uboot/common/dlmalloc.c
<<
>>
Prefs
   1#include <common.h>
   2
   3#if 0   /* Moved to malloc.h */
   4/* ---------- To make a malloc.h, start cutting here ------------ */
   5
   6/*
   7  A version of malloc/free/realloc written by Doug Lea and released to the
   8  public domain.  Send questions/comments/complaints/performance data
   9  to dl@cs.oswego.edu
  10
  11* VERSION 2.6.6  Sun Mar  5 19:10:03 2000  Doug Lea  (dl at gee)
  12
  13   Note: There may be an updated version of this malloc obtainable at
  14           ftp://g.oswego.edu/pub/misc/malloc.c
  15         Check before installing!
  16
  17* Why use this malloc?
  18
  19  This is not the fastest, most space-conserving, most portable, or
  20  most tunable malloc ever written. However it is among the fastest
  21  while also being among the most space-conserving, portable and tunable.
  22  Consistent balance across these factors results in a good general-purpose
  23  allocator. For a high-level description, see
  24     http://g.oswego.edu/dl/html/malloc.html
  25
  26* Synopsis of public routines
  27
  28  (Much fuller descriptions are contained in the program documentation below.)
  29
  30  malloc(size_t n);
  31     Return a pointer to a newly allocated chunk of at least n bytes, or null
  32     if no space is available.
  33  free(Void_t* p);
  34     Release the chunk of memory pointed to by p, or no effect if p is null.
  35  realloc(Void_t* p, size_t n);
  36     Return a pointer to a chunk of size n that contains the same data
  37     as does chunk p up to the minimum of (n, p's size) bytes, or null
  38     if no space is available. The returned pointer may or may not be
  39     the same as p. If p is null, equivalent to malloc.  Unless the
  40     #define REALLOC_ZERO_BYTES_FREES below is set, realloc with a
  41     size argument of zero (re)allocates a minimum-sized chunk.
  42  memalign(size_t alignment, size_t n);
  43     Return a pointer to a newly allocated chunk of n bytes, aligned
  44     in accord with the alignment argument, which must be a power of
  45     two.
  46  valloc(size_t n);
  47     Equivalent to memalign(pagesize, n), where pagesize is the page
  48     size of the system (or as near to this as can be figured out from
  49     all the includes/defines below.)
  50  pvalloc(size_t n);
  51     Equivalent to valloc(minimum-page-that-holds(n)), that is,
  52     round up n to nearest pagesize.
  53  calloc(size_t unit, size_t quantity);
  54     Returns a pointer to quantity * unit bytes, with all locations
  55     set to zero.
  56  cfree(Void_t* p);
  57     Equivalent to free(p).
  58  malloc_trim(size_t pad);
  59     Release all but pad bytes of freed top-most memory back
  60     to the system. Return 1 if successful, else 0.
  61  malloc_usable_size(Void_t* p);
  62     Report the number usable allocated bytes associated with allocated
  63     chunk p. This may or may not report more bytes than were requested,
  64     due to alignment and minimum size constraints.
  65  malloc_stats();
  66     Prints brief summary statistics.
  67  mallinfo()
  68     Returns (by copy) a struct containing various summary statistics.
  69  mallopt(int parameter_number, int parameter_value)
  70     Changes one of the tunable parameters described below. Returns
  71     1 if successful in changing the parameter, else 0.
  72
  73* Vital statistics:
  74
  75  Alignment:                            8-byte
  76       8 byte alignment is currently hardwired into the design.  This
  77       seems to suffice for all current machines and C compilers.
  78
  79  Assumed pointer representation:       4 or 8 bytes
  80       Code for 8-byte pointers is untested by me but has worked
  81       reliably by Wolfram Gloger, who contributed most of the
  82       changes supporting this.
  83
  84  Assumed size_t  representation:       4 or 8 bytes
  85       Note that size_t is allowed to be 4 bytes even if pointers are 8.
  86
  87  Minimum overhead per allocated chunk: 4 or 8 bytes
  88       Each malloced chunk has a hidden overhead of 4 bytes holding size
  89       and status information.
  90
  91  Minimum allocated size: 4-byte ptrs:  16 bytes    (including 4 overhead)
  92                          8-byte ptrs:  24/32 bytes (including, 4/8 overhead)
  93
  94       When a chunk is freed, 12 (for 4byte ptrs) or 20 (for 8 byte
  95       ptrs but 4 byte size) or 24 (for 8/8) additional bytes are
  96       needed; 4 (8) for a trailing size field
  97       and 8 (16) bytes for free list pointers. Thus, the minimum
  98       allocatable size is 16/24/32 bytes.
  99
 100       Even a request for zero bytes (i.e., malloc(0)) returns a
 101       pointer to something of the minimum allocatable size.
 102
 103  Maximum allocated size: 4-byte size_t: 2^31 -  8 bytes
 104                          8-byte size_t: 2^63 - 16 bytes
 105
 106       It is assumed that (possibly signed) size_t bit values suffice to
 107       represent chunk sizes. `Possibly signed' is due to the fact
 108       that `size_t' may be defined on a system as either a signed or
 109       an unsigned type. To be conservative, values that would appear
 110       as negative numbers are avoided.
 111       Requests for sizes with a negative sign bit when the request
 112       size is treaded as a long will return null.
 113
 114  Maximum overhead wastage per allocated chunk: normally 15 bytes
 115
 116       Alignnment demands, plus the minimum allocatable size restriction
 117       make the normal worst-case wastage 15 bytes (i.e., up to 15
 118       more bytes will be allocated than were requested in malloc), with
 119       two exceptions:
 120         1. Because requests for zero bytes allocate non-zero space,
 121            the worst case wastage for a request of zero bytes is 24 bytes.
 122         2. For requests >= mmap_threshold that are serviced via
 123            mmap(), the worst case wastage is 8 bytes plus the remainder
 124            from a system page (the minimal mmap unit); typically 4096 bytes.
 125
 126* Limitations
 127
 128    Here are some features that are NOT currently supported
 129
 130    * No user-definable hooks for callbacks and the like.
 131    * No automated mechanism for fully checking that all accesses
 132      to malloced memory stay within their bounds.
 133    * No support for compaction.
 134
 135* Synopsis of compile-time options:
 136
 137    People have reported using previous versions of this malloc on all
 138    versions of Unix, sometimes by tweaking some of the defines
 139    below. It has been tested most extensively on Solaris and
 140    Linux. It is also reported to work on WIN32 platforms.
 141    People have also reported adapting this malloc for use in
 142    stand-alone embedded systems.
 143
 144    The implementation is in straight, hand-tuned ANSI C.  Among other
 145    consequences, it uses a lot of macros.  Because of this, to be at
 146    all usable, this code should be compiled using an optimizing compiler
 147    (for example gcc -O2) that can simplify expressions and control
 148    paths.
 149
 150  __STD_C                  (default: derived from C compiler defines)
 151     Nonzero if using ANSI-standard C compiler, a C++ compiler, or
 152     a C compiler sufficiently close to ANSI to get away with it.
 153  DEBUG                    (default: NOT defined)
 154     Define to enable debugging. Adds fairly extensive assertion-based
 155     checking to help track down memory errors, but noticeably slows down
 156     execution.
 157  REALLOC_ZERO_BYTES_FREES (default: NOT defined)
 158     Define this if you think that realloc(p, 0) should be equivalent
 159     to free(p). Otherwise, since malloc returns a unique pointer for
 160     malloc(0), so does realloc(p, 0).
 161  HAVE_MEMCPY               (default: defined)
 162     Define if you are not otherwise using ANSI STD C, but still
 163     have memcpy and memset in your C library and want to use them.
 164     Otherwise, simple internal versions are supplied.
 165  USE_MEMCPY               (default: 1 if HAVE_MEMCPY is defined, 0 otherwise)
 166     Define as 1 if you want the C library versions of memset and
 167     memcpy called in realloc and calloc (otherwise macro versions are used).
 168     At least on some platforms, the simple macro versions usually
 169     outperform libc versions.
 170  HAVE_MMAP                 (default: defined as 1)
 171     Define to non-zero to optionally make malloc() use mmap() to
 172     allocate very large blocks.
 173  HAVE_MREMAP                 (default: defined as 0 unless Linux libc set)
 174     Define to non-zero to optionally make realloc() use mremap() to
 175     reallocate very large blocks.
 176  malloc_getpagesize        (default: derived from system #includes)
 177     Either a constant or routine call returning the system page size.
 178  HAVE_USR_INCLUDE_MALLOC_H (default: NOT defined)
 179     Optionally define if you are on a system with a /usr/include/malloc.h
 180     that declares struct mallinfo. It is not at all necessary to
 181     define this even if you do, but will ensure consistency.
 182  INTERNAL_SIZE_T           (default: size_t)
 183     Define to a 32-bit type (probably `unsigned int') if you are on a
 184     64-bit machine, yet do not want or need to allow malloc requests of
 185     greater than 2^31 to be handled. This saves space, especially for
 186     very small chunks.
 187  INTERNAL_LINUX_C_LIB      (default: NOT defined)
 188     Defined only when compiled as part of Linux libc.
 189     Also note that there is some odd internal name-mangling via defines
 190     (for example, internally, `malloc' is named `mALLOc') needed
 191     when compiling in this case. These look funny but don't otherwise
 192     affect anything.
 193  WIN32                     (default: undefined)
 194     Define this on MS win (95, nt) platforms to compile in sbrk emulation.
 195  LACKS_UNISTD_H            (default: undefined if not WIN32)
 196     Define this if your system does not have a <unistd.h>.
 197  LACKS_SYS_PARAM_H         (default: undefined if not WIN32)
 198     Define this if your system does not have a <sys/param.h>.
 199  MORECORE                  (default: sbrk)
 200     The name of the routine to call to obtain more memory from the system.
 201  MORECORE_FAILURE          (default: -1)
 202     The value returned upon failure of MORECORE.
 203  MORECORE_CLEARS           (default 1)
 204     True (1) if the routine mapped to MORECORE zeroes out memory (which
 205     holds for sbrk).
 206  DEFAULT_TRIM_THRESHOLD
 207  DEFAULT_TOP_PAD
 208  DEFAULT_MMAP_THRESHOLD
 209  DEFAULT_MMAP_MAX
 210     Default values of tunable parameters (described in detail below)
 211     controlling interaction with host system routines (sbrk, mmap, etc).
 212     These values may also be changed dynamically via mallopt(). The
 213     preset defaults are those that give best performance for typical
 214     programs/systems.
 215  USE_DL_PREFIX             (default: undefined)
 216     Prefix all public routines with the string 'dl'.  Useful to
 217     quickly avoid procedure declaration conflicts and linker symbol
 218     conflicts with existing memory allocation routines.
 219
 220
 221*/
 222
 223
 224
 225
 226/* Preliminaries */
 227
 228#ifndef __STD_C
 229#ifdef __STDC__
 230#define __STD_C     1
 231#else
 232#if __cplusplus
 233#define __STD_C     1
 234#else
 235#define __STD_C     0
 236#endif /*__cplusplus*/
 237#endif /*__STDC__*/
 238#endif /*__STD_C*/
 239
 240#ifndef Void_t
 241#if (__STD_C || defined(WIN32))
 242#define Void_t      void
 243#else
 244#define Void_t      char
 245#endif
 246#endif /*Void_t*/
 247
 248#if __STD_C
 249#include <stddef.h>   /* for size_t */
 250#else
 251#include <sys/types.h>
 252#endif
 253
 254#ifdef __cplusplus
 255extern "C" {
 256#endif
 257
 258#include <stdio.h>    /* needed for malloc_stats */
 259
 260
 261/*
 262  Compile-time options
 263*/
 264
 265
 266/*
 267    Debugging:
 268
 269    Because freed chunks may be overwritten with link fields, this
 270    malloc will often die when freed memory is overwritten by user
 271    programs.  This can be very effective (albeit in an annoying way)
 272    in helping track down dangling pointers.
 273
 274    If you compile with -DDEBUG, a number of assertion checks are
 275    enabled that will catch more memory errors. You probably won't be
 276    able to make much sense of the actual assertion errors, but they
 277    should help you locate incorrectly overwritten memory.  The
 278    checking is fairly extensive, and will slow down execution
 279    noticeably. Calling malloc_stats or mallinfo with DEBUG set will
 280    attempt to check every non-mmapped allocated and free chunk in the
 281    course of computing the summmaries. (By nature, mmapped regions
 282    cannot be checked very much automatically.)
 283
 284    Setting DEBUG may also be helpful if you are trying to modify
 285    this code. The assertions in the check routines spell out in more
 286    detail the assumptions and invariants underlying the algorithms.
 287
 288*/
 289
 290#ifdef DEBUG
 291#include <assert.h>
 292#else
 293#define assert(x) ((void)0)
 294#endif
 295
 296
 297/*
 298  INTERNAL_SIZE_T is the word-size used for internal bookkeeping
 299  of chunk sizes. On a 64-bit machine, you can reduce malloc
 300  overhead by defining INTERNAL_SIZE_T to be a 32 bit `unsigned int'
 301  at the expense of not being able to handle requests greater than
 302  2^31. This limitation is hardly ever a concern; you are encouraged
 303  to set this. However, the default version is the same as size_t.
 304*/
 305
 306#ifndef INTERNAL_SIZE_T
 307#define INTERNAL_SIZE_T size_t
 308#endif
 309
 310/*
 311  REALLOC_ZERO_BYTES_FREES should be set if a call to
 312  realloc with zero bytes should be the same as a call to free.
 313  Some people think it should. Otherwise, since this malloc
 314  returns a unique pointer for malloc(0), so does realloc(p, 0).
 315*/
 316
 317
 318/*   #define REALLOC_ZERO_BYTES_FREES */
 319
 320
 321/*
 322  WIN32 causes an emulation of sbrk to be compiled in
 323  mmap-based options are not currently supported in WIN32.
 324*/
 325
 326/* #define WIN32 */
 327#ifdef WIN32
 328#define MORECORE wsbrk
 329#define HAVE_MMAP 0
 330
 331#define LACKS_UNISTD_H
 332#define LACKS_SYS_PARAM_H
 333
 334/*
 335  Include 'windows.h' to get the necessary declarations for the
 336  Microsoft Visual C++ data structures and routines used in the 'sbrk'
 337  emulation.
 338
 339  Define WIN32_LEAN_AND_MEAN so that only the essential Microsoft
 340  Visual C++ header files are included.
 341*/
 342#define WIN32_LEAN_AND_MEAN
 343#include <windows.h>
 344#endif
 345
 346
 347/*
 348  HAVE_MEMCPY should be defined if you are not otherwise using
 349  ANSI STD C, but still have memcpy and memset in your C library
 350  and want to use them in calloc and realloc. Otherwise simple
 351  macro versions are defined here.
 352
 353  USE_MEMCPY should be defined as 1 if you actually want to
 354  have memset and memcpy called. People report that the macro
 355  versions are often enough faster than libc versions on many
 356  systems that it is better to use them.
 357
 358*/
 359
 360#define HAVE_MEMCPY
 361
 362#ifndef USE_MEMCPY
 363#ifdef HAVE_MEMCPY
 364#define USE_MEMCPY 1
 365#else
 366#define USE_MEMCPY 0
 367#endif
 368#endif
 369
 370#if (__STD_C || defined(HAVE_MEMCPY))
 371
 372#if __STD_C
 373void* memset(void*, int, size_t);
 374void* memcpy(void*, const void*, size_t);
 375#else
 376#ifdef WIN32
 377/* On Win32 platforms, 'memset()' and 'memcpy()' are already declared in */
 378/* 'windows.h' */
 379#else
 380Void_t* memset();
 381Void_t* memcpy();
 382#endif
 383#endif
 384#endif
 385
 386#if USE_MEMCPY
 387
 388/* The following macros are only invoked with (2n+1)-multiples of
 389   INTERNAL_SIZE_T units, with a positive integer n. This is exploited
 390   for fast inline execution when n is small. */
 391
 392#define MALLOC_ZERO(charp, nbytes)                                            \
 393do {                                                                          \
 394  INTERNAL_SIZE_T mzsz = (nbytes);                                            \
 395  if(mzsz <= 9*sizeof(mzsz)) {                                                \
 396    INTERNAL_SIZE_T* mz = (INTERNAL_SIZE_T*) (charp);                         \
 397    if(mzsz >= 5*sizeof(mzsz)) {     *mz++ = 0;                               \
 398                                     *mz++ = 0;                               \
 399      if(mzsz >= 7*sizeof(mzsz)) {   *mz++ = 0;                               \
 400                                     *mz++ = 0;                               \
 401        if(mzsz >= 9*sizeof(mzsz)) { *mz++ = 0;                               \
 402                                     *mz++ = 0; }}}                           \
 403                                     *mz++ = 0;                               \
 404                                     *mz++ = 0;                               \
 405                                     *mz   = 0;                               \
 406  } else memset((charp), 0, mzsz);                                            \
 407} while(0)
 408
 409#define MALLOC_COPY(dest,src,nbytes)                                          \
 410do {                                                                          \
 411  INTERNAL_SIZE_T mcsz = (nbytes);                                            \
 412  if(mcsz <= 9*sizeof(mcsz)) {                                                \
 413    INTERNAL_SIZE_T* mcsrc = (INTERNAL_SIZE_T*) (src);                        \
 414    INTERNAL_SIZE_T* mcdst = (INTERNAL_SIZE_T*) (dest);                       \
 415    if(mcsz >= 5*sizeof(mcsz)) {     *mcdst++ = *mcsrc++;                     \
 416                                     *mcdst++ = *mcsrc++;                     \
 417      if(mcsz >= 7*sizeof(mcsz)) {   *mcdst++ = *mcsrc++;                     \
 418                                     *mcdst++ = *mcsrc++;                     \
 419        if(mcsz >= 9*sizeof(mcsz)) { *mcdst++ = *mcsrc++;                     \
 420                                     *mcdst++ = *mcsrc++; }}}                 \
 421                                     *mcdst++ = *mcsrc++;                     \
 422                                     *mcdst++ = *mcsrc++;                     \
 423                                     *mcdst   = *mcsrc  ;                     \
 424  } else memcpy(dest, src, mcsz);                                             \
 425} while(0)
 426
 427#else /* !USE_MEMCPY */
 428
 429/* Use Duff's device for good zeroing/copying performance. */
 430
 431#define MALLOC_ZERO(charp, nbytes)                                            \
 432do {                                                                          \
 433  INTERNAL_SIZE_T* mzp = (INTERNAL_SIZE_T*)(charp);                           \
 434  long mctmp = (nbytes)/sizeof(INTERNAL_SIZE_T), mcn;                         \
 435  if (mctmp < 8) mcn = 0; else { mcn = (mctmp-1)/8; mctmp %= 8; }             \
 436  switch (mctmp) {                                                            \
 437    case 0: for(;;) { *mzp++ = 0;                                             \
 438    case 7:           *mzp++ = 0;                                             \
 439    case 6:           *mzp++ = 0;                                             \
 440    case 5:           *mzp++ = 0;                                             \
 441    case 4:           *mzp++ = 0;                                             \
 442    case 3:           *mzp++ = 0;                                             \
 443    case 2:           *mzp++ = 0;                                             \
 444    case 1:           *mzp++ = 0; if(mcn <= 0) break; mcn--; }                \
 445  }                                                                           \
 446} while(0)
 447
 448#define MALLOC_COPY(dest,src,nbytes)                                          \
 449do {                                                                          \
 450  INTERNAL_SIZE_T* mcsrc = (INTERNAL_SIZE_T*) src;                            \
 451  INTERNAL_SIZE_T* mcdst = (INTERNAL_SIZE_T*) dest;                           \
 452  long mctmp = (nbytes)/sizeof(INTERNAL_SIZE_T), mcn;                         \
 453  if (mctmp < 8) mcn = 0; else { mcn = (mctmp-1)/8; mctmp %= 8; }             \
 454  switch (mctmp) {                                                            \
 455    case 0: for(;;) { *mcdst++ = *mcsrc++;                                    \
 456    case 7:           *mcdst++ = *mcsrc++;                                    \
 457    case 6:           *mcdst++ = *mcsrc++;                                    \
 458    case 5:           *mcdst++ = *mcsrc++;                                    \
 459    case 4:           *mcdst++ = *mcsrc++;                                    \
 460    case 3:           *mcdst++ = *mcsrc++;                                    \
 461    case 2:           *mcdst++ = *mcsrc++;                                    \
 462    case 1:           *mcdst++ = *mcsrc++; if(mcn <= 0) break; mcn--; }       \
 463  }                                                                           \
 464} while(0)
 465
 466#endif
 467
 468
 469/*
 470  Define HAVE_MMAP to optionally make malloc() use mmap() to
 471  allocate very large blocks.  These will be returned to the
 472  operating system immediately after a free().
 473*/
 474
 475#ifndef HAVE_MMAP
 476#define HAVE_MMAP 1
 477#endif
 478
 479/*
 480  Define HAVE_MREMAP to make realloc() use mremap() to re-allocate
 481  large blocks.  This is currently only possible on Linux with
 482  kernel versions newer than 1.3.77.
 483*/
 484
 485#ifndef HAVE_MREMAP
 486#ifdef INTERNAL_LINUX_C_LIB
 487#define HAVE_MREMAP 1
 488#else
 489#define HAVE_MREMAP 0
 490#endif
 491#endif
 492
 493#if HAVE_MMAP
 494
 495#include <unistd.h>
 496#include <fcntl.h>
 497#include <sys/mman.h>
 498
 499#if !defined(MAP_ANONYMOUS) && defined(MAP_ANON)
 500#define MAP_ANONYMOUS MAP_ANON
 501#endif
 502
 503#endif /* HAVE_MMAP */
 504
 505/*
 506  Access to system page size. To the extent possible, this malloc
 507  manages memory from the system in page-size units.
 508
 509  The following mechanics for getpagesize were adapted from
 510  bsd/gnu getpagesize.h
 511*/
 512
 513#ifndef LACKS_UNISTD_H
 514#  include <unistd.h>
 515#endif
 516
 517#ifndef malloc_getpagesize
 518#  ifdef _SC_PAGESIZE         /* some SVR4 systems omit an underscore */
 519#    ifndef _SC_PAGE_SIZE
 520#      define _SC_PAGE_SIZE _SC_PAGESIZE
 521#    endif
 522#  endif
 523#  ifdef _SC_PAGE_SIZE
 524#    define malloc_getpagesize sysconf(_SC_PAGE_SIZE)
 525#  else
 526#    if defined(BSD) || defined(DGUX) || defined(HAVE_GETPAGESIZE)
 527       extern size_t getpagesize();
 528#      define malloc_getpagesize getpagesize()
 529#    else
 530#      ifdef WIN32
 531#        define malloc_getpagesize (4096) /* TBD: Use 'GetSystemInfo' instead */
 532#      else
 533#        ifndef LACKS_SYS_PARAM_H
 534#          include <sys/param.h>
 535#        endif
 536#        ifdef EXEC_PAGESIZE
 537#          define malloc_getpagesize EXEC_PAGESIZE
 538#        else
 539#          ifdef NBPG
 540#            ifndef CLSIZE
 541#              define malloc_getpagesize NBPG
 542#            else
 543#              define malloc_getpagesize (NBPG * CLSIZE)
 544#            endif
 545#          else
 546#            ifdef NBPC
 547#              define malloc_getpagesize NBPC
 548#            else
 549#              ifdef PAGESIZE
 550#                define malloc_getpagesize PAGESIZE
 551#              else
 552#                define malloc_getpagesize (4096) /* just guess */
 553#              endif
 554#            endif
 555#          endif
 556#        endif
 557#      endif
 558#    endif
 559#  endif
 560#endif
 561
 562
 563/*
 564
 565  This version of malloc supports the standard SVID/XPG mallinfo
 566  routine that returns a struct containing the same kind of
 567  information you can get from malloc_stats. It should work on
 568  any SVID/XPG compliant system that has a /usr/include/malloc.h
 569  defining struct mallinfo. (If you'd like to install such a thing
 570  yourself, cut out the preliminary declarations as described above
 571  and below and save them in a malloc.h file. But there's no
 572  compelling reason to bother to do this.)
 573
 574  The main declaration needed is the mallinfo struct that is returned
 575  (by-copy) by mallinfo().  The SVID/XPG malloinfo struct contains a
 576  bunch of fields, most of which are not even meaningful in this
 577  version of malloc. Some of these fields are are instead filled by
 578  mallinfo() with other numbers that might possibly be of interest.
 579
 580  HAVE_USR_INCLUDE_MALLOC_H should be set if you have a
 581  /usr/include/malloc.h file that includes a declaration of struct
 582  mallinfo.  If so, it is included; else an SVID2/XPG2 compliant
 583  version is declared below.  These must be precisely the same for
 584  mallinfo() to work.
 585
 586*/
 587
 588/* #define HAVE_USR_INCLUDE_MALLOC_H */
 589
 590#if HAVE_USR_INCLUDE_MALLOC_H
 591#include "/usr/include/malloc.h"
 592#else
 593
 594/* SVID2/XPG mallinfo structure */
 595
 596struct mallinfo {
 597  int arena;    /* total space allocated from system */
 598  int ordblks;  /* number of non-inuse chunks */
 599  int smblks;   /* unused -- always zero */
 600  int hblks;    /* number of mmapped regions */
 601  int hblkhd;   /* total space in mmapped regions */
 602  int usmblks;  /* unused -- always zero */
 603  int fsmblks;  /* unused -- always zero */
 604  int uordblks; /* total allocated space */
 605  int fordblks; /* total non-inuse space */
 606  int keepcost; /* top-most, releasable (via malloc_trim) space */
 607};
 608
 609/* SVID2/XPG mallopt options */
 610
 611#define M_MXFAST  1    /* UNUSED in this malloc */
 612#define M_NLBLKS  2    /* UNUSED in this malloc */
 613#define M_GRAIN   3    /* UNUSED in this malloc */
 614#define M_KEEP    4    /* UNUSED in this malloc */
 615
 616#endif
 617
 618/* mallopt options that actually do something */
 619
 620#define M_TRIM_THRESHOLD    -1
 621#define M_TOP_PAD           -2
 622#define M_MMAP_THRESHOLD    -3
 623#define M_MMAP_MAX          -4
 624
 625
 626#ifndef DEFAULT_TRIM_THRESHOLD
 627#define DEFAULT_TRIM_THRESHOLD (128 * 1024)
 628#endif
 629
 630/*
 631    M_TRIM_THRESHOLD is the maximum amount of unused top-most memory
 632      to keep before releasing via malloc_trim in free().
 633
 634      Automatic trimming is mainly useful in long-lived programs.
 635      Because trimming via sbrk can be slow on some systems, and can
 636      sometimes be wasteful (in cases where programs immediately
 637      afterward allocate more large chunks) the value should be high
 638      enough so that your overall system performance would improve by
 639      releasing.
 640
 641      The trim threshold and the mmap control parameters (see below)
 642      can be traded off with one another. Trimming and mmapping are
 643      two different ways of releasing unused memory back to the
 644      system. Between these two, it is often possible to keep
 645      system-level demands of a long-lived program down to a bare
 646      minimum. For example, in one test suite of sessions measuring
 647      the XF86 X server on Linux, using a trim threshold of 128K and a
 648      mmap threshold of 192K led to near-minimal long term resource
 649      consumption.
 650
 651      If you are using this malloc in a long-lived program, it should
 652      pay to experiment with these values.  As a rough guide, you
 653      might set to a value close to the average size of a process
 654      (program) running on your system.  Releasing this much memory
 655      would allow such a process to run in memory.  Generally, it's
 656      worth it to tune for trimming rather tham memory mapping when a
 657      program undergoes phases where several large chunks are
 658      allocated and released in ways that can reuse each other's
 659      storage, perhaps mixed with phases where there are no such
 660      chunks at all.  And in well-behaved long-lived programs,
 661      controlling release of large blocks via trimming versus mapping
 662      is usually faster.
 663
 664      However, in most programs, these parameters serve mainly as
 665      protection against the system-level effects of carrying around
 666      massive amounts of unneeded memory. Since frequent calls to
 667      sbrk, mmap, and munmap otherwise degrade performance, the default
 668      parameters are set to relatively high values that serve only as
 669      safeguards.
 670
 671      The default trim value is high enough to cause trimming only in
 672      fairly extreme (by current memory consumption standards) cases.
 673      It must be greater than page size to have any useful effect.  To
 674      disable trimming completely, you can set to (unsigned long)(-1);
 675
 676
 677*/
 678
 679
 680#ifndef DEFAULT_TOP_PAD
 681#define DEFAULT_TOP_PAD        (0)
 682#endif
 683
 684/*
 685    M_TOP_PAD is the amount of extra `padding' space to allocate or
 686      retain whenever sbrk is called. It is used in two ways internally:
 687
 688      * When sbrk is called to extend the top of the arena to satisfy
 689        a new malloc request, this much padding is added to the sbrk
 690        request.
 691
 692      * When malloc_trim is called automatically from free(),
 693        it is used as the `pad' argument.
 694
 695      In both cases, the actual amount of padding is rounded
 696      so that the end of the arena is always a system page boundary.
 697
 698      The main reason for using padding is to avoid calling sbrk so
 699      often. Having even a small pad greatly reduces the likelihood
 700      that nearly every malloc request during program start-up (or
 701      after trimming) will invoke sbrk, which needlessly wastes
 702      time.
 703
 704      Automatic rounding-up to page-size units is normally sufficient
 705      to avoid measurable overhead, so the default is 0.  However, in
 706      systems where sbrk is relatively slow, it can pay to increase
 707      this value, at the expense of carrying around more memory than
 708      the program needs.
 709
 710*/
 711
 712
 713#ifndef DEFAULT_MMAP_THRESHOLD
 714#define DEFAULT_MMAP_THRESHOLD (128 * 1024)
 715#endif
 716
 717/*
 718
 719    M_MMAP_THRESHOLD is the request size threshold for using mmap()
 720      to service a request. Requests of at least this size that cannot
 721      be allocated using already-existing space will be serviced via mmap.
 722      (If enough normal freed space already exists it is used instead.)
 723
 724      Using mmap segregates relatively large chunks of memory so that
 725      they can be individually obtained and released from the host
 726      system. A request serviced through mmap is never reused by any
 727      other request (at least not directly; the system may just so
 728      happen to remap successive requests to the same locations).
 729
 730      Segregating space in this way has the benefit that mmapped space
 731      can ALWAYS be individually released back to the system, which
 732      helps keep the system level memory demands of a long-lived
 733      program low. Mapped memory can never become `locked' between
 734      other chunks, as can happen with normally allocated chunks, which
 735      menas that even trimming via malloc_trim would not release them.
 736
 737      However, it has the disadvantages that:
 738
 739         1. The space cannot be reclaimed, consolidated, and then
 740            used to service later requests, as happens with normal chunks.
 741         2. It can lead to more wastage because of mmap page alignment
 742            requirements
 743         3. It causes malloc performance to be more dependent on host
 744            system memory management support routines which may vary in
 745            implementation quality and may impose arbitrary
 746            limitations. Generally, servicing a request via normal
 747            malloc steps is faster than going through a system's mmap.
 748
 749      All together, these considerations should lead you to use mmap
 750      only for relatively large requests.
 751
 752
 753*/
 754
 755
 756#ifndef DEFAULT_MMAP_MAX
 757#if HAVE_MMAP
 758#define DEFAULT_MMAP_MAX       (64)
 759#else
 760#define DEFAULT_MMAP_MAX       (0)
 761#endif
 762#endif
 763
 764/*
 765    M_MMAP_MAX is the maximum number of requests to simultaneously
 766      service using mmap. This parameter exists because:
 767
 768         1. Some systems have a limited number of internal tables for
 769            use by mmap.
 770         2. In most systems, overreliance on mmap can degrade overall
 771            performance.
 772         3. If a program allocates many large regions, it is probably
 773            better off using normal sbrk-based allocation routines that
 774            can reclaim and reallocate normal heap memory. Using a
 775            small value allows transition into this mode after the
 776            first few allocations.
 777
 778      Setting to 0 disables all use of mmap.  If HAVE_MMAP is not set,
 779      the default value is 0, and attempts to set it to non-zero values
 780      in mallopt will fail.
 781*/
 782
 783
 784/*
 785    USE_DL_PREFIX will prefix all public routines with the string 'dl'.
 786      Useful to quickly avoid procedure declaration conflicts and linker
 787      symbol conflicts with existing memory allocation routines.
 788
 789*/
 790
 791/* #define USE_DL_PREFIX */
 792
 793
 794/*
 795
 796  Special defines for linux libc
 797
 798  Except when compiled using these special defines for Linux libc
 799  using weak aliases, this malloc is NOT designed to work in
 800  multithreaded applications.  No semaphores or other concurrency
 801  control are provided to ensure that multiple malloc or free calls
 802  don't run at the same time, which could be disasterous. A single
 803  semaphore could be used across malloc, realloc, and free (which is
 804  essentially the effect of the linux weak alias approach). It would
 805  be hard to obtain finer granularity.
 806
 807*/
 808
 809
 810#ifdef INTERNAL_LINUX_C_LIB
 811
 812#if __STD_C
 813
 814Void_t * __default_morecore_init (ptrdiff_t);
 815Void_t *(*__morecore)(ptrdiff_t) = __default_morecore_init;
 816
 817#else
 818
 819Void_t * __default_morecore_init ();
 820Void_t *(*__morecore)() = __default_morecore_init;
 821
 822#endif
 823
 824#define MORECORE (*__morecore)
 825#define MORECORE_FAILURE 0
 826#define MORECORE_CLEARS 1
 827
 828#else /* INTERNAL_LINUX_C_LIB */
 829
 830#if __STD_C
 831extern Void_t*     sbrk(ptrdiff_t);
 832#else
 833extern Void_t*     sbrk();
 834#endif
 835
 836#ifndef MORECORE
 837#define MORECORE sbrk
 838#endif
 839
 840#ifndef MORECORE_FAILURE
 841#define MORECORE_FAILURE -1
 842#endif
 843
 844#ifndef MORECORE_CLEARS
 845#define MORECORE_CLEARS 1
 846#endif
 847
 848#endif /* INTERNAL_LINUX_C_LIB */
 849
 850#if defined(INTERNAL_LINUX_C_LIB) && defined(__ELF__)
 851
 852#define cALLOc          __libc_calloc
 853#define fREe            __libc_free
 854#define mALLOc          __libc_malloc
 855#define mEMALIGn        __libc_memalign
 856#define rEALLOc         __libc_realloc
 857#define vALLOc          __libc_valloc
 858#define pvALLOc         __libc_pvalloc
 859#define mALLINFo        __libc_mallinfo
 860#define mALLOPt         __libc_mallopt
 861
 862#pragma weak calloc = __libc_calloc
 863#pragma weak free = __libc_free
 864#pragma weak cfree = __libc_free
 865#pragma weak malloc = __libc_malloc
 866#pragma weak memalign = __libc_memalign
 867#pragma weak realloc = __libc_realloc
 868#pragma weak valloc = __libc_valloc
 869#pragma weak pvalloc = __libc_pvalloc
 870#pragma weak mallinfo = __libc_mallinfo
 871#pragma weak mallopt = __libc_mallopt
 872
 873#else
 874
 875#ifdef USE_DL_PREFIX
 876#define cALLOc          dlcalloc
 877#define fREe            dlfree
 878#define mALLOc          dlmalloc
 879#define mEMALIGn        dlmemalign
 880#define rEALLOc         dlrealloc
 881#define vALLOc          dlvalloc
 882#define pvALLOc         dlpvalloc
 883#define mALLINFo        dlmallinfo
 884#define mALLOPt         dlmallopt
 885#else /* USE_DL_PREFIX */
 886#define cALLOc          calloc
 887#define fREe            free
 888#define mALLOc          malloc
 889#define mEMALIGn        memalign
 890#define rEALLOc         realloc
 891#define vALLOc          valloc
 892#define pvALLOc         pvalloc
 893#define mALLINFo        mallinfo
 894#define mALLOPt         mallopt
 895#endif /* USE_DL_PREFIX */
 896
 897#endif
 898
 899/* Public routines */
 900
 901#if __STD_C
 902
 903Void_t* mALLOc(size_t);
 904void    fREe(Void_t*);
 905Void_t* rEALLOc(Void_t*, size_t);
 906Void_t* mEMALIGn(size_t, size_t);
 907Void_t* vALLOc(size_t);
 908Void_t* pvALLOc(size_t);
 909Void_t* cALLOc(size_t, size_t);
 910void    cfree(Void_t*);
 911int     malloc_trim(size_t);
 912size_t  malloc_usable_size(Void_t*);
 913void    malloc_stats();
 914int     mALLOPt(int, int);
 915struct mallinfo mALLINFo(void);
 916#else
 917Void_t* mALLOc();
 918void    fREe();
 919Void_t* rEALLOc();
 920Void_t* mEMALIGn();
 921Void_t* vALLOc();
 922Void_t* pvALLOc();
 923Void_t* cALLOc();
 924void    cfree();
 925int     malloc_trim();
 926size_t  malloc_usable_size();
 927void    malloc_stats();
 928int     mALLOPt();
 929struct mallinfo mALLINFo();
 930#endif
 931
 932
 933#ifdef __cplusplus
 934};  /* end of extern "C" */
 935#endif
 936
 937/* ---------- To make a malloc.h, end cutting here ------------ */
 938#else                           /* Moved to malloc.h */
 939
 940#include <malloc.h>
 941#if 0
 942#if __STD_C
 943static void malloc_update_mallinfo (void);
 944void malloc_stats (void);
 945#else
 946static void malloc_update_mallinfo ();
 947void malloc_stats();
 948#endif
 949#endif  /* 0 */
 950
 951#endif  /* 0 */                 /* Moved to malloc.h */
 952
 953DECLARE_GLOBAL_DATA_PTR;
 954
 955/*
 956  Emulation of sbrk for WIN32
 957  All code within the ifdef WIN32 is untested by me.
 958
 959  Thanks to Martin Fong and others for supplying this.
 960*/
 961
 962
 963#ifdef WIN32
 964
 965#define AlignPage(add) (((add) + (malloc_getpagesize-1)) & \
 966~(malloc_getpagesize-1))
 967#define AlignPage64K(add) (((add) + (0x10000 - 1)) & ~(0x10000 - 1))
 968
 969/* resrve 64MB to insure large contiguous space */
 970#define RESERVED_SIZE (1024*1024*64)
 971#define NEXT_SIZE (2048*1024)
 972#define TOP_MEMORY ((unsigned long)2*1024*1024*1024)
 973
 974struct GmListElement;
 975typedef struct GmListElement GmListElement;
 976
 977struct GmListElement
 978{
 979        GmListElement* next;
 980        void* base;
 981};
 982
 983static GmListElement* head = 0;
 984static unsigned int gNextAddress = 0;
 985static unsigned int gAddressBase = 0;
 986static unsigned int gAllocatedSize = 0;
 987
 988static
 989GmListElement* makeGmListElement (void* bas)
 990{
 991        GmListElement* this;
 992        this = (GmListElement*)(void*)LocalAlloc (0, sizeof (GmListElement));
 993        assert (this);
 994        if (this)
 995        {
 996                this->base = bas;
 997                this->next = head;
 998                head = this;
 999        }
1000        return this;
1001}
1002
1003void gcleanup ()
1004{
1005        BOOL rval;
1006        assert ( (head == NULL) || (head->base == (void*)gAddressBase));
1007        if (gAddressBase && (gNextAddress - gAddressBase))
1008        {
1009                rval = VirtualFree ((void*)gAddressBase,
1010                                                        gNextAddress - gAddressBase,
1011                                                        MEM_DECOMMIT);
1012        assert (rval);
1013        }
1014        while (head)
1015        {
1016                GmListElement* next = head->next;
1017                rval = VirtualFree (head->base, 0, MEM_RELEASE);
1018                assert (rval);
1019                LocalFree (head);
1020                head = next;
1021        }
1022}
1023
1024static
1025void* findRegion (void* start_address, unsigned long size)
1026{
1027        MEMORY_BASIC_INFORMATION info;
1028        if (size >= TOP_MEMORY) return NULL;
1029
1030        while ((unsigned long)start_address + size < TOP_MEMORY)
1031        {
1032                VirtualQuery (start_address, &info, sizeof (info));
1033                if ((info.State == MEM_FREE) && (info.RegionSize >= size))
1034                        return start_address;
1035                else
1036                {
1037                        /* Requested region is not available so see if the */
1038                        /* next region is available.  Set 'start_address' */
1039                        /* to the next region and call 'VirtualQuery()' */
1040                        /* again. */
1041
1042                        start_address = (char*)info.BaseAddress + info.RegionSize;
1043
1044                        /* Make sure we start looking for the next region */
1045                        /* on the *next* 64K boundary.  Otherwise, even if */
1046                        /* the new region is free according to */
1047                        /* 'VirtualQuery()', the subsequent call to */
1048                        /* 'VirtualAlloc()' (which follows the call to */
1049                        /* this routine in 'wsbrk()') will round *down* */
1050                        /* the requested address to a 64K boundary which */
1051                        /* we already know is an address in the */
1052                        /* unavailable region.  Thus, the subsequent call */
1053                        /* to 'VirtualAlloc()' will fail and bring us back */
1054                        /* here, causing us to go into an infinite loop. */
1055
1056                        start_address =
1057                                (void *) AlignPage64K((unsigned long) start_address);
1058                }
1059        }
1060        return NULL;
1061
1062}
1063
1064
1065void* wsbrk (long size)
1066{
1067        void* tmp;
1068        if (size > 0)
1069        {
1070                if (gAddressBase == 0)
1071                {
1072                        gAllocatedSize = max (RESERVED_SIZE, AlignPage (size));
1073                        gNextAddress = gAddressBase =
1074                                (unsigned int)VirtualAlloc (NULL, gAllocatedSize,
1075                                                                                        MEM_RESERVE, PAGE_NOACCESS);
1076                } else if (AlignPage (gNextAddress + size) > (gAddressBase +
1077gAllocatedSize))
1078                {
1079                        long new_size = max (NEXT_SIZE, AlignPage (size));
1080                        void* new_address = (void*)(gAddressBase+gAllocatedSize);
1081                        do
1082                        {
1083                                new_address = findRegion (new_address, new_size);
1084
1085                                if (new_address == 0)
1086                                        return (void*)-1;
1087
1088                                gAddressBase = gNextAddress =
1089                                        (unsigned int)VirtualAlloc (new_address, new_size,
1090                                                                                                MEM_RESERVE, PAGE_NOACCESS);
1091                                /* repeat in case of race condition */
1092                                /* The region that we found has been snagged */
1093                                /* by another thread */
1094                        }
1095                        while (gAddressBase == 0);
1096
1097                        assert (new_address == (void*)gAddressBase);
1098
1099                        gAllocatedSize = new_size;
1100
1101                        if (!makeGmListElement ((void*)gAddressBase))
1102                                return (void*)-1;
1103                }
1104                if ((size + gNextAddress) > AlignPage (gNextAddress))
1105                {
1106                        void* res;
1107                        res = VirtualAlloc ((void*)AlignPage (gNextAddress),
1108                                                                (size + gNextAddress -
1109                                                                 AlignPage (gNextAddress)),
1110                                                                MEM_COMMIT, PAGE_READWRITE);
1111                        if (res == 0)
1112                                return (void*)-1;
1113                }
1114                tmp = (void*)gNextAddress;
1115                gNextAddress = (unsigned int)tmp + size;
1116                return tmp;
1117        }
1118        else if (size < 0)
1119        {
1120                unsigned int alignedGoal = AlignPage (gNextAddress + size);
1121                /* Trim by releasing the virtual memory */
1122                if (alignedGoal >= gAddressBase)
1123                {
1124                        VirtualFree ((void*)alignedGoal, gNextAddress - alignedGoal,
1125                                                 MEM_DECOMMIT);
1126                        gNextAddress = gNextAddress + size;
1127                        return (void*)gNextAddress;
1128                }
1129                else
1130                {
1131                        VirtualFree ((void*)gAddressBase, gNextAddress - gAddressBase,
1132                                                 MEM_DECOMMIT);
1133                        gNextAddress = gAddressBase;
1134                        return (void*)-1;
1135                }
1136        }
1137        else
1138        {
1139                return (void*)gNextAddress;
1140        }
1141}
1142
1143#endif
1144
1145
1146
1147/*
1148  Type declarations
1149*/
1150
1151
1152struct malloc_chunk
1153{
1154  INTERNAL_SIZE_T prev_size; /* Size of previous chunk (if free). */
1155  INTERNAL_SIZE_T size;      /* Size in bytes, including overhead. */
1156  struct malloc_chunk* fd;   /* double links -- used only if free. */
1157  struct malloc_chunk* bk;
1158};
1159
1160typedef struct malloc_chunk* mchunkptr;
1161
1162/*
1163
1164   malloc_chunk details:
1165
1166    (The following includes lightly edited explanations by Colin Plumb.)
1167
1168    Chunks of memory are maintained using a `boundary tag' method as
1169    described in e.g., Knuth or Standish.  (See the paper by Paul
1170    Wilson ftp://ftp.cs.utexas.edu/pub/garbage/allocsrv.ps for a
1171    survey of such techniques.)  Sizes of free chunks are stored both
1172    in the front of each chunk and at the end.  This makes
1173    consolidating fragmented chunks into bigger chunks very fast.  The
1174    size fields also hold bits representing whether chunks are free or
1175    in use.
1176
1177    An allocated chunk looks like this:
1178
1179
1180    chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1181            |             Size of previous chunk, if allocated            | |
1182            +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1183            |             Size of chunk, in bytes                         |P|
1184      mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1185            |             User data starts here...                          .
1186            .                                                               .
1187            .             (malloc_usable_space() bytes)                     .
1188            .                                                               |
1189nextchunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1190            |             Size of chunk                                     |
1191            +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1192
1193
1194    Where "chunk" is the front of the chunk for the purpose of most of
1195    the malloc code, but "mem" is the pointer that is returned to the
1196    user.  "Nextchunk" is the beginning of the next contiguous chunk.
1197
1198    Chunks always begin on even word boundries, so the mem portion
1199    (which is returned to the user) is also on an even word boundary, and
1200    thus double-word aligned.
1201
1202    Free chunks are stored in circular doubly-linked lists, and look like this:
1203
1204    chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1205            |             Size of previous chunk                            |
1206            +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1207    `head:' |             Size of chunk, in bytes                         |P|
1208      mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1209            |             Forward pointer to next chunk in list             |
1210            +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1211            |             Back pointer to previous chunk in list            |
1212            +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1213            |             Unused space (may be 0 bytes long)                .
1214            .                                                               .
1215            .                                                               |
1216nextchunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1217    `foot:' |             Size of chunk, in bytes                           |
1218            +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1219
1220    The P (PREV_INUSE) bit, stored in the unused low-order bit of the
1221    chunk size (which is always a multiple of two words), is an in-use
1222    bit for the *previous* chunk.  If that bit is *clear*, then the
1223    word before the current chunk size contains the previous chunk
1224    size, and can be used to find the front of the previous chunk.
1225    (The very first chunk allocated always has this bit set,
1226    preventing access to non-existent (or non-owned) memory.)
1227
1228    Note that the `foot' of the current chunk is actually represented
1229    as the prev_size of the NEXT chunk. (This makes it easier to
1230    deal with alignments etc).
1231
1232    The two exceptions to all this are
1233
1234     1. The special chunk `top', which doesn't bother using the
1235        trailing size field since there is no
1236        next contiguous chunk that would have to index off it. (After
1237        initialization, `top' is forced to always exist.  If it would
1238        become less than MINSIZE bytes long, it is replenished via
1239        malloc_extend_top.)
1240
1241     2. Chunks allocated via mmap, which have the second-lowest-order
1242        bit (IS_MMAPPED) set in their size fields.  Because they are
1243        never merged or traversed from any other chunk, they have no
1244        foot size or inuse information.
1245
1246    Available chunks are kept in any of several places (all declared below):
1247
1248    * `av': An array of chunks serving as bin headers for consolidated
1249       chunks. Each bin is doubly linked.  The bins are approximately
1250       proportionally (log) spaced.  There are a lot of these bins
1251       (128). This may look excessive, but works very well in
1252       practice.  All procedures maintain the invariant that no
1253       consolidated chunk physically borders another one. Chunks in
1254       bins are kept in size order, with ties going to the
1255       approximately least recently used chunk.
1256
1257       The chunks in each bin are maintained in decreasing sorted order by
1258       size.  This is irrelevant for the small bins, which all contain
1259       the same-sized chunks, but facilitates best-fit allocation for
1260       larger chunks. (These lists are just sequential. Keeping them in
1261       order almost never requires enough traversal to warrant using
1262       fancier ordered data structures.)  Chunks of the same size are
1263       linked with the most recently freed at the front, and allocations
1264       are taken from the back.  This results in LRU or FIFO allocation
1265       order, which tends to give each chunk an equal opportunity to be
1266       consolidated with adjacent freed chunks, resulting in larger free
1267       chunks and less fragmentation.
1268
1269    * `top': The top-most available chunk (i.e., the one bordering the
1270       end of available memory) is treated specially. It is never
1271       included in any bin, is used only if no other chunk is
1272       available, and is released back to the system if it is very
1273       large (see M_TRIM_THRESHOLD).
1274
1275    * `last_remainder': A bin holding only the remainder of the
1276       most recently split (non-top) chunk. This bin is checked
1277       before other non-fitting chunks, so as to provide better
1278       locality for runs of sequentially allocated chunks.
1279
1280    *  Implicitly, through the host system's memory mapping tables.
1281       If supported, requests greater than a threshold are usually
1282       serviced via calls to mmap, and then later released via munmap.
1283
1284*/
1285
1286/*  sizes, alignments */
1287
1288#define SIZE_SZ                (sizeof(INTERNAL_SIZE_T))
1289#define MALLOC_ALIGNMENT       (SIZE_SZ + SIZE_SZ)
1290#define MALLOC_ALIGN_MASK      (MALLOC_ALIGNMENT - 1)
1291#define MINSIZE                (sizeof(struct malloc_chunk))
1292
1293/* conversion from malloc headers to user pointers, and back */
1294
1295#define chunk2mem(p)   ((Void_t*)((char*)(p) + 2*SIZE_SZ))
1296#define mem2chunk(mem) ((mchunkptr)((char*)(mem) - 2*SIZE_SZ))
1297
1298/* pad request bytes into a usable size */
1299
1300#define request2size(req) \
1301 (((long)((req) + (SIZE_SZ + MALLOC_ALIGN_MASK)) < \
1302  (long)(MINSIZE + MALLOC_ALIGN_MASK)) ? MINSIZE : \
1303   (((req) + (SIZE_SZ + MALLOC_ALIGN_MASK)) & ~(MALLOC_ALIGN_MASK)))
1304
1305/* Check if m has acceptable alignment */
1306
1307#define aligned_OK(m)    (((unsigned long)((m)) & (MALLOC_ALIGN_MASK)) == 0)
1308
1309
1310
1311
1312/*
1313  Physical chunk operations
1314*/
1315
1316
1317/* size field is or'ed with PREV_INUSE when previous adjacent chunk in use */
1318
1319#define PREV_INUSE 0x1
1320
1321/* size field is or'ed with IS_MMAPPED if the chunk was obtained with mmap() */
1322
1323#define IS_MMAPPED 0x2
1324
1325/* Bits to mask off when extracting size */
1326
1327#define SIZE_BITS (PREV_INUSE|IS_MMAPPED)
1328
1329
1330/* Ptr to next physical malloc_chunk. */
1331
1332#define next_chunk(p) ((mchunkptr)( ((char*)(p)) + ((p)->size & ~PREV_INUSE) ))
1333
1334/* Ptr to previous physical malloc_chunk */
1335
1336#define prev_chunk(p)\
1337   ((mchunkptr)( ((char*)(p)) - ((p)->prev_size) ))
1338
1339
1340/* Treat space at ptr + offset as a chunk */
1341
1342#define chunk_at_offset(p, s)  ((mchunkptr)(((char*)(p)) + (s)))
1343
1344
1345
1346
1347/*
1348  Dealing with use bits
1349*/
1350
1351/* extract p's inuse bit */
1352
1353#define inuse(p)\
1354((((mchunkptr)(((char*)(p))+((p)->size & ~PREV_INUSE)))->size) & PREV_INUSE)
1355
1356/* extract inuse bit of previous chunk */
1357
1358#define prev_inuse(p)  ((p)->size & PREV_INUSE)
1359
1360/* check for mmap()'ed chunk */
1361
1362#define chunk_is_mmapped(p) ((p)->size & IS_MMAPPED)
1363
1364/* set/clear chunk as in use without otherwise disturbing */
1365
1366#define set_inuse(p)\
1367((mchunkptr)(((char*)(p)) + ((p)->size & ~PREV_INUSE)))->size |= PREV_INUSE
1368
1369#define clear_inuse(p)\
1370((mchunkptr)(((char*)(p)) + ((p)->size & ~PREV_INUSE)))->size &= ~(PREV_INUSE)
1371
1372/* check/set/clear inuse bits in known places */
1373
1374#define inuse_bit_at_offset(p, s)\
1375 (((mchunkptr)(((char*)(p)) + (s)))->size & PREV_INUSE)
1376
1377#define set_inuse_bit_at_offset(p, s)\
1378 (((mchunkptr)(((char*)(p)) + (s)))->size |= PREV_INUSE)
1379
1380#define clear_inuse_bit_at_offset(p, s)\
1381 (((mchunkptr)(((char*)(p)) + (s)))->size &= ~(PREV_INUSE))
1382
1383
1384
1385
1386/*
1387  Dealing with size fields
1388*/
1389
1390/* Get size, ignoring use bits */
1391
1392#define chunksize(p)          ((p)->size & ~(SIZE_BITS))
1393
1394/* Set size at head, without disturbing its use bit */
1395
1396#define set_head_size(p, s)   ((p)->size = (((p)->size & PREV_INUSE) | (s)))
1397
1398/* Set size/use ignoring previous bits in header */
1399
1400#define set_head(p, s)        ((p)->size = (s))
1401
1402/* Set size at footer (only when chunk is not in use) */
1403
1404#define set_foot(p, s)   (((mchunkptr)((char*)(p) + (s)))->prev_size = (s))
1405
1406
1407
1408
1409
1410/*
1411   Bins
1412
1413    The bins, `av_' are an array of pairs of pointers serving as the
1414    heads of (initially empty) doubly-linked lists of chunks, laid out
1415    in a way so that each pair can be treated as if it were in a
1416    malloc_chunk. (This way, the fd/bk offsets for linking bin heads
1417    and chunks are the same).
1418
1419    Bins for sizes < 512 bytes contain chunks of all the same size, spaced
1420    8 bytes apart. Larger bins are approximately logarithmically
1421    spaced. (See the table below.) The `av_' array is never mentioned
1422    directly in the code, but instead via bin access macros.
1423
1424    Bin layout:
1425
1426    64 bins of size       8
1427    32 bins of size      64
1428    16 bins of size     512
1429     8 bins of size    4096
1430     4 bins of size   32768
1431     2 bins of size  262144
1432     1 bin  of size what's left
1433
1434    There is actually a little bit of slop in the numbers in bin_index
1435    for the sake of speed. This makes no difference elsewhere.
1436
1437    The special chunks `top' and `last_remainder' get their own bins,
1438    (this is implemented via yet more trickery with the av_ array),
1439    although `top' is never properly linked to its bin since it is
1440    always handled specially.
1441
1442*/
1443
1444#define NAV             128   /* number of bins */
1445
1446typedef struct malloc_chunk* mbinptr;
1447
1448/* access macros */
1449
1450#define bin_at(i)      ((mbinptr)((char*)&(av_[2*(i) + 2]) - 2*SIZE_SZ))
1451#define next_bin(b)    ((mbinptr)((char*)(b) + 2 * sizeof(mbinptr)))
1452#define prev_bin(b)    ((mbinptr)((char*)(b) - 2 * sizeof(mbinptr)))
1453
1454/*
1455   The first 2 bins are never indexed. The corresponding av_ cells are instead
1456   used for bookkeeping. This is not to save space, but to simplify
1457   indexing, maintain locality, and avoid some initialization tests.
1458*/
1459
1460#define top            (av_[2])          /* The topmost chunk */
1461#define last_remainder (bin_at(1))       /* remainder from last split */
1462
1463
1464/*
1465   Because top initially points to its own bin with initial
1466   zero size, thus forcing extension on the first malloc request,
1467   we avoid having any special code in malloc to check whether
1468   it even exists yet. But we still need to in malloc_extend_top.
1469*/
1470
1471#define initial_top    ((mchunkptr)(bin_at(0)))
1472
1473/* Helper macro to initialize bins */
1474
1475#define IAV(i)  bin_at(i), bin_at(i)
1476
1477static mbinptr av_[NAV * 2 + 2] = {
1478 0, 0,
1479 IAV(0),   IAV(1),   IAV(2),   IAV(3),   IAV(4),   IAV(5),   IAV(6),   IAV(7),
1480 IAV(8),   IAV(9),   IAV(10),  IAV(11),  IAV(12),  IAV(13),  IAV(14),  IAV(15),
1481 IAV(16),  IAV(17),  IAV(18),  IAV(19),  IAV(20),  IAV(21),  IAV(22),  IAV(23),
1482 IAV(24),  IAV(25),  IAV(26),  IAV(27),  IAV(28),  IAV(29),  IAV(30),  IAV(31),
1483 IAV(32),  IAV(33),  IAV(34),  IAV(35),  IAV(36),  IAV(37),  IAV(38),  IAV(39),
1484 IAV(40),  IAV(41),  IAV(42),  IAV(43),  IAV(44),  IAV(45),  IAV(46),  IAV(47),
1485 IAV(48),  IAV(49),  IAV(50),  IAV(51),  IAV(52),  IAV(53),  IAV(54),  IAV(55),
1486 IAV(56),  IAV(57),  IAV(58),  IAV(59),  IAV(60),  IAV(61),  IAV(62),  IAV(63),
1487 IAV(64),  IAV(65),  IAV(66),  IAV(67),  IAV(68),  IAV(69),  IAV(70),  IAV(71),
1488 IAV(72),  IAV(73),  IAV(74),  IAV(75),  IAV(76),  IAV(77),  IAV(78),  IAV(79),
1489 IAV(80),  IAV(81),  IAV(82),  IAV(83),  IAV(84),  IAV(85),  IAV(86),  IAV(87),
1490 IAV(88),  IAV(89),  IAV(90),  IAV(91),  IAV(92),  IAV(93),  IAV(94),  IAV(95),
1491 IAV(96),  IAV(97),  IAV(98),  IAV(99),  IAV(100), IAV(101), IAV(102), IAV(103),
1492 IAV(104), IAV(105), IAV(106), IAV(107), IAV(108), IAV(109), IAV(110), IAV(111),
1493 IAV(112), IAV(113), IAV(114), IAV(115), IAV(116), IAV(117), IAV(118), IAV(119),
1494 IAV(120), IAV(121), IAV(122), IAV(123), IAV(124), IAV(125), IAV(126), IAV(127)
1495};
1496
1497#ifndef CONFIG_RELOC_FIXUP_WORKS
1498void malloc_bin_reloc (void)
1499{
1500        unsigned long *p = (unsigned long *)(&av_[2]);
1501        int i;
1502        for (i=2; i<(sizeof(av_)/sizeof(mbinptr)); ++i) {
1503                *p++ += gd->reloc_off;
1504        }
1505}
1506#endif
1507
1508ulong mem_malloc_start = 0;
1509ulong mem_malloc_end = 0;
1510ulong mem_malloc_brk = 0;
1511
1512void *sbrk(ptrdiff_t increment)
1513{
1514        ulong old = mem_malloc_brk;
1515        ulong new = old + increment;
1516
1517        if ((new < mem_malloc_start) || (new > mem_malloc_end))
1518                return (void *)MORECORE_FAILURE;
1519
1520        mem_malloc_brk = new;
1521
1522        return (void *)old;
1523}
1524
1525void mem_malloc_init(ulong start, ulong size)
1526{
1527        mem_malloc_start = start;
1528        mem_malloc_end = start + size;
1529        mem_malloc_brk = start;
1530
1531        memset((void *)mem_malloc_start, 0, size);
1532}
1533
1534/* field-extraction macros */
1535
1536#define first(b) ((b)->fd)
1537#define last(b)  ((b)->bk)
1538
1539/*
1540  Indexing into bins
1541*/
1542
1543#define bin_index(sz)                                                          \
1544(((((unsigned long)(sz)) >> 9) ==    0) ?       (((unsigned long)(sz)) >>  3): \
1545 ((((unsigned long)(sz)) >> 9) <=    4) ?  56 + (((unsigned long)(sz)) >>  6): \
1546 ((((unsigned long)(sz)) >> 9) <=   20) ?  91 + (((unsigned long)(sz)) >>  9): \
1547 ((((unsigned long)(sz)) >> 9) <=   84) ? 110 + (((unsigned long)(sz)) >> 12): \
1548 ((((unsigned long)(sz)) >> 9) <=  340) ? 119 + (((unsigned long)(sz)) >> 15): \
1549 ((((unsigned long)(sz)) >> 9) <= 1364) ? 124 + (((unsigned long)(sz)) >> 18): \
1550                                          126)
1551/*
1552  bins for chunks < 512 are all spaced 8 bytes apart, and hold
1553  identically sized chunks. This is exploited in malloc.
1554*/
1555
1556#define MAX_SMALLBIN         63
1557#define MAX_SMALLBIN_SIZE   512
1558#define SMALLBIN_WIDTH        8
1559
1560#define smallbin_index(sz)  (((unsigned long)(sz)) >> 3)
1561
1562/*
1563   Requests are `small' if both the corresponding and the next bin are small
1564*/
1565
1566#define is_small_request(nb) (nb < MAX_SMALLBIN_SIZE - SMALLBIN_WIDTH)
1567
1568
1569
1570/*
1571    To help compensate for the large number of bins, a one-level index
1572    structure is used for bin-by-bin searching.  `binblocks' is a
1573    one-word bitvector recording whether groups of BINBLOCKWIDTH bins
1574    have any (possibly) non-empty bins, so they can be skipped over
1575    all at once during during traversals. The bits are NOT always
1576    cleared as soon as all bins in a block are empty, but instead only
1577    when all are noticed to be empty during traversal in malloc.
1578*/
1579
1580#define BINBLOCKWIDTH     4   /* bins per block */
1581
1582#define binblocks_r     ((INTERNAL_SIZE_T)av_[1]) /* bitvector of nonempty blocks */
1583#define binblocks_w     (av_[1])
1584
1585/* bin<->block macros */
1586
1587#define idx2binblock(ix)    ((unsigned)1 << (ix / BINBLOCKWIDTH))
1588#define mark_binblock(ii)   (binblocks_w = (mbinptr)(binblocks_r | idx2binblock(ii)))
1589#define clear_binblock(ii)  (binblocks_w = (mbinptr)(binblocks_r & ~(idx2binblock(ii))))
1590
1591
1592
1593
1594
1595/*  Other static bookkeeping data */
1596
1597/* variables holding tunable values */
1598
1599static unsigned long trim_threshold   = DEFAULT_TRIM_THRESHOLD;
1600static unsigned long top_pad          = DEFAULT_TOP_PAD;
1601static unsigned int  n_mmaps_max      = DEFAULT_MMAP_MAX;
1602static unsigned long mmap_threshold   = DEFAULT_MMAP_THRESHOLD;
1603
1604/* The first value returned from sbrk */
1605static char* sbrk_base = (char*)(-1);
1606
1607/* The maximum memory obtained from system via sbrk */
1608static unsigned long max_sbrked_mem = 0;
1609
1610/* The maximum via either sbrk or mmap */
1611static unsigned long max_total_mem = 0;
1612
1613/* internal working copy of mallinfo */
1614static struct mallinfo current_mallinfo = {  0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
1615
1616/* The total memory obtained from system via sbrk */
1617#define sbrked_mem  (current_mallinfo.arena)
1618
1619/* Tracking mmaps */
1620
1621#if 0
1622static unsigned int n_mmaps = 0;
1623#endif  /* 0 */
1624static unsigned long mmapped_mem = 0;
1625#if HAVE_MMAP
1626static unsigned int max_n_mmaps = 0;
1627static unsigned long max_mmapped_mem = 0;
1628#endif
1629
1630
1631
1632/*
1633  Debugging support
1634*/
1635
1636#ifdef DEBUG
1637
1638
1639/*
1640  These routines make a number of assertions about the states
1641  of data structures that should be true at all times. If any
1642  are not true, it's very likely that a user program has somehow
1643  trashed memory. (It's also possible that there is a coding error
1644  in malloc. In which case, please report it!)
1645*/
1646
1647#if __STD_C
1648static void do_check_chunk(mchunkptr p)
1649#else
1650static void do_check_chunk(p) mchunkptr p;
1651#endif
1652{
1653#if 0   /* causes warnings because assert() is off */
1654  INTERNAL_SIZE_T sz = p->size & ~PREV_INUSE;
1655#endif  /* 0 */
1656
1657  /* No checkable chunk is mmapped */
1658  assert(!chunk_is_mmapped(p));
1659
1660  /* Check for legal address ... */
1661  assert((char*)p >= sbrk_base);
1662  if (p != top)
1663    assert((char*)p + sz <= (char*)top);
1664  else
1665    assert((char*)p + sz <= sbrk_base + sbrked_mem);
1666
1667}
1668
1669
1670#if __STD_C
1671static void do_check_free_chunk(mchunkptr p)
1672#else
1673static void do_check_free_chunk(p) mchunkptr p;
1674#endif
1675{
1676  INTERNAL_SIZE_T sz = p->size & ~PREV_INUSE;
1677#if 0   /* causes warnings because assert() is off */
1678  mchunkptr next = chunk_at_offset(p, sz);
1679#endif  /* 0 */
1680
1681  do_check_chunk(p);
1682
1683  /* Check whether it claims to be free ... */
1684  assert(!inuse(p));
1685
1686  /* Unless a special marker, must have OK fields */
1687  if ((long)sz >= (long)MINSIZE)
1688  {
1689    assert((sz & MALLOC_ALIGN_MASK) == 0);
1690    assert(aligned_OK(chunk2mem(p)));
1691    /* ... matching footer field */
1692    assert(next->prev_size == sz);
1693    /* ... and is fully consolidated */
1694    assert(prev_inuse(p));
1695    assert (next == top || inuse(next));
1696
1697    /* ... and has minimally sane links */
1698    assert(p->fd->bk == p);
1699    assert(p->bk->fd == p);
1700  }
1701  else /* markers are always of size SIZE_SZ */
1702    assert(sz == SIZE_SZ);
1703}
1704
1705#if __STD_C
1706static void do_check_inuse_chunk(mchunkptr p)
1707#else
1708static void do_check_inuse_chunk(p) mchunkptr p;
1709#endif
1710{
1711  mchunkptr next = next_chunk(p);
1712  do_check_chunk(p);
1713
1714  /* Check whether it claims to be in use ... */
1715  assert(inuse(p));
1716
1717  /* ... and is surrounded by OK chunks.
1718    Since more things can be checked with free chunks than inuse ones,
1719    if an inuse chunk borders them and debug is on, it's worth doing them.
1720  */
1721  if (!prev_inuse(p))
1722  {
1723    mchunkptr prv = prev_chunk(p);
1724    assert(next_chunk(prv) == p);
1725    do_check_free_chunk(prv);
1726  }
1727  if (next == top)
1728  {
1729    assert(prev_inuse(next));
1730    assert(chunksize(next) >= MINSIZE);
1731  }
1732  else if (!inuse(next))
1733    do_check_free_chunk(next);
1734
1735}
1736
1737#if __STD_C
1738static void do_check_malloced_chunk(mchunkptr p, INTERNAL_SIZE_T s)
1739#else
1740static void do_check_malloced_chunk(p, s) mchunkptr p; INTERNAL_SIZE_T s;
1741#endif
1742{
1743#if 0   /* causes warnings because assert() is off */
1744  INTERNAL_SIZE_T sz = p->size & ~PREV_INUSE;
1745  long room = sz - s;
1746#endif  /* 0 */
1747
1748  do_check_inuse_chunk(p);
1749
1750  /* Legal size ... */
1751  assert((long)sz >= (long)MINSIZE);
1752  assert((sz & MALLOC_ALIGN_MASK) == 0);
1753  assert(room >= 0);
1754  assert(room < (long)MINSIZE);
1755
1756  /* ... and alignment */
1757  assert(aligned_OK(chunk2mem(p)));
1758
1759
1760  /* ... and was allocated at front of an available chunk */
1761  assert(prev_inuse(p));
1762
1763}
1764
1765
1766#define check_free_chunk(P)  do_check_free_chunk(P)
1767#define check_inuse_chunk(P) do_check_inuse_chunk(P)
1768#define check_chunk(P) do_check_chunk(P)
1769#define check_malloced_chunk(P,N) do_check_malloced_chunk(P,N)
1770#else
1771#define check_free_chunk(P)
1772#define check_inuse_chunk(P)
1773#define check_chunk(P)
1774#define check_malloced_chunk(P,N)
1775#endif
1776
1777
1778
1779/*
1780  Macro-based internal utilities
1781*/
1782
1783
1784/*
1785  Linking chunks in bin lists.
1786  Call these only with variables, not arbitrary expressions, as arguments.
1787*/
1788
1789/*
1790  Place chunk p of size s in its bin, in size order,
1791  putting it ahead of others of same size.
1792*/
1793
1794
1795#define frontlink(P, S, IDX, BK, FD)                                          \
1796{                                                                             \
1797  if (S < MAX_SMALLBIN_SIZE)                                                  \
1798  {                                                                           \
1799    IDX = smallbin_index(S);                                                  \
1800    mark_binblock(IDX);                                                       \
1801    BK = bin_at(IDX);                                                         \
1802    FD = BK->fd;                                                              \
1803    P->bk = BK;                                                               \
1804    P->fd = FD;                                                               \
1805    FD->bk = BK->fd = P;                                                      \
1806  }                                                                           \
1807  else                                                                        \
1808  {                                                                           \
1809    IDX = bin_index(S);                                                       \
1810    BK = bin_at(IDX);                                                         \
1811    FD = BK->fd;                                                              \
1812    if (FD == BK) mark_binblock(IDX);                                         \
1813    else                                                                      \
1814    {                                                                         \
1815      while (FD != BK && S < chunksize(FD)) FD = FD->fd;                      \
1816      BK = FD->bk;                                                            \
1817    }                                                                         \
1818    P->bk = BK;                                                               \
1819    P->fd = FD;                                                               \
1820    FD->bk = BK->fd = P;                                                      \
1821  }                                                                           \
1822}
1823
1824
1825/* take a chunk off a list */
1826
1827#define unlink(P, BK, FD)                                                     \
1828{                                                                             \
1829  BK = P->bk;                                                                 \
1830  FD = P->fd;                                                                 \
1831  FD->bk = BK;                                                                \
1832  BK->fd = FD;                                                                \
1833}                                                                             \
1834
1835/* Place p as the last remainder */
1836
1837#define link_last_remainder(P)                                                \
1838{                                                                             \
1839  last_remainder->fd = last_remainder->bk =  P;                               \
1840  P->fd = P->bk = last_remainder;                                             \
1841}
1842
1843/* Clear the last_remainder bin */
1844
1845#define clear_last_remainder \
1846  (last_remainder->fd = last_remainder->bk = last_remainder)
1847
1848
1849
1850
1851
1852/* Routines dealing with mmap(). */
1853
1854#if HAVE_MMAP
1855
1856#if __STD_C
1857static mchunkptr mmap_chunk(size_t size)
1858#else
1859static mchunkptr mmap_chunk(size) size_t size;
1860#endif
1861{
1862  size_t page_mask = malloc_getpagesize - 1;
1863  mchunkptr p;
1864
1865#ifndef MAP_ANONYMOUS
1866  static int fd = -1;
1867#endif
1868
1869  if(n_mmaps >= n_mmaps_max) return 0; /* too many regions */
1870
1871  /* For mmapped chunks, the overhead is one SIZE_SZ unit larger, because
1872   * there is no following chunk whose prev_size field could be used.
1873   */
1874  size = (size + SIZE_SZ + page_mask) & ~page_mask;
1875
1876#ifdef MAP_ANONYMOUS
1877  p = (mchunkptr)mmap(0, size, PROT_READ|PROT_WRITE,
1878                      MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
1879#else /* !MAP_ANONYMOUS */
1880  if (fd < 0)
1881  {
1882    fd = open("/dev/zero", O_RDWR);
1883    if(fd < 0) return 0;
1884  }
1885  p = (mchunkptr)mmap(0, size, PROT_READ|PROT_WRITE, MAP_PRIVATE, fd, 0);
1886#endif
1887
1888  if(p == (mchunkptr)-1) return 0;
1889
1890  n_mmaps++;
1891  if (n_mmaps > max_n_mmaps) max_n_mmaps = n_mmaps;
1892
1893  /* We demand that eight bytes into a page must be 8-byte aligned. */
1894  assert(aligned_OK(chunk2mem(p)));
1895
1896  /* The offset to the start of the mmapped region is stored
1897   * in the prev_size field of the chunk; normally it is zero,
1898   * but that can be changed in memalign().
1899   */
1900  p->prev_size = 0;
1901  set_head(p, size|IS_MMAPPED);
1902
1903  mmapped_mem += size;
1904  if ((unsigned long)mmapped_mem > (unsigned long)max_mmapped_mem)
1905    max_mmapped_mem = mmapped_mem;
1906  if ((unsigned long)(mmapped_mem + sbrked_mem) > (unsigned long)max_total_mem)
1907    max_total_mem = mmapped_mem + sbrked_mem;
1908  return p;
1909}
1910
1911#if __STD_C
1912static void munmap_chunk(mchunkptr p)
1913#else
1914static void munmap_chunk(p) mchunkptr p;
1915#endif
1916{
1917  INTERNAL_SIZE_T size = chunksize(p);
1918  int ret;
1919
1920  assert (chunk_is_mmapped(p));
1921  assert(! ((char*)p >= sbrk_base && (char*)p < sbrk_base + sbrked_mem));
1922  assert((n_mmaps > 0));
1923  assert(((p->prev_size + size) & (malloc_getpagesize-1)) == 0);
1924
1925  n_mmaps--;
1926  mmapped_mem -= (size + p->prev_size);
1927
1928  ret = munmap((char *)p - p->prev_size, size + p->prev_size);
1929
1930  /* munmap returns non-zero on failure */
1931  assert(ret == 0);
1932}
1933
1934#if HAVE_MREMAP
1935
1936#if __STD_C
1937static mchunkptr mremap_chunk(mchunkptr p, size_t new_size)
1938#else
1939static mchunkptr mremap_chunk(p, new_size) mchunkptr p; size_t new_size;
1940#endif
1941{
1942  size_t page_mask = malloc_getpagesize - 1;
1943  INTERNAL_SIZE_T offset = p->prev_size;
1944  INTERNAL_SIZE_T size = chunksize(p);
1945  char *cp;
1946
1947  assert (chunk_is_mmapped(p));
1948  assert(! ((char*)p >= sbrk_base && (char*)p < sbrk_base + sbrked_mem));
1949  assert((n_mmaps > 0));
1950  assert(((size + offset) & (malloc_getpagesize-1)) == 0);
1951
1952  /* Note the extra SIZE_SZ overhead as in mmap_chunk(). */
1953  new_size = (new_size + offset + SIZE_SZ + page_mask) & ~page_mask;
1954
1955  cp = (char *)mremap((char *)p - offset, size + offset, new_size, 1);
1956
1957  if (cp == (char *)-1) return 0;
1958
1959  p = (mchunkptr)(cp + offset);
1960
1961  assert(aligned_OK(chunk2mem(p)));
1962
1963  assert((p->prev_size == offset));
1964  set_head(p, (new_size - offset)|IS_MMAPPED);
1965
1966  mmapped_mem -= size + offset;
1967  mmapped_mem += new_size;
1968  if ((unsigned long)mmapped_mem > (unsigned long)max_mmapped_mem)
1969    max_mmapped_mem = mmapped_mem;
1970  if ((unsigned long)(mmapped_mem + sbrked_mem) > (unsigned long)max_total_mem)
1971    max_total_mem = mmapped_mem + sbrked_mem;
1972  return p;
1973}
1974
1975#endif /* HAVE_MREMAP */
1976
1977#endif /* HAVE_MMAP */
1978
1979
1980
1981
1982/*
1983  Extend the top-most chunk by obtaining memory from system.
1984  Main interface to sbrk (but see also malloc_trim).
1985*/
1986
1987#if __STD_C
1988static void malloc_extend_top(INTERNAL_SIZE_T nb)
1989#else
1990static void malloc_extend_top(nb) INTERNAL_SIZE_T nb;
1991#endif
1992{
1993  char*     brk;                  /* return value from sbrk */
1994  INTERNAL_SIZE_T front_misalign; /* unusable bytes at front of sbrked space */
1995  INTERNAL_SIZE_T correction;     /* bytes for 2nd sbrk call */
1996  char*     new_brk;              /* return of 2nd sbrk call */
1997  INTERNAL_SIZE_T top_size;       /* new size of top chunk */
1998
1999  mchunkptr old_top     = top;  /* Record state of old top */
2000  INTERNAL_SIZE_T old_top_size = chunksize(old_top);
2001  char*     old_end      = (char*)(chunk_at_offset(old_top, old_top_size));
2002
2003  /* Pad request with top_pad plus minimal overhead */
2004
2005  INTERNAL_SIZE_T    sbrk_size     = nb + top_pad + MINSIZE;
2006  unsigned long pagesz    = malloc_getpagesize;
2007
2008  /* If not the first time through, round to preserve page boundary */
2009  /* Otherwise, we need to correct to a page size below anyway. */
2010  /* (We also correct below if an intervening foreign sbrk call.) */
2011
2012  if (sbrk_base != (char*)(-1))
2013    sbrk_size = (sbrk_size + (pagesz - 1)) & ~(pagesz - 1);
2014
2015  brk = (char*)(MORECORE (sbrk_size));
2016
2017  /* Fail if sbrk failed or if a foreign sbrk call killed our space */
2018  if (brk == (char*)(MORECORE_FAILURE) ||
2019      (brk < old_end && old_top != initial_top))
2020    return;
2021
2022  sbrked_mem += sbrk_size;
2023
2024  if (brk == old_end) /* can just add bytes to current top */
2025  {
2026    top_size = sbrk_size + old_top_size;
2027    set_head(top, top_size | PREV_INUSE);
2028  }
2029  else
2030  {
2031    if (sbrk_base == (char*)(-1))  /* First time through. Record base */
2032      sbrk_base = brk;
2033    else  /* Someone else called sbrk().  Count those bytes as sbrked_mem. */
2034      sbrked_mem += brk - (char*)old_end;
2035
2036    /* Guarantee alignment of first new chunk made from this space */
2037    front_misalign = (unsigned long)chunk2mem(brk) & MALLOC_ALIGN_MASK;
2038    if (front_misalign > 0)
2039    {
2040      correction = (MALLOC_ALIGNMENT) - front_misalign;
2041      brk += correction;
2042    }
2043    else
2044      correction = 0;
2045
2046    /* Guarantee the next brk will be at a page boundary */
2047
2048    correction += ((((unsigned long)(brk + sbrk_size))+(pagesz-1)) &
2049                   ~(pagesz - 1)) - ((unsigned long)(brk + sbrk_size));
2050
2051    /* Allocate correction */
2052    new_brk = (char*)(MORECORE (correction));
2053    if (new_brk == (char*)(MORECORE_FAILURE)) return;
2054
2055    sbrked_mem += correction;
2056
2057    top = (mchunkptr)brk;
2058    top_size = new_brk - brk + correction;
2059    set_head(top, top_size | PREV_INUSE);
2060
2061    if (old_top != initial_top)
2062    {
2063
2064      /* There must have been an intervening foreign sbrk call. */
2065      /* A double fencepost is necessary to prevent consolidation */
2066
2067      /* If not enough space to do this, then user did something very wrong */
2068      if (old_top_size < MINSIZE)
2069      {
2070        set_head(top, PREV_INUSE); /* will force null return from malloc */
2071        return;
2072      }
2073
2074      /* Also keep size a multiple of MALLOC_ALIGNMENT */
2075      old_top_size = (old_top_size - 3*SIZE_SZ) & ~MALLOC_ALIGN_MASK;
2076      set_head_size(old_top, old_top_size);
2077      chunk_at_offset(old_top, old_top_size          )->size =
2078        SIZE_SZ|PREV_INUSE;
2079      chunk_at_offset(old_top, old_top_size + SIZE_SZ)->size =
2080        SIZE_SZ|PREV_INUSE;
2081      /* If possible, release the rest. */
2082      if (old_top_size >= MINSIZE)
2083        fREe(chunk2mem(old_top));
2084    }
2085  }
2086
2087  if ((unsigned long)sbrked_mem > (unsigned long)max_sbrked_mem)
2088    max_sbrked_mem = sbrked_mem;
2089  if ((unsigned long)(mmapped_mem + sbrked_mem) > (unsigned long)max_total_mem)
2090    max_total_mem = mmapped_mem + sbrked_mem;
2091
2092  /* We always land on a page boundary */
2093  assert(((unsigned long)((char*)top + top_size) & (pagesz - 1)) == 0);
2094}
2095
2096
2097
2098
2099/* Main public routines */
2100
2101
2102/*
2103  Malloc Algorthim:
2104
2105    The requested size is first converted into a usable form, `nb'.
2106    This currently means to add 4 bytes overhead plus possibly more to
2107    obtain 8-byte alignment and/or to obtain a size of at least
2108    MINSIZE (currently 16 bytes), the smallest allocatable size.
2109    (All fits are considered `exact' if they are within MINSIZE bytes.)
2110
2111    From there, the first successful of the following steps is taken:
2112
2113      1. The bin corresponding to the request size is scanned, and if
2114         a chunk of exactly the right size is found, it is taken.
2115
2116      2. The most recently remaindered chunk is used if it is big
2117         enough.  This is a form of (roving) first fit, used only in
2118         the absence of exact fits. Runs of consecutive requests use
2119         the remainder of the chunk used for the previous such request
2120         whenever possible. This limited use of a first-fit style
2121         allocation strategy tends to give contiguous chunks
2122         coextensive lifetimes, which improves locality and can reduce
2123         fragmentation in the long run.
2124
2125      3. Other bins are scanned in increasing size order, using a
2126         chunk big enough to fulfill the request, and splitting off
2127         any remainder.  This search is strictly by best-fit; i.e.,
2128         the smallest (with ties going to approximately the least
2129         recently used) chunk that fits is selected.
2130
2131      4. If large enough, the chunk bordering the end of memory
2132         (`top') is split off. (This use of `top' is in accord with
2133         the best-fit search rule.  In effect, `top' is treated as
2134         larger (and thus less well fitting) than any other available
2135         chunk since it can be extended to be as large as necessary
2136         (up to system limitations).
2137
2138      5. If the request size meets the mmap threshold and the
2139         system supports mmap, and there are few enough currently
2140         allocated mmapped regions, and a call to mmap succeeds,
2141         the request is allocated via direct memory mapping.
2142
2143      6. Otherwise, the top of memory is extended by
2144         obtaining more space from the system (normally using sbrk,
2145         but definable to anything else via the MORECORE macro).
2146         Memory is gathered from the system (in system page-sized
2147         units) in a way that allows chunks obtained across different
2148         sbrk calls to be consolidated, but does not require
2149         contiguous memory. Thus, it should be safe to intersperse
2150         mallocs with other sbrk calls.
2151
2152
2153      All allocations are made from the the `lowest' part of any found
2154      chunk. (The implementation invariant is that prev_inuse is
2155      always true of any allocated chunk; i.e., that each allocated
2156      chunk borders either a previously allocated and still in-use chunk,
2157      or the base of its memory arena.)
2158
2159*/
2160
2161#if __STD_C
2162Void_t* mALLOc(size_t bytes)
2163#else
2164Void_t* mALLOc(bytes) size_t bytes;
2165#endif
2166{
2167  mchunkptr victim;                  /* inspected/selected chunk */
2168  INTERNAL_SIZE_T victim_size;       /* its size */
2169  int       idx;                     /* index for bin traversal */
2170  mbinptr   bin;                     /* associated bin */
2171  mchunkptr remainder;               /* remainder from a split */
2172  long      remainder_size;          /* its size */
2173  int       remainder_index;         /* its bin index */
2174  unsigned long block;               /* block traverser bit */
2175  int       startidx;                /* first bin of a traversed block */
2176  mchunkptr fwd;                     /* misc temp for linking */
2177  mchunkptr bck;                     /* misc temp for linking */
2178  mbinptr q;                         /* misc temp */
2179
2180  INTERNAL_SIZE_T nb;
2181
2182  /* check if mem_malloc_init() was run */
2183  if ((mem_malloc_start == 0) && (mem_malloc_end == 0)) {
2184    /* not initialized yet */
2185    return 0;
2186  }
2187
2188  if ((long)bytes < 0) return 0;
2189
2190  nb = request2size(bytes);  /* padded request size; */
2191
2192  /* Check for exact match in a bin */
2193
2194  if (is_small_request(nb))  /* Faster version for small requests */
2195  {
2196    idx = smallbin_index(nb);
2197
2198    /* No traversal or size check necessary for small bins.  */
2199
2200    q = bin_at(idx);
2201    victim = last(q);
2202
2203    /* Also scan the next one, since it would have a remainder < MINSIZE */
2204    if (victim == q)
2205    {
2206      q = next_bin(q);
2207      victim = last(q);
2208    }
2209    if (victim != q)
2210    {
2211      victim_size = chunksize(victim);
2212      unlink(victim, bck, fwd);
2213      set_inuse_bit_at_offset(victim, victim_size);
2214      check_malloced_chunk(victim, nb);
2215      return chunk2mem(victim);
2216    }
2217
2218    idx += 2; /* Set for bin scan below. We've already scanned 2 bins. */
2219
2220  }
2221  else
2222  {
2223    idx = bin_index(nb);
2224    bin = bin_at(idx);
2225
2226    for (victim = last(bin); victim != bin; victim = victim->bk)
2227    {
2228      victim_size = chunksize(victim);
2229      remainder_size = victim_size - nb;
2230
2231      if (remainder_size >= (long)MINSIZE) /* too big */
2232      {
2233        --idx; /* adjust to rescan below after checking last remainder */
2234        break;
2235      }
2236
2237      else if (remainder_size >= 0) /* exact fit */
2238      {
2239        unlink(victim, bck, fwd);
2240        set_inuse_bit_at_offset(victim, victim_size);
2241        check_malloced_chunk(victim, nb);
2242        return chunk2mem(victim);
2243      }
2244    }
2245
2246    ++idx;
2247
2248  }
2249
2250  /* Try to use the last split-off remainder */
2251
2252  if ( (victim = last_remainder->fd) != last_remainder)
2253  {
2254    victim_size = chunksize(victim);
2255    remainder_size = victim_size - nb;
2256
2257    if (remainder_size >= (long)MINSIZE) /* re-split */
2258    {
2259      remainder = chunk_at_offset(victim, nb);
2260      set_head(victim, nb | PREV_INUSE);
2261      link_last_remainder(remainder);
2262      set_head(remainder, remainder_size | PREV_INUSE);
2263      set_foot(remainder, remainder_size);
2264      check_malloced_chunk(victim, nb);
2265      return chunk2mem(victim);
2266    }
2267
2268    clear_last_remainder;
2269
2270    if (remainder_size >= 0)  /* exhaust */
2271    {
2272      set_inuse_bit_at_offset(victim, victim_size);
2273      check_malloced_chunk(victim, nb);
2274      return chunk2mem(victim);
2275    }
2276
2277    /* Else place in bin */
2278
2279    frontlink(victim, victim_size, remainder_index, bck, fwd);
2280  }
2281
2282  /*
2283     If there are any possibly nonempty big-enough blocks,
2284     search for best fitting chunk by scanning bins in blockwidth units.
2285  */
2286
2287  if ( (block = idx2binblock(idx)) <= binblocks_r)
2288  {
2289
2290    /* Get to the first marked block */
2291
2292    if ( (block & binblocks_r) == 0)
2293    {
2294      /* force to an even block boundary */
2295      idx = (idx & ~(BINBLOCKWIDTH - 1)) + BINBLOCKWIDTH;
2296      block <<= 1;
2297      while ((block & binblocks_r) == 0)
2298      {
2299        idx += BINBLOCKWIDTH;
2300        block <<= 1;
2301      }
2302    }
2303
2304    /* For each possibly nonempty block ... */
2305    for (;;)
2306    {
2307      startidx = idx;          /* (track incomplete blocks) */
2308      q = bin = bin_at(idx);
2309
2310      /* For each bin in this block ... */
2311      do
2312      {
2313        /* Find and use first big enough chunk ... */
2314
2315        for (victim = last(bin); victim != bin; victim = victim->bk)
2316        {
2317          victim_size = chunksize(victim);
2318          remainder_size = victim_size - nb;
2319
2320          if (remainder_size >= (long)MINSIZE) /* split */
2321          {
2322            remainder = chunk_at_offset(victim, nb);
2323            set_head(victim, nb | PREV_INUSE);
2324            unlink(victim, bck, fwd);
2325            link_last_remainder(remainder);
2326            set_head(remainder, remainder_size | PREV_INUSE);
2327            set_foot(remainder, remainder_size);
2328            check_malloced_chunk(victim, nb);
2329            return chunk2mem(victim);
2330          }
2331
2332          else if (remainder_size >= 0)  /* take */
2333          {
2334            set_inuse_bit_at_offset(victim, victim_size);
2335            unlink(victim, bck, fwd);
2336            check_malloced_chunk(victim, nb);
2337            return chunk2mem(victim);
2338          }
2339
2340        }
2341
2342       bin = next_bin(bin);
2343
2344      } while ((++idx & (BINBLOCKWIDTH - 1)) != 0);
2345
2346      /* Clear out the block bit. */
2347
2348      do   /* Possibly backtrack to try to clear a partial block */
2349      {
2350        if ((startidx & (BINBLOCKWIDTH - 1)) == 0)
2351        {
2352          av_[1] = (mbinptr)(binblocks_r & ~block);
2353          break;
2354        }
2355        --startidx;
2356       q = prev_bin(q);
2357      } while (first(q) == q);
2358
2359      /* Get to the next possibly nonempty block */
2360
2361      if ( (block <<= 1) <= binblocks_r && (block != 0) )
2362      {
2363        while ((block & binblocks_r) == 0)
2364        {
2365          idx += BINBLOCKWIDTH;
2366          block <<= 1;
2367        }
2368      }
2369      else
2370        break;
2371    }
2372  }
2373
2374
2375  /* Try to use top chunk */
2376
2377  /* Require that there be a remainder, ensuring top always exists  */
2378  if ( (remainder_size = chunksize(top) - nb) < (long)MINSIZE)
2379  {
2380
2381#if HAVE_MMAP
2382    /* If big and would otherwise need to extend, try to use mmap instead */
2383    if ((unsigned long)nb >= (unsigned long)mmap_threshold &&
2384        (victim = mmap_chunk(nb)) != 0)
2385      return chunk2mem(victim);
2386#endif
2387
2388    /* Try to extend */
2389    malloc_extend_top(nb);
2390    if ( (remainder_size = chunksize(top) - nb) < (long)MINSIZE)
2391      return 0; /* propagate failure */
2392  }
2393
2394  victim = top;
2395  set_head(victim, nb | PREV_INUSE);
2396  top = chunk_at_offset(victim, nb);
2397  set_head(top, remainder_size | PREV_INUSE);
2398  check_malloced_chunk(victim, nb);
2399  return chunk2mem(victim);
2400
2401}
2402
2403
2404
2405
2406/*
2407
2408  free() algorithm :
2409
2410    cases:
2411
2412       1. free(0) has no effect.
2413
2414       2. If the chunk was allocated via mmap, it is release via munmap().
2415
2416       3. If a returned chunk borders the current high end of memory,
2417          it is consolidated into the top, and if the total unused
2418          topmost memory exceeds the trim threshold, malloc_trim is
2419          called.
2420
2421       4. Other chunks are consolidated as they arrive, and
2422          placed in corresponding bins. (This includes the case of
2423          consolidating with the current `last_remainder').
2424
2425*/
2426
2427
2428#if __STD_C
2429void fREe(Void_t* mem)
2430#else
2431void fREe(mem) Void_t* mem;
2432#endif
2433{
2434  mchunkptr p;         /* chunk corresponding to mem */
2435  INTERNAL_SIZE_T hd;  /* its head field */
2436  INTERNAL_SIZE_T sz;  /* its size */
2437  int       idx;       /* its bin index */
2438  mchunkptr next;      /* next contiguous chunk */
2439  INTERNAL_SIZE_T nextsz; /* its size */
2440  INTERNAL_SIZE_T prevsz; /* size of previous contiguous chunk */
2441  mchunkptr bck;       /* misc temp for linking */
2442  mchunkptr fwd;       /* misc temp for linking */
2443  int       islr;      /* track whether merging with last_remainder */
2444
2445  if (mem == 0)                              /* free(0) has no effect */
2446    return;
2447
2448  p = mem2chunk(mem);
2449  hd = p->size;
2450
2451#if HAVE_MMAP
2452  if (hd & IS_MMAPPED)                       /* release mmapped memory. */
2453  {
2454    munmap_chunk(p);
2455    return;
2456  }
2457#endif
2458
2459  check_inuse_chunk(p);
2460
2461  sz = hd & ~PREV_INUSE;
2462  next = chunk_at_offset(p, sz);
2463  nextsz = chunksize(next);
2464
2465  if (next == top)                            /* merge with top */
2466  {
2467    sz += nextsz;
2468
2469    if (!(hd & PREV_INUSE))                    /* consolidate backward */
2470    {
2471      prevsz = p->prev_size;
2472      p = chunk_at_offset(p, -((long) prevsz));
2473      sz += prevsz;
2474      unlink(p, bck, fwd);
2475    }
2476
2477    set_head(p, sz | PREV_INUSE);
2478    top = p;
2479    if ((unsigned long)(sz) >= (unsigned long)trim_threshold)
2480      malloc_trim(top_pad);
2481    return;
2482  }
2483
2484  set_head(next, nextsz);                    /* clear inuse bit */
2485
2486  islr = 0;
2487
2488  if (!(hd & PREV_INUSE))                    /* consolidate backward */
2489  {
2490    prevsz = p->prev_size;
2491    p = chunk_at_offset(p, -((long) prevsz));
2492    sz += prevsz;
2493
2494    if (p->fd == last_remainder)             /* keep as last_remainder */
2495      islr = 1;
2496    else
2497      unlink(p, bck, fwd);
2498  }
2499
2500  if (!(inuse_bit_at_offset(next, nextsz)))   /* consolidate forward */
2501  {
2502    sz += nextsz;
2503
2504    if (!islr && next->fd == last_remainder)  /* re-insert last_remainder */
2505    {
2506      islr = 1;
2507      link_last_remainder(p);
2508    }
2509    else
2510      unlink(next, bck, fwd);
2511  }
2512
2513
2514  set_head(p, sz | PREV_INUSE);
2515  set_foot(p, sz);
2516  if (!islr)
2517    frontlink(p, sz, idx, bck, fwd);
2518}
2519
2520
2521
2522
2523
2524/*
2525
2526  Realloc algorithm:
2527
2528    Chunks that were obtained via mmap cannot be extended or shrunk
2529    unless HAVE_MREMAP is defined, in which case mremap is used.
2530    Otherwise, if their reallocation is for additional space, they are
2531    copied.  If for less, they are just left alone.
2532
2533    Otherwise, if the reallocation is for additional space, and the
2534    chunk can be extended, it is, else a malloc-copy-free sequence is
2535    taken.  There are several different ways that a chunk could be
2536    extended. All are tried:
2537
2538       * Extending forward into following adjacent free chunk.
2539       * Shifting backwards, joining preceding adjacent space
2540       * Both shifting backwards and extending forward.
2541       * Extending into newly sbrked space
2542
2543    Unless the #define REALLOC_ZERO_BYTES_FREES is set, realloc with a
2544    size argument of zero (re)allocates a minimum-sized chunk.
2545
2546    If the reallocation is for less space, and the new request is for
2547    a `small' (<512 bytes) size, then the newly unused space is lopped
2548    off and freed.
2549
2550    The old unix realloc convention of allowing the last-free'd chunk
2551    to be used as an argument to realloc is no longer supported.
2552    I don't know of any programs still relying on this feature,
2553    and allowing it would also allow too many other incorrect
2554    usages of realloc to be sensible.
2555
2556
2557*/
2558
2559
2560#if __STD_C
2561Void_t* rEALLOc(Void_t* oldmem, size_t bytes)
2562#else
2563Void_t* rEALLOc(oldmem, bytes) Void_t* oldmem; size_t bytes;
2564#endif
2565{
2566  INTERNAL_SIZE_T    nb;      /* padded request size */
2567
2568  mchunkptr oldp;             /* chunk corresponding to oldmem */
2569  INTERNAL_SIZE_T    oldsize; /* its size */
2570
2571  mchunkptr newp;             /* chunk to return */
2572  INTERNAL_SIZE_T    newsize; /* its size */
2573  Void_t*   newmem;           /* corresponding user mem */
2574
2575  mchunkptr next;             /* next contiguous chunk after oldp */
2576  INTERNAL_SIZE_T  nextsize;  /* its size */
2577
2578  mchunkptr prev;             /* previous contiguous chunk before oldp */
2579  INTERNAL_SIZE_T  prevsize;  /* its size */
2580
2581  mchunkptr remainder;        /* holds split off extra space from newp */
2582  INTERNAL_SIZE_T  remainder_size;   /* its size */
2583
2584  mchunkptr bck;              /* misc temp for linking */
2585  mchunkptr fwd;              /* misc temp for linking */
2586
2587#ifdef REALLOC_ZERO_BYTES_FREES
2588  if (bytes == 0) { fREe(oldmem); return 0; }
2589#endif
2590
2591  if ((long)bytes < 0) return 0;
2592
2593  /* realloc of null is supposed to be same as malloc */
2594  if (oldmem == 0) return mALLOc(bytes);
2595
2596  newp    = oldp    = mem2chunk(oldmem);
2597  newsize = oldsize = chunksize(oldp);
2598
2599
2600  nb = request2size(bytes);
2601
2602#if HAVE_MMAP
2603  if (chunk_is_mmapped(oldp))
2604  {
2605#if HAVE_MREMAP
2606    newp = mremap_chunk(oldp, nb);
2607    if(newp) return chunk2mem(newp);
2608#endif
2609    /* Note the extra SIZE_SZ overhead. */
2610    if(oldsize - SIZE_SZ >= nb) return oldmem; /* do nothing */
2611    /* Must alloc, copy, free. */
2612    newmem = mALLOc(bytes);
2613    if (newmem == 0) return 0; /* propagate failure */
2614    MALLOC_COPY(newmem, oldmem, oldsize - 2*SIZE_SZ);
2615    munmap_chunk(oldp);
2616    return newmem;
2617  }
2618#endif
2619
2620  check_inuse_chunk(oldp);
2621
2622  if ((long)(oldsize) < (long)(nb))
2623  {
2624
2625    /* Try expanding forward */
2626
2627    next = chunk_at_offset(oldp, oldsize);
2628    if (next == top || !inuse(next))
2629    {
2630      nextsize = chunksize(next);
2631
2632      /* Forward into top only if a remainder */
2633      if (next == top)
2634      {
2635        if ((long)(nextsize + newsize) >= (long)(nb + MINSIZE))
2636        {
2637          newsize += nextsize;
2638          top = chunk_at_offset(oldp, nb);
2639          set_head(top, (newsize - nb) | PREV_INUSE);
2640          set_head_size(oldp, nb);
2641          return chunk2mem(oldp);
2642        }
2643      }
2644
2645      /* Forward into next chunk */
2646      else if (((long)(nextsize + newsize) >= (long)(nb)))
2647      {
2648        unlink(next, bck, fwd);
2649        newsize  += nextsize;
2650        goto split;
2651      }
2652    }
2653    else
2654    {
2655      next = 0;
2656      nextsize = 0;
2657    }
2658
2659    /* Try shifting backwards. */
2660
2661    if (!prev_inuse(oldp))
2662    {
2663      prev = prev_chunk(oldp);
2664      prevsize = chunksize(prev);
2665
2666      /* try forward + backward first to save a later consolidation */
2667
2668      if (next != 0)
2669      {
2670        /* into top */
2671        if (next == top)
2672        {
2673          if ((long)(nextsize + prevsize + newsize) >= (long)(nb + MINSIZE))
2674          {
2675            unlink(prev, bck, fwd);
2676            newp = prev;
2677            newsize += prevsize + nextsize;
2678            newmem = chunk2mem(newp);
2679            MALLOC_COPY(newmem, oldmem, oldsize - SIZE_SZ);
2680            top = chunk_at_offset(newp, nb);
2681            set_head(top, (newsize - nb) | PREV_INUSE);
2682            set_head_size(newp, nb);
2683            return newmem;
2684          }
2685        }
2686
2687        /* into next chunk */
2688        else if (((long)(nextsize + prevsize + newsize) >= (long)(nb)))
2689        {
2690          unlink(next, bck, fwd);
2691          unlink(prev, bck, fwd);
2692          newp = prev;
2693          newsize += nextsize + prevsize;
2694          newmem = chunk2mem(newp);
2695          MALLOC_COPY(newmem, oldmem, oldsize - SIZE_SZ);
2696          goto split;
2697        }
2698      }
2699
2700      /* backward only */
2701      if (prev != 0 && (long)(prevsize + newsize) >= (long)nb)
2702      {
2703        unlink(prev, bck, fwd);
2704        newp = prev;
2705        newsize += prevsize;
2706        newmem = chunk2mem(newp);
2707        MALLOC_COPY(newmem, oldmem, oldsize - SIZE_SZ);
2708        goto split;
2709      }
2710    }
2711
2712    /* Must allocate */
2713
2714    newmem = mALLOc (bytes);
2715
2716    if (newmem == 0)  /* propagate failure */
2717      return 0;
2718
2719    /* Avoid copy if newp is next chunk after oldp. */
2720    /* (This can only happen when new chunk is sbrk'ed.) */
2721
2722    if ( (newp = mem2chunk(newmem)) == next_chunk(oldp))
2723    {
2724      newsize += chunksize(newp);
2725      newp = oldp;
2726      goto split;
2727    }
2728
2729    /* Otherwise copy, free, and exit */
2730    MALLOC_COPY(newmem, oldmem, oldsize - SIZE_SZ);
2731    fREe(oldmem);
2732    return newmem;
2733  }
2734
2735
2736 split:  /* split off extra room in old or expanded chunk */
2737
2738  if (newsize - nb >= MINSIZE) /* split off remainder */
2739  {
2740    remainder = chunk_at_offset(newp, nb);
2741    remainder_size = newsize - nb;
2742    set_head_size(newp, nb);
2743    set_head(remainder, remainder_size | PREV_INUSE);
2744    set_inuse_bit_at_offset(remainder, remainder_size);
2745    fREe(chunk2mem(remainder)); /* let free() deal with it */
2746  }
2747  else
2748  {
2749    set_head_size(newp, newsize);
2750    set_inuse_bit_at_offset(newp, newsize);
2751  }
2752
2753  check_inuse_chunk(newp);
2754  return chunk2mem(newp);
2755}
2756
2757
2758
2759
2760/*
2761
2762  memalign algorithm:
2763
2764    memalign requests more than enough space from malloc, finds a spot
2765    within that chunk that meets the alignment request, and then
2766    possibly frees the leading and trailing space.
2767
2768    The alignment argument must be a power of two. This property is not
2769    checked by memalign, so misuse may result in random runtime errors.
2770
2771    8-byte alignment is guaranteed by normal malloc calls, so don't
2772    bother calling memalign with an argument of 8 or less.
2773
2774    Overreliance on memalign is a sure way to fragment space.
2775
2776*/
2777
2778
2779#if __STD_C
2780Void_t* mEMALIGn(size_t alignment, size_t bytes)
2781#else
2782Void_t* mEMALIGn(alignment, bytes) size_t alignment; size_t bytes;
2783#endif
2784{
2785  INTERNAL_SIZE_T    nb;      /* padded  request size */
2786  char*     m;                /* memory returned by malloc call */
2787  mchunkptr p;                /* corresponding chunk */
2788  char*     brk;              /* alignment point within p */
2789  mchunkptr newp;             /* chunk to return */
2790  INTERNAL_SIZE_T  newsize;   /* its size */
2791  INTERNAL_SIZE_T  leadsize;  /* leading space befor alignment point */
2792  mchunkptr remainder;        /* spare room at end to split off */
2793  long      remainder_size;   /* its size */
2794
2795  if ((long)bytes < 0) return 0;
2796
2797  /* If need less alignment than we give anyway, just relay to malloc */
2798
2799  if (alignment <= MALLOC_ALIGNMENT) return mALLOc(bytes);
2800
2801  /* Otherwise, ensure that it is at least a minimum chunk size */
2802
2803  if (alignment <  MINSIZE) alignment = MINSIZE;
2804
2805  /* Call malloc with worst case padding to hit alignment. */
2806
2807  nb = request2size(bytes);
2808  m  = (char*)(mALLOc(nb + alignment + MINSIZE));
2809
2810  if (m == 0) return 0; /* propagate failure */
2811
2812  p = mem2chunk(m);
2813
2814  if ((((unsigned long)(m)) % alignment) == 0) /* aligned */
2815  {
2816#if HAVE_MMAP
2817    if(chunk_is_mmapped(p))
2818      return chunk2mem(p); /* nothing more to do */
2819#endif
2820  }
2821  else /* misaligned */
2822  {
2823    /*
2824      Find an aligned spot inside chunk.
2825      Since we need to give back leading space in a chunk of at
2826      least MINSIZE, if the first calculation places us at
2827      a spot with less than MINSIZE leader, we can move to the
2828      next aligned spot -- we've allocated enough total room so that
2829      this is always possible.
2830    */
2831
2832    brk = (char*)mem2chunk(((unsigned long)(m + alignment - 1)) & -((signed) alignment));
2833    if ((long)(brk - (char*)(p)) < MINSIZE) brk = brk + alignment;
2834
2835    newp = (mchunkptr)brk;
2836    leadsize = brk - (char*)(p);
2837    newsize = chunksize(p) - leadsize;
2838
2839#if HAVE_MMAP
2840    if(chunk_is_mmapped(p))
2841    {
2842      newp->prev_size = p->prev_size + leadsize;
2843      set_head(newp, newsize|IS_MMAPPED);
2844      return chunk2mem(newp);
2845    }
2846#endif
2847
2848    /* give back leader, use the rest */
2849
2850    set_head(newp, newsize | PREV_INUSE);
2851    set_inuse_bit_at_offset(newp, newsize);
2852    set_head_size(p, leadsize);
2853    fREe(chunk2mem(p));
2854    p = newp;
2855
2856    assert (newsize >= nb && (((unsigned long)(chunk2mem(p))) % alignment) == 0);
2857  }
2858
2859  /* Also give back spare room at the end */
2860
2861  remainder_size = chunksize(p) - nb;
2862
2863  if (remainder_size >= (long)MINSIZE)
2864  {
2865    remainder = chunk_at_offset(p, nb);
2866    set_head(remainder, remainder_size | PREV_INUSE);
2867    set_head_size(p, nb);
2868    fREe(chunk2mem(remainder));
2869  }
2870
2871  check_inuse_chunk(p);
2872  return chunk2mem(p);
2873
2874}
2875
2876
2877
2878
2879/*
2880    valloc just invokes memalign with alignment argument equal
2881    to the page size of the system (or as near to this as can
2882    be figured out from all the includes/defines above.)
2883*/
2884
2885#if __STD_C
2886Void_t* vALLOc(size_t bytes)
2887#else
2888Void_t* vALLOc(bytes) size_t bytes;
2889#endif
2890{
2891  return mEMALIGn (malloc_getpagesize, bytes);
2892}
2893
2894/*
2895  pvalloc just invokes valloc for the nearest pagesize
2896  that will accommodate request
2897*/
2898
2899
2900#if __STD_C
2901Void_t* pvALLOc(size_t bytes)
2902#else
2903Void_t* pvALLOc(bytes) size_t bytes;
2904#endif
2905{
2906  size_t pagesize = malloc_getpagesize;
2907  return mEMALIGn (pagesize, (bytes + pagesize - 1) & ~(pagesize - 1));
2908}
2909
2910/*
2911
2912  calloc calls malloc, then zeroes out the allocated chunk.
2913
2914*/
2915
2916#if __STD_C
2917Void_t* cALLOc(size_t n, size_t elem_size)
2918#else
2919Void_t* cALLOc(n, elem_size) size_t n; size_t elem_size;
2920#endif
2921{
2922  mchunkptr p;
2923  INTERNAL_SIZE_T csz;
2924
2925  INTERNAL_SIZE_T sz = n * elem_size;
2926
2927
2928  /* check if expand_top called, in which case don't need to clear */
2929#if MORECORE_CLEARS
2930  mchunkptr oldtop = top;
2931  INTERNAL_SIZE_T oldtopsize = chunksize(top);
2932#endif
2933  Void_t* mem = mALLOc (sz);
2934
2935  if ((long)n < 0) return 0;
2936
2937  if (mem == 0)
2938    return 0;
2939  else
2940  {
2941    p = mem2chunk(mem);
2942
2943    /* Two optional cases in which clearing not necessary */
2944
2945
2946#if HAVE_MMAP
2947    if (chunk_is_mmapped(p)) return mem;
2948#endif
2949
2950    csz = chunksize(p);
2951
2952#if MORECORE_CLEARS
2953    if (p == oldtop && csz > oldtopsize)
2954    {
2955      /* clear only the bytes from non-freshly-sbrked memory */
2956      csz = oldtopsize;
2957    }
2958#endif
2959
2960    MALLOC_ZERO(mem, csz - SIZE_SZ);
2961    return mem;
2962  }
2963}
2964
2965/*
2966
2967  cfree just calls free. It is needed/defined on some systems
2968  that pair it with calloc, presumably for odd historical reasons.
2969
2970*/
2971
2972#if !defined(INTERNAL_LINUX_C_LIB) || !defined(__ELF__)
2973#if __STD_C
2974void cfree(Void_t *mem)
2975#else
2976void cfree(mem) Void_t *mem;
2977#endif
2978{
2979  fREe(mem);
2980}
2981#endif
2982
2983
2984
2985/*
2986
2987    Malloc_trim gives memory back to the system (via negative
2988    arguments to sbrk) if there is unused memory at the `high' end of
2989    the malloc pool. You can call this after freeing large blocks of
2990    memory to potentially reduce the system-level memory requirements
2991    of a program. However, it cannot guarantee to reduce memory. Under
2992    some allocation patterns, some large free blocks of memory will be
2993    locked between two used chunks, so they cannot be given back to
2994    the system.
2995
2996    The `pad' argument to malloc_trim represents the amount of free
2997    trailing space to leave untrimmed. If this argument is zero,
2998    only the minimum amount of memory to maintain internal data
2999    structures will be left (one page or less). Non-zero arguments
3000    can be supplied to maintain enough trailing space to service
3001    future expected allocations without having to re-obtain memory
3002    from the system.
3003
3004    Malloc_trim returns 1 if it actually released any memory, else 0.
3005
3006*/
3007
3008#if __STD_C
3009int malloc_trim(size_t pad)
3010#else
3011int malloc_trim(pad) size_t pad;
3012#endif
3013{
3014  long  top_size;        /* Amount of top-most memory */
3015  long  extra;           /* Amount to release */
3016  char* current_brk;     /* address returned by pre-check sbrk call */
3017  char* new_brk;         /* address returned by negative sbrk call */
3018
3019  unsigned long pagesz = malloc_getpagesize;
3020
3021  top_size = chunksize(top);
3022  extra = ((top_size - pad - MINSIZE + (pagesz-1)) / pagesz - 1) * pagesz;
3023
3024  if (extra < (long)pagesz)  /* Not enough memory to release */
3025    return 0;
3026
3027  else
3028  {
3029    /* Test to make sure no one else called sbrk */
3030    current_brk = (char*)(MORECORE (0));
3031    if (current_brk != (char*)(top) + top_size)
3032      return 0;     /* Apparently we don't own memory; must fail */
3033
3034    else
3035    {
3036      new_brk = (char*)(MORECORE (-extra));
3037
3038      if (new_brk == (char*)(MORECORE_FAILURE)) /* sbrk failed? */
3039      {
3040        /* Try to figure out what we have */
3041        current_brk = (char*)(MORECORE (0));
3042        top_size = current_brk - (char*)top;
3043        if (top_size >= (long)MINSIZE) /* if not, we are very very dead! */
3044        {
3045          sbrked_mem = current_brk - sbrk_base;
3046          set_head(top, top_size | PREV_INUSE);
3047        }
3048        check_chunk(top);
3049        return 0;
3050      }
3051
3052      else
3053      {
3054        /* Success. Adjust top accordingly. */
3055        set_head(top, (top_size - extra) | PREV_INUSE);
3056        sbrked_mem -= extra;
3057        check_chunk(top);
3058        return 1;
3059      }
3060    }
3061  }
3062}
3063
3064
3065
3066/*
3067  malloc_usable_size:
3068
3069    This routine tells you how many bytes you can actually use in an
3070    allocated chunk, which may be more than you requested (although
3071    often not). You can use this many bytes without worrying about
3072    overwriting other allocated objects. Not a particularly great
3073    programming practice, but still sometimes useful.
3074
3075*/
3076
3077#if __STD_C
3078size_t malloc_usable_size(Void_t* mem)
3079#else
3080size_t malloc_usable_size(mem) Void_t* mem;
3081#endif
3082{
3083  mchunkptr p;
3084  if (mem == 0)
3085    return 0;
3086  else
3087  {
3088    p = mem2chunk(mem);
3089    if(!chunk_is_mmapped(p))
3090    {
3091      if (!inuse(p)) return 0;
3092      check_inuse_chunk(p);
3093      return chunksize(p) - SIZE_SZ;
3094    }
3095    return chunksize(p) - 2*SIZE_SZ;
3096  }
3097}
3098
3099
3100
3101
3102/* Utility to update current_mallinfo for malloc_stats and mallinfo() */
3103
3104#if 0
3105static void malloc_update_mallinfo()
3106{
3107  int i;
3108  mbinptr b;
3109  mchunkptr p;
3110#ifdef DEBUG
3111  mchunkptr q;
3112#endif
3113
3114  INTERNAL_SIZE_T avail = chunksize(top);
3115  int   navail = ((long)(avail) >= (long)MINSIZE)? 1 : 0;
3116
3117  for (i = 1; i < NAV; ++i)
3118  {
3119    b = bin_at(i);
3120    for (p = last(b); p != b; p = p->bk)
3121    {
3122#ifdef DEBUG
3123      check_free_chunk(p);
3124      for (q = next_chunk(p);
3125           q < top && inuse(q) && (long)(chunksize(q)) >= (long)MINSIZE;
3126           q = next_chunk(q))
3127        check_inuse_chunk(q);
3128#endif
3129      avail += chunksize(p);
3130      navail++;
3131    }
3132  }
3133
3134  current_mallinfo.ordblks = navail;
3135  current_mallinfo.uordblks = sbrked_mem - avail;
3136  current_mallinfo.fordblks = avail;
3137  current_mallinfo.hblks = n_mmaps;
3138  current_mallinfo.hblkhd = mmapped_mem;
3139  current_mallinfo.keepcost = chunksize(top);
3140
3141}
3142#endif  /* 0 */
3143
3144
3145
3146/*
3147
3148  malloc_stats:
3149
3150    Prints on the amount of space obtain from the system (both
3151    via sbrk and mmap), the maximum amount (which may be more than
3152    current if malloc_trim and/or munmap got called), the maximum
3153    number of simultaneous mmap regions used, and the current number
3154    of bytes allocated via malloc (or realloc, etc) but not yet
3155    freed. (Note that this is the number of bytes allocated, not the
3156    number requested. It will be larger than the number requested
3157    because of alignment and bookkeeping overhead.)
3158
3159*/
3160
3161#if 0
3162void malloc_stats()
3163{
3164  malloc_update_mallinfo();
3165  printf("max system bytes = %10u\n",
3166          (unsigned int)(max_total_mem));
3167  printf("system bytes     = %10u\n",
3168          (unsigned int)(sbrked_mem + mmapped_mem));
3169  printf("in use bytes     = %10u\n",
3170          (unsigned int)(current_mallinfo.uordblks + mmapped_mem));
3171#if HAVE_MMAP
3172  printf("max mmap regions = %10u\n",
3173          (unsigned int)max_n_mmaps);
3174#endif
3175}
3176#endif  /* 0 */
3177
3178/*
3179  mallinfo returns a copy of updated current mallinfo.
3180*/
3181
3182#if 0
3183struct mallinfo mALLINFo()
3184{
3185  malloc_update_mallinfo();
3186  return current_mallinfo;
3187}
3188#endif  /* 0 */
3189
3190
3191
3192
3193/*
3194  mallopt:
3195
3196    mallopt is the general SVID/XPG interface to tunable parameters.
3197    The format is to provide a (parameter-number, parameter-value) pair.
3198    mallopt then sets the corresponding parameter to the argument
3199    value if it can (i.e., so long as the value is meaningful),
3200    and returns 1 if successful else 0.
3201
3202    See descriptions of tunable parameters above.
3203
3204*/
3205
3206#if __STD_C
3207int mALLOPt(int param_number, int value)
3208#else
3209int mALLOPt(param_number, value) int param_number; int value;
3210#endif
3211{
3212  switch(param_number)
3213  {
3214    case M_TRIM_THRESHOLD:
3215      trim_threshold = value; return 1;
3216    case M_TOP_PAD:
3217      top_pad = value; return 1;
3218    case M_MMAP_THRESHOLD:
3219      mmap_threshold = value; return 1;
3220    case M_MMAP_MAX:
3221#if HAVE_MMAP
3222      n_mmaps_max = value; return 1;
3223#else
3224      if (value != 0) return 0; else  n_mmaps_max = value; return 1;
3225#endif
3226
3227    default:
3228      return 0;
3229  }
3230}
3231
3232/*
3233
3234History:
3235
3236    V2.6.6 Sun Dec  5 07:42:19 1999  Doug Lea  (dl at gee)
3237      * return null for negative arguments
3238      * Added Several WIN32 cleanups from Martin C. Fong <mcfong@yahoo.com>
3239         * Add 'LACKS_SYS_PARAM_H' for those systems without 'sys/param.h'
3240          (e.g. WIN32 platforms)
3241         * Cleanup up header file inclusion for WIN32 platforms
3242         * Cleanup code to avoid Microsoft Visual C++ compiler complaints
3243         * Add 'USE_DL_PREFIX' to quickly allow co-existence with existing
3244           memory allocation routines
3245         * Set 'malloc_getpagesize' for WIN32 platforms (needs more work)
3246         * Use 'assert' rather than 'ASSERT' in WIN32 code to conform to
3247           usage of 'assert' in non-WIN32 code
3248         * Improve WIN32 'sbrk()' emulation's 'findRegion()' routine to
3249           avoid infinite loop
3250      * Always call 'fREe()' rather than 'free()'
3251
3252    V2.6.5 Wed Jun 17 15:57:31 1998  Doug Lea  (dl at gee)
3253      * Fixed ordering problem with boundary-stamping
3254
3255    V2.6.3 Sun May 19 08:17:58 1996  Doug Lea  (dl at gee)
3256      * Added pvalloc, as recommended by H.J. Liu
3257      * Added 64bit pointer support mainly from Wolfram Gloger
3258      * Added anonymously donated WIN32 sbrk emulation
3259      * Malloc, calloc, getpagesize: add optimizations from Raymond Nijssen
3260      * malloc_extend_top: fix mask error that caused wastage after
3261        foreign sbrks
3262      * Add linux mremap support code from HJ Liu
3263
3264    V2.6.2 Tue Dec  5 06:52:55 1995  Doug Lea  (dl at gee)
3265      * Integrated most documentation with the code.
3266      * Add support for mmap, with help from
3267        Wolfram Gloger (Gloger@lrz.uni-muenchen.de).
3268      * Use last_remainder in more cases.
3269      * Pack bins using idea from  colin@nyx10.cs.du.edu
3270      * Use ordered bins instead of best-fit threshhold
3271      * Eliminate block-local decls to simplify tracing and debugging.
3272      * Support another case of realloc via move into top
3273      * Fix error occuring when initial sbrk_base not word-aligned.
3274      * Rely on page size for units instead of SBRK_UNIT to
3275        avoid surprises about sbrk alignment conventions.
3276      * Add mallinfo, mallopt. Thanks to Raymond Nijssen
3277        (raymond@es.ele.tue.nl) for the suggestion.
3278      * Add `pad' argument to malloc_trim and top_pad mallopt parameter.
3279      * More precautions for cases where other routines call sbrk,
3280        courtesy of Wolfram Gloger (Gloger@lrz.uni-muenchen.de).
3281      * Added macros etc., allowing use in linux libc from
3282        H.J. Lu (hjl@gnu.ai.mit.edu)
3283      * Inverted this history list
3284
3285    V2.6.1 Sat Dec  2 14:10:57 1995  Doug Lea  (dl at gee)
3286      * Re-tuned and fixed to behave more nicely with V2.6.0 changes.
3287      * Removed all preallocation code since under current scheme
3288        the work required to undo bad preallocations exceeds
3289        the work saved in good cases for most test programs.
3290      * No longer use return list or unconsolidated bins since
3291        no scheme using them consistently outperforms those that don't
3292        given above changes.
3293      * Use best fit for very large chunks to prevent some worst-cases.
3294      * Added some support for debugging
3295
3296    V2.6.0 Sat Nov  4 07:05:23 1995  Doug Lea  (dl at gee)
3297      * Removed footers when chunks are in use. Thanks to
3298        Paul Wilson (wilson@cs.texas.edu) for the suggestion.
3299
3300    V2.5.4 Wed Nov  1 07:54:51 1995  Doug Lea  (dl at gee)
3301      * Added malloc_trim, with help from Wolfram Gloger
3302        (wmglo@Dent.MED.Uni-Muenchen.DE).
3303
3304    V2.5.3 Tue Apr 26 10:16:01 1994  Doug Lea  (dl at g)
3305
3306    V2.5.2 Tue Apr  5 16:20:40 1994  Doug Lea  (dl at g)
3307      * realloc: try to expand in both directions
3308      * malloc: swap order of clean-bin strategy;
3309      * realloc: only conditionally expand backwards
3310      * Try not to scavenge used bins
3311      * Use bin counts as a guide to preallocation
3312      * Occasionally bin return list chunks in first scan
3313      * Add a few optimizations from colin@nyx10.cs.du.edu
3314
3315    V2.5.1 Sat Aug 14 15:40:43 1993  Doug Lea  (dl at g)
3316      * faster bin computation & slightly different binning
3317      * merged all consolidations to one part of malloc proper
3318         (eliminating old malloc_find_space & malloc_clean_bin)
3319      * Scan 2 returns chunks (not just 1)
3320      * Propagate failure in realloc if malloc returns 0
3321      * Add stuff to allow compilation on non-ANSI compilers
3322          from kpv@research.att.com
3323
3324    V2.5 Sat Aug  7 07:41:59 1993  Doug Lea  (dl at g.oswego.edu)
3325      * removed potential for odd address access in prev_chunk
3326      * removed dependency on getpagesize.h
3327      * misc cosmetics and a bit more internal documentation
3328      * anticosmetics: mangled names in macros to evade debugger strangeness
3329      * tested on sparc, hp-700, dec-mips, rs6000
3330          with gcc & native cc (hp, dec only) allowing
3331          Detlefs & Zorn comparison study (in SIGPLAN Notices.)
3332
3333    Trial version Fri Aug 28 13:14:29 1992  Doug Lea  (dl at g.oswego.edu)
3334      * Based loosely on libg++-1.2X malloc. (It retains some of the overall
3335         structure of old version,  but most details differ.)
3336
3337*/
3338