uboot/nand_spl/nand_boot.c
<<
>>
Prefs
   1/*
   2 * (C) Copyright 2006-2008
   3 * Stefan Roese, DENX Software Engineering, sr@denx.de.
   4 *
   5 * This program is free software; you can redistribute it and/or
   6 * modify it under the terms of the GNU General Public License as
   7 * published by the Free Software Foundation; either version 2 of
   8 * the License, or (at your option) any later version.
   9 *
  10 * This program is distributed in the hope that it will be useful,
  11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  13 * GNU General Public License for more details.
  14 *
  15 * You should have received a copy of the GNU General Public License
  16 * along with this program; if not, write to the Free Software
  17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
  18 * MA 02111-1307 USA
  19 */
  20
  21#include <common.h>
  22#include <nand.h>
  23#include <asm/io.h>
  24
  25#define CONFIG_SYS_NAND_READ_DELAY \
  26        { volatile int dummy; int i; for (i=0; i<10000; i++) dummy = i; }
  27
  28static int nand_ecc_pos[] = CONFIG_SYS_NAND_ECCPOS;
  29
  30#if (CONFIG_SYS_NAND_PAGE_SIZE <= 512)
  31/*
  32 * NAND command for small page NAND devices (512)
  33 */
  34static int nand_command(struct mtd_info *mtd, int block, int page, int offs, u8 cmd)
  35{
  36        struct nand_chip *this = mtd->priv;
  37        int page_addr = page + block * CONFIG_SYS_NAND_PAGE_COUNT;
  38
  39        if (this->dev_ready)
  40                while (!this->dev_ready(mtd))
  41                        ;
  42        else
  43                CONFIG_SYS_NAND_READ_DELAY;
  44
  45        /* Begin command latch cycle */
  46        this->cmd_ctrl(mtd, cmd, NAND_CTRL_CLE | NAND_CTRL_CHANGE);
  47        /* Set ALE and clear CLE to start address cycle */
  48        /* Column address */
  49        this->cmd_ctrl(mtd, offs, NAND_CTRL_ALE | NAND_CTRL_CHANGE);
  50        this->cmd_ctrl(mtd, page_addr & 0xff, NAND_CTRL_ALE); /* A[16:9] */
  51        this->cmd_ctrl(mtd, (page_addr >> 8) & 0xff,
  52                       NAND_CTRL_ALE); /* A[24:17] */
  53#ifdef CONFIG_SYS_NAND_4_ADDR_CYCLE
  54        /* One more address cycle for devices > 32MiB */
  55        this->cmd_ctrl(mtd, (page_addr >> 16) & 0x0f,
  56                       NAND_CTRL_ALE); /* A[28:25] */
  57#endif
  58        /* Latch in address */
  59        this->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
  60
  61        /*
  62         * Wait a while for the data to be ready
  63         */
  64        if (this->dev_ready)
  65                while (!this->dev_ready(mtd))
  66                        ;
  67        else
  68                CONFIG_SYS_NAND_READ_DELAY;
  69
  70        return 0;
  71}
  72#else
  73/*
  74 * NAND command for large page NAND devices (2k)
  75 */
  76static int nand_command(struct mtd_info *mtd, int block, int page, int offs, u8 cmd)
  77{
  78        struct nand_chip *this = mtd->priv;
  79        int page_addr = page + block * CONFIG_SYS_NAND_PAGE_COUNT;
  80
  81        if (this->dev_ready)
  82                while (!this->dev_ready(mtd))
  83                        ;
  84        else
  85                CONFIG_SYS_NAND_READ_DELAY;
  86
  87        /* Emulate NAND_CMD_READOOB */
  88        if (cmd == NAND_CMD_READOOB) {
  89                offs += CONFIG_SYS_NAND_PAGE_SIZE;
  90                cmd = NAND_CMD_READ0;
  91        }
  92
  93        /* Begin command latch cycle */
  94        this->cmd_ctrl(mtd, cmd, NAND_CTRL_CLE | NAND_CTRL_CHANGE);
  95        /* Set ALE and clear CLE to start address cycle */
  96        /* Column address */
  97        this->cmd_ctrl(mtd, offs & 0xff,
  98                       NAND_CTRL_ALE | NAND_CTRL_CHANGE); /* A[7:0] */
  99        this->cmd_ctrl(mtd, (offs >> 8) & 0xff, NAND_CTRL_ALE); /* A[11:9] */
 100        /* Row address */
 101        this->cmd_ctrl(mtd, (page_addr & 0xff), NAND_CTRL_ALE); /* A[19:12] */
 102        this->cmd_ctrl(mtd, ((page_addr >> 8) & 0xff),
 103                       NAND_CTRL_ALE); /* A[27:20] */
 104#ifdef CONFIG_SYS_NAND_5_ADDR_CYCLE
 105        /* One more address cycle for devices > 128MiB */
 106        this->cmd_ctrl(mtd, (page_addr >> 16) & 0x0f,
 107                       NAND_CTRL_ALE); /* A[31:28] */
 108#endif
 109        /* Latch in address */
 110        this->cmd_ctrl(mtd, NAND_CMD_READSTART,
 111                       NAND_CTRL_CLE | NAND_CTRL_CHANGE);
 112        this->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
 113
 114        /*
 115         * Wait a while for the data to be ready
 116         */
 117        if (this->dev_ready)
 118                while (!this->dev_ready(mtd))
 119                        ;
 120        else
 121                CONFIG_SYS_NAND_READ_DELAY;
 122
 123        return 0;
 124}
 125#endif
 126
 127static int nand_is_bad_block(struct mtd_info *mtd, int block)
 128{
 129        struct nand_chip *this = mtd->priv;
 130
 131        nand_command(mtd, block, 0, CONFIG_SYS_NAND_BAD_BLOCK_POS, NAND_CMD_READOOB);
 132
 133        /*
 134         * Read one byte
 135         */
 136        if (readb(this->IO_ADDR_R) != 0xff)
 137                return 1;
 138
 139        return 0;
 140}
 141
 142static int nand_read_page(struct mtd_info *mtd, int block, int page, uchar *dst)
 143{
 144        struct nand_chip *this = mtd->priv;
 145        u_char *ecc_calc;
 146        u_char *ecc_code;
 147        u_char *oob_data;
 148        int i;
 149        int eccsize = CONFIG_SYS_NAND_ECCSIZE;
 150        int eccbytes = CONFIG_SYS_NAND_ECCBYTES;
 151        int eccsteps = CONFIG_SYS_NAND_ECCSTEPS;
 152        uint8_t *p = dst;
 153        int stat;
 154
 155        nand_command(mtd, block, page, 0, NAND_CMD_READ0);
 156
 157        /* No malloc available for now, just use some temporary locations
 158         * in SDRAM
 159         */
 160        ecc_calc = (u_char *)(CONFIG_SYS_SDRAM_BASE + 0x10000);
 161        ecc_code = ecc_calc + 0x100;
 162        oob_data = ecc_calc + 0x200;
 163
 164        for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
 165                this->ecc.hwctl(mtd, NAND_ECC_READ);
 166                this->read_buf(mtd, p, eccsize);
 167                this->ecc.calculate(mtd, p, &ecc_calc[i]);
 168        }
 169        this->read_buf(mtd, oob_data, CONFIG_SYS_NAND_OOBSIZE);
 170
 171        /* Pick the ECC bytes out of the oob data */
 172        for (i = 0; i < CONFIG_SYS_NAND_ECCTOTAL; i++)
 173                ecc_code[i] = oob_data[nand_ecc_pos[i]];
 174
 175        eccsteps = CONFIG_SYS_NAND_ECCSTEPS;
 176        p = dst;
 177
 178        for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
 179                /* No chance to do something with the possible error message
 180                 * from correct_data(). We just hope that all possible errors
 181                 * are corrected by this routine.
 182                 */
 183                stat = this->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
 184        }
 185
 186        return 0;
 187}
 188
 189static int nand_load(struct mtd_info *mtd, unsigned int offs,
 190                     unsigned int uboot_size, uchar *dst)
 191{
 192        unsigned int block, lastblock;
 193        unsigned int page;
 194
 195        /*
 196         * offs has to be aligned to a page address!
 197         */
 198        block = offs / CONFIG_SYS_NAND_BLOCK_SIZE;
 199        lastblock = (offs + uboot_size - 1) / CONFIG_SYS_NAND_BLOCK_SIZE;
 200        page = (offs % CONFIG_SYS_NAND_BLOCK_SIZE) / CONFIG_SYS_NAND_PAGE_SIZE;
 201
 202        while (block <= lastblock) {
 203                if (!nand_is_bad_block(mtd, block)) {
 204                        /*
 205                         * Skip bad blocks
 206                         */
 207                        while (page < CONFIG_SYS_NAND_PAGE_COUNT) {
 208                                nand_read_page(mtd, block, page, dst);
 209                                dst += CONFIG_SYS_NAND_PAGE_SIZE;
 210                                page++;
 211                        }
 212
 213                        page = 0;
 214                } else {
 215                        lastblock++;
 216                }
 217
 218                block++;
 219        }
 220
 221        return 0;
 222}
 223
 224/*
 225 * The main entry for NAND booting. It's necessary that SDRAM is already
 226 * configured and available since this code loads the main U-Boot image
 227 * from NAND into SDRAM and starts it from there.
 228 */
 229void nand_boot(void)
 230{
 231        struct nand_chip nand_chip;
 232        nand_info_t nand_info;
 233        int ret;
 234        __attribute__((noreturn)) void (*uboot)(void);
 235
 236        /*
 237         * Init board specific nand support
 238         */
 239        nand_info.priv = &nand_chip;
 240        nand_chip.IO_ADDR_R = nand_chip.IO_ADDR_W = (void  __iomem *)CONFIG_SYS_NAND_BASE;
 241        nand_chip.dev_ready = NULL;     /* preset to NULL */
 242        board_nand_init(&nand_chip);
 243
 244        if (nand_chip.select_chip)
 245                nand_chip.select_chip(&nand_info, 0);
 246
 247        /*
 248         * Load U-Boot image from NAND into RAM
 249         */
 250        ret = nand_load(&nand_info, CONFIG_SYS_NAND_U_BOOT_OFFS, CONFIG_SYS_NAND_U_BOOT_SIZE,
 251                        (uchar *)CONFIG_SYS_NAND_U_BOOT_DST);
 252
 253#ifdef CONFIG_NAND_ENV_DST
 254        nand_load(&nand_info, CONFIG_ENV_OFFSET, CONFIG_ENV_SIZE,
 255                  (uchar *)CONFIG_NAND_ENV_DST);
 256
 257#ifdef CONFIG_ENV_OFFSET_REDUND
 258        nand_load(&nand_info, CONFIG_ENV_OFFSET_REDUND, CONFIG_ENV_SIZE,
 259                  (uchar *)CONFIG_NAND_ENV_DST + CONFIG_ENV_SIZE);
 260#endif
 261#endif
 262
 263        if (nand_chip.select_chip)
 264                nand_chip.select_chip(&nand_info, -1);
 265
 266        /*
 267         * Jump to U-Boot image
 268         */
 269        uboot = (void *)CONFIG_SYS_NAND_U_BOOT_START;
 270        (*uboot)();
 271}
 272