->mac_type <= e1000_82543) {
1640                ctrl = E1000_READ_REG(hw, CTRL);
1641                E1000_WRITE_REG(hw, CTRL, ctrl | E1000_CTRL_PRIOR);
1642        }
1643#endif
1644        switch (hw->mac_type) {
1645        case e1000_82545_rev_3:
1646        case e1000_82546_rev_3:
1647                break;
1648        default:
1649        /* Workaround for PCI-X problem when BIOS sets MMRBC incorrectly. */
1650        if (hw->bus_type == e1000_bus_type_pcix) {
1651                pci_read_config_word(hw->pdev, PCIX_COMMAND_REGISTER,
1652                                     &pcix_cmd_word);
1653                pci_read_config_word(hw->pdev, PCIX_STATUS_REGISTER_HI,
1654                                     &pcix_stat_hi_word);
1655                cmd_mmrbc =
1656                    (pcix_cmd_word & PCIX_COMMAND_MMRBC_MASK) >>
1657                    PCIX_COMMAND_MMRBC_SHIFT;
1658                stat_mmrbc =
1659                    (pcix_stat_hi_word & PCIX_STATUS_HI_MMRBC_MASK) >>
1660                    PCIX_STATUS_HI_MMRBC_SHIFT;
1661                if (stat_mmrbc == PCIX_STATUS_HI_MMRBC_4K)
1662                        stat_mmrbc = PCIX_STATUS_HI_MMRBC_2K;
1663                if (cmd_mmrbc > stat_mmrbc) {
1664                        pcix_cmd_word &= ~PCIX_COMMAND_MMRBC_MASK;
1665                        pcix_cmd_word |= stat_mmrbc << PCIX_COMMAND_MMRBC_SHIFT;
1666                        pci_write_config_word(hw->pdev, PCIX_COMMAND_REGISTER,
1667                                              pcix_cmd_word);
1668                }
1669        }
1670                break;
1671        }
1672
1673        /* More time needed for PHY to initialize */
1674        if (hw->mac_type == e1000_ich8lan)
1675                mdelay(15);
1676
1677        /* Call a subroutine to configure the link and setup flow control. */
1678        ret_val = e1000_setup_link(nic);
1679
1680        /* Set the transmit descriptor write-back policy */
1681        if (hw->mac_type > e1000_82544) {
1682                ctrl = E1000_READ_REG(hw, TXDCTL);
1683                ctrl =
1684                    (ctrl & ~E1000_TXDCTL_WTHRESH) |
1685                    E1000_TXDCTL_FULL_TX_DESC_WB;
1686                E1000_WRITE_REG(hw, TXDCTL, ctrl);
1687        }
1688
1689        switch (hw->mac_type) {
1690        default:
1691                break;
1692        case e1000_80003es2lan:
1693                /* Enable retransmit on late collisions */
1694                reg_data = E1000_READ_REG(hw, TCTL);
1695                reg_data |= E1000_TCTL_RTLC;
1696                E1000_WRITE_REG(hw, TCTL, reg_data);
1697
1698                /* Configure Gigabit Carry Extend Padding */
1699                reg_data = E1000_READ_REG(hw, TCTL_EXT);
1700                reg_data &= ~E1000_TCTL_EXT_GCEX_MASK;
1701                reg_data |= DEFAULT_80003ES2LAN_TCTL_EXT_GCEX;
1702                E1000_WRITE_REG(hw, TCTL_EXT, reg_data);
1703
1704                /* Configure Transmit Inter-Packet Gap */
1705                reg_data = E1000_READ_REG(hw, TIPG);
1706                reg_data &= ~E1000_TIPG_IPGT_MASK;
1707                reg_data |= DEFAULT_80003ES2LAN_TIPG_IPGT_1000;
1708                E1000_WRITE_REG(hw, TIPG, reg_data);
1709
1710                reg_data = E1000_READ_REG_ARRAY(hw, FFLT, 0x0001);
1711                reg_data &= ~0x00100000;
1712                E1000_WRITE_REG_ARRAY(hw, FFLT, 0x0001, reg_data);
1713                /* Fall through */
1714        case e1000_82571:
1715        case e1000_82572:
1716        case e1000_ich8lan:
1717                ctrl = E1000_READ_REG(hw, TXDCTL1);
1718                ctrl = (ctrl & ~E1000_TXDCTL_WTHRESH)
1719                        | E1000_TXDCTL_FULL_TX_DESC_WB;
1720                E1000_WRITE_REG(hw, TXDCTL1, ctrl);
1721                break;
1722        }
1723
1724        if (hw->mac_type == e1000_82573) {
1725                uint32_t gcr = E1000_READ_REG(hw, GCR);
1726                gcr |= E1000_GCR_L1_ACT_WITHOUT_L0S_RX;
1727                E1000_WRITE_REG(hw, GCR, gcr);
1728        }
1729
1730#if 0
1731        /* Clear all of the statistics registers (clear on read).  It is
1732         * important that we do this after we have tried to establish link
1733         * because the symbol error count will increment wildly if there
1734         * is no link.
1735         */
1736        e1000_clear_hw_cntrs(hw);
1737
1738        /* ICH8 No-snoop bits are opposite polarity.
1739         * Set to snoop by default after reset. */
1740        if (hw->mac_type == e1000_ich8lan)
1741                e1000_set_pci_ex_no_snoop(hw, PCI_EX_82566_SNOOP_ALL);
1742#endif
1743
1744        if (hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER ||
1745                hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3) {
1746                ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
1747                /* Relaxed ordering must be disabled to avoid a parity
1748                 * error crash in a PCI slot. */
1749                ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
1750                E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
1751        }
1752
1753        return ret_val;
1754}
1755
1756/******************************************************************************
1757 * Configures flow control and link settings.
1758 *
1759 * hw - Struct containing variables accessed by shared code
1760 *
1761 * Determines which flow control settings to use. Calls the apropriate media-
1762 * specific link configuration function. Configures the flow control settings.
1763 * Assuming the adapter has a valid link partner, a valid link should be
1764 * established. Assumes the hardware has previously been reset and the
1765 * transmitter and receiver are not enabled.
1766 *****************************************************************************/
1767static int
1768e1000_setup_link(struct eth_device *nic)
1769{
1770        struct e1000_hw *hw = nic->priv;
1771        uint32_t ctrl_ext;
1772        int32_t ret_val;
1773        uint16_t eeprom_data;
1774
1775        DEBUGFUNC();
1776
1777        /* In the case of the phy reset being blocked, we already have a link.
1778         * We do not have to set it up again. */
1779        if (e1000_check_phy_reset_block(hw))
1780                return E1000_SUCCESS;
1781
1782#ifndef CONFIG_AP1000
1783        /* Read and store word 0x0F of the EEPROM. This word contains bits
1784         * that determine the hardware's default PAUSE (flow control) mode,
1785         * a bit that determines whether the HW defaults to enabling or
1786         * disabling auto-negotiation, and the direction of the
1787         * SW defined pins. If there is no SW over-ride of the flow
1788         * control setting, then the variable hw->fc will
1789         * be initialized based on a value in the EEPROM.
1790         */
1791        if (e1000_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG, 1,
1792                                &eeprom_data) < 0) {
1793                DEBUGOUT("EEPROM Read Error\n");
1794                return -E1000_ERR_EEPROM;
1795        }
1796#else
1797        /* we have to hardcode the proper value for our hardware. */
1798        /* this value is for the 82540EM pci card used for prototyping, and it works. */
1799        eeprom_data = 0xb220;
1800#endif
1801
1802        if (hw->fc == e1000_fc_default) {
1803                switch (hw->mac_type) {
1804                case e1000_ich8lan:
1805                case e1000_82573:
1806                        hw->fc = e1000_fc_full;
1807                        break;
1808                default:
1809#ifndef CONFIG_AP1000
1810                        ret_val = e1000_read_eeprom(hw,
1811                                EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
1812                        if (ret_val) {
1813                                DEBUGOUT("EEPROM Read Error\n");
1814                                return -E1000_ERR_EEPROM;
1815                        }
1816#else
1817                        eeprom_data = 0xb220;
1818#endif
1819                        if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) == 0)
1820                                hw->fc = e1000_fc_none;
1821                        else if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) ==
1822                                    EEPROM_WORD0F_ASM_DIR)
1823                                hw->fc = e1000_fc_tx_pause;
1824                        else
1825                                hw->fc = e1000_fc_full;
1826                        break;
1827                }
1828        }
1829
1830        /* We want to save off the original Flow Control configuration just
1831         * in case we get disconnected and then reconnected into a different
1832         * hub or switch with different Flow Control capabilities.
1833         */
1834        if (hw->mac_type == e1000_82542_rev2_0)
1835                hw->fc &= (~e1000_fc_tx_pause);
1836
1837        if ((hw->mac_type < e1000_82543) && (hw->report_tx_early == 1))
1838                hw->fc &= (~e1000_fc_rx_pause);
1839
1840        hw->original_fc = hw->fc;
1841
1842        DEBUGOUT("After fix-ups FlowControl is now = %x\n", hw->fc);
1843
1844        /* Take the 4 bits from EEPROM word 0x0F that determine the initial
1845         * polarity value for the SW controlled pins, and setup the
1846         * Extended Device Control reg with that info.
1847         * This is needed because one of the SW controlled pins is used for
1848         * signal detection.  So this should be done before e1000_setup_pcs_link()
1849         * or e1000_phy_setup() is called.
1850         */
1851        if (hw->mac_type == e1000_82543) {
1852                ctrl_ext = ((eeprom_data & EEPROM_WORD0F_SWPDIO_EXT) <<
1853                            SWDPIO__EXT_SHIFT);
1854                E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
1855        }
1856
1857        /* Call the necessary subroutine to configure the link. */
1858        ret_val = (hw->media_type == e1000_media_type_fiber) ?
1859            e1000_setup_fiber_link(nic) : e1000_setup_copper_link(nic);
1860        if (ret_val < 0) {
1861                return ret_val;
1862        }
1863
1864        /* Initialize the flow control address, type, and PAUSE timer
1865         * registers to their default values.  This is done even if flow
1866         * control is disabled, because it does not hurt anything to
1867         * initialize these registers.
1868         */
1869        DEBUGOUT("Initializing the Flow Control address, type"
1870                        "and timer regs\n");
1871
1872        /* FCAL/H and FCT are hardcoded to standard values in e1000_ich8lan. */
1873        if (hw->mac_type != e1000_ich8lan) {
1874                E1000_WRITE_REG(hw, FCT, FLOW_CONTROL_TYPE);
1875                E1000_WRITE_REG(hw, FCAH, FLOW_CONTROL_ADDRESS_HIGH);
1876                E1000_WRITE_REG(hw, FCAL, FLOW_CONTROL_ADDRESS_LOW);
1877        }
1878
1879        E1000_WRITE_REG(hw, FCTTV, hw->fc_pause_time);
1880
1881        /* Set the flow control receive threshold registers.  Normally,
1882         * these registers will be set to a default threshold that may be
1883         * adjusted later by the driver's runtime code.  However, if the
1884         * ability to transmit pause frames in not enabled, then these
1885         * registers will be set to 0.
1886         */
1887        if (!(hw->fc & e1000_fc_tx_pause)) {
1888                E1000_WRITE_REG(hw, FCRTL, 0);
1889                E1000_WRITE_REG(hw, FCRTH, 0);
1890        } else {
1891                /* We need to set up the Receive Threshold high and low water marks
1892                 * as well as (optionally) enabling the transmission of XON frames.
1893                 */
1894                if (hw->fc_send_xon) {
1895                        E1000_WRITE_REG(hw, FCRTL,
1896                                        (hw->fc_low_water | E1000_FCRTL_XONE));
1897                        E1000_WRITE_REG(hw, FCRTH, hw->fc_high_water);
1898                } else {
1899                        E1000_WRITE_REG(hw, FCRTL, hw->fc_low_water);
1900                        E1000_WRITE_REG(hw, FCRTH, hw->fc_high_water);
1901                }
1902        }
1903        return ret_val;
1904}
1905
1906/******************************************************************************
1907 * Sets up link for a fiber based adapter
1908 *
1909 * hw - Struct containing variables accessed by shared code
1910 *
1911 * Manipulates Physical Coding Sublayer functions in order to configure
1912 * link. Assumes the hardware has been previously reset and the transmitter
1913 * and receiver are not enabled.
1914 *****************************************************************************/
1915static int
1916e1000_setup_fiber_link(struct eth_device *nic)
1917{
1918        struct e1000_hw *hw = nic->priv;
1919        uint32_t ctrl;
1920        uint32_t status;
1921        uint32_t txcw = 0;
1922        uint32_t i;
1923        uint32_t signal;
1924        int32_t ret_val;
1925
1926        DEBUGFUNC();
1927        /* On adapters with a MAC newer that 82544, SW Defineable pin 1 will be
1928         * set when the optics detect a signal. On older adapters, it will be
1929         * cleared when there is a signal
1930         */
1931        ctrl = E1000_READ_REG(hw, CTRL);
1932        if ((hw->mac_type > e1000_82544) && !(ctrl & E1000_CTRL_ILOS))
1933                signal = E1000_CTRL_SWDPIN1;
1934        else
1935                signal = 0;
1936
1937        printf("signal for %s is %x (ctrl %08x)!!!!\n", nic->name, signal,
1938               ctrl);
1939        /* Take the link out of reset */
1940        ctrl &= ~(E1000_CTRL_LRST);
1941
1942        e1000_config_collision_dist(hw);
1943
1944        /* Check for a software override of the flow control settings, and setup
1945         * the device accordingly.  If auto-negotiation is enabled, then software
1946         * will have to set the "PAUSE" bits to the correct value in the Tranmsit
1947         * Config Word Register (TXCW) and re-start auto-negotiation.  However, if
1948         * auto-negotiation is disabled, then software will have to manually
1949         * configure the two flow control enable bits in the CTRL register.
1950         *
1951         * The possible values of the "fc" parameter are:
1952         *      0:  Flow control is completely disabled
1953         *      1:  Rx flow control is enabled (we can receive pause frames, but
1954         *          not send pause frames).
1955         *      2:  Tx flow control is enabled (we can send pause frames but we do
1956         *          not support receiving pause frames).
1957         *      3:  Both Rx and TX flow control (symmetric) are enabled.
1958         */
1959        switch (hw->fc) {
1960        case e1000_fc_none:
1961                /* Flow control is completely disabled by a software over-ride. */
1962                txcw = (E1000_TXCW_ANE | E1000_TXCW_FD);
1963                break;
1964        case e1000_fc_rx_pause:
1965                /* RX Flow control is enabled and TX Flow control is disabled by a
1966                 * software over-ride. Since there really isn't a way to advertise
1967                 * that we are capable of RX Pause ONLY, we will advertise that we
1968                 * support both symmetric and asymmetric RX PAUSE. Later, we will
1969                 *  disable the adapter's ability to send PAUSE frames.
1970                 */
1971                txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
1972                break;
1973        case e1000_fc_tx_pause:
1974                /* TX Flow control is enabled, and RX Flow control is disabled, by a
1975                 * software over-ride.
1976                 */
1977                txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR);
1978                break;
1979        case e1000_fc_full:
1980                /* Flow control (both RX and TX) is enabled by a software over-ride. */
1981                txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
1982                break;
1983        default:
1984                DEBUGOUT("Flow control param set incorrectly\n");
1985                return -E1000_ERR_CONFIG;
1986                break;
1987        }
1988
1989        /* Since auto-negotiation is enabled, take the link out of reset (the link
1990         * will be in reset, because we previously reset the chip). This will
1991         * restart auto-negotiation.  If auto-neogtiation is successful then the
1992         * link-up status bit will be set and the flow control enable bits (RFCE
1993         * and TFCE) will be set according to their negotiated value.
1994         */
1995        DEBUGOUT("Auto-negotiation enabled (%#x)\n", txcw);
1996
1997        E1000_WRITE_REG(hw, TXCW, txcw);
1998        E1000_WRITE_REG(hw, CTRL, ctrl);
1999        E1000_WRITE_FLUSH(hw);
2000
2001        hw->txcw = txcw;
2002        mdelay(1);
2003
2004        /* If we have a signal (the cable is plugged in) then poll for a "Link-Up"
2005         * indication in the Device Status Register.  Time-out if a link isn't
2006         * seen in 500 milliseconds seconds (Auto-negotiation should complete in
2007         * less than 500 milliseconds even if the other end is doing it in SW).
2008         */
2009        if ((E1000_READ_REG(hw, CTRL) & E1000_CTRL_SWDPIN1) == signal) {
2010                DEBUGOUT("Looking for Link\n");
2011                for (i = 0; i < (LINK_UP_TIMEOUT / 10); i++) {
2012                        mdelay(10);
2013                        status = E1000_READ_REG(hw, STATUS);
2014                        if (status & E1000_STATUS_LU)
2015                                break;
2016                }
2017                if (i == (LINK_UP_TIMEOUT / 10)) {
2018                        /* AutoNeg failed to achieve a link, so we'll call
2019                         * e1000_check_for_link. This routine will force the link up if we
2020                         * detect a signal. This will allow us to communicate with
2021                         * non-autonegotiating link partners.
2022                         */
2023                        DEBUGOUT("Never got a valid link from auto-neg!!!\n");
2024                        hw->autoneg_failed = 1;
2025                        ret_val = e1000_check_for_link(nic);
2026                        if (ret_val < 0) {
2027                                DEBUGOUT("Error while checking for link\n");
2028                                return ret_val;
2029                        }
2030                        hw->autoneg_failed = 0;
2031                } else {
2032                        hw->autoneg_failed = 0;
2033                        DEBUGOUT("Valid Link Found\n");
2034                }
2035        } else {
2036                DEBUGOUT("No Signal Detected\n");
2037                return -E1000_ERR_NOLINK;
2038        }
2039        return 0;
2040}
2041
2042/******************************************************************************
2043* Make sure we have a valid PHY and change PHY mode before link setup.
2044*
2045* hw - Struct containing variables accessed by shared code
2046******************************************************************************/
2047static int32_t
2048e1000_copper_link_preconfig(struct e1000_hw *hw)
2049{
2050        uint32_t ctrl;
2051        int32_t ret_val;
2052        uint16_t phy_data;
2053
2054        DEBUGFUNC();
2055
2056        ctrl = E1000_READ_REG(hw, CTRL);
2057        /* With 82543, we need to force speed and duplex on the MAC equal to what
2058         * the PHY speed and duplex configuration is. In addition, we need to
2059         * perform a hardware reset on the PHY to take it out of reset.
2060         */
2061        if (hw->mac_type > e1000_82543) {
2062                ctrl |= E1000_CTRL_SLU;
2063                ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
2064                E1000_WRITE_REG(hw, CTRL, ctrl);
2065        } else {
2066                ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX
2067                                | E1000_CTRL_SLU);
2068                E1000_WRITE_REG(hw, CTRL, ctrl);
2069                ret_val = e1000_phy_hw_reset(hw);
2070                if (ret_val)
2071                        return ret_val;
2072        }
2073
2074        /* Make sure we have a valid PHY */
2075        ret_val = e1000_detect_gig_phy(hw);
2076        if (ret_val) {
2077                DEBUGOUT("Error, did not detect valid phy.\n");
2078                return ret_val;
2079        }
2080        DEBUGOUT("Phy ID = %x \n", hw->phy_id);
2081
2082#ifndef CONFIG_AP1000
2083        /* Set PHY to class A mode (if necessary) */
2084        ret_val = e1000_set_phy_mode(hw);
2085        if (ret_val)
2086                return ret_val;
2087#endif
2088        if ((hw->mac_type == e1000_82545_rev_3) ||
2089                (hw->mac_type == e1000_82546_rev_3)) {
2090                ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL,
2091                                &phy_data);
2092                phy_data |= 0x00000008;
2093                ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL,
2094                                phy_data);
2095        }
2096
2097        if (hw->mac_type <= e1000_82543 ||
2098                hw->mac_type == e1000_82541 || hw->mac_type == e1000_82547 ||
2099                hw->mac_type == e1000_82541_rev_2
2100                || hw->mac_type == e1000_82547_rev_2)
2101                        hw->phy_reset_disable = FALSE;
2102
2103        return E1000_SUCCESS;
2104}
2105
2106/*****************************************************************************
2107 *
2108 * This function sets the lplu state according to the active flag.  When
2109 * activating lplu this function also disables smart speed and vise versa.
2110 * lplu will not be activated unless the device autonegotiation advertisment
2111 * meets standards of either 10 or 10/100 or 10/100/1000 at all duplexes.
2112 * hw: Struct containing variables accessed by shared code
2113 * active - true to enable lplu false to disable lplu.
2114 *
2115 * returns: - E1000_ERR_PHY if fail to read/write the PHY
2116 *            E1000_SUCCESS at any other case.
2117 *
2118 ****************************************************************************/
2119
2120static int32_t
2121e1000_set_d3_lplu_state(struct e1000_hw *hw, boolean_t active)
2122{
2123        uint32_t phy_ctrl = 0;
2124        int32_t ret_val;
2125        uint16_t phy_data;
2126        DEBUGFUNC();
2127
2128        if (hw->phy_type != e1000_phy_igp && hw->phy_type != e1000_phy_igp_2
2129            && hw->phy_type != e1000_phy_igp_3)
2130                return E1000_SUCCESS;
2131
2132        /* During driver activity LPLU should not be used or it will attain link
2133         * from the lowest speeds starting from 10Mbps. The capability is used
2134         * for Dx transitions and states */
2135        if (hw->mac_type == e1000_82541_rev_2
2136                        || hw->mac_type == e1000_82547_rev_2) {
2137                ret_val = e1000_read_phy_reg(hw, IGP01E1000_GMII_FIFO,
2138                                &phy_data);
2139                if (ret_val)
2140                        return ret_val;
2141        } else if (hw->mac_type == e1000_ich8lan) {
2142                /* MAC writes into PHY register based on the state transition
2143                 * and start auto-negotiation. SW driver can overwrite the
2144                 * settings in CSR PHY power control E1000_PHY_CTRL register. */
2145                phy_ctrl = E1000_READ_REG(hw, PHY_CTRL);
2146        } else {
2147                ret_val = e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT,
2148                                &phy_data);
2149                if (ret_val)
2150                        return ret_val;
2151        }
2152
2153        if (!active) {
2154                if (hw->mac_type == e1000_82541_rev_2 ||
2155                        hw->mac_type == e1000_82547_rev_2) {
2156                        phy_data &= ~IGP01E1000_GMII_FLEX_SPD;
2157                        ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO,
2158                                        phy_data);
2159                        if (ret_val)
2160                                return ret_val;
2161                } else {
2162                        if (hw->mac_type == e1000_ich8lan) {
2163                                phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
2164                                E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
2165                        } else {
2166                                phy_data &= ~IGP02E1000_PM_D3_LPLU;
2167                                ret_val = e1000_write_phy_reg(hw,
2168                                        IGP02E1000_PHY_POWER_MGMT, phy_data);
2169                                if (ret_val)
2170                                        return ret_val;
2171                        }
2172                }
2173
2174        /* LPLU and SmartSpeed are mutually exclusive.  LPLU is used during
2175         * Dx states where the power conservation is most important.  During
2176         * driver activity we should enable SmartSpeed, so performance is
2177         * maintained. */
2178                if (hw->smart_speed == e1000_smart_speed_on) {
2179                        ret_val = e1000_read_phy_reg(hw,
2180                                        IGP01E1000_PHY_PORT_CONFIG, &phy_data);
2181                        if (ret_val)
2182                                return ret_val;
2183
2184                        phy_data |= IGP01E1000_PSCFR_SMART_SPEED;
2185                        ret_val = e1000_write_phy_reg(hw,
2186                                        IGP01E1000_PHY_PORT_CONFIG, phy_data);
2187                        if (ret_val)
2188                                return ret_val;
2189                } else if (hw->smart_speed == e1000_smart_speed_off) {
2190                        ret_val = e1000_read_phy_reg(hw,
2191                                        IGP01E1000_PHY_PORT_CONFIG, &phy_data);
2192                        if (ret_val)
2193                                return ret_val;
2194
2195                        phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2196                        ret_val = e1000_write_phy_reg(hw,
2197                                        IGP01E1000_PHY_PORT_CONFIG, phy_data);
2198                        if (ret_val)
2199                                return ret_val;
2200                }
2201
2202        } else if ((hw->autoneg_advertised == AUTONEG_ADVERTISE_SPEED_DEFAULT)
2203                || (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_ALL) ||
2204                (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_100_ALL)) {
2205
2206                if (hw->mac_type == e1000_82541_rev_2 ||
2207                    hw->mac_type == e1000_82547_rev_2) {
2208                        phy_data |= IGP01E1000_GMII_FLEX_SPD;
2209                        ret_val = e1000_write_phy_reg(hw,
2210                                        IGP01E1000_GMII_FIFO, phy_data);
2211                        if (ret_val)
2212                                return ret_val;
2213                } else {
2214                        if (hw->mac_type == e1000_ich8lan) {
2215                                phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
2216                                E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
2217                        } else {
2218                                phy_data |= IGP02E1000_PM_D3_LPLU;
2219                                ret_val = e1000_write_phy_reg(hw,
2220                                        IGP02E1000_PHY_POWER_MGMT, phy_data);
2221                                if (ret_val)
2222                                        return ret_val;
2223                        }
2224                }
2225
2226                /* When LPLU is enabled we should disable SmartSpeed */
2227                ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
2228                                &phy_data);
2229                if (ret_val)
2230                        return ret_val;
2231
2232                phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2233                ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
2234                                phy_data);
2235                if (ret_val)
2236                        return ret_val;
2237        }
2238        return E1000_SUCCESS;
2239}
2240
2241/*****************************************************************************
2242 *
2243 * This function sets the lplu d0 state according to the active flag.  When
2244 * activating lplu this function also disables smart speed and vise versa.
2245 * lplu will not be activated unless the device autonegotiation advertisment
2246 * meets standards of either 10 or 10/100 or 10/100/1000 at all duplexes.
2247 * hw: Struct containing variables accessed by shared code
2248 * active - true to enable lplu false to disable lplu.
2249 *
2250 * returns: - E1000_ERR_PHY if fail to read/write the PHY
2251 *            E1000_SUCCESS at any other case.
2252 *
2253 ****************************************************************************/
2254
2255static int32_t
2256e1000_set_d0_lplu_state(struct e1000_hw *hw, boolean_t active)
2257{
2258        uint32_t phy_ctrl = 0;
2259        int32_t ret_val;
2260        uint16_t phy_data;
2261        DEBUGFUNC();
2262
2263        if (hw->mac_type <= e1000_82547_rev_2)
2264                return E1000_SUCCESS;
2265
2266        if (hw->mac_type == e1000_ich8lan) {
2267                phy_ctrl = E1000_READ_REG(hw, PHY_CTRL);
2268        } else {
2269                ret_val = e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT,
2270                                &phy_data);
2271                if (ret_val)
2272                        return ret_val;
2273        }
2274
2275        if (!active) {
2276                if (hw->mac_type == e1000_ich8lan) {
2277                        phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
2278                        E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
2279                } else {
2280                        phy_data &= ~IGP02E1000_PM_D0_LPLU;
2281                        ret_val = e1000_write_phy_reg(hw,
2282                                        IGP02E1000_PHY_POWER_MGMT, phy_data);
2283                        if (ret_val)
2284                                return ret_val;
2285                }
2286
2287        /* LPLU and SmartSpeed are mutually exclusive.  LPLU is used during
2288         * Dx states where the power conservation is most important.  During
2289         * driver activity we should enable SmartSpeed, so performance is
2290         * maintained. */
2291                if (hw->smart_speed == e1000_smart_speed_on) {
2292                        ret_val = e1000_read_phy_reg(hw,
2293                                        IGP01E1000_PHY_PORT_CONFIG, &phy_data);
2294                        if (ret_val)
2295                                return ret_val;
2296
2297                        phy_data |= IGP01E1000_PSCFR_SMART_SPEED;
2298                        ret_val = e1000_write_phy_reg(hw,
2299                                        IGP01E1000_PHY_PORT_CONFIG, phy_data);
2300                        if (ret_val)
2301                                return ret_val;
2302                } else if (hw->smart_speed == e1000_smart_speed_off) {
2303                        ret_val = e1000_read_phy_reg(hw,
2304                                        IGP01E1000_PHY_PORT_CONFIG, &phy_data);
2305                        if (ret_val)
2306                                return ret_val;
2307
2308                        phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2309                        ret_val = e1000_write_phy_reg(hw,
2310                                        IGP01E1000_PHY_PORT_CONFIG, phy_data);
2311                        if (ret_val)
2312                                return ret_val;
2313                }
2314
2315
2316        } else {
2317
2318                if (hw->mac_type == e1000_ich8lan) {
2319                        phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
2320                        E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
2321                } else {
2322                        phy_data |= IGP02E1000_PM_D0_LPLU;
2323                        ret_val = e1000_write_phy_reg(hw,
2324                                        IGP02E1000_PHY_POWER_MGMT, phy_data);
2325                        if (ret_val)
2326                                return ret_val;
2327                }
2328
2329                /* When LPLU is enabled we should disable SmartSpeed */
2330                ret_val = e1000_read_phy_reg(hw,
2331                                IGP01E1000_PHY_PORT_CONFIG, &phy_data);
2332                if (ret_val)
2333                        return ret_val;
2334
2335                phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2336                ret_val = e1000_write_phy_reg(hw,
2337                                IGP01E1000_PHY_PORT_CONFIG, phy_data);
2338                if (ret_val)
2339                        return ret_val;
2340
2341        }
2342        return E1000_SUCCESS;
2343}
2344
2345/********************************************************************
2346* Copper link setup for e1000_phy_igp series.
2347*
2348* hw - Struct containing variables accessed by shared code
2349*********************************************************************/
2350static int32_t
2351e1000_copper_link_igp_setup(struct e1000_hw *hw)
2352{
2353        uint32_t led_ctrl;
2354        int32_t ret_val;
2355        uint16_t phy_data;
2356
2357        DEBUGFUNC();
2358
2359        if (hw->phy_reset_disable)
2360                return E1000_SUCCESS;
2361
2362        ret_val = e1000_phy_reset(hw);
2363        if (ret_val) {
2364                DEBUGOUT("Error Resetting the PHY\n");
2365                return ret_val;
2366        }
2367
2368        /* Wait 15ms for MAC to configure PHY from eeprom settings */
2369        mdelay(15);
2370        if (hw->mac_type != e1000_ich8lan) {
2371                /* Configure activity LED after PHY reset */
2372                led_ctrl = E1000_READ_REG(hw, LEDCTL);
2373                led_ctrl &= IGP_ACTIVITY_LED_MASK;
2374                led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
2375                E1000_WRITE_REG(hw, LEDCTL, led_ctrl);
2376        }
2377
2378        /* The NVM settings will configure LPLU in D3 for IGP2 and IGP3 PHYs */
2379        if (hw->phy_type == e1000_phy_igp) {
2380                /* disable lplu d3 during driver init */
2381                ret_val = e1000_set_d3_lplu_state(hw, FALSE);
2382                if (ret_val) {
2383                        DEBUGOUT("Error Disabling LPLU D3\n");
2384                        return ret_val;
2385                }
2386        }
2387
2388        /* disable lplu d0 during driver init */
2389        ret_val = e1000_set_d0_lplu_state(hw, FALSE);
2390        if (ret_val) {
2391                DEBUGOUT("Error Disabling LPLU D0\n");
2392                return ret_val;
2393        }
2394        /* Configure mdi-mdix settings */
2395        ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
2396        if (ret_val)
2397                return ret_val;
2398
2399        if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
2400                hw->dsp_config_state = e1000_dsp_config_disabled;
2401                /* Force MDI for earlier revs of the IGP PHY */
2402                phy_data &= ~(IGP01E1000_PSCR_AUTO_MDIX
2403                                | IGP01E1000_PSCR_FORCE_MDI_MDIX);
2404                hw->mdix = 1;
2405
2406        } else {
2407                hw->dsp_config_state = e1000_dsp_config_enabled;
2408                phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
2409
2410                switch (hw->mdix) {
2411                case 1:
2412                        phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
2413                        break;
2414                case 2:
2415                        phy_data |= IGP01E1000_PSCR_FORCE_MDI_MDIX;
2416                        break;
2417                case 0:
2418                default:
2419                        phy_data |= IGP01E1000_PSCR_AUTO_MDIX;
2420                        break;
2421                }
2422        }
2423        ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
2424        if (ret_val)
2425                return ret_val;
2426
2427        /* set auto-master slave resolution settings */
2428        if (hw->autoneg) {
2429                e1000_ms_type phy_ms_setting = hw->master_slave;
2430
2431                if (hw->ffe_config_state == e1000_ffe_config_active)
2432                        hw->ffe_config_state = e1000_ffe_config_enabled;
2433
2434                if (hw->dsp_config_state == e1000_dsp_config_activated)
2435                        hw->dsp_config_state = e1000_dsp_config_enabled;
2436
2437                /* when autonegotiation advertisment is only 1000Mbps then we
2438                  * should disable SmartSpeed and enable Auto MasterSlave
2439                  * resolution as hardware default. */
2440                if (hw->autoneg_advertised == ADVERTISE_1000_FULL) {
2441                        /* Disable SmartSpeed */
2442                        ret_val = e1000_read_phy_reg(hw,
2443                                        IGP01E1000_PHY_PORT_CONFIG, &phy_data);
2444                        if (ret_val)
2445                                return ret_val;
2446                        phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2447                        ret_val = e1000_write_phy_reg(hw,
2448                                        IGP01E1000_PHY_PORT_CONFIG, phy_data);
2449                        if (ret_val)
2450                                return ret_val;
2451                        /* Set auto Master/Slave resolution process */
2452                        ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL,
2453                                        &phy_data);
2454                        if (ret_val)
2455                                return ret_val;
2456                        phy_data &= ~CR_1000T_MS_ENABLE;
2457                        ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL,
2458                                        phy_data);
2459                        if (ret_val)
2460                                return ret_val;
2461                }
2462
2463                ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_data);
2464                if (ret_val)
2465                        return ret_val;
2466
2467                /* load defaults for future use */
2468                hw->original_master_slave = (phy_data & CR_1000T_MS_ENABLE) ?
2469                                ((phy_data & CR_1000T_MS_VALUE) ?
2470                                e1000_ms_force_master :
2471                                e1000_ms_force_slave) :
2472                                e1000_ms_auto;
2473
2474                switch (phy_ms_setting) {
2475                case e1000_ms_force_master:
2476                        phy_data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE);
2477                        break;
2478                case e1000_ms_force_slave:
2479                        phy_data |= CR_1000T_MS_ENABLE;
2480                        phy_data &= ~(CR_1000T_MS_VALUE);
2481                        break;
2482                case e1000_ms_auto:
2483                        phy_data &= ~CR_1000T_MS_ENABLE;
2484                default:
2485                        break;
2486                }
2487                ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_data);
2488                if (ret_val)
2489                        return ret_val;
2490        }
2491
2492        return E1000_SUCCESS;
2493}
2494
2495/*****************************************************************************
2496 * This function checks the mode of the firmware.
2497 *
2498 * returns  - TRUE when the mode is IAMT or FALSE.
2499 ****************************************************************************/
2500boolean_t
2501e1000_check_mng_mode(struct e1000_hw *hw)
2502{
2503        uint32_t fwsm;
2504        DEBUGFUNC();
2505
2506        fwsm = E1000_READ_REG(hw, FWSM);
2507
2508        if (hw->mac_type == e1000_ich8lan) {
2509                if ((fwsm & E1000_FWSM_MODE_MASK) ==
2510                    (E1000_MNG_ICH_IAMT_MODE << E1000_FWSM_MODE_SHIFT))
2511                        return TRUE;
2512        } else if ((fwsm & E1000_FWSM_MODE_MASK) ==
2513                       (E1000_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT))
2514                        return TRUE;
2515
2516        return FALSE;
2517}
2518
2519static int32_t
2520e1000_write_kmrn_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t data)
2521{
2522        uint32_t reg_val;
2523        uint16_t swfw;
2524        DEBUGFUNC();
2525
2526        if ((hw->mac_type == e1000_80003es2lan) &&
2527                (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)) {
2528                swfw = E1000_SWFW_PHY1_SM;
2529        } else {
2530                swfw = E1000_SWFW_PHY0_SM;
2531        }
2532        if (e1000_swfw_sync_acquire(hw, swfw))
2533                return -E1000_ERR_SWFW_SYNC;
2534
2535        reg_val = ((reg_addr << E1000_KUMCTRLSTA_OFFSET_SHIFT)
2536                        & E1000_KUMCTRLSTA_OFFSET) | data;
2537        E1000_WRITE_REG(hw, KUMCTRLSTA, reg_val);
2538        udelay(2);
2539
2540        return E1000_SUCCESS;
2541}
2542
2543static int32_t
2544e1000_read_kmrn_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t *data)
2545{
2546        uint32_t reg_val;
2547        uint16_t swfw;
2548        DEBUGFUNC();
2549
2550        if ((hw->mac_type == e1000_80003es2lan) &&
2551            (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)) {
2552                swfw = E1000_SWFW_PHY1_SM;
2553        } else {
2554                swfw = E1000_SWFW_PHY0_SM;
2555        }
2556        if (e1000_swfw_sync_acquire(hw, swfw))
2557                return -E1000_ERR_SWFW_SYNC;
2558
2559        /* Write register address */
2560        reg_val = ((reg_addr << E1000_KUMCTRLSTA_OFFSET_SHIFT) &
2561                        E1000_KUMCTRLSTA_OFFSET) | E1000_KUMCTRLSTA_REN;
2562        E1000_WRITE_REG(hw, KUMCTRLSTA, reg_val);
2563        udelay(2);
2564
2565        /* Read the data returned */
2566        reg_val = E1000_READ_REG(hw, KUMCTRLSTA);
2567        *data = (uint16_t)reg_val;
2568
2569        return E1000_SUCCESS;
2570}
2571
2572/********************************************************************
2573* Copper link setup for e1000_phy_gg82563 series.
2574*
2575* hw - Struct containing variables accessed by shared code
2576*********************************************************************/
2577static int32_t
2578e1000_copper_link_ggp_setup(struct e1000_hw *hw)
2579{
2580        int32_t ret_val;
2581        uint16_t phy_data;
2582        uint32_t reg_data;
2583
2584        DEBUGFUNC();
2585
2586        if (!hw->phy_reset_disable) {
2587                /* Enable CRS on TX for half-duplex operation. */
2588                ret_val = e1000_read_phy_reg(hw,
2589                                GG82563_PHY_MAC_SPEC_CTRL, &phy_data);
2590                if (ret_val)
2591                        return ret_val;
2592
2593                phy_data |= GG82563_MSCR_ASSERT_CRS_ON_TX;
2594                /* Use 25MHz for both link down and 1000BASE-T for Tx clock */
2595                phy_data |= GG82563_MSCR_TX_CLK_1000MBPS_25MHZ;
2596
2597                ret_val = e1000_write_phy_reg(hw,
2598                                GG82563_PHY_MAC_SPEC_CTRL, phy_data);
2599                if (ret_val)
2600                        return ret_val;
2601
2602                /* Options:
2603                 *   MDI/MDI-X = 0 (default)
2604                 *   0 - Auto for all speeds
2605                 *   1 - MDI mode
2606                 *   2 - MDI-X mode
2607                 *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
2608                 */
2609                ret_val = e1000_read_phy_reg(hw,
2610                                GG82563_PHY_SPEC_CTRL, &phy_data);
2611                if (ret_val)
2612                        return ret_val;
2613
2614                phy_data &= ~GG82563_PSCR_CROSSOVER_MODE_MASK;
2615
2616                switch (hw->mdix) {
2617                case 1:
2618                        phy_data |= GG82563_PSCR_CROSSOVER_MODE_MDI;
2619                        break;
2620                case 2:
2621                        phy_data |= GG82563_PSCR_CROSSOVER_MODE_MDIX;
2622                        break;
2623                case 0:
2624                default:
2625                        phy_data |= GG82563_PSCR_CROSSOVER_MODE_AUTO;
2626                        break;
2627                }
2628
2629                /* Options:
2630                 *   disable_polarity_correction = 0 (default)
2631                 *       Automatic Correction for Reversed Cable Polarity
2632                 *   0 - Disabled
2633                 *   1 - Enabled
2634                 */
2635                phy_data &= ~GG82563_PSCR_POLARITY_REVERSAL_DISABLE;
2636                ret_val = e1000_write_phy_reg(hw,
2637                                GG82563_PHY_SPEC_CTRL, phy_data);
2638
2639                if (ret_val)
2640                        return ret_val;
2641
2642                /* SW Reset the PHY so all changes take effect */
2643                ret_val = e1000_phy_reset(hw);
2644                if (ret_val) {
2645                        DEBUGOUT("Error Resetting the PHY\n");
2646                        return ret_val;
2647                }
2648        } /* phy_reset_disable */
2649
2650        if (hw->mac_type == e1000_80003es2lan) {
2651                /* Bypass RX and TX FIFO's */
2652                ret_val = e1000_write_kmrn_reg(hw,
2653                                E1000_KUMCTRLSTA_OFFSET_FIFO_CTRL,
2654                                E1000_KUMCTRLSTA_FIFO_CTRL_RX_BYPASS
2655                                | E1000_KUMCTRLSTA_FIFO_CTRL_TX_BYPASS);
2656                if (ret_val)
2657                        return ret_val;
2658
2659                ret_val = e1000_read_phy_reg(hw,
2660                                GG82563_PHY_SPEC_CTRL_2, &phy_data);
2661                if (ret_val)
2662                        return ret_val;
2663
2664                phy_data &= ~GG82563_PSCR2_REVERSE_AUTO_NEG;
2665                ret_val = e1000_write_phy_reg(hw,
2666                                GG82563_PHY_SPEC_CTRL_2, phy_data);
2667
2668                if (ret_val)
2669                        return ret_val;
2670
2671                reg_data = E1000_READ_REG(hw, CTRL_EXT);
2672                reg_data &= ~(E1000_CTRL_EXT_LINK_MODE_MASK);
2673                E1000_WRITE_REG(hw, CTRL_EXT, reg_data);
2674
2675                ret_val = e1000_read_phy_reg(hw,
2676                                GG82563_PHY_PWR_MGMT_CTRL, &phy_data);
2677                if (ret_val)
2678                        return ret_val;
2679
2680        /* Do not init these registers when the HW is in IAMT mode, since the
2681         * firmware will have already initialized them.  We only initialize
2682         * them if the HW is not in IAMT mode.
2683         */
2684                if (e1000_check_mng_mode(hw) == FALSE) {
2685                        /* Enable Electrical Idle on the PHY */
2686                        phy_data |= GG82563_PMCR_ENABLE_ELECTRICAL_IDLE;
2687                        ret_val = e1000_write_phy_reg(hw,
2688                                        GG82563_PHY_PWR_MGMT_CTRL, phy_data);
2689                        if (ret_val)
2690                                return ret_val;
2691
2692                        ret_val = e1000_read_phy_reg(hw,
2693                                        GG82563_PHY_KMRN_MODE_CTRL, &phy_data);
2694                        if (ret_val)
2695                                return ret_val;
2696
2697                        phy_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
2698                        ret_val = e1000_write_phy_reg(hw,
2699                                        GG82563_PHY_KMRN_MODE_CTRL, phy_data);
2700
2701                        if (ret_val)
2702                                return ret_val;
2703                }
2704
2705                /* Workaround: Disable padding in Kumeran interface in the MAC
2706                 * and in the PHY to avoid CRC errors.
2707                 */
2708                ret_val = e1000_read_phy_reg(hw,
2709                                GG82563_PHY_INBAND_CTRL, &phy_data);
2710                if (ret_val)
2711                        return ret_val;
2712                phy_data |= GG82563_ICR_DIS_PADDING;
2713                ret_val = e1000_write_phy_reg(hw,
2714                                GG82563_PHY_INBAND_CTRL, phy_data);
2715                if (ret_val)
2716                        return ret_val;
2717        }
2718        return E1000_SUCCESS;
2719}
2720
2721/********************************************************************
2722* Copper link setup for e1000_phy_m88 series.
2723*
2724* hw - Struct containing variables accessed by shared code
2725*********************************************************************/
2726static int32_t
2727e1000_copper_link_mgp_setup(struct e1000_hw *hw)
2728{
2729        int32_t ret_val;
2730        uint16_t phy_data;
2731
2732        DEBUGFUNC();
2733
2734        if (hw->phy_reset_disable)
2735                return E1000_SUCCESS;
2736
2737        /* Enable CRS on TX. This must be set for half-duplex operation. */
2738        ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
2739        if (ret_val)
2740                return ret_val;
2741
2742        phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
2743
2744        /* Options:
2745         *   MDI/MDI-X = 0 (default)
2746         *   0 - Auto for all speeds
2747         *   1 - MDI mode
2748         *   2 - MDI-X mode
2749         *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
2750         */
2751        phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
2752
2753        switch (hw->mdix) {
2754        case 1:
2755                phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
2756                break;
2757        case 2:
2758                phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
2759                break;
2760        case 3:
2761                phy_data |= M88E1000_PSCR_AUTO_X_1000T;
2762                break;
2763        case 0:
2764        default:
2765                phy_data |= M88E1000_PSCR_AUTO_X_MODE;
2766                break;
2767        }
2768
2769        /* Options:
2770         *   disable_polarity_correction = 0 (default)
2771         *       Automatic Correction for Reversed Cable Polarity
2772         *   0 - Disabled
2773         *   1 - Enabled
2774         */
2775        phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
2776        ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
2777        if (ret_val)
2778                return ret_val;
2779
2780        if (hw->phy_revision < M88E1011_I_REV_4) {
2781                /* Force TX_CLK in the Extended PHY Specific Control Register
2782                 * to 25MHz clock.
2783                 */
2784                ret_val = e1000_read_phy_reg(hw,
2785                                M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
2786                if (ret_val)
2787                        return ret_val;
2788
2789                phy_data |= M88E1000_EPSCR_TX_CLK_25;
2790
2791                if ((hw->phy_revision == E1000_REVISION_2) &&
2792                        (hw->phy_id == M88E1111_I_PHY_ID)) {
2793                        /* Vidalia Phy, set the downshift counter to 5x */
2794                        phy_data &= ~(M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK);
2795                        phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X;
2796                        ret_val = e1000_write_phy_reg(hw,
2797                                        M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
2798                        if (ret_val)
2799                                return ret_val;
2800                } else {
2801                        /* Configure Master and Slave downshift values */
2802                        phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK
2803                                        | M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK);
2804                        phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X
2805                                        | M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X);
2806                        ret_val = e1000_write_phy_reg(hw,
2807                                        M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
2808                        if (ret_val)
2809                                return ret_val;
2810                }
2811        }
2812
2813        /* SW Reset the PHY so all changes take effect */
2814        ret_val = e1000_phy_reset(hw);
2815        if (ret_val) {
2816                DEBUGOUT("Error Resetting the PHY\n");
2817                return ret_val;
2818        }
2819
2820        return E1000_SUCCESS;
2821}
2822
2823/********************************************************************
2824* Setup auto-negotiation and flow control advertisements,
2825* and then perform auto-negotiation.
2826*
2827* hw - Struct containing variables accessed by shared code
2828*********************************************************************/
2829static int32_t
2830e1000_copper_link_autoneg(struct e1000_hw *hw)
2831{
2832        int32_t ret_val;
2833        uint16_t phy_data;
2834
2835        DEBUGFUNC();
2836
2837        /* Perform some bounds checking on the hw->autoneg_advertised
2838         * parameter.  If this variable is zero, then set it to the default.
2839         */
2840        hw->autoneg_advertised &= AUTONEG_ADVERTISE_SPEED_DEFAULT;
2841
2842        /* If autoneg_advertised is zero, we assume it was not defaulted
2843         * by the calling code so we set to advertise full capability.
2844         */
2845        if (hw->autoneg_advertised == 0)
2846                hw->autoneg_advertised = AUTONEG_ADVERTISE_SPEED_DEFAULT;
2847
2848        /* IFE phy only supports 10/100 */
2849        if (hw->phy_type == e1000_phy_ife)
2850                hw->autoneg_advertised &= AUTONEG_ADVERTISE_10_100_ALL;
2851
2852        DEBUGOUT("Reconfiguring auto-neg advertisement params\n");
2853        ret_val = e1000_phy_setup_autoneg(hw);
2854        if (ret_val) {
2855                DEBUGOUT("Error Setting up Auto-Negotiation\n");
2856                return ret_val;
2857        }
2858        DEBUGOUT("Restarting Auto-Neg\n");
2859
2860        /* Restart auto-negotiation by setting the Auto Neg Enable bit and
2861         * the Auto Neg Restart bit in the PHY control register.
2862         */
2863        ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data);
2864        if (ret_val)
2865                return ret_val;
2866
2867        phy_data |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
2868        ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data);
2869        if (ret_val)
2870                return ret_val;
2871
2872        /* Does the user want to wait for Auto-Neg to complete here, or
2873         * check at a later time (for example, callback routine).
2874         */
2875        /* If we do not wait for autonegtation to complete I
2876         * do not see a valid link status.
2877         * wait_autoneg_complete = 1 .
2878         */
2879        if (hw->wait_autoneg_complete) {
2880                ret_val = e1000_wait_autoneg(hw);
2881                if (ret_val) {
2882                        DEBUGOUT("Error while waiting for autoneg"
2883                                        "to complete\n");
2884                        return ret_val;
2885                }
2886        }
2887
2888        hw->get_link_status = TRUE;
2889
2890        return E1000_SUCCESS;
2891}
2892
2893/******************************************************************************
2894* Config the MAC and the PHY after link is up.
2895*   1) Set up the MAC to the current PHY speed/duplex
2896*      if we are on 82543.  If we
2897*      are on newer silicon, we only need to configure
2898*      collision distance in the Transmit Control Register.
2899*   2) Set up flow control on the MAC to that established with
2900*      the link partner.
2901*   3) Config DSP to improve Gigabit link quality for some PHY revisions.
2902*
2903* hw - Struct containing variables accessed by shared code
2904******************************************************************************/
2905static int32_t
2906e1000_copper_link_postconfig(struct e1000_hw *hw)
2907{
2908        int32_t ret_val;
2909        DEBUGFUNC();
2910
2911        if (hw->mac_type >= e1000_82544) {
2912                e1000_config_collision_dist(hw);
2913        } else {
2914                ret_val = e1000_config_mac_to_phy(hw);
2915                if (ret_val) {
2916                        DEBUGOUT("Error configuring MAC to PHY settings\n");
2917                        return ret_val;
2918                }
2919        }
2920        ret_val = e1000_config_fc_after_link_up(hw);
2921        if (ret_val) {
2922                DEBUGOUT("Error Configuring Flow Control\n");
2923                return ret_val;
2924        }
2925        return E1000_SUCCESS;
2926}
2927
2928/******************************************************************************
2929* Detects which PHY is present and setup the speed and duplex
2930*
2931* hw - Struct containing variables accessed by shared code
2932******************************************************************************/
2933static int
2934e1000_setup_copper_link(struct eth_device *nic)
2935{
2936        struct e1000_hw *hw = nic->priv;
2937        int32_t ret_val;
2938        uint16_t i;
2939        uint16_t phy_data;
2940        uint16_t reg_data;
2941
2942        DEBUGFUNC();
2943
2944        switch (hw->mac_type) {
2945        case e1000_80003es2lan:
2946        case e1000_ich8lan:
2947                /* Set the mac to wait the maximum time between each
2948                 * iteration and increase the max iterations when
2949                 * polling the phy; this fixes erroneous timeouts at 10Mbps. */
2950                ret_val = e1000_write_kmrn_reg(hw,
2951                                GG82563_REG(0x34, 4), 0xFFFF);
2952                if (ret_val)
2953                        return ret_val;
2954                ret_val = e1000_read_kmrn_reg(hw,
2955                                GG82563_REG(0x34, 9), &reg_data);
2956                if (ret_val)
2957                        return ret_val;
2958                reg_data |= 0x3F;
2959                ret_val = e1000_write_kmrn_reg(hw,
2960                                GG82563_REG(0x34, 9), reg_data);
2961                if (ret_val)
2962                        return ret_val;
2963        default:
2964                break;
2965        }
2966
2967        /* Check if it is a valid PHY and set PHY mode if necessary. */
2968        ret_val = e1000_copper_link_preconfig(hw);
2969        if (ret_val)
2970                return ret_val;
2971        switch (hw->mac_type) {
2972        case e1000_80003es2lan:
2973                /* Kumeran registers are written-only */
2974                reg_data =
2975                E1000_KUMCTRLSTA_INB_CTRL_LINK_STATUS_TX_TIMEOUT_DEFAULT;
2976                reg_data |= E1000_KUMCTRLSTA_INB_CTRL_DIS_PADDING;
2977                ret_val = e1000_write_kmrn_reg(hw,
2978                                E1000_KUMCTRLSTA_OFFSET_INB_CTRL, reg_data);
2979                if (ret_val)
2980                        return ret_val;
2981                break;
2982        default:
2983                break;
2984        }
2985
2986        if (hw->phy_type == e1000_phy_igp ||
2987                hw->phy_type == e1000_phy_igp_3 ||
2988                hw->phy_type == e1000_phy_igp_2) {
2989                ret_val = e1000_copper_link_igp_setup(hw);
2990                if (ret_val)
2991                        return ret_val;
2992        } else if (hw->phy_type == e1000_phy_m88) {
2993                ret_val = e1000_copper_link_mgp_setup(hw);
2994                if (ret_val)
2995                        return ret_val;
2996        } else if (hw->phy_type == e1000_phy_gg82563) {
2997                ret_val = e1000_copper_link_ggp_setup(hw);
2998                if (ret_val)
2999                        return ret_val;
3000        }
3001
3002        /* always auto */
3003        /* Setup autoneg and flow control advertisement
3004          * and perform autonegotiation */
3005        ret_val = e1000_copper_link_autoneg(hw);
3006        if (ret_val)
3007                return ret_val;
3008
3009        /* Check link status. Wait up to 100 microseconds for link to become
3010         * valid.
3011         */
3012        for (i = 0; i < 10; i++) {
3013                ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
3014                if (ret_val)
3015                        return ret_val;
3016                ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
3017                if (ret_val)
3018                        return ret_val;
3019
3020                if (phy_data & MII_SR_LINK_STATUS) {
3021                        /* Config the MAC and PHY after link is up */
3022                        ret_val = e1000_copper_link_postconfig(hw);
3023                        if (ret_val)
3024                                return ret_val;
3025
3026                        DEBUGOUT("Valid link established!!!\n");
3027                        return E1000_SUCCESS;
3028                }
3029                udelay(10);
3030        }
3031
3032        DEBUGOUT("Unable to establish link!!!\n");
3033        return E1000_SUCCESS;
3034}
3035
3036/******************************************************************************
3037* Configures PHY autoneg and flow control advertisement settings
3038*
3039* hw - Struct containing variables accessed by shared code
3040******************************************************************************/
3041int32_t
3042e1000_phy_setup_autoneg(struct e1000_hw *hw)
3043{
3044        int32_t ret_val;
3045        uint16_t mii_autoneg_adv_reg;
3046        uint16_t mii_1000t_ctrl_reg;
3047
3048        DEBUGFUNC();
3049
3050        /* Read the MII Auto-Neg Advertisement Register (Address 4). */
3051        ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg);
3052        if (ret_val)
3053                return ret_val;
3054
3055        if (hw->phy_type != e1000_phy_ife) {
3056                /* Read the MII 1000Base-T Control Register (Address 9). */
3057                ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL,
3058                                &mii_1000t_ctrl_reg);
3059                if (ret_val)
3060                        return ret_val;
3061        } else
3062                mii_1000t_ctrl_reg = 0;
3063
3064        /* Need to parse both autoneg_advertised and fc and set up
3065         * the appropriate PHY registers.  First we will parse for
3066         * autoneg_advertised software override.  Since we can advertise
3067         * a plethora of combinations, we need to check each bit
3068         * individually.
3069         */
3070
3071        /* First we clear all the 10/100 mb speed bits in the Auto-Neg
3072         * Advertisement Register (Address 4) and the 1000 mb speed bits in
3073         * the  1000Base-T Control Register (Address 9).
3074         */
3075        mii_autoneg_adv_reg &= ~REG4_SPEED_MASK;
3076        mii_1000t_ctrl_reg &= ~REG9_SPEED_MASK;
3077
3078        DEBUGOUT("autoneg_advertised %x\n", hw->autoneg_advertised);
3079
3080        /* Do we want to advertise 10 Mb Half Duplex? */
3081        if (hw->autoneg_advertised & ADVERTISE_10_HALF) {
3082                DEBUGOUT("Advertise 10mb Half duplex\n");
3083                mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS;
3084        }
3085
3086        /* Do we want to advertise 10 Mb Full Duplex? */
3087        if (hw->autoneg_advertised & ADVERTISE_10_FULL) {
3088                DEBUGOUT("Advertise 10mb Full duplex\n");
3089                mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS;
3090        }
3091
3092        /* Do we want to advertise 100 Mb Half Duplex? */
3093        if (hw->autoneg_advertised & ADVERTISE_100_HALF) {
3094                DEBUGOUT("Advertise 100mb Half duplex\n");
3095                mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS;
3096        }
3097
3098        /* Do we want to advertise 100 Mb Full Duplex? */
3099        if (hw->autoneg_advertised & ADVERTISE_100_FULL) {
3100                DEBUGOUT("Advertise 100mb Full duplex\n");
3101                mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS;
3102        }
3103
3104        /* We do not allow the Phy to advertise 1000 Mb Half Duplex */
3105        if (hw->autoneg_advertised & ADVERTISE_1000_HALF) {
3106                DEBUGOUT
3107                    ("Advertise 1000mb Half duplex requested, request denied!\n");
3108        }
3109
3110        /* Do we want to advertise 1000 Mb Full Duplex? */
3111        if (hw->autoneg_advertised & ADVERTISE_1000_FULL) {
3112                DEBUGOUT("Advertise 1000mb Full duplex\n");
3113                mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS;
3114        }
3115
3116        /* Check for a software override of the flow control settings, and
3117         * setup the PHY advertisement registers accordingly.  If
3118         * auto-negotiation is enabled, then software will have to set the
3119         * "PAUSE" bits to the correct value in the Auto-Negotiation
3120         * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-negotiation.
3121         *
3122         * The possible values of the "fc" parameter are:
3123         *      0:  Flow control is completely disabled
3124         *      1:  Rx flow control is enabled (we can receive pause frames
3125         *          but not send pause frames).
3126         *      2:  Tx flow control is enabled (we can send pause frames
3127         *          but we do not support receiving pause frames).
3128         *      3:  Both Rx and TX flow control (symmetric) are enabled.
3129         *  other:  No software override.  The flow control configuration
3130         *          in the EEPROM is used.
3131         */
3132        switch (hw->fc) {
3133        case e1000_fc_none:     /* 0 */
3134                /* Flow control (RX & TX) is completely disabled by a
3135                 * software over-ride.
3136                 */
3137                mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
3138                break;
3139        case e1000_fc_rx_pause: /* 1 */
3140                /* RX Flow control is enabled, and TX Flow control is
3141                 * disabled, by a software over-ride.
3142                 */
3143                /* Since there really isn't a way to advertise that we are
3144                 * capable of RX Pause ONLY, we will advertise that we
3145                 * support both symmetric and asymmetric RX PAUSE.  Later
3146                 * (in e1000_config_fc_after_link_up) we will disable the
3147                 *hw's ability to send PAUSE frames.
3148                 */
3149                mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
3150                break;
3151        case e1000_fc_tx_pause: /* 2 */
3152                /* TX Flow control is enabled, and RX Flow control is
3153                 * disabled, by a software over-ride.
3154                 */
3155                mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR;
3156                mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE;
3157                break;
3158        case e1000_fc_full:     /* 3 */
3159                /* Flow control (both RX and TX) is enabled by a software
3160                 * over-ride.
3161                 */
3162                mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
3163                break;
3164        default:
3165                DEBUGOUT("Flow control param set incorrectly\n");
3166                return -E1000_ERR_CONFIG;
3167        }
3168
3169        ret_val = e1000_write_phy_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg);
3170        if (ret_val)
3171                return ret_val;
3172
3173        DEBUGOUT("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
3174
3175        if (hw->phy_type != e1000_phy_ife) {
3176                ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL,
3177                                mii_1000t_ctrl_reg);
3178                if (ret_val)
3179                        return ret_val;
3180        }
3181
3182        return E1000_SUCCESS;
3183}
3184
3185/******************************************************************************
3186* Sets the collision distance in the Transmit Control register
3187*
3188* hw - Struct containing variables accessed by shared code
3189*
3190* Link should have been established previously. Reads the speed and duplex
3191* information from the Device Status register.
3192******************************************************************************/
3193static void
3194e1000_config_collision_dist(struct e1000_hw *hw)
3195{
3196        uint32_t tctl, coll_dist;
3197
3198        DEBUGFUNC();
3199
3200        if (hw->mac_type < e1000_82543)
3201                coll_dist = E1000_COLLISION_DISTANCE_82542;
3202        else
3203                coll_dist = E1000_COLLISION_DISTANCE;
3204
3205        tctl = E1000_READ_REG(hw, TCTL);
3206
3207        tctl &= ~E1000_TCTL_COLD;
3208        tctl |= coll_dist << E1000_COLD_SHIFT;
3209
3210        E1000_WRITE_REG(hw, TCTL, tctl);
3211        E1000_WRITE_FLUSH(hw);
3212}
3213
3214/******************************************************************************
3215* Sets MAC speed and duplex settings to reflect the those in the PHY
3216*
3217* hw - Struct containing variables accessed by shared code
3218* mii_reg - data to write to the MII control register
3219*
3220* The contents of the PHY register containing the needed information need to
3221* be passed in.
3222******************************************************************************/
3223static int
3224e1000_config_mac_to_phy(struct e1000_hw *hw)
3225{
3226        uint32_t ctrl;
3227        uint16_t phy_data;
3228
3229        DEBUGFUNC();
3230
3231        /* Read the Device Control Register and set the bits to Force Speed
3232         * and Duplex.
3233         */
3234        ctrl = E1000_READ_REG(hw, CTRL);
3235        ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
3236        ctrl &= ~(E1000_CTRL_SPD_SEL | E1000_CTRL_ILOS);
3237
3238        /* Set up duplex in the Device Control and Transmit Control
3239         * registers depending on negotiated values.
3240         */
3241        if (e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data) < 0) {
3242                DEBUGOUT("PHY Read Error\n");
3243                return -E1000_ERR_PHY;
3244        }
3245        if (phy_data & M88E1000_PSSR_DPLX)
3246                ctrl |= E1000_CTRL_FD;
3247        else
3248                ctrl &= ~E1000_CTRL_FD;
3249
3250        e1000_config_collision_dist(hw);
3251
3252        /* Set up speed in the Device Control register depending on
3253         * negotiated values.
3254         */
3255        if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS)
3256                ctrl |= E1000_CTRL_SPD_1000;
3257        else if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_100MBS)
3258                ctrl |= E1000_CTRL_SPD_100;
3259        /* Write the configured values back to the Device Control Reg. */
3260        E1000_WRITE_REG(hw, CTRL, ctrl);
3261        return 0;
3262}
3263
3264/******************************************************************************
3265 * Forces the MAC's flow control settings.
3266 *
3267 * hw - Struct containing variables accessed by shared code
3268 *
3269 * Sets the TFCE and RFCE bits in the device control register to reflect
3270 * the adapter settings. TFCE and RFCE need to be explicitly set by
3271 * software when a Copper PHY is used because autonegotiation is managed
3272 * by the PHY rather than the MAC. Software must also configure these
3273 * bits when link is forced on a fiber connection.
3274 *****************************************************************************/
3275static int
3276e1000_force_mac_fc(struct e1000_hw *hw)
3277{
3278        uint32_t ctrl;
3279
3280        DEBUGFUNC();
3281
3282        /* Get the current configuration of the Device Control Register */
3283        ctrl = E1000_READ_REG(hw, CTRL);
3284
3285        /* Because we didn't get link via the internal auto-negotiation
3286         * mechanism (we either forced link or we got link via PHY
3287         * auto-neg), we have to manually enable/disable transmit an
3288         * receive flow control.
3289         *
3290         * The "Case" statement below enables/disable flow control
3291         * according to the "hw->fc" parameter.
3292         *
3293         * The possible values of the "fc" parameter are:
3294         *      0:  Flow control is completely disabled
3295         *      1:  Rx flow control is enabled (we can receive pause
3296         *          frames but not send pause frames).
3297         *      2:  Tx flow control is enabled (we can send pause frames
3298         *          frames but we do not receive pause frames).
3299         *      3:  Both Rx and TX flow control (symmetric) is enabled.
3300         *  other:  No other values should be possible at this point.
3301         */
3302
3303        switch (hw->fc) {
3304        case e1000_fc_none:
3305                ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE));
3306                break;
3307        case e1000_fc_rx_pause:
3308                ctrl &= (~E1000_CTRL_TFCE);
3309                ctrl |= E1000_CTRL_RFCE;
3310                break;
3311        case e1000_fc_tx_pause:
3312                ctrl &= (~E1000_CTRL_RFCE);
3313                ctrl |= E1000_CTRL_TFCE;
3314                break;
3315        case e1000_fc_full:
3316                ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE);
3317                break;
3318        default:
3319                DEBUGOUT("Flow control param set incorrectly\n");
3320                return -E1000_ERR_CONFIG;
3321        }
3322
3323        /* Disable TX Flow Control for 82542 (rev 2.0) */
3324        if (hw->mac_type == e1000_82542_rev2_0)
3325                ctrl &= (~E1000_CTRL_TFCE);
3326
3327        E1000_WRITE_REG(hw, CTRL, ctrl);
3328        return 0;
3329}
3330
3331/******************************************************************************
3332 * Configures flow control settings after link is established
3333 *
3334 * hw - Struct containing variables accessed by shared code
3335 *
3336 * Should be called immediately after a valid link has been established.
3337 * Forces MAC flow control settings if link was forced. When in MII/GMII mode
3338 * and autonegotiation is enabled, the MAC flow control settings will be set
3339 * based on the flow control negotiated by the PHY. In TBI mode, the TFCE
3340 * and RFCE bits will be automaticaly set to the negotiated flow control mode.
3341 *****************************************************************************/
3342static int32_t
3343e1000_config_fc_after_link_up(struct e1000_hw *hw)
3344{
3345        int32_t ret_val;
3346        uint16_t mii_status_reg;
3347        uint16_t mii_nway_adv_reg;
3348        uint16_t mii_nway_lp_ability_reg;
3349        uint16_t speed;
3350        uint16_t duplex;
3351
3352        DEBUGFUNC();
3353
3354        /* Check for the case where we have fiber media and auto-neg failed
3355         * so we had to force link.  In this case, we need to force the
3356         * configuration of the MAC to match the "fc" parameter.
3357         */
3358        if (((hw->media_type == e1000_media_type_fiber) && (hw->autoneg_failed))
3359                || ((hw->media_type == e1000_media_type_internal_serdes)
3360                && (hw->autoneg_failed))
3361                || ((hw->media_type == e1000_media_type_copper)
3362                && (!hw->autoneg))) {
3363                ret_val = e1000_force_mac_fc(hw);
3364                if (ret_val < 0) {
3365                        DEBUGOUT("Error forcing flow control settings\n");
3366                        return ret_val;
3367                }
3368        }
3369
3370        /* Check for the case where we have copper media and auto-neg is
3371         * enabled.  In this case, we need to check and see if Auto-Neg
3372         * has completed, and if so, how the PHY and link partner has
3373         * flow control configured.
3374         */
3375        if (hw->media_type == e1000_media_type_copper) {
3376                /* Read the MII Status Register and check to see if AutoNeg
3377                 * has completed.  We read this twice because this reg has
3378                 * some "sticky" (latched) bits.
3379                 */
3380                if (e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg) < 0) {
3381                        DEBUGOUT("PHY Read Error \n");
3382                        return -E1000_ERR_PHY;
3383                }
3384                if (e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg) < 0) {
3385                        DEBUGOUT("PHY Read Error \n");
3386                        return -E1000_ERR_PHY;
3387                }
3388
3389                if (mii_status_reg & MII_SR_AUTONEG_COMPLETE) {
3390                        /* The AutoNeg process has completed, so we now need to
3391                         * read both the Auto Negotiation Advertisement Register
3392                         * (Address 4) and the Auto_Negotiation Base Page Ability
3393                         * Register (Address 5) to determine how flow control was
3394                         * negotiated.
3395                         */
3396                        if (e1000_read_phy_reg
3397                            (hw, PHY_AUTONEG_ADV, &mii_nway_adv_reg) < 0) {
3398                                DEBUGOUT("PHY Read Error\n");
3399                                return -E1000_ERR_PHY;
3400                        }
3401                        if (e1000_read_phy_reg
3402                            (hw, PHY_LP_ABILITY,
3403                             &mii_nway_lp_ability_reg) < 0) {
3404                                DEBUGOUT("PHY Read Error\n");
3405                                return -E1000_ERR_PHY;
3406                        }
3407
3408                        /* Two bits in the Auto Negotiation Advertisement Register
3409                         * (Address 4) and two bits in the Auto Negotiation Base
3410                         * Page Ability Register (Address 5) determine flow control
3411                         * for both the PHY and the link partner.  The following
3412                         * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
3413                         * 1999, describes these PAUSE resolution bits and how flow
3414                         * control is determined based upon these settings.
3415                         * NOTE:  DC = Don't Care
3416                         *
3417                         *   LOCAL DEVICE  |   LINK PARTNER
3418                         * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
3419                         *-------|---------|-------|---------|--------------------
3420                         *   0   |    0    |  DC   |   DC    | e1000_fc_none
3421                         *   0   |    1    |   0   |   DC    | e1000_fc_none
3422                         *   0   |    1    |   1   |    0    | e1000_fc_none
3423                         *   0   |    1    |   1   |    1    | e1000_fc_tx_pause
3424                         *   1   |    0    |   0   |   DC    | e1000_fc_none
3425                         *   1   |   DC    |   1   |   DC    | e1000_fc_full
3426                         *   1   |    1    |   0   |    0    | e1000_fc_none
3427                         *   1   |    1    |   0   |    1    | e1000_fc_rx_pause
3428                         *
3429                         */
3430                        /* Are both PAUSE bits set to 1?  If so, this implies
3431                         * Symmetric Flow Control is enabled at both ends.  The
3432                         * ASM_DIR bits are irrelevant per the spec.
3433                         *
3434                         * For Symmetric Flow Control:
3435                         *
3436                         *   LOCAL DEVICE  |   LINK PARTNER
3437                         * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
3438                         *-------|---------|-------|---------|--------------------
3439                         *   1   |   DC    |   1   |   DC    | e1000_fc_full
3440                         *
3441                         */
3442                        if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
3443                            (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) {
3444                                /* Now we need to check if the user selected RX ONLY
3445                                 * of pause frames.  In this case, we had to advertise
3446                                 * FULL flow control because we could not advertise RX
3447                                 * ONLY. Hence, we must now check to see if we need to
3448                                 * turn OFF  the TRANSMISSION of PAUSE frames.
3449                                 */
3450                                if (hw->original_fc == e1000_fc_full) {
3451                                        hw->fc = e1000_fc_full;
3452                                        DEBUGOUT("Flow Control = FULL.\r\n");
3453                                } else {
3454                                        hw->fc = e1000_fc_rx_pause;
3455                                        DEBUGOUT
3456                                            ("Flow Control = RX PAUSE frames only.\r\n");
3457                                }
3458                        }
3459                        /* For receiving PAUSE frames ONLY.
3460                         *
3461                         *   LOCAL DEVICE  |   LINK PARTNER
3462                         * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
3463                         *-------|---------|-------|---------|--------------------
3464                         *   0   |    1    |   1   |    1    | e1000_fc_tx_pause
3465                         *
3466                         */
3467                        else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) &&
3468                                 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
3469                                 (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
3470                                 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR))
3471                        {
3472                                hw->fc = e1000_fc_tx_pause;
3473                                DEBUGOUT
3474                                    ("Flow Control = TX PAUSE frames only.\r\n");
3475                        }
3476                        /* For transmitting PAUSE frames ONLY.
3477                         *
3478                         *   LOCAL DEVICE  |   LINK PARTNER
3479                         * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
3480                         *-------|---------|-------|---------|--------------------
3481                         *   1   |    1    |   0   |    1    | e1000_fc_rx_pause
3482                         *
3483                         */
3484                        else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
3485                                 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
3486                                 !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
3487                                 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR))
3488                        {
3489                                hw->fc = e1000_fc_rx_pause;
3490                                DEBUGOUT
3491                                    ("Flow Control = RX PAUSE frames only.\r\n");
3492                        }
3493                        /* Per the IEEE spec, at this point flow control should be
3494                         * disabled.  However, we want to consider that we could
3495                         * be connected to a legacy switch that doesn't advertise
3496                         * desired flow control, but can be forced on the link
3497                         * partner.  So if we advertised no flow control, that is
3498                         * what we will resolve to.  If we advertised some kind of
3499                         * receive capability (Rx Pause Only or Full Flow Control)
3500                         * and the link partner advertised none, we will configure
3501                         * ourselves to enable Rx Flow Control only.  We can do
3502                         * this safely for two reasons:  If the link partner really
3503                         * didn't want flow control enabled, and we enable Rx, no
3504                         * harm done since we won't be receiving any PAUSE frames
3505                         * anyway.  If the intent on the link partner was to have
3506                         * flow control enabled, then by us enabling RX only, we
3507                         * can at least receive pause frames and process them.
3508                         * This is a good idea because in most cases, since we are
3509                         * predominantly a server NIC, more times than not we will
3510                         * be asked to delay transmission of packets than asking
3511                         * our link partner to pause transmission of frames.
3512                         */
3513                        else if (hw->original_fc == e1000_fc_none ||
3514                                 hw->original_fc == e1000_fc_tx_pause) {
3515                                hw->fc = e1000_fc_none;
3516                                DEBUGOUT("Flow Control = NONE.\r\n");
3517                        } else {
3518                                hw->fc = e1000_fc_rx_pause;
3519                                DEBUGOUT
3520                                    ("Flow Control = RX PAUSE frames only.\r\n");
3521                        }
3522
3523                        /* Now we need to do one last check...  If we auto-
3524                         * negotiated to HALF DUPLEX, flow control should not be
3525                         * enabled per IEEE 802.3 spec.
3526                         */
3527                        e1000_get_speed_and_duplex(hw, &speed, &duplex);
3528
3529                        if (duplex == HALF_DUPLEX)
3530                                hw->fc = e1000_fc_none;
3531
3532                        /* Now we call a subroutine to actually force the MAC
3533                         * controller to use the correct flow control settings.
3534                         */
3535                        ret_val = e1000_force_mac_fc(hw);
3536                        if (ret_val < 0) {
3537                                DEBUGOUT
3538                                    ("Error forcing flow control settings\n");
3539                                return ret_val;
3540                        }
3541                } else {
3542                        DEBUGOUT
3543                            ("Copper PHY and Auto Neg has not completed.\r\n");
3544                }
3545        }
3546        return E1000_SUCCESS;
3547}
3548
3549/******************************************************************************
3550 * Checks to see if the link status of the hardware has changed.
3551 *
3552 * hw - Struct containing variables accessed by shared code
3553 *
3554 * Called by any function that needs to check the link status of the adapter.
3555 *****************************************************************************/
3556static int
3557e1000_check_for_link(struct eth_device *nic)
3558{
3559        struct e1000_hw *hw = nic->priv;
3560        uint32_t rxcw;
3561        uint32_t ctrl;
3562        uint32_t status;
3563        uint32_t rctl;
3564        uint32_t signal;
3565        int32_t ret_val;
3566        uint16_t phy_data;
3567        uint16_t lp_capability;
3568
3569        DEBUGFUNC();
3570
3571        /* On adapters with a MAC newer that 82544, SW Defineable pin 1 will be
3572         * set when the optics detect a signal. On older adapters, it will be
3573         * cleared when there is a signal
3574         */
3575        ctrl = E1000_READ_REG(hw, CTRL);
3576        if ((hw->mac_type > e1000_82544) && !(ctrl & E1000_CTRL_ILOS))
3577                signal = E1000_CTRL_SWDPIN1;
3578        else
3579                signal = 0;
3580
3581        status = E1000_READ_REG(hw, STATUS);
3582        rxcw = E1000_READ_REG(hw, RXCW);
3583        DEBUGOUT("ctrl: %#08x status %#08x rxcw %#08x\n", ctrl, status, rxcw);
3584
3585        /* If we have a copper PHY then we only want to go out to the PHY
3586         * registers to see if Auto-Neg has completed and/or if our link
3587         * status has changed.  The get_link_status flag will be set if we
3588         * receive a Link Status Change interrupt or we have Rx Sequence
3589         * Errors.
3590         */
3591        if ((hw->media_type == e1000_media_type_copper) && hw->get_link_status) {
3592                /* First we want to see if the MII Status Register reports
3593                 * link.  If so, then we want to get the current speed/duplex
3594                 * of the PHY.
3595                 * Read the register twice since the link bit is sticky.
3596                 */
3597                if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
3598                        DEBUGOUT("PHY Read Error\n");
3599                        return -E1000_ERR_PHY;
3600                }
3601                if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
3602                        DEBUGOUT("PHY Read Error\n");
3603                        return -E1000_ERR_PHY;
3604                }
3605
3606                if (phy_data & MII_SR_LINK_STATUS) {
3607                        hw->get_link_status = FALSE;
3608                } else {
3609                        /* No link detected */
3610                        return -E1000_ERR_NOLINK;
3611                }
3612
3613                /* We have a M88E1000 PHY and Auto-Neg is enabled.  If we
3614                 * have Si on board that is 82544 or newer, Auto
3615                 * Speed Detection takes care of MAC speed/duplex
3616                 * configuration.  So we only need to configure Collision
3617                 * Distance in the MAC.  Otherwise, we need to force
3618                 * speed/duplex on the MAC to the current PHY speed/duplex
3619                 * settings.
3620                 */
3621                if (hw->mac_type >= e1000_82544)
3622                        e1000_config_collision_dist(hw);
3623                else {
3624                        ret_val = e1000_config_mac_to_phy(hw);
3625                        if (ret_val < 0) {
3626                                DEBUGOUT
3627                                    ("Error configuring MAC to PHY settings\n");
3628                                return ret_val;
3629                        }
3630                }
3631
3632                /* Configure Flow Control now that Auto-Neg has completed. First, we
3633                 * need to restore the desired flow control settings because we may
3634                 * have had to re-autoneg with a different link partner.
3635                 */
3636                ret_val = e1000_config_fc_after_link_up(hw);
3637                if (ret_val < 0) {
3638                        DEBUGOUT("Error configuring flow control\n");
3639                        return ret_val;
3640                }
3641
3642                /* At this point we know that we are on copper and we have
3643                 * auto-negotiated link.  These are conditions for checking the link
3644                 * parter capability register.  We use the link partner capability to
3645                 * determine if TBI Compatibility needs to be turned on or off.  If
3646                 * the link partner advertises any speed in addition to Gigabit, then
3647                 * we assume that they are GMII-based, and TBI compatibility is not
3648                 * needed. If no other speeds are advertised, we assume the link
3649                 * partner is TBI-based, and we turn on TBI Compatibility.
3650                 */
3651                if (hw->tbi_compatibility_en) {
3652                        if (e1000_read_phy_reg
3653                            (hw, PHY_LP_ABILITY, &lp_capability) < 0) {
3654                                DEBUGOUT("PHY Read Error\n");
3655                                return -E1000_ERR_PHY;
3656                        }
3657                        if (lp_capability & (NWAY_LPAR_10T_HD_CAPS |
3658                                             NWAY_LPAR_10T_FD_CAPS |
3659                                             NWAY_LPAR_100TX_HD_CAPS |
3660                                             NWAY_LPAR_100TX_FD_CAPS |
3661                                             NWAY_LPAR_100T4_CAPS)) {
3662                                /* If our link partner advertises anything in addition to
3663                                 * gigabit, we do not need to enable TBI compatibility.
3664                                 */
3665                                if (hw->tbi_compatibility_on) {
3666                                        /* If we previously were in the mode, turn it off. */
3667                                        rctl = E1000_READ_REG(hw, RCTL);
3668                                        rctl &= ~E1000_RCTL_SBP;
3669                                        E1000_WRITE_REG(hw, RCTL, rctl);
3670                                        hw->tbi_compatibility_on = FALSE;
3671                                }
3672                        } else {
3673                                /* If TBI compatibility is was previously off, turn it on. For
3674                                 * compatibility with a TBI link partner, we will store bad
3675                                 * packets. Some frames have an additional byte on the end and
3676                                 * will look like CRC errors to to the hardware.
3677                                 */
3678                                if (!hw->tbi_compatibility_on) {
3679                                        hw->tbi_compatibility_on = TRUE;
3680                                        rctl = E1000_READ_REG(hw, RCTL);
3681                                        rctl |= E1000_RCTL_SBP;
3682                                        E1000_WRITE_REG(hw, RCTL, rctl);
3683                                }
3684                        }
3685                }
3686        }
3687        /* If we don't have link (auto-negotiation failed or link partner cannot
3688         * auto-negotiate), the cable is plugged in (we have signal), and our
3689         * link partner is not trying to auto-negotiate with us (we are receiving
3690         * idles or data), we need to force link up. We also need to give
3691         * auto-negotiation time to complete, in case the cable was just plugged
3692         * in. The autoneg_failed flag does this.
3693         */
3694        else if ((hw->media_type == e1000_media_type_fiber) &&
3695                 (!(status & E1000_STATUS_LU)) &&
3696                 ((ctrl & E1000_CTRL_SWDPIN1) == signal) &&
3697                 (!(rxcw & E1000_RXCW_C))) {
3698                if (hw->autoneg_failed == 0) {
3699                        hw->autoneg_failed = 1;
3700                        return 0;
3701                }
3702                DEBUGOUT("NOT RXing /C/, disable AutoNeg and force link.\r\n");
3703
3704                /* Disable auto-negotiation in the TXCW register */
3705                E1000_WRITE_REG(hw, TXCW, (hw->txcw & ~E1000_TXCW_ANE));
3706
3707                /* Force link-up and also force full-duplex. */
3708                ctrl = E1000_READ_REG(hw, CTRL);
3709                ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
3710                E1000_WRITE_REG(hw, CTRL, ctrl);
3711
3712                /* Configure Flow Control after forcing link up. */
3713                ret_val = e1000_config_fc_after_link_up(hw);
3714                if (ret_val < 0) {
3715                        DEBUGOUT("Error configuring flow control\n");
3716                        return ret_val;
3717                }
3718        }
3719        /* If we are forcing link and we are receiving /C/ ordered sets, re-enable
3720         * auto-negotiation in the TXCW register and disable forced link in the
3721         * Device Control register in an attempt to auto-negotiate with our link
3722         * partner.
3723         */
3724        else if ((hw->media_type == e1000_media_type_fiber) &&
3725                 (ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
3726                DEBUGOUT
3727                    ("RXing /C/, enable AutoNeg and stop forcing link.\r\n");
3728                E1000_WRITE_REG(hw, TXCW, hw->txcw);
3729                E1000_WRITE_REG(hw, CTRL, (ctrl & ~E1000_CTRL_SLU));
3730        }
3731        return 0;
3732}
3733
3734/******************************************************************************
3735* Configure the MAC-to-PHY interface for 10/100Mbps
3736*
3737* hw - Struct containing variables accessed by shared code
3738******************************************************************************/
3739static int32_t
3740e1000_configure_kmrn_for_10_100(struct e1000_hw *hw, uint16_t duplex)
3741{
3742        int32_t ret_val = E1000_SUCCESS;
3743        uint32_t tipg;
3744        uint16_t reg_data;
3745
3746        DEBUGFUNC();
3747
3748        reg_data = E1000_KUMCTRLSTA_HD_CTRL_10_100_DEFAULT;
3749        ret_val = e1000_write_kmrn_reg(hw,
3750                        E1000_KUMCTRLSTA_OFFSET_HD_CTRL, reg_data);
3751        if (ret_val)
3752                return ret_val;
3753
3754        /* Configure Transmit Inter-Packet Gap */
3755        tipg = E1000_READ_REG(hw, TIPG);
3756        tipg &= ~E1000_TIPG_IPGT_MASK;
3757        tipg |= DEFAULT_80003ES2LAN_TIPG_IPGT_10_100;
3758        E1000_WRITE_REG(hw, TIPG, tipg);
3759
3760        ret_val = e1000_read_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data);
3761
3762        if (ret_val)
3763                return ret_val;
3764
3765        if (duplex == HALF_DUPLEX)
3766                reg_data |= GG82563_KMCR_PASS_FALSE_CARRIER;
3767        else
3768                reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
3769
3770        ret_val = e1000_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
3771
3772        return ret_val;
3773}
3774
3775static int32_t
3776e1000_configure_kmrn_for_1000(struct e1000_hw *hw)
3777{
3778        int32_t ret_val = E1000_SUCCESS;
3779        uint16_t reg_data;
3780        uint32_t tipg;
3781
3782        DEBUGFUNC();
3783
3784        reg_data = E1000_KUMCTRLSTA_HD_CTRL_1000_DEFAULT;
3785        ret_val = e1000_write_kmrn_reg(hw,
3786                        E1000_KUMCTRLSTA_OFFSET_HD_CTRL, reg_data);
3787        if (ret_val)
3788                return ret_val;
3789
3790        /* Configure Transmit Inter-Packet Gap */
3791        tipg = E1000_READ_REG(hw, TIPG);
3792        tipg &= ~E1000_TIPG_IPGT_MASK;
3793        tipg |= DEFAULT_80003ES2LAN_TIPG_IPGT_1000;
3794        E1000_WRITE_REG(hw, TIPG, tipg);
3795
3796        ret_val = e1000_read_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data);
3797
3798        if (ret_val)
3799                return ret_val;
3800
3801        reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
3802        ret_val = e1000_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
3803
3804        return ret_val;
3805}
3806
3807/******************************************************************************
3808 * Detects the current speed and duplex settings of the hardware.
3809 *
3810 * hw - Struct containing variables accessed by shared code
3811 * speed - Speed of the connection
3812 * duplex - Duplex setting of the connection
3813 *****************************************************************************/
3814static int
3815e1000_get_speed_and_duplex(struct e1000_hw *hw, uint16_t *speed,
3816                uint16_t *duplex)
3817{
3818        uint32_t status;
3819        int32_t ret_val;
3820        uint16_t phy_data;
3821
3822        DEBUGFUNC();
3823
3824        if (hw->mac_type >= e1000_82543) {
3825                status = E1000_READ_REG(hw, STATUS);
3826                if (status & E1000_STATUS_SPEED_1000) {
3827                        *speed = SPEED_1000;
3828                        DEBUGOUT("1000 Mbs, ");
3829                } else if (status & E1000_STATUS_SPEED_100) {
3830                        *speed = SPEED_100;
3831                        DEBUGOUT("100 Mbs, ");
3832                } else {
3833                        *speed = SPEED_10;
3834                        DEBUGOUT("10 Mbs, ");
3835                }
3836
3837                if (status & E1000_STATUS_FD) {
3838                        *duplex = FULL_DUPLEX;
3839                        DEBUGOUT("Full Duplex\r\n");
3840                } else {
3841                        *duplex = HALF_DUPLEX;
3842                        DEBUGOUT(" Half Duplex\r\n");
3843                }
3844        } else {
3845                DEBUGOUT("1000 Mbs, Full Duplex\r\n");
3846                *speed = SPEED_1000;
3847                *duplex = FULL_DUPLEX;
3848        }
3849
3850        /* IGP01 PHY may advertise full duplex operation after speed downgrade
3851         * even if it is operating at half duplex.  Here we set the duplex
3852         * settings to match the duplex in the link partner's capabilities.
3853         */
3854        if (hw->phy_type == e1000_phy_igp && hw->speed_downgraded) {
3855                ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_EXP, &phy_data);
3856                if (ret_val)
3857                        return ret_val;
3858
3859                if (!(phy_data & NWAY_ER_LP_NWAY_CAPS))
3860                        *duplex = HALF_DUPLEX;
3861                else {
3862                        ret_val = e1000_read_phy_reg(hw,
3863                                        PHY_LP_ABILITY, &phy_data);
3864                        if (ret_val)
3865                                return ret_val;
3866                        if ((*speed == SPEED_100 &&
3867                                !(phy_data & NWAY_LPAR_100TX_FD_CAPS))
3868                                || (*speed == SPEED_10
3869                                && !(phy_data & NWAY_LPAR_10T_FD_CAPS)))
3870                                *duplex = HALF_DUPLEX;
3871                }
3872        }
3873
3874        if ((hw->mac_type == e1000_80003es2lan) &&
3875                (hw->media_type == e1000_media_type_copper)) {
3876                if (*speed == SPEED_1000)
3877                        ret_val = e1000_configure_kmrn_for_1000(hw);
3878                else
3879                        ret_val = e1000_configure_kmrn_for_10_100(hw, *duplex);
3880                if (ret_val)
3881                        return ret_val;
3882        }
3883        return E1000_SUCCESS;
3884}
3885
3886/******************************************************************************
3887* Blocks until autoneg completes or times out (~4.5 seconds)
3888*
3889* hw - Struct containing variables accessed by shared code
3890******************************************************************************/
3891static int
3892e1000_wait_autoneg(struct e1000_hw *hw)
3893{
3894        uint16_t i;
3895        uint16_t phy_data;
3896
3897        DEBUGFUNC();
3898        DEBUGOUT("Waiting for Auto-Neg to complete.\n");
3899
3900        /* We will wait for autoneg to complete or 4.5 seconds to expire. */
3901        for (i = PHY_AUTO_NEG_TIME; i > 0; i--) {
3902                /* Read the MII Status Register and wait for Auto-Neg
3903                 * Complete bit to be set.
3904                 */
3905                if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
3906                        DEBUGOUT("PHY Read Error\n");
3907                        return -E1000_ERR_PHY;
3908                }
3909                if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
3910                        DEBUGOUT("PHY Read Error\n");
3911                        return -E1000_ERR_PHY;
3912                }
3913                if (phy_data & MII_SR_AUTONEG_COMPLETE) {
3914                        DEBUGOUT("Auto-Neg complete.\n");
3915                        return 0;
3916                }
3917                mdelay(100);
3918        }
3919        DEBUGOUT("Auto-Neg timedout.\n");
3920        return -E1000_ERR_TIMEOUT;
3921}
3922
3923/******************************************************************************
3924* Raises the Management Data Clock
3925*
3926* hw - Struct containing variables accessed by shared code
3927* ctrl - Device control register's current value
3928******************************************************************************/
3929static void
3930e1000_raise_mdi_clk(struct e1000_hw *hw, uint32_t * ctrl)
3931{
3932        /* Raise the clock input to the Management Data Clock (by setting the MDC
3933         * bit), and then delay 2 microseconds.
3934         */
3935        E1000_WRITE_REG(hw, CTRL, (*ctrl | E1000_CTRL_MDC));
3936        E1000_WRITE_FLUSH(hw);
3937        udelay(2);
3938}
3939
3940/******************************************************************************
3941* Lowers the Management Data Clock
3942*
3943* hw - Struct containing variables accessed by shared code
3944* ctrl - Device control register's current value
3945******************************************************************************/
3946static void
3947e1000_lower_mdi_clk(struct e1000_hw *hw, uint32_t * ctrl)
3948{
3949        /* Lower the clock input to the Management Data Clock (by clearing the MDC
3950         * bit), and then delay 2 microseconds.
3951         */
3952        E1000_WRITE_REG(hw, CTRL, (*ctrl & ~E1000_CTRL_MDC));
3953        E1000_WRITE_FLUSH(hw);
3954        udelay(2);
3955}
3956
3957/******************************************************************************
3958* Shifts data bits out to the PHY
3959*
3960* hw - Struct containing variables accessed by shared code
3961* data - Data to send out to the PHY
3962* count - Number of bits to shift out
3963*
3964* Bits are shifted out in MSB to LSB order.
3965******************************************************************************/
3966static void
3967e1000_shift_out_mdi_bits(struct e1000_hw *hw, uint32_t data, uint16_t count)
3968{
3969        uint32_t ctrl;
3970        uint32_t mask;
3971
3972        /* We need to shift "count" number of bits out to the PHY. So, the value
3973         * in the "data" parameter will be shifted out to the PHY one bit at a
3974         * time. In order to do this, "data" must be broken down into bits.
3975         */
3976        mask = 0x01;
3977        mask <<= (count - 1);
3978
3979        ctrl = E1000_READ_REG(hw, CTRL);
3980
3981        /* Set MDIO_DIR and MDC_DIR direction bits to be used as output pins. */
3982        ctrl |= (E1000_CTRL_MDIO_DIR | E1000_CTRL_MDC_DIR);
3983
3984        while (mask) {
3985                /* A "1" is shifted out to the PHY by setting the MDIO bit to "1" and
3986                 * then raising and lowering the Management Data Clock. A "0" is
3987                 * shifted out to the PHY by setting the MDIO bit to "0" and then
3988                 * raising and lowering the clock.
3989                 */
3990                if (data & mask)
3991                        ctrl |= E1000_CTRL_MDIO;
3992                else
3993                        ctrl &= ~E1000_CTRL_MDIO;
3994
3995                E1000_WRITE_REG(hw, CTRL, ctrl);
3996                E1000_WRITE_FLUSH(hw);
3997
3998                udelay(2);
3999
4000                e1000_raise_mdi_clk(hw, &ctrl);
4001                e1000_lower_mdi_clk(hw, &ctrl);
4002
4003                mask = mask >> 1;
4004        }
4005}
4006
4007/******************************************************************************
4008* Shifts data bits in from the PHY
4009*
4010* hw - Struct containing variables accessed by shared code
4011*
4012* Bits are shifted in in MSB to LSB order.
4013******************************************************************************/
4014static uint16_t
4015e1000_shift_in_mdi_bits(struct e1000_hw *hw)
4016{
4017        uint32_t ctrl;
4018        uint16_t data = 0;
4019        uint8_t i;
4020
4021        /* In order to read a register from the PHY, we need to shift in a total
4022         * of 18 bits from the PHY. The first two bit (turnaround) times are used
4023         * to avoid contention on the MDIO pin when a read operation is performed.
4024         * These two bits are ignored by us and thrown away. Bits are "shifted in"
4025         * by raising the input to the Management Data Clock (setting the MDC bit),
4026         * and then reading the value of the MDIO bit.
4027         */
4028        ctrl = E1000_READ_REG(hw, CTRL);
4029
4030        /* Clear MDIO_DIR (SWDPIO1) to indicate this bit is to be used as input. */
4031        ctrl &= ~E1000_CTRL_MDIO_DIR;
4032        ctrl &= ~E1000_CTRL_MDIO;
4033
4034        E1000_WRITE_REG(hw, CTRL, ctrl);
4035        E1000_WRITE_FLUSH(hw);
4036
4037        /* Raise and Lower the clock before reading in the data. This accounts for
4038         * the turnaround bits. The first clock occurred when we clocked out the
4039         * last bit of the Register Address.
4040         */
4041        e1000_raise_mdi_clk(hw, &ctrl);
4042        e1000_lower_mdi_clk(hw, &ctrl);
4043
4044        for (data = 0, i = 0; i < 16; i++) {
4045                data = data << 1;
4046                e1000_raise_mdi_clk(hw, &ctrl);
4047                ctrl = E1000_READ_REG(hw, CTRL);
4048                /* Check to see if we shifted in a "1". */
4049                if (ctrl & E1000_CTRL_MDIO)
4050                        data |= 1;
4051                e1000_lower_mdi_clk(hw, &ctrl);
4052        }
4053
4054        e1000_raise_mdi_clk(hw, &ctrl);
4055        e1000_lower_mdi_clk(hw, &ctrl);
4056
4057        return data;
4058}
4059
4060/*****************************************************************************
4061* Reads the value from a PHY register
4062*
4063* hw - Struct containing variables accessed by shared code
4064* reg_addr - address of the PHY register to read
4065******************************************************************************/
4066static int
4067e1000_read_phy_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t * phy_data)
4068{
4069        uint32_t i;
4070        uint32_t mdic = 0;
4071        const uint32_t phy_addr = 1;
4072
4073        if (reg_addr > MAX_PHY_REG_ADDRESS) {
4074                DEBUGOUT("PHY Address %d is out of range\n", reg_addr);
4075                return -E1000_ERR_PARAM;
4076        }
4077
4078        if (hw->mac_type > e1000_82543) {
4079                /* Set up Op-code, Phy Address, and register address in the MDI
4080                 * Control register.  The MAC will take care of interfacing with the
4081                 * PHY to retrieve the desired data.
4082                 */
4083                mdic = ((reg_addr << E1000_MDIC_REG_SHIFT) |
4084                        (phy_addr << E1000_MDIC_PHY_SHIFT) |
4085                        (E1000_MDIC_OP_READ));
4086
4087                E1000_WRITE_REG(hw, MDIC, mdic);
4088
4089                /* Poll the ready bit to see if the MDI read completed */
4090                for (i = 0; i < 64; i++) {
4091                        udelay(10);
4092                        mdic = E1000_READ_REG(hw, MDIC);
4093                        if (mdic & E1000_MDIC_READY)
4094                                break;
4095                }
4096                if (!(mdic & E1000_MDIC_READY)) {
4097                        DEBUGOUT("MDI Read did not complete\n");
4098                        return -E1000_ERR_PHY;
4099                }
4100                if (mdic & E1000_MDIC_ERROR) {
4101                        DEBUGOUT("MDI Error\n");
4102                        return -E1000_ERR_PHY;
4103                }
4104                *phy_data = (uint16_t) mdic;
4105        } else {
4106                /* We must first send a preamble through the MDIO pin to signal the
4107                 * beginning of an MII instruction.  This is done by sending 32
4108                 * consecutive "1" bits.
4109                 */
4110                e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
4111
4112                /* Now combine the next few fields that are required for a read
4113                 * operation.  We use this method instead of calling the
4114                 * e1000_shift_out_mdi_bits routine five different times. The format of
4115                 * a MII read instruction consists of a shift out of 14 bits and is
4116                 * defined as follows:
4117                 *    <Preamble><SOF><Op Code><Phy Addr><Reg Addr>
4118                 * followed by a shift in of 18 bits.  This first two bits shifted in
4119                 * are TurnAround bits used to avoid contention on the MDIO pin when a
4120                 * READ operation is performed.  These two bits are thrown away
4121                 * followed by a shift in of 16 bits which contains the desired data.
4122                 */
4123                mdic = ((reg_addr) | (phy_addr << 5) |
4124                        (PHY_OP_READ << 10) | (PHY_SOF << 12));
4125
4126                e1000_shift_out_mdi_bits(hw, mdic, 14);
4127
4128                /* Now that we've shifted out the read command to the MII, we need to
4129                 * "shift in" the 16-bit value (18 total bits) of the requested PHY
4130                 * register address.
4131                 */
4132                *phy_data = e1000_shift_in_mdi_bits(hw);
4133        }
4134        return 0;
4135}
4136
4137/******************************************************************************
4138* Writes a value to a PHY register
4139*
4140* hw - Struct containing variables accessed by shared code
4141* reg_addr - address of the PHY register to write
4142* data - data to write to the PHY
4143******************************************************************************/
4144static int
4145e1000_write_phy_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t phy_data)
4146{
4147        uint32_t i;
4148        uint32_t mdic = 0;
4149        const uint32_t phy_addr = 1;
4150
4151        if (reg_addr > MAX_PHY_REG_ADDRESS) {
4152                DEBUGOUT("PHY Address %d is out of range\n", reg_addr);
4153                return -E1000_ERR_PARAM;
4154        }
4155
4156        if (hw->mac_type > e1000_82543) {
4157                /* Set up Op-code, Phy Address, register address, and data intended
4158                 * for the PHY register in the MDI Control register.  The MAC will take
4159                 * care of interfacing with the PHY to send the desired data.
4160                 */
4161                mdic = (((uint32_t) phy_data) |
4162                        (reg_addr << E1000_MDIC_REG_SHIFT) |
4163                        (phy_addr << E1000_MDIC_PHY_SHIFT) |
4164                        (E1000_MDIC_OP_WRITE));
4165
4166                E1000_WRITE_REG(hw, MDIC, mdic);
4167
4168                /* Poll the ready bit to see if the MDI read completed */
4169                for (i = 0; i < 64; i++) {
4170                        udelay(10);
4171                        mdic = E1000_READ_REG(hw, MDIC);
4172                        if (mdic & E1000_MDIC_READY)
4173                                break;
4174                }
4175                if (!(mdic & E1000_MDIC_READY)) {
4176                        DEBUGOUT("MDI Write did not complete\n");
4177                        return -E1000_ERR_PHY;
4178                }
4179        } else {
4180                /* We'll need to use the SW defined pins to shift the write command
4181                 * out to the PHY. We first send a preamble to the PHY to signal the
4182                 * beginning of the MII instruction.  This is done by sending 32
4183                 * consecutive "1" bits.
4184                 */
4185                e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
4186
4187                /* Now combine the remaining required fields that will indicate a
4188                 * write operation. We use this method instead of calling the
4189                 * e1000_shift_out_mdi_bits routine for each field in the command. The
4190                 * format of a MII write instruction is as follows:
4191                 * <Preamble><SOF><Op Code><Phy Addr><Reg Addr><Turnaround><Data>.
4192                 */
4193                mdic = ((PHY_TURNAROUND) | (reg_addr << 2) | (phy_addr << 7) |
4194                        (PHY_OP_WRITE << 12) | (PHY_SOF << 14));
4195                mdic <<= 16;
4196                mdic |= (uint32_t) phy_data;
4197
4198                e1000_shift_out_mdi_bits(hw, mdic, 32);
4199        }
4200        return 0;
4201}
4202
4203/******************************************************************************
4204 * Checks if PHY reset is blocked due to SOL/IDER session, for example.
4205 * Returning E1000_BLK_PHY_RESET isn't necessarily an error.  But it's up to
4206 * the caller to figure out how to deal with it.
4207 *
4208 * hw - Struct containing variables accessed by shared code
4209 *
4210 * returns: - E1000_BLK_PHY_RESET
4211 *            E1000_SUCCESS
4212 *
4213 *****************************************************************************/
4214int32_t
4215e1000_check_phy_reset_block(struct e1000_hw *hw)
4216{
4217        uint32_t manc = 0;
4218        uint32_t fwsm = 0;
4219
4220        if (hw->mac_type == e1000_ich8lan) {
4221                fwsm = E1000_READ_REG(hw, FWSM);
4222                return (fwsm & E1000_FWSM_RSPCIPHY) ? E1000_SUCCESS
4223                                                : E1000_BLK_PHY_RESET;
4224        }
4225
4226        if (hw->mac_type > e1000_82547_rev_2)
4227                manc = E1000_READ_REG(hw, MANC);
4228        return (manc & E1000_MANC_BLK_PHY_RST_ON_IDE) ?
4229                E1000_BLK_PHY_RESET : E1000_SUCCESS;
4230}
4231
4232/***************************************************************************
4233 * Checks if the PHY configuration is done
4234 *
4235 * hw: Struct containing variables accessed by shared code
4236 *
4237 * returns: - E1000_ERR_RESET if fail to reset MAC
4238 *            E1000_SUCCESS at any other case.
4239 *
4240 ***************************************************************************/
4241static int32_t
4242e1000_get_phy_cfg_done(struct e1000_hw *hw)
4243{
4244        int32_t timeout = PHY_CFG_TIMEOUT;
4245        uint32_t cfg_mask = E1000_EEPROM_CFG_DONE;
4246
4247        DEBUGFUNC();
4248
4249        switch (hw->mac_type) {
4250        default:
4251                mdelay(10);
4252                break;
4253        case e1000_80003es2lan:
4254                /* Separate *_CFG_DONE_* bit for each port */
4255                if (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)
4256                        cfg_mask = E1000_EEPROM_CFG_DONE_PORT_1;
4257        /* Fall Through */
4258        case e1000_82571:
4259        case e1000_82572:
4260                while (timeout) {
4261                        if (E1000_READ_REG(hw, EEMNGCTL) & cfg_mask)
4262                                break;
4263                        else
4264                                mdelay(1);
4265                        timeout--;
4266                }
4267                if (!timeout) {
4268                        DEBUGOUT("MNG configuration cycle has not "
4269                                        "completed.\n");
4270                        return -E1000_ERR_RESET;
4271                }
4272                break;
4273        }
4274
4275        return E1000_SUCCESS;
4276}
4277
4278/******************************************************************************
4279* Returns the PHY to the power-on reset state
4280*
4281* hw - Struct containing variables accessed by shared code
4282******************************************************************************/
4283int32_t
4284e1000_phy_hw_reset(struct e1000_hw *hw)
4285{
4286        uint32_t ctrl, ctrl_ext;
4287        uint32_t led_ctrl;
4288        int32_t ret_val;
4289        uint16_t swfw;
4290
4291        DEBUGFUNC();
4292
4293        /* In the case of the phy reset being blocked, it's not an error, we
4294         * simply return success without performing the reset. */
4295        ret_val = e1000_check_phy_reset_block(hw);
4296        if (ret_val)
4297                return E1000_SUCCESS;
4298
4299        DEBUGOUT("Resetting Phy...\n");
4300
4301        if (hw->mac_type > e1000_82543) {
4302                if ((hw->mac_type == e1000_80003es2lan) &&
4303                        (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)) {
4304                        swfw = E1000_SWFW_PHY1_SM;
4305                } else {
4306                        swfw = E1000_SWFW_PHY0_SM;
4307                }
4308                if (e1000_swfw_sync_acquire(hw, swfw)) {
4309                        DEBUGOUT("Unable to acquire swfw sync\n");
4310                        return -E1000_ERR_SWFW_SYNC;
4311                }
4312                /* Read the device control register and assert the E1000_CTRL_PHY_RST
4313                 * bit. Then, take it out of reset.
4314                 */
4315                ctrl = E1000_READ_REG(hw, CTRL);
4316                E1000_WRITE_REG(hw, CTRL, ctrl | E1000_CTRL_PHY_RST);
4317                E1000_WRITE_FLUSH(hw);
4318
4319                if (hw->mac_type < e1000_82571)
4320                        udelay(10);
4321                else
4322                        udelay(100);
4323
4324                E1000_WRITE_REG(hw, CTRL, ctrl);
4325                E1000_WRITE_FLUSH(hw);
4326
4327                if (hw->mac_type >= e1000_82571)
4328                        mdelay(10);
4329
4330        } else {
4331                /* Read the Extended Device Control Register, assert the PHY_RESET_DIR
4332                 * bit to put the PHY into reset. Then, take it out of reset.
4333                 */
4334                ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
4335                ctrl_ext |= E1000_CTRL_EXT_SDP4_DIR;
4336                ctrl_ext &= ~E1000_CTRL_EXT_SDP4_DATA;
4337                E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
4338                E1000_WRITE_FLUSH(hw);
4339                mdelay(10);
4340                ctrl_ext |= E1000_CTRL_EXT_SDP4_DATA;
4341                E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
4342                E1000_WRITE_FLUSH(hw);
4343        }
4344        udelay(150);
4345
4346        if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
4347                /* Configure activity LED after PHY reset */
4348                led_ctrl = E1000_READ_REG(hw, LEDCTL);
4349                led_ctrl &= IGP_ACTIVITY_LED_MASK;
4350                led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
4351                E1000_WRITE_REG(hw, LEDCTL, led_ctrl);
4352        }
4353
4354        /* Wait for FW to finish PHY configuration. */
4355        ret_val = e1000_get_phy_cfg_done(hw);
4356        if (ret_val != E1000_SUCCESS)
4357                return ret_val;
4358
4359        return ret_val;
4360}
4361
4362/******************************************************************************
4363 * IGP phy init script - initializes the GbE PHY
4364 *
4365 * hw - Struct containing variables accessed by shared code
4366 *****************************************************************************/
4367static void
4368e1000_phy_init_script(struct e1000_hw *hw)
4369{
4370        uint32_t ret_val;
4371        uint16_t phy_saved_data;
4372        DEBUGFUNC();
4373
4374        if (hw->phy_init_script) {
4375                mdelay(20);
4376
4377                /* Save off the current value of register 0x2F5B to be
4378                 * restored at the end of this routine. */
4379                ret_val = e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data);
4380
4381                /* Disabled the PHY transmitter */
4382                e1000_write_phy_reg(hw, 0x2F5B, 0x0003);
4383
4384                mdelay(20);
4385
4386                e1000_write_phy_reg(hw, 0x0000, 0x0140);
4387
4388                mdelay(5);
4389
4390                switch (hw->mac_type) {
4391                case e1000_82541:
4392                case e1000_82547:
4393                        e1000_write_phy_reg(hw, 0x1F95, 0x0001);
4394
4395                        e1000_write_phy_reg(hw, 0x1F71, 0xBD21);
4396
4397                        e1000_write_phy_reg(hw, 0x1F79, 0x0018);
4398
4399                        e1000_write_phy_reg(hw, 0x1F30, 0x1600);
4400
4401                        e1000_write_phy_reg(hw, 0x1F31, 0x0014);
4402
4403                        e1000_write_phy_reg(hw, 0x1F32, 0x161C);
4404
4405                        e1000_write_phy_reg(hw, 0x1F94, 0x0003);
4406
4407                        e1000_write_phy_reg(hw, 0x1F96, 0x003F);
4408
4409                        e1000_write_phy_reg(hw, 0x2010, 0x0008);
4410                        break;
4411
4412                case e1000_82541_rev_2:
4413                case e1000_82547_rev_2:
4414                        e1000_write_phy_reg(hw, 0x1F73, 0x0099);
4415                        break;
4416                default:
4417                        break;
4418                }
4419
4420                e1000_write_phy_reg(hw, 0x0000, 0x3300);
4421
4422                mdelay(20);
4423
4424                /* Now enable the transmitter */
4425                e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data);
4426
4427                if (hw->mac_type == e1000_82547) {
4428                        uint16_t fused, fine, coarse;
4429
4430                        /* Move to analog registers page */
4431                        e1000_read_phy_reg(hw,
4432                                IGP01E1000_ANALOG_SPARE_FUSE_STATUS, &fused);
4433
4434                        if (!(fused & IGP01E1000_ANALOG_SPARE_FUSE_ENABLED)) {
4435                                e1000_read_phy_reg(hw,
4436                                        IGP01E1000_ANALOG_FUSE_STATUS, &fused);
4437
4438                                fine = fused & IGP01E1000_ANALOG_FUSE_FINE_MASK;
4439                                coarse = fused
4440                                        & IGP01E1000_ANALOG_FUSE_COARSE_MASK;
4441
4442                                if (coarse >
4443                                        IGP01E1000_ANALOG_FUSE_COARSE_THRESH) {
4444                                        coarse -=
4445                                        IGP01E1000_ANALOG_FUSE_COARSE_10;
4446                                        fine -= IGP01E1000_ANALOG_FUSE_FINE_1;
4447                                } else if (coarse
4448                                        == IGP01E1000_ANALOG_FUSE_COARSE_THRESH)
4449                                        fine -= IGP01E1000_ANALOG_FUSE_FINE_10;
4450
4451                                fused = (fused
4452                                        & IGP01E1000_ANALOG_FUSE_POLY_MASK) |
4453                                        (fine
4454                                        & IGP01E1000_ANALOG_FUSE_FINE_MASK) |
4455                                        (coarse
4456                                        & IGP01E1000_ANALOG_FUSE_COARSE_MASK);
4457
4458                                e1000_write_phy_reg(hw,
4459                                        IGP01E1000_ANALOG_FUSE_CONTROL, fused);
4460                                e1000_write_phy_reg(hw,
4461                                        IGP01E1000_ANALOG_FUSE_BYPASS,
4462                                IGP01E1000_ANALOG_FUSE_ENABLE_SW_CONTROL);
4463                        }
4464                }
4465        }
4466}
4467
4468/******************************************************************************
4469* Resets the PHY
4470*
4471* hw - Struct containing variables accessed by shared code
4472*
4473* Sets bit 15 of the MII Control register
4474******************************************************************************/
4475int32_t
4476e1000_phy_reset(struct e1000_hw *hw)
4477{
4478        int32_t ret_val;
4479        uint16_t phy_data;
4480
4481        DEBUGFUNC();
4482
4483        /* In the case of the phy reset being blocked, it's not an error, we
4484         * simply return success without performing the reset. */
4485        ret_val = e1000_check_phy_reset_block(hw);
4486        if (ret_val)
4487                return E1000_SUCCESS;
4488
4489        switch (hw->phy_type) {
4490        case e1000_phy_igp:
4491        case e1000_phy_igp_2:
4492        case e1000_phy_igp_3:
4493        case e1000_phy_ife:
4494                ret_val = e1000_phy_hw_reset(hw);
4495                if (ret_val)
4496                        return ret_val;
4497                break;
4498        default:
4499                ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data);
4500                if (ret_val)
4501                        return ret_val;
4502
4503                phy_data |= MII_CR_RESET;
4504                ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data);
4505                if (ret_val)
4506                        return ret_val;
4507
4508                udelay(1);
4509                break;
4510        }
4511
4512        if (hw->phy_type == e1000_phy_igp || hw->phy_type == e1000_phy_igp_2)
4513                e1000_phy_init_script(hw);
4514
4515        return E1000_SUCCESS;
4516}
4517
4518static int e1000_set_phy_type (struct e1000_hw *hw)
4519{
4520        DEBUGFUNC ();
4521
4522        if (hw->mac_type == e1000_undefined)
4523                return -E1000_ERR_PHY_TYPE;
4524
4525        switch (hw->phy_id) {
4526        case M88E1000_E_PHY_ID:
4527        case M88E1000_I_PHY_ID:
4528        case M88E1011_I_PHY_ID:
4529        case M88E1111_I_PHY_ID:
4530                hw->phy_type = e1000_phy_m88;
4531                break;
4532        case IGP01E1000_I_PHY_ID:
4533                if (hw->mac_type == e1000_82541 ||
4534                        hw->mac_type == e1000_82541_rev_2 ||
4535                        hw->mac_type == e1000_82547 ||
4536                        hw->mac_type == e1000_82547_rev_2) {
4537                        hw->phy_type = e1000_phy_igp;
4538                        hw->phy_type = e1000_phy_igp;
4539                        break;
4540                }
4541        case IGP03E1000_E_PHY_ID:
4542                hw->phy_type = e1000_phy_igp_3;
4543                break;
4544        case IFE_E_PHY_ID:
4545        case IFE_PLUS_E_PHY_ID:
4546        case IFE_C_E_PHY_ID:
4547                hw->phy_type = e1000_phy_ife;
4548                break;
4549        case GG82563_E_PHY_ID:
4550                if (hw->mac_type == e1000_80003es2lan) {
4551                        hw->phy_type = e1000_phy_gg82563;
4552                        break;
4553                }
4554                /* Fall Through */
4555        default:
4556                /* Should never have loaded on this device */
4557                hw->phy_type = e1000_phy_undefined;
4558                return -E1000_ERR_PHY_TYPE;
4559        }
4560
4561        return E1000_SUCCESS;
4562}
4563
4564/******************************************************************************
4565* Probes the expected PHY address for known PHY IDs
4566*
4567* hw - Struct containing variables accessed by shared code
4568******************************************************************************/
4569static int32_t
4570e1000_detect_gig_phy(struct e1000_hw *hw)
4571{
4572        int32_t phy_init_status, ret_val;
4573        uint16_t phy_id_high, phy_id_low;
4574        boolean_t match = FALSE;
4575
4576        DEBUGFUNC();
4577
4578        /* The 82571 firmware may still be configuring the PHY.  In this
4579         * case, we cannot access the PHY until the configuration is done.  So
4580         * we explicitly set the PHY values. */
4581        if (hw->mac_type == e1000_82571 ||
4582                hw->mac_type == e1000_82572) {
4583                hw->phy_id = IGP01E1000_I_PHY_ID;
4584                hw->phy_type = e1000_phy_igp_2;
4585                return E1000_SUCCESS;
4586        }
4587
4588        /* ESB-2 PHY reads require e1000_phy_gg82563 to be set because of a
4589         * work- around that forces PHY page 0 to be set or the reads fail.
4590         * The rest of the code in this routine uses e1000_read_phy_reg to
4591         * read the PHY ID.  So for ESB-2 we need to have this set so our
4592         * reads won't fail.  If the attached PHY is not a e1000_phy_gg82563,
4593         * the routines below will figure this out as well. */
4594        if (hw->mac_type == e1000_80003es2lan)
4595                hw->phy_type = e1000_phy_gg82563;
4596
4597        /* Read the PHY ID Registers to identify which PHY is onboard. */
4598        ret_val = e1000_read_phy_reg(hw, PHY_ID1, &phy_id_high);
4599        if (ret_val)
4600                return ret_val;
4601
4602        hw->phy_id = (uint32_t) (phy_id_high << 16);
4603        udelay(20);
4604        ret_val = e1000_read_phy_reg(hw, PHY_ID2, &phy_id_low);
4605        if (ret_val)
4606                return ret_val;
4607
4608        hw->phy_id |= (uint32_t) (phy_id_low & PHY_REVISION_MASK);
4609        hw->phy_revision = (uint32_t) phy_id_low & ~PHY_REVISION_MASK;
4610
4611        switch (hw->mac_type) {
4612        case e1000_82543:
4613                if (hw->phy_id == M88E1000_E_PHY_ID)
4614                        match = TRUE;
4615                break;
4616        case e1000_82544:
4617                if (hw->phy_id == M88E1000_I_PHY_ID)
4618                        match = TRUE;
4619                break;
4620        case e1000_82540:
4621        case e1000_82545:
4622        case e1000_82545_rev_3:
4623        case e1000_82546:
4624        case e1000_82546_rev_3:
4625                if (hw->phy_id == M88E1011_I_PHY_ID)
4626                        match = TRUE;
4627                break;
4628        case e1000_82541:
4629        case e1000_82541_rev_2:
4630        case e1000_82547:
4631        case e1000_82547_rev_2:
4632                if(hw->phy_id == IGP01E1000_I_PHY_ID)
4633                        match = TRUE;
4634
4635                break;
4636        case e1000_82573:
4637                if (hw->phy_id == M88E1111_I_PHY_ID)
4638                        match = TRUE;
4639                break;
4640        case e1000_80003es2lan:
4641                if (hw->phy_id == GG82563_E_PHY_ID)
4642                        match = TRUE;
4643                break;
4644        case e1000_ich8lan:
4645                if (hw->phy_id == IGP03E1000_E_PHY_ID)
4646                        match = TRUE;
4647                if (hw->phy_id == IFE_E_PHY_ID)
4648                        match = TRUE;
4649                if (hw->phy_id == IFE_PLUS_E_PHY_ID)
4650                        match = TRUE;
4651                if (hw->phy_id == IFE_C_E_PHY_ID)
4652                        match = TRUE;
4653                break;
4654        default:
4655                DEBUGOUT("Invalid MAC type %d\n", hw->mac_type);
4656                return -E1000_ERR_CONFIG;
4657        }
4658
4659        phy_init_status = e1000_set_phy_type(hw);
4660
4661        if ((match) && (phy_init_status == E1000_SUCCESS)) {
4662                DEBUGOUT("PHY ID 0x%X detected\n", hw->phy_id);
4663                return 0;
4664        }
4665        DEBUGOUT("Invalid PHY ID 0x%X\n", hw->phy_id);
4666        return -E1000_ERR_PHY;
4667}
4668
4669/*****************************************************************************
4670 * Set media type and TBI compatibility.
4671 *
4672 * hw - Struct containing variables accessed by shared code
4673 * **************************************************************************/
4674void
4675e1000_set_media_type(struct e1000_hw *hw)
4676{
4677        uint32_t status;
4678
4679        DEBUGFUNC();
4680
4681        if (hw->mac_type != e1000_82543) {
4682                /* tbi_compatibility is only valid on 82543 */
4683                hw->tbi_compatibility_en = FALSE;
4684        }
4685
4686        switch (hw->device_id) {
4687        case E1000_DEV_ID_82545GM_SERDES:
4688        case E1000_DEV_ID_82546GB_SERDES:
4689        case E1000_DEV_ID_82571EB_SERDES:
4690        case E1000_DEV_ID_82571EB_SERDES_DUAL:
4691        case E1000_DEV_ID_82571EB_SERDES_QUAD:
4692        case E1000_DEV_ID_82572EI_SERDES:
4693        case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
4694                hw->media_type = e1000_media_type_internal_serdes;
4695                break;
4696        default:
4697                switch (hw->mac_type) {
4698                case e1000_82542_rev2_0:
4699                case e1000_82542_rev2_1:
4700                        hw->media_type = e1000_media_type_fiber;
4701                        break;
4702                case e1000_ich8lan:
4703                case e1000_82573:
4704                        /* The STATUS_TBIMODE bit is reserved or reused
4705                         * for the this device.
4706                         */
4707                        hw->media_type = e1000_media_type_copper;
4708                        break;
4709                default:
4710                        status = E1000_READ_REG(hw, STATUS);
4711                        if (status & E1000_STATUS_TBIMODE) {
4712                                hw->media_type = e1000_media_type_fiber;
4713                                /* tbi_compatibility not valid on fiber */
4714                                hw->tbi_compatibility_en = FALSE;
4715                        } else {
4716                                hw->media_type = e1000_media_type_copper;
4717                        }
4718                        break;
4719                }
4720        }
4721}
4722
4723/**
4724 * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
4725 *
4726 * e1000_sw_init initializes the Adapter private data structure.
4727 * Fields are initialized based on PCI device information and
4728 * OS network device settings (MTU size).
4729 **/
4730
4731static int
4732e1000_sw_init(struct eth_device *nic, int cardnum)
4733{
4734        struct e1000_hw *hw = (typeof(hw)) nic->priv;
4735        int result;
4736
4737        /* PCI config space info */
4738        pci_read_config_word(hw->pdev, PCI_VENDOR_ID, &hw->vendor_id);
4739        pci_read_config_word(hw->pdev, PCI_DEVICE_ID, &hw->device_id);
4740        pci_read_config_word(hw->pdev, PCI_SUBSYSTEM_VENDOR_ID,
4741                             &hw->subsystem_vendor_id);
4742        pci_read_config_word(hw->pdev, PCI_SUBSYSTEM_ID, &hw->subsystem_id);
4743
4744        pci_read_config_byte(hw->pdev, PCI_REVISION_ID, &hw->revision_id);
4745        pci_read_config_word(hw->pdev, PCI_COMMAND, &hw->pci_cmd_word);
4746
4747        /* identify the MAC */
4748        result = e1000_set_mac_type(hw);
4749        if (result) {
4750                E1000_ERR("Unknown MAC Type\n");
4751                return result;
4752        }
4753
4754        switch (hw->mac_type) {
4755        default:
4756                break;
4757        case e1000_82541:
4758        case e1000_82547:
4759        case e1000_82541_rev_2:
4760        case e1000_82547_rev_2:
4761                hw->phy_init_script = 1;
4762                break;
4763        }
4764
4765        /* lan a vs. lan b settings */
4766        if (hw->mac_type == e1000_82546)
4767                /*this also works w/ multiple 82546 cards */
4768                /*but not if they're intermingled /w other e1000s */
4769                hw->lan_loc = (cardnum % 2) ? e1000_lan_b : e1000_lan_a;
4770        else
4771                hw->lan_loc = e1000_lan_a;
4772
4773        /* flow control settings */
4774        hw->fc_high_water = E1000_FC_HIGH_THRESH;
4775        hw->fc_low_water = E1000_FC_LOW_THRESH;
4776        hw->fc_pause_time = E1000_FC_PAUSE_TIME;
4777        hw->fc_send_xon = 1;
4778
4779        /* Media type - copper or fiber */
4780        e1000_set_media_type(hw);
4781
4782        if (hw->mac_type >= e1000_82543) {
4783                uint32_t status = E1000_READ_REG(hw, STATUS);
4784
4785                if (status & E1000_STATUS_TBIMODE) {
4786                        DEBUGOUT("fiber interface\n");
4787                        hw->media_type = e1000_media_type_fiber;
4788                } else {
4789                        DEBUGOUT("copper interface\n");
4790                        hw->media_type = e1000_media_type_copper;
4791                }
4792        } else {
4793                hw->media_type = e1000_media_type_fiber;
4794        }
4795
4796        hw->tbi_compatibility_en = TRUE;
4797        hw->wait_autoneg_complete = TRUE;
4798        if (hw->mac_type < e1000_82543)
4799                hw->report_tx_early = 0;
4800        else
4801                hw->report_tx_early = 1;
4802
4803        return E1000_SUCCESS;
4804}
4805
4806void
4807fill_rx(struct e1000_hw *hw)
4808{
4809        struct e1000_rx_desc *rd;
4810
4811        rx_last = rx_tail;
4812        rd = rx_base + rx_tail;
4813        rx_tail = (rx_tail + 1) % 8;
4814        memset(rd, 0, 16);
4815        rd->buffer_addr = cpu_to_le64((u32) & packet);
4816        E1000_WRITE_REG(hw, RDT, rx_tail);
4817}
4818
4819/**
4820 * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
4821 * @adapter: board private structure
4822 *
4823 * Configure the Tx unit of the MAC after a reset.
4824 **/
4825
4826static void
4827e1000_configure_tx(struct e1000_hw *hw)
4828{
4829        unsigned long ptr;
4830        unsigned long tctl;
4831        unsigned long tipg, tarc;
4832        uint32_t ipgr1, ipgr2;
4833
4834        ptr = (u32) tx_pool;
4835        if (ptr & 0xf)
4836                ptr = (ptr + 0x10) & (~0xf);
4837
4838        tx_base = (typeof(tx_base)) ptr;
4839
4840        E1000_WRITE_REG(hw, TDBAL, (u32) tx_base);
4841        E1000_WRITE_REG(hw, TDBAH, 0);
4842
4843        E1000_WRITE_REG(hw, TDLEN, 128);
4844
4845        /* Setup the HW Tx Head and Tail descriptor pointers */
4846        E1000_WRITE_REG(hw, TDH, 0);
4847        E1000_WRITE_REG(hw, TDT, 0);
4848        tx_tail = 0;
4849
4850        /* Set the default values for the Tx Inter Packet Gap timer */
4851        if (hw->mac_type <= e1000_82547_rev_2 &&
4852            (hw->media_type == e1000_media_type_fiber ||
4853             hw->media_type == e1000_media_type_internal_serdes))
4854                tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
4855        else
4856                tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
4857
4858        /* Set the default values for the Tx Inter Packet Gap timer */
4859        switch (hw->mac_type) {
4860        case e1000_82542_rev2_0:
4861        case e1000_82542_rev2_1:
4862                tipg = DEFAULT_82542_TIPG_IPGT;
4863                ipgr1 = DEFAULT_82542_TIPG_IPGR1;
4864                ipgr2 = DEFAULT_82542_TIPG_IPGR2;
4865                break;
4866        case e1000_80003es2lan:
4867                ipgr1 = DEFAULT_82543_TIPG_IPGR1;
4868                ipgr2 = DEFAULT_80003ES2LAN_TIPG_IPGR2;
4869                break;
4870        default:
4871                ipgr1 = DEFAULT_82543_TIPG_IPGR1;
4872                ipgr2 = DEFAULT_82543_TIPG_IPGR2;
4873                break;
4874        }
4875        tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
4876        tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
4877        E1000_WRITE_REG(hw, TIPG, tipg);
4878        /* Program the Transmit Control Register */
4879        tctl = E1000_READ_REG(hw, TCTL);
4880        tctl &= ~E1000_TCTL_CT;
4881        tctl |= E1000_TCTL_EN | E1000_TCTL_PSP |
4882            (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
4883
4884        if (hw->mac_type == e1000_82571 || hw->mac_type == e1000_82572) {
4885                tarc = E1000_READ_REG(hw, TARC0);
4886                /* set the speed mode bit, we'll clear it if we're not at
4887                 * gigabit link later */
4888                /* git bit can be set to 1*/
4889        } else if (hw->mac_type == e1000_80003es2lan) {
4890                tarc = E1000_READ_REG(hw, TARC0);
4891                tarc |= 1;
4892                E1000_WRITE_REG(hw, TARC0, tarc);
4893                tarc = E1000_READ_REG(hw, TARC1);
4894                tarc |= 1;
4895                E1000_WRITE_REG(hw, TARC1, tarc);
4896        }
4897
4898
4899        e1000_config_collision_dist(hw);
4900        /* Setup Transmit Descriptor Settings for eop descriptor */
4901        hw->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
4902
4903        /* Need to set up RS bit */
4904        if (hw->mac_type < e1000_82543)
4905                hw->txd_cmd |= E1000_TXD_CMD_RPS;
4906        else
4907                hw->txd_cmd |= E1000_TXD_CMD_RS;
4908        E1000_WRITE_REG(hw, TCTL, tctl);
4909}
4910
4911/**
4912 * e1000_setup_rctl - configure the receive control register
4913 * @adapter: Board private structure
4914 **/
4915static void
4916e1000_setup_rctl(struct e1000_hw *hw)
4917{
4918        uint32_t rctl;
4919
4920        rctl = E1000_READ_REG(hw, RCTL);
4921
4922        rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
4923
4924        rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_LBM_NO
4925                | E1000_RCTL_RDMTS_HALF;        /* |
4926                        (hw.mc_filter_type << E1000_RCTL_MO_SHIFT); */
4927
4928        if (hw->tbi_compatibility_on == 1)
4929                rctl |= E1000_RCTL_SBP;
4930        else
4931                rctl &= ~E1000_RCTL_SBP;
4932
4933        rctl &= ~(E1000_RCTL_SZ_4096);
4934                rctl |= E1000_RCTL_SZ_2048;
4935                rctl &= ~(E1000_RCTL_BSEX | E1000_RCTL_LPE);
4936        E1000_WRITE_REG(hw, RCTL, rctl);
4937}
4938
4939/**
4940 * e1000_configure_rx - Configure 8254x Receive Unit after Reset
4941 * @adapter: board private structure
4942 *
4943 * Configure the Rx unit of the MAC after a reset.
4944 **/
4945static void
4946e1000_configure_rx(struct e1000_hw *hw)
4947{
4948        unsigned long ptr;
4949        unsigned long rctl, ctrl_ext;
4950        rx_tail = 0;
4951        /* make sure receives are disabled while setting up the descriptors */
4952        rctl = E1000_READ_REG(hw, RCTL);
4953        E1000_WRITE_REG(hw, RCTL, rctl & ~E1000_RCTL_EN);
4954        if (hw->mac_type >= e1000_82540) {
4955                /* Set the interrupt throttling rate.  Value is calculated
4956                 * as DEFAULT_ITR = 1/(MAX_INTS_PER_SEC * 256ns) */
4957#define MAX_INTS_PER_SEC        8000
4958#define DEFAULT_ITR             1000000000/(MAX_INTS_PER_SEC * 256)
4959                E1000_WRITE_REG(hw, ITR, DEFAULT_ITR);
4960        }
4961
4962        if (hw->mac_type >= e1000_82571) {
4963                ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
4964                /* Reset delay timers after every interrupt */
4965                ctrl_ext |= E1000_CTRL_EXT_INT_TIMER_CLR;
4966                E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
4967                E1000_WRITE_FLUSH(hw);
4968        }
4969        /* Setup the Base and Length of the Rx Descriptor Ring */
4970        ptr = (u32) rx_pool;
4971        if (ptr & 0xf)
4972                ptr = (ptr + 0x10) & (~0xf);
4973        rx_base = (typeof(rx_base)) ptr;
4974        E1000_WRITE_REG(hw, RDBAL, (u32) rx_base);
4975        E1000_WRITE_REG(hw, RDBAH, 0);
4976
4977        E1000_WRITE_REG(hw, RDLEN, 128);
4978
4979        /* Setup the HW Rx Head and Tail Descriptor Pointers */
4980        E1000_WRITE_REG(hw, RDH, 0);
4981        E1000_WRITE_REG(hw, RDT, 0);
4982        /* Enable Receives */
4983
4984        E1000_WRITE_REG(hw, RCTL, rctl);
4985        fill_rx(hw);
4986}
4987
4988/**************************************************************************
4989POLL - Wait for a frame
4990***************************************************************************/
4991static int
4992e1000_poll(struct eth_device *nic)
4993{
4994        struct e1000_hw *hw = nic->priv;
4995        struct e1000_rx_desc *rd;
4996        /* return true if there's an ethernet packet ready to read */
4997        rd = rx_base + rx_last;
4998        if (!(le32_to_cpu(rd->status)) & E1000_RXD_STAT_DD)
4999                return 0;
5000        /*DEBUGOUT("recv: packet len=%d \n", rd->length); */
5001        NetReceive((uchar *)packet, le32_to_cpu(rd->length));
5002        fill_rx(hw);
5003        return 1;
5004}
5005
5006/**************************************************************************
5007TRANSMIT - Transmit a frame
5008***************************************************************************/
5009static int
5010e1000_transmit(struct eth_device *nic, volatile void *packet, int length)
5011{
5012        struct e1000_hw *hw = nic->priv;
5013        struct e1000_tx_desc *txp;
5014        int i = 0;
5015
5016        txp = tx_base + tx_tail;
5017        tx_tail = (tx_tail + 1) % 8;
5018
5019        txp->buffer_addr = cpu_to_le64(virt_to_bus(hw->pdev, packet));
5020        txp->lower.data = cpu_to_le32(hw->txd_cmd | length);
5021        txp->upper.data = 0;
5022        E1000_WRITE_REG(hw, TDT, tx_tail);
5023
5024        E1000_WRITE_FLUSH(hw);
5025        while (!(le32_to_cpu(txp->upper.data) & E1000_TXD_STAT_DD)) {
5026                if (i++ > TOUT_LOOP) {
5027                        DEBUGOUT("e1000: tx timeout\n");
5028                        return 0;
5029                }
5030                udelay(10);     /* give the nic a chance to write to the register */
5031        }
5032        return 1;
5033}
5034
5035/*reset function*/
5036static inline int
5037e1000_reset(struct eth_device *nic)
5038{
5039        struct e1000_hw *hw = nic->priv;
5040
5041        e1000_reset_hw(hw);
5042        if (hw->mac_type >= e1000_82544) {
5043                E1000_WRITE_REG(hw, WUC, 0);
5044        }
5045        return e1000_init_hw(nic);
5046}
5047
5048/**************************************************************************
5049DISABLE - Turn off ethernet interface
5050***************************************************************************/
5051static void
5052e1000_disable(struct eth_device *nic)
5053{
5054        struct e1000_hw *hw = nic->priv;
5055
5056        /* Turn off the ethernet interface */
5057        E1000_WRITE_REG(hw, RCTL, 0);
5058        E1000_WRITE_REG(hw, TCTL, 0);
5059
5060        /* Clear the transmit ring */
5061        E1000_WRITE_REG(hw, TDH, 0);
5062        E1000_WRITE_REG(hw, TDT, 0);
5063
5064        /* Clear the receive ring */
5065        E1000_WRITE_REG(hw, RDH, 0);
5066        E1000_WRITE_REG(hw, RDT, 0);
5067
5068        /* put the card in its initial state */
5069#if 0
5070        E1000_WRITE_REG(hw, CTRL, E1000_CTRL_RST);
5071#endif
5072        mdelay(10);
5073
5074}
5075
5076/**************************************************************************
5077INIT - set up ethernet interface(s)
5078***************************************************************************/
5079static int
5080e1000_init(struct eth_device *nic, bd_t * bis)
5081{
5082        struct e1000_hw *hw = nic->priv;
5083        int ret_val = 0;
5084
5085        ret_val = e1000_reset(nic);
5086        if (ret_val < 0) {
5087                if ((ret_val == -E1000_ERR_NOLINK) ||
5088                    (ret_val == -E1000_ERR_TIMEOUT)) {
5089                        E1000_ERR("Valid Link not detected\n");
5090                } else {
5091                        E1000_ERR("Hardware Initialization Failed\n");
5092                }
5093                return 0;
5094        }
5095        e1000_configure_tx(hw);
5096        e1000_setup_rctl(hw);
5097        e1000_configure_rx(hw);
5098        return 1;
5099}
5100
5101/******************************************************************************
5102 * Gets the current PCI bus type of hardware
5103 *
5104 * hw - Struct containing variables accessed by shared code
5105 *****************************************************************************/
5106void e1000_get_bus_type(struct e1000_hw *hw)
5107{
5108        uint32_t status;
5109
5110        switch (hw->mac_type) {
5111        case e1000_82542_rev2_0:
5112        case e1000_82542_rev2_1:
5113                hw->bus_type = e1000_bus_type_pci;
5114                break;
5115        case e1000_82571:
5116        case e1000_82572:
5117        case e1000_82573:
5118        case e1000_80003es2lan:
5119                hw->bus_type = e1000_bus_type_pci_express;
5120                break;
5121        case e1000_ich8lan:
5122                hw->bus_type = e1000_bus_type_pci_express;
5123                break;
5124        default:
5125                status = E1000_READ_REG(hw, STATUS);
5126                hw->bus_type = (status & E1000_STATUS_PCIX_MODE) ?
5127                                e1000_bus_type_pcix : e1000_bus_type_pci;
5128                break;
5129        }
5130}
5131
5132/**************************************************************************
5133PROBE - Look for an adapter, this routine's visible to the outside
5134You should omit the last argument struct pci_device * for a non-PCI NIC
5135***************************************************************************/
5136int
5137e1000_initialize(bd_t * bis)
5138{
5139        pci_dev_t devno;
5140        int card_number = 0;
5141        struct eth_device *nic = NULL;
5142        struct e1000_hw *hw = NULL;
5143        u32 iobase;
5144        int idx = 0;
5145        u32 PciCommandWord;
5146
5147        DEBUGFUNC();
5148
5149        while (1) {             /* Find PCI device(s) */
5150                if ((devno = pci_find_devices(supported, idx++)) < 0) {
5151                        break;
5152                }
5153
5154                pci_read_config_dword(devno, PCI_BASE_ADDRESS_0, &iobase);
5155                iobase &= ~0xf; /* Mask the bits that say "this is an io addr" */
5156                DEBUGOUT("e1000#%d: iobase 0x%08x\n", card_number, iobase);
5157
5158                pci_write_config_dword(devno, PCI_COMMAND,
5159                                       PCI_COMMAND_MEMORY | PCI_COMMAND_MASTER);
5160                /* Check if I/O accesses and Bus Mastering are enabled. */
5161                pci_read_config_dword(devno, PCI_COMMAND, &PciCommandWord);
5162                if (!(PciCommandWord & PCI_COMMAND_MEMORY)) {
5163                        printf("Error: Can not enable MEM access.\n");
5164                        continue;
5165                } else if (!(PciCommandWord & PCI_COMMAND_MASTER)) {
5166                        printf("Error: Can not enable Bus Mastering.\n");
5167                        continue;
5168                }
5169
5170                nic = (struct eth_device *) malloc(sizeof (*nic));
5171                hw = (struct e1000_hw *) malloc(sizeof (*hw));
5172                hw->pdev = devno;
5173                nic->priv = hw;
5174
5175                sprintf(nic->name, "e1000#%d", card_number);
5176
5177                /* Are these variables needed? */
5178                hw->fc = e1000_fc_default;
5179                hw->original_fc = e1000_fc_default;
5180                hw->autoneg_failed = 0;
5181                hw->autoneg = 1;
5182                hw->get_link_status = TRUE;
5183                hw->hw_addr =
5184                        pci_map_bar(devno, PCI_BASE_ADDRESS_0, PCI_REGION_MEM);
5185                hw->mac_type = e1000_undefined;
5186
5187                /* MAC and Phy settings */
5188                if (e1000_sw_init(nic, card_number) < 0) {
5189                        free(hw);
5190                        free(nic);
5191                        return 0;
5192                }
5193                if (e1000_check_phy_reset_block(hw))
5194                        printf("phy reset block error \n");
5195                e1000_reset_hw(hw);
5196#if !(defined(CONFIG_AP1000) || defined(CONFIG_MVBC_1G))
5197                if (e1000_init_eeprom_params(hw)) {
5198                        printf("The EEPROM Checksum Is Not Valid\n");
5199                        free(hw);
5200                        free(nic);
5201                        return 0;
5202                }
5203                if (e1000_validate_eeprom_checksum(nic) < 0) {
5204                        printf("The EEPROM Checksum Is Not Valid\n");
5205                        free(hw);
5206                        free(nic);
5207                        return 0;
5208                }
5209#endif
5210                e1000_read_mac_addr(nic);
5211
5212                /* get the bus type information */
5213                e1000_get_bus_type(hw);
5214
5215                printf("e1000: %02x:%02x:%02x:%02x:%02x:%02x\n",
5216                       nic->enetaddr[0], nic->enetaddr[1], nic->enetaddr[2],
5217                       nic->enetaddr[3], nic->enetaddr[4], nic->enetaddr[5]);
5218
5219                nic->init = e1000_init;
5220                nic->recv = e1000_poll;
5221                nic->send = e1000_transmit;
5222                nic->halt = e1000_disable;
5223
5224                eth_register(nic);
5225
5226                card_number++;
5227        }
5228        return card_number;
5229}
5230