uboot/drivers/mtd/ubi/eba.c
<<
>>
Prefs
   1/*
   2 * Copyright (c) International Business Machines Corp., 2006
   3 *
   4 * This program is free software; you can redistribute it and/or modify
   5 * it under the terms of the GNU General Public License as published by
   6 * the Free Software Foundation; either version 2 of the License, or
   7 * (at your option) any later version.
   8 *
   9 * This program is distributed in the hope that it will be useful,
  10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
  12 * the GNU General Public License for more details.
  13 *
  14 * You should have received a copy of the GNU General Public License
  15 * along with this program; if not, write to the Free Software
  16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  17 *
  18 * Author: Artem Bityutskiy (Битюцкий Артём)
  19 */
  20
  21/*
  22 * The UBI Eraseblock Association (EBA) unit.
  23 *
  24 * This unit is responsible for I/O to/from logical eraseblock.
  25 *
  26 * Although in this implementation the EBA table is fully kept and managed in
  27 * RAM, which assumes poor scalability, it might be (partially) maintained on
  28 * flash in future implementations.
  29 *
  30 * The EBA unit implements per-logical eraseblock locking. Before accessing a
  31 * logical eraseblock it is locked for reading or writing. The per-logical
  32 * eraseblock locking is implemented by means of the lock tree. The lock tree
  33 * is an RB-tree which refers all the currently locked logical eraseblocks. The
  34 * lock tree elements are &struct ubi_ltree_entry objects. They are indexed by
  35 * (@vol_id, @lnum) pairs.
  36 *
  37 * EBA also maintains the global sequence counter which is incremented each
  38 * time a logical eraseblock is mapped to a physical eraseblock and it is
  39 * stored in the volume identifier header. This means that each VID header has
  40 * a unique sequence number. The sequence number is only increased an we assume
  41 * 64 bits is enough to never overflow.
  42 */
  43
  44#ifdef UBI_LINUX
  45#include <linux/slab.h>
  46#include <linux/crc32.h>
  47#include <linux/err.h>
  48#endif
  49
  50#include <ubi_uboot.h>
  51#include "ubi.h"
  52
  53/* Number of physical eraseblocks reserved for atomic LEB change operation */
  54#define EBA_RESERVED_PEBS 1
  55
  56/**
  57 * next_sqnum - get next sequence number.
  58 * @ubi: UBI device description object
  59 *
  60 * This function returns next sequence number to use, which is just the current
  61 * global sequence counter value. It also increases the global sequence
  62 * counter.
  63 */
  64static unsigned long long next_sqnum(struct ubi_device *ubi)
  65{
  66        unsigned long long sqnum;
  67
  68        spin_lock(&ubi->ltree_lock);
  69        sqnum = ubi->global_sqnum++;
  70        spin_unlock(&ubi->ltree_lock);
  71
  72        return sqnum;
  73}
  74
  75/**
  76 * ubi_get_compat - get compatibility flags of a volume.
  77 * @ubi: UBI device description object
  78 * @vol_id: volume ID
  79 *
  80 * This function returns compatibility flags for an internal volume. User
  81 * volumes have no compatibility flags, so %0 is returned.
  82 */
  83static int ubi_get_compat(const struct ubi_device *ubi, int vol_id)
  84{
  85        if (vol_id == UBI_LAYOUT_VOLUME_ID)
  86                return UBI_LAYOUT_VOLUME_COMPAT;
  87        return 0;
  88}
  89
  90/**
  91 * ltree_lookup - look up the lock tree.
  92 * @ubi: UBI device description object
  93 * @vol_id: volume ID
  94 * @lnum: logical eraseblock number
  95 *
  96 * This function returns a pointer to the corresponding &struct ubi_ltree_entry
  97 * object if the logical eraseblock is locked and %NULL if it is not.
  98 * @ubi->ltree_lock has to be locked.
  99 */
 100static struct ubi_ltree_entry *ltree_lookup(struct ubi_device *ubi, int vol_id,
 101                                            int lnum)
 102{
 103        struct rb_node *p;
 104
 105        p = ubi->ltree.rb_node;
 106        while (p) {
 107                struct ubi_ltree_entry *le;
 108
 109                le = rb_entry(p, struct ubi_ltree_entry, rb);
 110
 111                if (vol_id < le->vol_id)
 112                        p = p->rb_left;
 113                else if (vol_id > le->vol_id)
 114                        p = p->rb_right;
 115                else {
 116                        if (lnum < le->lnum)
 117                                p = p->rb_left;
 118                        else if (lnum > le->lnum)
 119                                p = p->rb_right;
 120                        else
 121                                return le;
 122                }
 123        }
 124
 125        return NULL;
 126}
 127
 128/**
 129 * ltree_add_entry - add new entry to the lock tree.
 130 * @ubi: UBI device description object
 131 * @vol_id: volume ID
 132 * @lnum: logical eraseblock number
 133 *
 134 * This function adds new entry for logical eraseblock (@vol_id, @lnum) to the
 135 * lock tree. If such entry is already there, its usage counter is increased.
 136 * Returns pointer to the lock tree entry or %-ENOMEM if memory allocation
 137 * failed.
 138 */
 139static struct ubi_ltree_entry *ltree_add_entry(struct ubi_device *ubi,
 140                                               int vol_id, int lnum)
 141{
 142        struct ubi_ltree_entry *le, *le1, *le_free;
 143
 144        le = kmalloc(sizeof(struct ubi_ltree_entry), GFP_NOFS);
 145        if (!le)
 146                return ERR_PTR(-ENOMEM);
 147
 148        le->users = 0;
 149        init_rwsem(&le->mutex);
 150        le->vol_id = vol_id;
 151        le->lnum = lnum;
 152
 153        spin_lock(&ubi->ltree_lock);
 154        le1 = ltree_lookup(ubi, vol_id, lnum);
 155
 156        if (le1) {
 157                /*
 158                 * This logical eraseblock is already locked. The newly
 159                 * allocated lock entry is not needed.
 160                 */
 161                le_free = le;
 162                le = le1;
 163        } else {
 164                struct rb_node **p, *parent = NULL;
 165
 166                /*
 167                 * No lock entry, add the newly allocated one to the
 168                 * @ubi->ltree RB-tree.
 169                 */
 170                le_free = NULL;
 171
 172                p = &ubi->ltree.rb_node;
 173                while (*p) {
 174                        parent = *p;
 175                        le1 = rb_entry(parent, struct ubi_ltree_entry, rb);
 176
 177                        if (vol_id < le1->vol_id)
 178                                p = &(*p)->rb_left;
 179                        else if (vol_id > le1->vol_id)
 180                                p = &(*p)->rb_right;
 181                        else {
 182                                ubi_assert(lnum != le1->lnum);
 183                                if (lnum < le1->lnum)
 184                                        p = &(*p)->rb_left;
 185                                else
 186                                        p = &(*p)->rb_right;
 187                        }
 188                }
 189
 190                rb_link_node(&le->rb, parent, p);
 191                rb_insert_color(&le->rb, &ubi->ltree);
 192        }
 193        le->users += 1;
 194        spin_unlock(&ubi->ltree_lock);
 195
 196        if (le_free)
 197                kfree(le_free);
 198
 199        return le;
 200}
 201
 202/**
 203 * leb_read_lock - lock logical eraseblock for reading.
 204 * @ubi: UBI device description object
 205 * @vol_id: volume ID
 206 * @lnum: logical eraseblock number
 207 *
 208 * This function locks a logical eraseblock for reading. Returns zero in case
 209 * of success and a negative error code in case of failure.
 210 */
 211static int leb_read_lock(struct ubi_device *ubi, int vol_id, int lnum)
 212{
 213        struct ubi_ltree_entry *le;
 214
 215        le = ltree_add_entry(ubi, vol_id, lnum);
 216        if (IS_ERR(le))
 217                return PTR_ERR(le);
 218        down_read(&le->mutex);
 219        return 0;
 220}
 221
 222/**
 223 * leb_read_unlock - unlock logical eraseblock.
 224 * @ubi: UBI device description object
 225 * @vol_id: volume ID
 226 * @lnum: logical eraseblock number
 227 */
 228static void leb_read_unlock(struct ubi_device *ubi, int vol_id, int lnum)
 229{
 230        int _free = 0;
 231        struct ubi_ltree_entry *le;
 232
 233        spin_lock(&ubi->ltree_lock);
 234        le = ltree_lookup(ubi, vol_id, lnum);
 235        le->users -= 1;
 236        ubi_assert(le->users >= 0);
 237        if (le->users == 0) {
 238                rb_erase(&le->rb, &ubi->ltree);
 239                _free = 1;
 240        }
 241        spin_unlock(&ubi->ltree_lock);
 242
 243        up_read(&le->mutex);
 244        if (_free)
 245                kfree(le);
 246}
 247
 248/**
 249 * leb_write_lock - lock logical eraseblock for writing.
 250 * @ubi: UBI device description object
 251 * @vol_id: volume ID
 252 * @lnum: logical eraseblock number
 253 *
 254 * This function locks a logical eraseblock for writing. Returns zero in case
 255 * of success and a negative error code in case of failure.
 256 */
 257static int leb_write_lock(struct ubi_device *ubi, int vol_id, int lnum)
 258{
 259        struct ubi_ltree_entry *le;
 260
 261        le = ltree_add_entry(ubi, vol_id, lnum);
 262        if (IS_ERR(le))
 263                return PTR_ERR(le);
 264        down_write(&le->mutex);
 265        return 0;
 266}
 267
 268/**
 269 * leb_write_lock - lock logical eraseblock for writing.
 270 * @ubi: UBI device description object
 271 * @vol_id: volume ID
 272 * @lnum: logical eraseblock number
 273 *
 274 * This function locks a logical eraseblock for writing if there is no
 275 * contention and does nothing if there is contention. Returns %0 in case of
 276 * success, %1 in case of contention, and and a negative error code in case of
 277 * failure.
 278 */
 279static int leb_write_trylock(struct ubi_device *ubi, int vol_id, int lnum)
 280{
 281        int _free;
 282        struct ubi_ltree_entry *le;
 283
 284        le = ltree_add_entry(ubi, vol_id, lnum);
 285        if (IS_ERR(le))
 286                return PTR_ERR(le);
 287        if (down_write_trylock(&le->mutex))
 288                return 0;
 289
 290        /* Contention, cancel */
 291        spin_lock(&ubi->ltree_lock);
 292        le->users -= 1;
 293        ubi_assert(le->users >= 0);
 294        if (le->users == 0) {
 295                rb_erase(&le->rb, &ubi->ltree);
 296                _free = 1;
 297        } else
 298                _free = 0;
 299        spin_unlock(&ubi->ltree_lock);
 300        if (_free)
 301                kfree(le);
 302
 303        return 1;
 304}
 305
 306/**
 307 * leb_write_unlock - unlock logical eraseblock.
 308 * @ubi: UBI device description object
 309 * @vol_id: volume ID
 310 * @lnum: logical eraseblock number
 311 */
 312static void leb_write_unlock(struct ubi_device *ubi, int vol_id, int lnum)
 313{
 314        int _free;
 315        struct ubi_ltree_entry *le;
 316
 317        spin_lock(&ubi->ltree_lock);
 318        le = ltree_lookup(ubi, vol_id, lnum);
 319        le->users -= 1;
 320        ubi_assert(le->users >= 0);
 321        if (le->users == 0) {
 322                rb_erase(&le->rb, &ubi->ltree);
 323                _free = 1;
 324        } else
 325                _free = 0;
 326        spin_unlock(&ubi->ltree_lock);
 327
 328        up_write(&le->mutex);
 329        if (_free)
 330                kfree(le);
 331}
 332
 333/**
 334 * ubi_eba_unmap_leb - un-map logical eraseblock.
 335 * @ubi: UBI device description object
 336 * @vol: volume description object
 337 * @lnum: logical eraseblock number
 338 *
 339 * This function un-maps logical eraseblock @lnum and schedules corresponding
 340 * physical eraseblock for erasure. Returns zero in case of success and a
 341 * negative error code in case of failure.
 342 */
 343int ubi_eba_unmap_leb(struct ubi_device *ubi, struct ubi_volume *vol,
 344                      int lnum)
 345{
 346        int err, pnum, vol_id = vol->vol_id;
 347
 348        if (ubi->ro_mode)
 349                return -EROFS;
 350
 351        err = leb_write_lock(ubi, vol_id, lnum);
 352        if (err)
 353                return err;
 354
 355        pnum = vol->eba_tbl[lnum];
 356        if (pnum < 0)
 357                /* This logical eraseblock is already unmapped */
 358                goto out_unlock;
 359
 360        dbg_eba("erase LEB %d:%d, PEB %d", vol_id, lnum, pnum);
 361
 362        vol->eba_tbl[lnum] = UBI_LEB_UNMAPPED;
 363        err = ubi_wl_put_peb(ubi, pnum, 0);
 364
 365out_unlock:
 366        leb_write_unlock(ubi, vol_id, lnum);
 367        return err;
 368}
 369
 370/**
 371 * ubi_eba_read_leb - read data.
 372 * @ubi: UBI device description object
 373 * @vol: volume description object
 374 * @lnum: logical eraseblock number
 375 * @buf: buffer to store the read data
 376 * @offset: offset from where to read
 377 * @len: how many bytes to read
 378 * @check: data CRC check flag
 379 *
 380 * If the logical eraseblock @lnum is unmapped, @buf is filled with 0xFF
 381 * bytes. The @check flag only makes sense for static volumes and forces
 382 * eraseblock data CRC checking.
 383 *
 384 * In case of success this function returns zero. In case of a static volume,
 385 * if data CRC mismatches - %-EBADMSG is returned. %-EBADMSG may also be
 386 * returned for any volume type if an ECC error was detected by the MTD device
 387 * driver. Other negative error cored may be returned in case of other errors.
 388 */
 389int ubi_eba_read_leb(struct ubi_device *ubi, struct ubi_volume *vol, int lnum,
 390                     void *buf, int offset, int len, int check)
 391{
 392        int err, pnum, scrub = 0, vol_id = vol->vol_id;
 393        struct ubi_vid_hdr *vid_hdr;
 394        uint32_t uninitialized_var(crc);
 395
 396        err = leb_read_lock(ubi, vol_id, lnum);
 397        if (err)
 398                return err;
 399
 400        pnum = vol->eba_tbl[lnum];
 401        if (pnum < 0) {
 402                /*
 403                 * The logical eraseblock is not mapped, fill the whole buffer
 404                 * with 0xFF bytes. The exception is static volumes for which
 405                 * it is an error to read unmapped logical eraseblocks.
 406                 */
 407                dbg_eba("read %d bytes from offset %d of LEB %d:%d (unmapped)",
 408                        len, offset, vol_id, lnum);
 409                leb_read_unlock(ubi, vol_id, lnum);
 410                ubi_assert(vol->vol_type != UBI_STATIC_VOLUME);
 411                memset(buf, 0xFF, len);
 412                return 0;
 413        }
 414
 415        dbg_eba("read %d bytes from offset %d of LEB %d:%d, PEB %d",
 416                len, offset, vol_id, lnum, pnum);
 417
 418        if (vol->vol_type == UBI_DYNAMIC_VOLUME)
 419                check = 0;
 420
 421retry:
 422        if (check) {
 423                vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
 424                if (!vid_hdr) {
 425                        err = -ENOMEM;
 426                        goto out_unlock;
 427                }
 428
 429                err = ubi_io_read_vid_hdr(ubi, pnum, vid_hdr, 1);
 430                if (err && err != UBI_IO_BITFLIPS) {
 431                        if (err > 0) {
 432                                /*
 433                                 * The header is either absent or corrupted.
 434                                 * The former case means there is a bug -
 435                                 * switch to read-only mode just in case.
 436                                 * The latter case means a real corruption - we
 437                                 * may try to recover data. FIXME: but this is
 438                                 * not implemented.
 439                                 */
 440                                if (err == UBI_IO_BAD_VID_HDR) {
 441                                        ubi_warn("bad VID header at PEB %d, LEB"
 442                                                 "%d:%d", pnum, vol_id, lnum);
 443                                        err = -EBADMSG;
 444                                } else
 445                                        ubi_ro_mode(ubi);
 446                        }
 447                        goto out_free;
 448                } else if (err == UBI_IO_BITFLIPS)
 449                        scrub = 1;
 450
 451                ubi_assert(lnum < be32_to_cpu(vid_hdr->used_ebs));
 452                ubi_assert(len == be32_to_cpu(vid_hdr->data_size));
 453
 454                crc = be32_to_cpu(vid_hdr->data_crc);
 455                ubi_free_vid_hdr(ubi, vid_hdr);
 456        }
 457
 458        err = ubi_io_read_data(ubi, buf, pnum, offset, len);
 459        if (err) {
 460                if (err == UBI_IO_BITFLIPS) {
 461                        scrub = 1;
 462                        err = 0;
 463                } else if (err == -EBADMSG) {
 464                        if (vol->vol_type == UBI_DYNAMIC_VOLUME)
 465                                goto out_unlock;
 466                        scrub = 1;
 467                        if (!check) {
 468                                ubi_msg("force data checking");
 469                                check = 1;
 470                                goto retry;
 471                        }
 472                } else
 473                        goto out_unlock;
 474        }
 475
 476        if (check) {
 477                uint32_t crc1 = crc32(UBI_CRC32_INIT, buf, len);
 478                if (crc1 != crc) {
 479                        ubi_warn("CRC error: calculated %#08x, must be %#08x",
 480                                 crc1, crc);
 481                        err = -EBADMSG;
 482                        goto out_unlock;
 483                }
 484        }
 485
 486        if (scrub)
 487                err = ubi_wl_scrub_peb(ubi, pnum);
 488
 489        leb_read_unlock(ubi, vol_id, lnum);
 490        return err;
 491
 492out_free:
 493        ubi_free_vid_hdr(ubi, vid_hdr);
 494out_unlock:
 495        leb_read_unlock(ubi, vol_id, lnum);
 496        return err;
 497}
 498
 499/**
 500 * recover_peb - recover from write failure.
 501 * @ubi: UBI device description object
 502 * @pnum: the physical eraseblock to recover
 503 * @vol_id: volume ID
 504 * @lnum: logical eraseblock number
 505 * @buf: data which was not written because of the write failure
 506 * @offset: offset of the failed write
 507 * @len: how many bytes should have been written
 508 *
 509 * This function is called in case of a write failure and moves all good data
 510 * from the potentially bad physical eraseblock to a good physical eraseblock.
 511 * This function also writes the data which was not written due to the failure.
 512 * Returns new physical eraseblock number in case of success, and a negative
 513 * error code in case of failure.
 514 */
 515static int recover_peb(struct ubi_device *ubi, int pnum, int vol_id, int lnum,
 516                       const void *buf, int offset, int len)
 517{
 518        int err, idx = vol_id2idx(ubi, vol_id), new_pnum, data_size, tries = 0;
 519        struct ubi_volume *vol = ubi->volumes[idx];
 520        struct ubi_vid_hdr *vid_hdr;
 521
 522        vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
 523        if (!vid_hdr) {
 524                return -ENOMEM;
 525        }
 526
 527        mutex_lock(&ubi->buf_mutex);
 528
 529retry:
 530        new_pnum = ubi_wl_get_peb(ubi, UBI_UNKNOWN);
 531        if (new_pnum < 0) {
 532                mutex_unlock(&ubi->buf_mutex);
 533                ubi_free_vid_hdr(ubi, vid_hdr);
 534                return new_pnum;
 535        }
 536
 537        ubi_msg("recover PEB %d, move data to PEB %d", pnum, new_pnum);
 538
 539        err = ubi_io_read_vid_hdr(ubi, pnum, vid_hdr, 1);
 540        if (err && err != UBI_IO_BITFLIPS) {
 541                if (err > 0)
 542                        err = -EIO;
 543                goto out_put;
 544        }
 545
 546        vid_hdr->sqnum = cpu_to_be64(next_sqnum(ubi));
 547        err = ubi_io_write_vid_hdr(ubi, new_pnum, vid_hdr);
 548        if (err)
 549                goto write_error;
 550
 551        data_size = offset + len;
 552        memset(ubi->peb_buf1 + offset, 0xFF, len);
 553
 554        /* Read everything before the area where the write failure happened */
 555        if (offset > 0) {
 556                err = ubi_io_read_data(ubi, ubi->peb_buf1, pnum, 0, offset);
 557                if (err && err != UBI_IO_BITFLIPS)
 558                        goto out_put;
 559        }
 560
 561        memcpy(ubi->peb_buf1 + offset, buf, len);
 562
 563        err = ubi_io_write_data(ubi, ubi->peb_buf1, new_pnum, 0, data_size);
 564        if (err)
 565                goto write_error;
 566
 567        mutex_unlock(&ubi->buf_mutex);
 568        ubi_free_vid_hdr(ubi, vid_hdr);
 569
 570        vol->eba_tbl[lnum] = new_pnum;
 571        ubi_wl_put_peb(ubi, pnum, 1);
 572
 573        ubi_msg("data was successfully recovered");
 574        return 0;
 575
 576out_put:
 577        mutex_unlock(&ubi->buf_mutex);
 578        ubi_wl_put_peb(ubi, new_pnum, 1);
 579        ubi_free_vid_hdr(ubi, vid_hdr);
 580        return err;
 581
 582write_error:
 583        /*
 584         * Bad luck? This physical eraseblock is bad too? Crud. Let's try to
 585         * get another one.
 586         */
 587        ubi_warn("failed to write to PEB %d", new_pnum);
 588        ubi_wl_put_peb(ubi, new_pnum, 1);
 589        if (++tries > UBI_IO_RETRIES) {
 590                mutex_unlock(&ubi->buf_mutex);
 591                ubi_free_vid_hdr(ubi, vid_hdr);
 592                return err;
 593        }
 594        ubi_msg("try again");
 595        goto retry;
 596}
 597
 598/**
 599 * ubi_eba_write_leb - write data to dynamic volume.
 600 * @ubi: UBI device description object
 601 * @vol: volume description object
 602 * @lnum: logical eraseblock number
 603 * @buf: the data to write
 604 * @offset: offset within the logical eraseblock where to write
 605 * @len: how many bytes to write
 606 * @dtype: data type
 607 *
 608 * This function writes data to logical eraseblock @lnum of a dynamic volume
 609 * @vol. Returns zero in case of success and a negative error code in case
 610 * of failure. In case of error, it is possible that something was still
 611 * written to the flash media, but may be some garbage.
 612 */
 613int ubi_eba_write_leb(struct ubi_device *ubi, struct ubi_volume *vol, int lnum,
 614                      const void *buf, int offset, int len, int dtype)
 615{
 616        int err, pnum, tries = 0, vol_id = vol->vol_id;
 617        struct ubi_vid_hdr *vid_hdr;
 618
 619        if (ubi->ro_mode)
 620                return -EROFS;
 621
 622        err = leb_write_lock(ubi, vol_id, lnum);
 623        if (err)
 624                return err;
 625
 626        pnum = vol->eba_tbl[lnum];
 627        if (pnum >= 0) {
 628                dbg_eba("write %d bytes at offset %d of LEB %d:%d, PEB %d",
 629                        len, offset, vol_id, lnum, pnum);
 630
 631                err = ubi_io_write_data(ubi, buf, pnum, offset, len);
 632                if (err) {
 633                        ubi_warn("failed to write data to PEB %d", pnum);
 634                        if (err == -EIO && ubi->bad_allowed)
 635                                err = recover_peb(ubi, pnum, vol_id, lnum, buf,
 636                                                  offset, len);
 637                        if (err)
 638                                ubi_ro_mode(ubi);
 639                }
 640                leb_write_unlock(ubi, vol_id, lnum);
 641                return err;
 642        }
 643
 644        /*
 645         * The logical eraseblock is not mapped. We have to get a free physical
 646         * eraseblock and write the volume identifier header there first.
 647         */
 648        vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
 649        if (!vid_hdr) {
 650                leb_write_unlock(ubi, vol_id, lnum);
 651                return -ENOMEM;
 652        }
 653
 654        vid_hdr->vol_type = UBI_VID_DYNAMIC;
 655        vid_hdr->sqnum = cpu_to_be64(next_sqnum(ubi));
 656        vid_hdr->vol_id = cpu_to_be32(vol_id);
 657        vid_hdr->lnum = cpu_to_be32(lnum);
 658        vid_hdr->compat = ubi_get_compat(ubi, vol_id);
 659        vid_hdr->data_pad = cpu_to_be32(vol->data_pad);
 660
 661retry:
 662        pnum = ubi_wl_get_peb(ubi, dtype);
 663        if (pnum < 0) {
 664                ubi_free_vid_hdr(ubi, vid_hdr);
 665                leb_write_unlock(ubi, vol_id, lnum);
 666                return pnum;
 667        }
 668
 669        dbg_eba("write VID hdr and %d bytes at offset %d of LEB %d:%d, PEB %d",
 670                len, offset, vol_id, lnum, pnum);
 671
 672        err = ubi_io_write_vid_hdr(ubi, pnum, vid_hdr);
 673        if (err) {
 674                ubi_warn("failed to write VID header to LEB %d:%d, PEB %d",
 675                         vol_id, lnum, pnum);
 676                goto write_error;
 677        }
 678
 679        if (len) {
 680                err = ubi_io_write_data(ubi, buf, pnum, offset, len);
 681                if (err) {
 682                        ubi_warn("failed to write %d bytes at offset %d of "
 683                                 "LEB %d:%d, PEB %d", len, offset, vol_id,
 684                                 lnum, pnum);
 685                        goto write_error;
 686                }
 687        }
 688
 689        vol->eba_tbl[lnum] = pnum;
 690
 691        leb_write_unlock(ubi, vol_id, lnum);
 692        ubi_free_vid_hdr(ubi, vid_hdr);
 693        return 0;
 694
 695write_error:
 696        if (err != -EIO || !ubi->bad_allowed) {
 697                ubi_ro_mode(ubi);
 698                leb_write_unlock(ubi, vol_id, lnum);
 699                ubi_free_vid_hdr(ubi, vid_hdr);
 700                return err;
 701        }
 702
 703        /*
 704         * Fortunately, this is the first write operation to this physical
 705         * eraseblock, so just put it and request a new one. We assume that if
 706         * this physical eraseblock went bad, the erase code will handle that.
 707         */
 708        err = ubi_wl_put_peb(ubi, pnum, 1);
 709        if (err || ++tries > UBI_IO_RETRIES) {
 710                ubi_ro_mode(ubi);
 711                leb_write_unlock(ubi, vol_id, lnum);
 712                ubi_free_vid_hdr(ubi, vid_hdr);
 713                return err;
 714        }
 715
 716        vid_hdr->sqnum = cpu_to_be64(next_sqnum(ubi));
 717        ubi_msg("try another PEB");
 718        goto retry;
 719}
 720
 721/**
 722 * ubi_eba_write_leb_st - write data to static volume.
 723 * @ubi: UBI device description object
 724 * @vol: volume description object
 725 * @lnum: logical eraseblock number
 726 * @buf: data to write
 727 * @len: how many bytes to write
 728 * @dtype: data type
 729 * @used_ebs: how many logical eraseblocks will this volume contain
 730 *
 731 * This function writes data to logical eraseblock @lnum of static volume
 732 * @vol. The @used_ebs argument should contain total number of logical
 733 * eraseblock in this static volume.
 734 *
 735 * When writing to the last logical eraseblock, the @len argument doesn't have
 736 * to be aligned to the minimal I/O unit size. Instead, it has to be equivalent
 737 * to the real data size, although the @buf buffer has to contain the
 738 * alignment. In all other cases, @len has to be aligned.
 739 *
 740 * It is prohibited to write more then once to logical eraseblocks of static
 741 * volumes. This function returns zero in case of success and a negative error
 742 * code in case of failure.
 743 */
 744int ubi_eba_write_leb_st(struct ubi_device *ubi, struct ubi_volume *vol,
 745                         int lnum, const void *buf, int len, int dtype,
 746                         int used_ebs)
 747{
 748        int err, pnum, tries = 0, data_size = len, vol_id = vol->vol_id;
 749        struct ubi_vid_hdr *vid_hdr;
 750        uint32_t crc;
 751
 752        if (ubi->ro_mode)
 753                return -EROFS;
 754
 755        if (lnum == used_ebs - 1)
 756                /* If this is the last LEB @len may be unaligned */
 757                len = ALIGN(data_size, ubi->min_io_size);
 758        else
 759                ubi_assert(!(len & (ubi->min_io_size - 1)));
 760
 761        vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
 762        if (!vid_hdr)
 763                return -ENOMEM;
 764
 765        err = leb_write_lock(ubi, vol_id, lnum);
 766        if (err) {
 767                ubi_free_vid_hdr(ubi, vid_hdr);
 768                return err;
 769        }
 770
 771        vid_hdr->sqnum = cpu_to_be64(next_sqnum(ubi));
 772        vid_hdr->vol_id = cpu_to_be32(vol_id);
 773        vid_hdr->lnum = cpu_to_be32(lnum);
 774        vid_hdr->compat = ubi_get_compat(ubi, vol_id);
 775        vid_hdr->data_pad = cpu_to_be32(vol->data_pad);
 776
 777        crc = crc32(UBI_CRC32_INIT, buf, data_size);
 778        vid_hdr->vol_type = UBI_VID_STATIC;
 779        vid_hdr->data_size = cpu_to_be32(data_size);
 780        vid_hdr->used_ebs = cpu_to_be32(used_ebs);
 781        vid_hdr->data_crc = cpu_to_be32(crc);
 782
 783retry:
 784        pnum = ubi_wl_get_peb(ubi, dtype);
 785        if (pnum < 0) {
 786                ubi_free_vid_hdr(ubi, vid_hdr);
 787                leb_write_unlock(ubi, vol_id, lnum);
 788                return pnum;
 789        }
 790
 791        dbg_eba("write VID hdr and %d bytes at LEB %d:%d, PEB %d, used_ebs %d",
 792                len, vol_id, lnum, pnum, used_ebs);
 793
 794        err = ubi_io_write_vid_hdr(ubi, pnum, vid_hdr);
 795        if (err) {
 796                ubi_warn("failed to write VID header to LEB %d:%d, PEB %d",
 797                         vol_id, lnum, pnum);
 798                goto write_error;
 799        }
 800
 801        err = ubi_io_write_data(ubi, buf, pnum, 0, len);
 802        if (err) {
 803                ubi_warn("failed to write %d bytes of data to PEB %d",
 804                         len, pnum);
 805                goto write_error;
 806        }
 807
 808        ubi_assert(vol->eba_tbl[lnum] < 0);
 809        vol->eba_tbl[lnum] = pnum;
 810
 811        leb_write_unlock(ubi, vol_id, lnum);
 812        ubi_free_vid_hdr(ubi, vid_hdr);
 813        return 0;
 814
 815write_error:
 816        if (err != -EIO || !ubi->bad_allowed) {
 817                /*
 818                 * This flash device does not admit of bad eraseblocks or
 819                 * something nasty and unexpected happened. Switch to read-only
 820                 * mode just in case.
 821                 */
 822                ubi_ro_mode(ubi);
 823                leb_write_unlock(ubi, vol_id, lnum);
 824                ubi_free_vid_hdr(ubi, vid_hdr);
 825                return err;
 826        }
 827
 828        err = ubi_wl_put_peb(ubi, pnum, 1);
 829        if (err || ++tries > UBI_IO_RETRIES) {
 830                ubi_ro_mode(ubi);
 831                leb_write_unlock(ubi, vol_id, lnum);
 832                ubi_free_vid_hdr(ubi, vid_hdr);
 833                return err;
 834        }
 835
 836        vid_hdr->sqnum = cpu_to_be64(next_sqnum(ubi));
 837        ubi_msg("try another PEB");
 838        goto retry;
 839}
 840
 841/*
 842 * ubi_eba_atomic_leb_change - change logical eraseblock atomically.
 843 * @ubi: UBI device description object
 844 * @vol: volume description object
 845 * @lnum: logical eraseblock number
 846 * @buf: data to write
 847 * @len: how many bytes to write
 848 * @dtype: data type
 849 *
 850 * This function changes the contents of a logical eraseblock atomically. @buf
 851 * has to contain new logical eraseblock data, and @len - the length of the
 852 * data, which has to be aligned. This function guarantees that in case of an
 853 * unclean reboot the old contents is preserved. Returns zero in case of
 854 * success and a negative error code in case of failure.
 855 *
 856 * UBI reserves one LEB for the "atomic LEB change" operation, so only one
 857 * LEB change may be done at a time. This is ensured by @ubi->alc_mutex.
 858 */
 859int ubi_eba_atomic_leb_change(struct ubi_device *ubi, struct ubi_volume *vol,
 860                              int lnum, const void *buf, int len, int dtype)
 861{
 862        int err, pnum, tries = 0, vol_id = vol->vol_id;
 863        struct ubi_vid_hdr *vid_hdr;
 864        uint32_t crc;
 865
 866        if (ubi->ro_mode)
 867                return -EROFS;
 868
 869        if (len == 0) {
 870                /*
 871                 * Special case when data length is zero. In this case the LEB
 872                 * has to be unmapped and mapped somewhere else.
 873                 */
 874                err = ubi_eba_unmap_leb(ubi, vol, lnum);
 875                if (err)
 876                        return err;
 877                return ubi_eba_write_leb(ubi, vol, lnum, NULL, 0, 0, dtype);
 878        }
 879
 880        vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
 881        if (!vid_hdr)
 882                return -ENOMEM;
 883
 884        mutex_lock(&ubi->alc_mutex);
 885        err = leb_write_lock(ubi, vol_id, lnum);
 886        if (err)
 887                goto out_mutex;
 888
 889        vid_hdr->sqnum = cpu_to_be64(next_sqnum(ubi));
 890        vid_hdr->vol_id = cpu_to_be32(vol_id);
 891        vid_hdr->lnum = cpu_to_be32(lnum);
 892        vid_hdr->compat = ubi_get_compat(ubi, vol_id);
 893        vid_hdr->data_pad = cpu_to_be32(vol->data_pad);
 894
 895        crc = crc32(UBI_CRC32_INIT, buf, len);
 896        vid_hdr->vol_type = UBI_VID_DYNAMIC;
 897        vid_hdr->data_size = cpu_to_be32(len);
 898        vid_hdr->copy_flag = 1;
 899        vid_hdr->data_crc = cpu_to_be32(crc);
 900
 901retry:
 902        pnum = ubi_wl_get_peb(ubi, dtype);
 903        if (pnum < 0) {
 904                err = pnum;
 905                goto out_leb_unlock;
 906        }
 907
 908        dbg_eba("change LEB %d:%d, PEB %d, write VID hdr to PEB %d",
 909                vol_id, lnum, vol->eba_tbl[lnum], pnum);
 910
 911        err = ubi_io_write_vid_hdr(ubi, pnum, vid_hdr);
 912        if (err) {
 913                ubi_warn("failed to write VID header to LEB %d:%d, PEB %d",
 914                         vol_id, lnum, pnum);
 915                goto write_error;
 916        }
 917
 918        err = ubi_io_write_data(ubi, buf, pnum, 0, len);
 919        if (err) {
 920                ubi_warn("failed to write %d bytes of data to PEB %d",
 921                         len, pnum);
 922                goto write_error;
 923        }
 924
 925        if (vol->eba_tbl[lnum] >= 0) {
 926                err = ubi_wl_put_peb(ubi, vol->eba_tbl[lnum], 1);
 927                if (err)
 928                        goto out_leb_unlock;
 929        }
 930
 931        vol->eba_tbl[lnum] = pnum;
 932
 933out_leb_unlock:
 934        leb_write_unlock(ubi, vol_id, lnum);
 935out_mutex:
 936        mutex_unlock(&ubi->alc_mutex);
 937        ubi_free_vid_hdr(ubi, vid_hdr);
 938        return err;
 939
 940write_error:
 941        if (err != -EIO || !ubi->bad_allowed) {
 942                /*
 943                 * This flash device does not admit of bad eraseblocks or
 944                 * something nasty and unexpected happened. Switch to read-only
 945                 * mode just in case.
 946                 */
 947                ubi_ro_mode(ubi);
 948                goto out_leb_unlock;
 949        }
 950
 951        err = ubi_wl_put_peb(ubi, pnum, 1);
 952        if (err || ++tries > UBI_IO_RETRIES) {
 953                ubi_ro_mode(ubi);
 954                goto out_leb_unlock;
 955        }
 956
 957        vid_hdr->sqnum = cpu_to_be64(next_sqnum(ubi));
 958        ubi_msg("try another PEB");
 959        goto retry;
 960}
 961
 962/**
 963 * ubi_eba_copy_leb - copy logical eraseblock.
 964 * @ubi: UBI device description object
 965 * @from: physical eraseblock number from where to copy
 966 * @to: physical eraseblock number where to copy
 967 * @vid_hdr: VID header of the @from physical eraseblock
 968 *
 969 * This function copies logical eraseblock from physical eraseblock @from to
 970 * physical eraseblock @to. The @vid_hdr buffer may be changed by this
 971 * function. Returns:
 972 *   o %0  in case of success;
 973 *   o %1 if the operation was canceled and should be tried later (e.g.,
 974 *     because a bit-flip was detected at the target PEB);
 975 *   o %2 if the volume is being deleted and this LEB should not be moved.
 976 */
 977int ubi_eba_copy_leb(struct ubi_device *ubi, int from, int to,
 978                     struct ubi_vid_hdr *vid_hdr)
 979{
 980        int err, vol_id, lnum, data_size, aldata_size, idx;
 981        struct ubi_volume *vol;
 982        uint32_t crc;
 983
 984        vol_id = be32_to_cpu(vid_hdr->vol_id);
 985        lnum = be32_to_cpu(vid_hdr->lnum);
 986
 987        dbg_eba("copy LEB %d:%d, PEB %d to PEB %d", vol_id, lnum, from, to);
 988
 989        if (vid_hdr->vol_type == UBI_VID_STATIC) {
 990                data_size = be32_to_cpu(vid_hdr->data_size);
 991                aldata_size = ALIGN(data_size, ubi->min_io_size);
 992        } else
 993                data_size = aldata_size =
 994                            ubi->leb_size - be32_to_cpu(vid_hdr->data_pad);
 995
 996        idx = vol_id2idx(ubi, vol_id);
 997        spin_lock(&ubi->volumes_lock);
 998        /*
 999         * Note, we may race with volume deletion, which means that the volume
1000         * this logical eraseblock belongs to might be being deleted. Since the
1001         * volume deletion unmaps all the volume's logical eraseblocks, it will
1002         * be locked in 'ubi_wl_put_peb()' and wait for the WL worker to finish.
1003         */
1004        vol = ubi->volumes[idx];
1005        if (!vol) {
1006                /* No need to do further work, cancel */
1007                dbg_eba("volume %d is being removed, cancel", vol_id);
1008                spin_unlock(&ubi->volumes_lock);
1009                return 2;
1010        }
1011        spin_unlock(&ubi->volumes_lock);
1012
1013        /*
1014         * We do not want anybody to write to this logical eraseblock while we
1015         * are moving it, so lock it.
1016         *
1017         * Note, we are using non-waiting locking here, because we cannot sleep
1018         * on the LEB, since it may cause deadlocks. Indeed, imagine a task is
1019         * unmapping the LEB which is mapped to the PEB we are going to move
1020         * (@from). This task locks the LEB and goes sleep in the
1021         * 'ubi_wl_put_peb()' function on the @ubi->move_mutex. In turn, we are
1022         * holding @ubi->move_mutex and go sleep on the LEB lock. So, if the
1023         * LEB is already locked, we just do not move it and return %1.
1024         */
1025        err = leb_write_trylock(ubi, vol_id, lnum);
1026        if (err) {
1027                dbg_eba("contention on LEB %d:%d, cancel", vol_id, lnum);
1028                return err;
1029        }
1030
1031        /*
1032         * The LEB might have been put meanwhile, and the task which put it is
1033         * probably waiting on @ubi->move_mutex. No need to continue the work,
1034         * cancel it.
1035         */
1036        if (vol->eba_tbl[lnum] != from) {
1037                dbg_eba("LEB %d:%d is no longer mapped to PEB %d, mapped to "
1038                        "PEB %d, cancel", vol_id, lnum, from,
1039                        vol->eba_tbl[lnum]);
1040                err = 1;
1041                goto out_unlock_leb;
1042        }
1043
1044        /*
1045         * OK, now the LEB is locked and we can safely start moving iy. Since
1046         * this function utilizes thie @ubi->peb1_buf buffer which is shared
1047         * with some other functions, so lock the buffer by taking the
1048         * @ubi->buf_mutex.
1049         */
1050        mutex_lock(&ubi->buf_mutex);
1051        dbg_eba("read %d bytes of data", aldata_size);
1052        err = ubi_io_read_data(ubi, ubi->peb_buf1, from, 0, aldata_size);
1053        if (err && err != UBI_IO_BITFLIPS) {
1054                ubi_warn("error %d while reading data from PEB %d",
1055                         err, from);
1056                goto out_unlock_buf;
1057        }
1058
1059        /*
1060         * Now we have got to calculate how much data we have to to copy. In
1061         * case of a static volume it is fairly easy - the VID header contains
1062         * the data size. In case of a dynamic volume it is more difficult - we
1063         * have to read the contents, cut 0xFF bytes from the end and copy only
1064         * the first part. We must do this to avoid writing 0xFF bytes as it
1065         * may have some side-effects. And not only this. It is important not
1066         * to include those 0xFFs to CRC because later the they may be filled
1067         * by data.
1068         */
1069        if (vid_hdr->vol_type == UBI_VID_DYNAMIC)
1070                aldata_size = data_size =
1071                        ubi_calc_data_len(ubi, ubi->peb_buf1, data_size);
1072
1073        cond_resched();
1074        crc = crc32(UBI_CRC32_INIT, ubi->peb_buf1, data_size);
1075        cond_resched();
1076
1077        /*
1078         * It may turn out to me that the whole @from physical eraseblock
1079         * contains only 0xFF bytes. Then we have to only write the VID header
1080         * and do not write any data. This also means we should not set
1081         * @vid_hdr->copy_flag, @vid_hdr->data_size, and @vid_hdr->data_crc.
1082         */
1083        if (data_size > 0) {
1084                vid_hdr->copy_flag = 1;
1085                vid_hdr->data_size = cpu_to_be32(data_size);
1086                vid_hdr->data_crc = cpu_to_be32(crc);
1087        }
1088        vid_hdr->sqnum = cpu_to_be64(next_sqnum(ubi));
1089
1090        err = ubi_io_write_vid_hdr(ubi, to, vid_hdr);
1091        if (err)
1092                goto out_unlock_buf;
1093
1094        cond_resched();
1095
1096        /* Read the VID header back and check if it was written correctly */
1097        err = ubi_io_read_vid_hdr(ubi, to, vid_hdr, 1);
1098        if (err) {
1099                if (err != UBI_IO_BITFLIPS)
1100                        ubi_warn("cannot read VID header back from PEB %d", to);
1101                else
1102                        err = 1;
1103                goto out_unlock_buf;
1104        }
1105
1106        if (data_size > 0) {
1107                err = ubi_io_write_data(ubi, ubi->peb_buf1, to, 0, aldata_size);
1108                if (err)
1109                        goto out_unlock_buf;
1110
1111                cond_resched();
1112
1113                /*
1114                 * We've written the data and are going to read it back to make
1115                 * sure it was written correctly.
1116                 */
1117
1118                err = ubi_io_read_data(ubi, ubi->peb_buf2, to, 0, aldata_size);
1119                if (err) {
1120                        if (err != UBI_IO_BITFLIPS)
1121                                ubi_warn("cannot read data back from PEB %d",
1122                                         to);
1123                        else
1124                                err = 1;
1125                        goto out_unlock_buf;
1126                }
1127
1128                cond_resched();
1129
1130                if (memcmp(ubi->peb_buf1, ubi->peb_buf2, aldata_size)) {
1131                        ubi_warn("read data back from PEB %d - it is different",
1132                                 to);
1133                        goto out_unlock_buf;
1134                }
1135        }
1136
1137        ubi_assert(vol->eba_tbl[lnum] == from);
1138        vol->eba_tbl[lnum] = to;
1139
1140out_unlock_buf:
1141        mutex_unlock(&ubi->buf_mutex);
1142out_unlock_leb:
1143        leb_write_unlock(ubi, vol_id, lnum);
1144        return err;
1145}
1146
1147/**
1148 * ubi_eba_init_scan - initialize the EBA unit using scanning information.
1149 * @ubi: UBI device description object
1150 * @si: scanning information
1151 *
1152 * This function returns zero in case of success and a negative error code in
1153 * case of failure.
1154 */
1155int ubi_eba_init_scan(struct ubi_device *ubi, struct ubi_scan_info *si)
1156{
1157        int i, j, err, num_volumes;
1158        struct ubi_scan_volume *sv;
1159        struct ubi_volume *vol;
1160        struct ubi_scan_leb *seb;
1161        struct rb_node *rb;
1162
1163        dbg_eba("initialize EBA unit");
1164
1165        spin_lock_init(&ubi->ltree_lock);
1166        mutex_init(&ubi->alc_mutex);
1167        ubi->ltree = RB_ROOT;
1168
1169        ubi->global_sqnum = si->max_sqnum + 1;
1170        num_volumes = ubi->vtbl_slots + UBI_INT_VOL_COUNT;
1171
1172        for (i = 0; i < num_volumes; i++) {
1173                vol = ubi->volumes[i];
1174                if (!vol)
1175                        continue;
1176
1177                cond_resched();
1178
1179                vol->eba_tbl = kmalloc(vol->reserved_pebs * sizeof(int),
1180                                       GFP_KERNEL);
1181                if (!vol->eba_tbl) {
1182                        err = -ENOMEM;
1183                        goto out_free;
1184                }
1185
1186                for (j = 0; j < vol->reserved_pebs; j++)
1187                        vol->eba_tbl[j] = UBI_LEB_UNMAPPED;
1188
1189                sv = ubi_scan_find_sv(si, idx2vol_id(ubi, i));
1190                if (!sv)
1191                        continue;
1192
1193                ubi_rb_for_each_entry(rb, seb, &sv->root, u.rb) {
1194                        if (seb->lnum >= vol->reserved_pebs)
1195                                /*
1196                                 * This may happen in case of an unclean reboot
1197                                 * during re-size.
1198                                 */
1199                                ubi_scan_move_to_list(sv, seb, &si->erase);
1200                        vol->eba_tbl[seb->lnum] = seb->pnum;
1201                }
1202        }
1203
1204        if (ubi->avail_pebs < EBA_RESERVED_PEBS) {
1205                ubi_err("no enough physical eraseblocks (%d, need %d)",
1206                        ubi->avail_pebs, EBA_RESERVED_PEBS);
1207                err = -ENOSPC;
1208                goto out_free;
1209        }
1210        ubi->avail_pebs -= EBA_RESERVED_PEBS;
1211        ubi->rsvd_pebs += EBA_RESERVED_PEBS;
1212
1213        if (ubi->bad_allowed) {
1214                ubi_calculate_reserved(ubi);
1215
1216                if (ubi->avail_pebs < ubi->beb_rsvd_level) {
1217                        /* No enough free physical eraseblocks */
1218                        ubi->beb_rsvd_pebs = ubi->avail_pebs;
1219                        ubi_warn("cannot reserve enough PEBs for bad PEB "
1220                                 "handling, reserved %d, need %d",
1221                                 ubi->beb_rsvd_pebs, ubi->beb_rsvd_level);
1222                } else
1223                        ubi->beb_rsvd_pebs = ubi->beb_rsvd_level;
1224
1225                ubi->avail_pebs -= ubi->beb_rsvd_pebs;
1226                ubi->rsvd_pebs  += ubi->beb_rsvd_pebs;
1227        }
1228
1229        dbg_eba("EBA unit is initialized");
1230        return 0;
1231
1232out_free:
1233        for (i = 0; i < num_volumes; i++) {
1234                if (!ubi->volumes[i])
1235                        continue;
1236                kfree(ubi->volumes[i]->eba_tbl);
1237        }
1238        return err;
1239}
1240
1241/**
1242 * ubi_eba_close - close EBA unit.
1243 * @ubi: UBI device description object
1244 */
1245void ubi_eba_close(const struct ubi_device *ubi)
1246{
1247        int i, num_volumes = ubi->vtbl_slots + UBI_INT_VOL_COUNT;
1248
1249        dbg_eba("close EBA unit");
1250
1251        for (i = 0; i < num_volumes; i++) {
1252                if (!ubi->volumes[i])
1253                        continue;
1254                kfree(ubi->volumes[i]->eba_tbl);
1255        }
1256}
1257