uboot/drivers/mtd/onenand/onenand_base.c
<<
>>
Prefs
   1/*
   2 *  linux/drivers/mtd/onenand/onenand_base.c
   3 *
   4 *  Copyright (C) 2005-2007 Samsung Electronics
   5 *  Kyungmin Park <kyungmin.park@samsung.com>
   6 *
   7 *  Credits:
   8 *      Adrian Hunter <ext-adrian.hunter@nokia.com>:
   9 *      auto-placement support, read-while load support, various fixes
  10 *      Copyright (C) Nokia Corporation, 2007
  11 *
  12 *      Rohit Hagargundgi <h.rohit at samsung.com>,
  13 *      Amul Kumar Saha <amul.saha@samsung.com>:
  14 *      Flex-OneNAND support
  15 *      Copyright (C) Samsung Electronics, 2009
  16 *
  17 * This program is free software; you can redistribute it and/or modify
  18 * it under the terms of the GNU General Public License version 2 as
  19 * published by the Free Software Foundation.
  20 */
  21
  22#include <common.h>
  23#include <linux/mtd/compat.h>
  24#include <linux/mtd/mtd.h>
  25#include <linux/mtd/onenand.h>
  26
  27#include <asm/io.h>
  28#include <asm/errno.h>
  29#include <malloc.h>
  30
  31/* It should access 16-bit instead of 8-bit */
  32static void *memcpy_16(void *dst, const void *src, unsigned int len)
  33{
  34        void *ret = dst;
  35        short *d = dst;
  36        const short *s = src;
  37
  38        len >>= 1;
  39        while (len-- > 0)
  40                *d++ = *s++;
  41        return ret;
  42}
  43
  44/**
  45 *  onenand_oob_128 - oob info for Flex-Onenand with 4KB page
  46 *  For now, we expose only 64 out of 80 ecc bytes
  47 */
  48static struct nand_ecclayout onenand_oob_128 = {
  49        .eccbytes       = 64,
  50        .eccpos         = {
  51                6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
  52                22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
  53                38, 39, 40, 41, 42, 43, 44, 45, 46, 47,
  54                54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
  55                70, 71, 72, 73, 74, 75, 76, 77, 78, 79,
  56                86, 87, 88, 89, 90, 91, 92, 93, 94, 95,
  57                102, 103, 104, 105
  58                },
  59        .oobfree        = {
  60                {2, 4}, {18, 4}, {34, 4}, {50, 4},
  61                {66, 4}, {82, 4}, {98, 4}, {114, 4}
  62        }
  63};
  64
  65/**
  66 * onenand_oob_64 - oob info for large (2KB) page
  67 */
  68static struct nand_ecclayout onenand_oob_64 = {
  69        .eccbytes       = 20,
  70        .eccpos         = {
  71                8, 9, 10, 11, 12,
  72                24, 25, 26, 27, 28,
  73                40, 41, 42, 43, 44,
  74                56, 57, 58, 59, 60,
  75                },
  76        .oobfree        = {
  77                {2, 3}, {14, 2}, {18, 3}, {30, 2},
  78                {34, 3}, {46, 2}, {50, 3}, {62, 2}
  79        }
  80};
  81
  82/**
  83 * onenand_oob_32 - oob info for middle (1KB) page
  84 */
  85static struct nand_ecclayout onenand_oob_32 = {
  86        .eccbytes       = 10,
  87        .eccpos         = {
  88                8, 9, 10, 11, 12,
  89                24, 25, 26, 27, 28,
  90                },
  91        .oobfree        = { {2, 3}, {14, 2}, {18, 3}, {30, 2} }
  92};
  93
  94static const unsigned char ffchars[] = {
  95        0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
  96        0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 16 */
  97        0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
  98        0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 32 */
  99        0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
 100        0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 48 */
 101        0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
 102        0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 64 */
 103        0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
 104        0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 80 */
 105        0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
 106        0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 96 */
 107        0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
 108        0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 112 */
 109        0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
 110        0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 128 */
 111};
 112
 113/**
 114 * onenand_readw - [OneNAND Interface] Read OneNAND register
 115 * @param addr          address to read
 116 *
 117 * Read OneNAND register
 118 */
 119static unsigned short onenand_readw(void __iomem * addr)
 120{
 121        return readw(addr);
 122}
 123
 124/**
 125 * onenand_writew - [OneNAND Interface] Write OneNAND register with value
 126 * @param value         value to write
 127 * @param addr          address to write
 128 *
 129 * Write OneNAND register with value
 130 */
 131static void onenand_writew(unsigned short value, void __iomem * addr)
 132{
 133        writew(value, addr);
 134}
 135
 136/**
 137 * onenand_block_address - [DEFAULT] Get block address
 138 * @param device        the device id
 139 * @param block         the block
 140 * @return              translated block address if DDP, otherwise same
 141 *
 142 * Setup Start Address 1 Register (F100h)
 143 */
 144static int onenand_block_address(struct onenand_chip *this, int block)
 145{
 146        /* Device Flash Core select, NAND Flash Block Address */
 147        if (block & this->density_mask)
 148                return ONENAND_DDP_CHIP1 | (block ^ this->density_mask);
 149
 150        return block;
 151}
 152
 153/**
 154 * onenand_bufferram_address - [DEFAULT] Get bufferram address
 155 * @param device        the device id
 156 * @param block         the block
 157 * @return              set DBS value if DDP, otherwise 0
 158 *
 159 * Setup Start Address 2 Register (F101h) for DDP
 160 */
 161static int onenand_bufferram_address(struct onenand_chip *this, int block)
 162{
 163        /* Device BufferRAM Select */
 164        if (block & this->density_mask)
 165                return ONENAND_DDP_CHIP1;
 166
 167        return ONENAND_DDP_CHIP0;
 168}
 169
 170/**
 171 * onenand_page_address - [DEFAULT] Get page address
 172 * @param page          the page address
 173 * @param sector        the sector address
 174 * @return              combined page and sector address
 175 *
 176 * Setup Start Address 8 Register (F107h)
 177 */
 178static int onenand_page_address(int page, int sector)
 179{
 180        /* Flash Page Address, Flash Sector Address */
 181        int fpa, fsa;
 182
 183        fpa = page & ONENAND_FPA_MASK;
 184        fsa = sector & ONENAND_FSA_MASK;
 185
 186        return ((fpa << ONENAND_FPA_SHIFT) | fsa);
 187}
 188
 189/**
 190 * onenand_buffer_address - [DEFAULT] Get buffer address
 191 * @param dataram1      DataRAM index
 192 * @param sectors       the sector address
 193 * @param count         the number of sectors
 194 * @return              the start buffer value
 195 *
 196 * Setup Start Buffer Register (F200h)
 197 */
 198static int onenand_buffer_address(int dataram1, int sectors, int count)
 199{
 200        int bsa, bsc;
 201
 202        /* BufferRAM Sector Address */
 203        bsa = sectors & ONENAND_BSA_MASK;
 204
 205        if (dataram1)
 206                bsa |= ONENAND_BSA_DATARAM1;    /* DataRAM1 */
 207        else
 208                bsa |= ONENAND_BSA_DATARAM0;    /* DataRAM0 */
 209
 210        /* BufferRAM Sector Count */
 211        bsc = count & ONENAND_BSC_MASK;
 212
 213        return ((bsa << ONENAND_BSA_SHIFT) | bsc);
 214}
 215
 216/**
 217 * flexonenand_block - Return block number for flash address
 218 * @param this          - OneNAND device structure
 219 * @param addr          - Address for which block number is needed
 220 */
 221static unsigned int flexonenand_block(struct onenand_chip *this, loff_t addr)
 222{
 223        unsigned int boundary, blk, die = 0;
 224
 225        if (ONENAND_IS_DDP(this) && addr >= this->diesize[0]) {
 226                die = 1;
 227                addr -= this->diesize[0];
 228        }
 229
 230        boundary = this->boundary[die];
 231
 232        blk = addr >> (this->erase_shift - 1);
 233        if (blk > boundary)
 234                blk = (blk + boundary + 1) >> 1;
 235
 236        blk += die ? this->density_mask : 0;
 237        return blk;
 238}
 239
 240unsigned int onenand_block(struct onenand_chip *this, loff_t addr)
 241{
 242        if (!FLEXONENAND(this))
 243                return addr >> this->erase_shift;
 244        return flexonenand_block(this, addr);
 245}
 246
 247/**
 248 * flexonenand_addr - Return address of the block
 249 * @this:               OneNAND device structure
 250 * @block:              Block number on Flex-OneNAND
 251 *
 252 * Return address of the block
 253 */
 254static loff_t flexonenand_addr(struct onenand_chip *this, int block)
 255{
 256        loff_t ofs = 0;
 257        int die = 0, boundary;
 258
 259        if (ONENAND_IS_DDP(this) && block >= this->density_mask) {
 260                block -= this->density_mask;
 261                die = 1;
 262                ofs = this->diesize[0];
 263        }
 264
 265        boundary = this->boundary[die];
 266        ofs += (loff_t) block << (this->erase_shift - 1);
 267        if (block > (boundary + 1))
 268                ofs += (loff_t) (block - boundary - 1)
 269                        << (this->erase_shift - 1);
 270        return ofs;
 271}
 272
 273loff_t onenand_addr(struct onenand_chip *this, int block)
 274{
 275        if (!FLEXONENAND(this))
 276                return (loff_t) block << this->erase_shift;
 277        return flexonenand_addr(this, block);
 278}
 279
 280/**
 281 * flexonenand_region - [Flex-OneNAND] Return erase region of addr
 282 * @param mtd           MTD device structure
 283 * @param addr          address whose erase region needs to be identified
 284 */
 285int flexonenand_region(struct mtd_info *mtd, loff_t addr)
 286{
 287        int i;
 288
 289        for (i = 0; i < mtd->numeraseregions; i++)
 290                if (addr < mtd->eraseregions[i].offset)
 291                        break;
 292        return i - 1;
 293}
 294
 295/**
 296 * onenand_get_density - [DEFAULT] Get OneNAND density
 297 * @param dev_id        OneNAND device ID
 298 *
 299 * Get OneNAND density from device ID
 300 */
 301static inline int onenand_get_density(int dev_id)
 302{
 303        int density = dev_id >> ONENAND_DEVICE_DENSITY_SHIFT;
 304        return (density & ONENAND_DEVICE_DENSITY_MASK);
 305}
 306
 307/**
 308 * onenand_command - [DEFAULT] Send command to OneNAND device
 309 * @param mtd           MTD device structure
 310 * @param cmd           the command to be sent
 311 * @param addr          offset to read from or write to
 312 * @param len           number of bytes to read or write
 313 *
 314 * Send command to OneNAND device. This function is used for middle/large page
 315 * devices (1KB/2KB Bytes per page)
 316 */
 317static int onenand_command(struct mtd_info *mtd, int cmd, loff_t addr,
 318                           size_t len)
 319{
 320        struct onenand_chip *this = mtd->priv;
 321        int value;
 322        int block, page;
 323
 324        /* Now we use page size operation */
 325        int sectors = 0, count = 0;
 326
 327        /* Address translation */
 328        switch (cmd) {
 329        case ONENAND_CMD_UNLOCK:
 330        case ONENAND_CMD_LOCK:
 331        case ONENAND_CMD_LOCK_TIGHT:
 332        case ONENAND_CMD_UNLOCK_ALL:
 333                block = -1;
 334                page = -1;
 335                break;
 336
 337        case FLEXONENAND_CMD_PI_ACCESS:
 338                /* addr contains die index */
 339                block = addr * this->density_mask;
 340                page = -1;
 341                break;
 342
 343        case ONENAND_CMD_ERASE:
 344        case ONENAND_CMD_BUFFERRAM:
 345                block = onenand_block(this, addr);
 346                page = -1;
 347                break;
 348
 349        case FLEXONENAND_CMD_READ_PI:
 350                cmd = ONENAND_CMD_READ;
 351                block = addr * this->density_mask;
 352                page = 0;
 353                break;
 354
 355        default:
 356                block = onenand_block(this, addr);
 357                page = (int) (addr
 358                        - onenand_addr(this, block)) >> this->page_shift;
 359                page &= this->page_mask;
 360                break;
 361        }
 362
 363        /* NOTE: The setting order of the registers is very important! */
 364        if (cmd == ONENAND_CMD_BUFFERRAM) {
 365                /* Select DataRAM for DDP */
 366                value = onenand_bufferram_address(this, block);
 367                this->write_word(value,
 368                                 this->base + ONENAND_REG_START_ADDRESS2);
 369
 370                if (ONENAND_IS_MLC(this))
 371                        ONENAND_SET_BUFFERRAM0(this);
 372                else
 373                        /* Switch to the next data buffer */
 374                        ONENAND_SET_NEXT_BUFFERRAM(this);
 375
 376                return 0;
 377        }
 378
 379        if (block != -1) {
 380                /* Write 'DFS, FBA' of Flash */
 381                value = onenand_block_address(this, block);
 382                this->write_word(value,
 383                                 this->base + ONENAND_REG_START_ADDRESS1);
 384
 385                /* Select DataRAM for DDP */
 386                value = onenand_bufferram_address(this, block);
 387                this->write_word(value,
 388                                 this->base + ONENAND_REG_START_ADDRESS2);
 389        }
 390
 391        if (page != -1) {
 392                int dataram;
 393
 394                switch (cmd) {
 395                case FLEXONENAND_CMD_RECOVER_LSB:
 396                case ONENAND_CMD_READ:
 397                case ONENAND_CMD_READOOB:
 398                        if (ONENAND_IS_MLC(this))
 399                                dataram = ONENAND_SET_BUFFERRAM0(this);
 400                        else
 401                                dataram = ONENAND_SET_NEXT_BUFFERRAM(this);
 402
 403                        break;
 404
 405                default:
 406                        dataram = ONENAND_CURRENT_BUFFERRAM(this);
 407                        break;
 408                }
 409
 410                /* Write 'FPA, FSA' of Flash */
 411                value = onenand_page_address(page, sectors);
 412                this->write_word(value,
 413                                 this->base + ONENAND_REG_START_ADDRESS8);
 414
 415                /* Write 'BSA, BSC' of DataRAM */
 416                value = onenand_buffer_address(dataram, sectors, count);
 417                this->write_word(value, this->base + ONENAND_REG_START_BUFFER);
 418        }
 419
 420        /* Interrupt clear */
 421        this->write_word(ONENAND_INT_CLEAR, this->base + ONENAND_REG_INTERRUPT);
 422        /* Write command */
 423        this->write_word(cmd, this->base + ONENAND_REG_COMMAND);
 424
 425        return 0;
 426}
 427
 428/**
 429 * onenand_read_ecc - return ecc status
 430 * @param this          onenand chip structure
 431 */
 432static int onenand_read_ecc(struct onenand_chip *this)
 433{
 434        int ecc, i;
 435
 436        if (!FLEXONENAND(this))
 437                return this->read_word(this->base + ONENAND_REG_ECC_STATUS);
 438
 439        for (i = 0; i < 4; i++) {
 440                ecc = this->read_word(this->base
 441                                + ((ONENAND_REG_ECC_STATUS + i) << 1));
 442                if (likely(!ecc))
 443                        continue;
 444                if (ecc & FLEXONENAND_UNCORRECTABLE_ERROR)
 445                        return ONENAND_ECC_2BIT_ALL;
 446        }
 447
 448        return 0;
 449}
 450
 451/**
 452 * onenand_wait - [DEFAULT] wait until the command is done
 453 * @param mtd           MTD device structure
 454 * @param state         state to select the max. timeout value
 455 *
 456 * Wait for command done. This applies to all OneNAND command
 457 * Read can take up to 30us, erase up to 2ms and program up to 350us
 458 * according to general OneNAND specs
 459 */
 460static int onenand_wait(struct mtd_info *mtd, int state)
 461{
 462        struct onenand_chip *this = mtd->priv;
 463        unsigned int flags = ONENAND_INT_MASTER;
 464        unsigned int interrupt = 0;
 465        unsigned int ctrl;
 466
 467        while (1) {
 468                interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
 469                if (interrupt & flags)
 470                        break;
 471        }
 472
 473        ctrl = this->read_word(this->base + ONENAND_REG_CTRL_STATUS);
 474
 475        if (interrupt & ONENAND_INT_READ) {
 476                int ecc = onenand_read_ecc(this);
 477                if (ecc & ONENAND_ECC_2BIT_ALL) {
 478                        printk("onenand_wait: ECC error = 0x%04x\n", ecc);
 479                        return -EBADMSG;
 480                }
 481        }
 482
 483        if (ctrl & ONENAND_CTRL_ERROR) {
 484                printk("onenand_wait: controller error = 0x%04x\n", ctrl);
 485                if (ctrl & ONENAND_CTRL_LOCK)
 486                        printk("onenand_wait: it's locked error = 0x%04x\n",
 487                                ctrl);
 488
 489                return -EIO;
 490        }
 491
 492
 493        return 0;
 494}
 495
 496/**
 497 * onenand_bufferram_offset - [DEFAULT] BufferRAM offset
 498 * @param mtd           MTD data structure
 499 * @param area          BufferRAM area
 500 * @return              offset given area
 501 *
 502 * Return BufferRAM offset given area
 503 */
 504static inline int onenand_bufferram_offset(struct mtd_info *mtd, int area)
 505{
 506        struct onenand_chip *this = mtd->priv;
 507
 508        if (ONENAND_CURRENT_BUFFERRAM(this)) {
 509                if (area == ONENAND_DATARAM)
 510                        return mtd->writesize;
 511                if (area == ONENAND_SPARERAM)
 512                        return mtd->oobsize;
 513        }
 514
 515        return 0;
 516}
 517
 518/**
 519 * onenand_read_bufferram - [OneNAND Interface] Read the bufferram area
 520 * @param mtd           MTD data structure
 521 * @param area          BufferRAM area
 522 * @param buffer        the databuffer to put/get data
 523 * @param offset        offset to read from or write to
 524 * @param count         number of bytes to read/write
 525 *
 526 * Read the BufferRAM area
 527 */
 528static int onenand_read_bufferram(struct mtd_info *mtd, loff_t addr, int area,
 529                                  unsigned char *buffer, int offset,
 530                                  size_t count)
 531{
 532        struct onenand_chip *this = mtd->priv;
 533        void __iomem *bufferram;
 534
 535        bufferram = this->base + area;
 536        bufferram += onenand_bufferram_offset(mtd, area);
 537
 538        memcpy_16(buffer, bufferram + offset, count);
 539
 540        return 0;
 541}
 542
 543/**
 544 * onenand_sync_read_bufferram - [OneNAND Interface] Read the bufferram area with Sync. Burst mode
 545 * @param mtd           MTD data structure
 546 * @param area          BufferRAM area
 547 * @param buffer        the databuffer to put/get data
 548 * @param offset        offset to read from or write to
 549 * @param count         number of bytes to read/write
 550 *
 551 * Read the BufferRAM area with Sync. Burst Mode
 552 */
 553static int onenand_sync_read_bufferram(struct mtd_info *mtd, loff_t addr, int area,
 554                                       unsigned char *buffer, int offset,
 555                                       size_t count)
 556{
 557        struct onenand_chip *this = mtd->priv;
 558        void __iomem *bufferram;
 559
 560        bufferram = this->base + area;
 561        bufferram += onenand_bufferram_offset(mtd, area);
 562
 563        this->mmcontrol(mtd, ONENAND_SYS_CFG1_SYNC_READ);
 564
 565        memcpy_16(buffer, bufferram + offset, count);
 566
 567        this->mmcontrol(mtd, 0);
 568
 569        return 0;
 570}
 571
 572/**
 573 * onenand_write_bufferram - [OneNAND Interface] Write the bufferram area
 574 * @param mtd           MTD data structure
 575 * @param area          BufferRAM area
 576 * @param buffer        the databuffer to put/get data
 577 * @param offset        offset to read from or write to
 578 * @param count         number of bytes to read/write
 579 *
 580 * Write the BufferRAM area
 581 */
 582static int onenand_write_bufferram(struct mtd_info *mtd, loff_t addr, int area,
 583                                   const unsigned char *buffer, int offset,
 584                                   size_t count)
 585{
 586        struct onenand_chip *this = mtd->priv;
 587        void __iomem *bufferram;
 588
 589        bufferram = this->base + area;
 590        bufferram += onenand_bufferram_offset(mtd, area);
 591
 592        memcpy_16(bufferram + offset, buffer, count);
 593
 594        return 0;
 595}
 596
 597/**
 598 * onenand_get_2x_blockpage - [GENERIC] Get blockpage at 2x program mode
 599 * @param mtd           MTD data structure
 600 * @param addr          address to check
 601 * @return              blockpage address
 602 *
 603 * Get blockpage address at 2x program mode
 604 */
 605static int onenand_get_2x_blockpage(struct mtd_info *mtd, loff_t addr)
 606{
 607        struct onenand_chip *this = mtd->priv;
 608        int blockpage, block, page;
 609
 610        /* Calculate the even block number */
 611        block = (int) (addr >> this->erase_shift) & ~1;
 612        /* Is it the odd plane? */
 613        if (addr & this->writesize)
 614                block++;
 615        page = (int) (addr >> (this->page_shift + 1)) & this->page_mask;
 616        blockpage = (block << 7) | page;
 617
 618        return blockpage;
 619}
 620
 621/**
 622 * onenand_check_bufferram - [GENERIC] Check BufferRAM information
 623 * @param mtd           MTD data structure
 624 * @param addr          address to check
 625 * @return              1 if there are valid data, otherwise 0
 626 *
 627 * Check bufferram if there is data we required
 628 */
 629static int onenand_check_bufferram(struct mtd_info *mtd, loff_t addr)
 630{
 631        struct onenand_chip *this = mtd->priv;
 632        int blockpage, found = 0;
 633        unsigned int i;
 634
 635#ifdef CONFIG_S3C64XX
 636        return 0;
 637#endif
 638
 639        if (ONENAND_IS_2PLANE(this))
 640                blockpage = onenand_get_2x_blockpage(mtd, addr);
 641        else
 642                blockpage = (int) (addr >> this->page_shift);
 643
 644        /* Is there valid data? */
 645        i = ONENAND_CURRENT_BUFFERRAM(this);
 646        if (this->bufferram[i].blockpage == blockpage)
 647                found = 1;
 648        else {
 649                /* Check another BufferRAM */
 650                i = ONENAND_NEXT_BUFFERRAM(this);
 651                if (this->bufferram[i].blockpage == blockpage) {
 652                        ONENAND_SET_NEXT_BUFFERRAM(this);
 653                        found = 1;
 654                }
 655        }
 656
 657        if (found && ONENAND_IS_DDP(this)) {
 658                /* Select DataRAM for DDP */
 659                int block = onenand_block(this, addr);
 660                int value = onenand_bufferram_address(this, block);
 661                this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
 662        }
 663
 664        return found;
 665}
 666
 667/**
 668 * onenand_update_bufferram - [GENERIC] Update BufferRAM information
 669 * @param mtd           MTD data structure
 670 * @param addr          address to update
 671 * @param valid         valid flag
 672 *
 673 * Update BufferRAM information
 674 */
 675static int onenand_update_bufferram(struct mtd_info *mtd, loff_t addr,
 676                                    int valid)
 677{
 678        struct onenand_chip *this = mtd->priv;
 679        int blockpage;
 680        unsigned int i;
 681
 682        if (ONENAND_IS_2PLANE(this))
 683                blockpage = onenand_get_2x_blockpage(mtd, addr);
 684        else
 685                blockpage = (int)(addr >> this->page_shift);
 686
 687        /* Invalidate another BufferRAM */
 688        i = ONENAND_NEXT_BUFFERRAM(this);
 689        if (this->bufferram[i].blockpage == blockpage)
 690                this->bufferram[i].blockpage = -1;
 691
 692        /* Update BufferRAM */
 693        i = ONENAND_CURRENT_BUFFERRAM(this);
 694        if (valid)
 695                this->bufferram[i].blockpage = blockpage;
 696        else
 697                this->bufferram[i].blockpage = -1;
 698
 699        return 0;
 700}
 701
 702/**
 703 * onenand_invalidate_bufferram - [GENERIC] Invalidate BufferRAM information
 704 * @param mtd           MTD data structure
 705 * @param addr          start address to invalidate
 706 * @param len           length to invalidate
 707 *
 708 * Invalidate BufferRAM information
 709 */
 710static void onenand_invalidate_bufferram(struct mtd_info *mtd, loff_t addr,
 711                                         unsigned int len)
 712{
 713        struct onenand_chip *this = mtd->priv;
 714        int i;
 715        loff_t end_addr = addr + len;
 716
 717        /* Invalidate BufferRAM */
 718        for (i = 0; i < MAX_BUFFERRAM; i++) {
 719                loff_t buf_addr = this->bufferram[i].blockpage << this->page_shift;
 720
 721                if (buf_addr >= addr && buf_addr < end_addr)
 722                        this->bufferram[i].blockpage = -1;
 723        }
 724}
 725
 726/**
 727 * onenand_get_device - [GENERIC] Get chip for selected access
 728 * @param mtd           MTD device structure
 729 * @param new_state     the state which is requested
 730 *
 731 * Get the device and lock it for exclusive access
 732 */
 733static void onenand_get_device(struct mtd_info *mtd, int new_state)
 734{
 735        /* Do nothing */
 736}
 737
 738/**
 739 * onenand_release_device - [GENERIC] release chip
 740 * @param mtd           MTD device structure
 741 *
 742 * Deselect, release chip lock and wake up anyone waiting on the device
 743 */
 744static void onenand_release_device(struct mtd_info *mtd)
 745{
 746        /* Do nothing */
 747}
 748
 749/**
 750 * onenand_transfer_auto_oob - [Internal] oob auto-placement transfer
 751 * @param mtd           MTD device structure
 752 * @param buf           destination address
 753 * @param column        oob offset to read from
 754 * @param thislen       oob length to read
 755 */
 756static int onenand_transfer_auto_oob(struct mtd_info *mtd, uint8_t *buf,
 757                                        int column, int thislen)
 758{
 759        struct onenand_chip *this = mtd->priv;
 760        struct nand_oobfree *free;
 761        int readcol = column;
 762        int readend = column + thislen;
 763        int lastgap = 0;
 764        unsigned int i;
 765        uint8_t *oob_buf = this->oob_buf;
 766
 767        free = this->ecclayout->oobfree;
 768        for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES && free->length; i++, free++) {
 769                if (readcol >= lastgap)
 770                        readcol += free->offset - lastgap;
 771                if (readend >= lastgap)
 772                        readend += free->offset - lastgap;
 773                lastgap = free->offset + free->length;
 774        }
 775        this->read_bufferram(mtd, 0, ONENAND_SPARERAM, oob_buf, 0, mtd->oobsize);
 776        free = this->ecclayout->oobfree;
 777        for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES && free->length; i++, free++) {
 778                int free_end = free->offset + free->length;
 779                if (free->offset < readend && free_end > readcol) {
 780                        int st = max_t(int,free->offset,readcol);
 781                        int ed = min_t(int,free_end,readend);
 782                        int n = ed - st;
 783                        memcpy(buf, oob_buf + st, n);
 784                        buf += n;
 785                } else if (column == 0)
 786                        break;
 787        }
 788        return 0;
 789}
 790
 791/**
 792 * onenand_recover_lsb - [Flex-OneNAND] Recover LSB page data
 793 * @param mtd           MTD device structure
 794 * @param addr          address to recover
 795 * @param status        return value from onenand_wait
 796 *
 797 * MLC NAND Flash cell has paired pages - LSB page and MSB page. LSB page has
 798 * lower page address and MSB page has higher page address in paired pages.
 799 * If power off occurs during MSB page program, the paired LSB page data can
 800 * become corrupt. LSB page recovery read is a way to read LSB page though page
 801 * data are corrupted. When uncorrectable error occurs as a result of LSB page
 802 * read after power up, issue LSB page recovery read.
 803 */
 804static int onenand_recover_lsb(struct mtd_info *mtd, loff_t addr, int status)
 805{
 806        struct onenand_chip *this = mtd->priv;
 807        int i;
 808
 809        /* Recovery is only for Flex-OneNAND */
 810        if (!FLEXONENAND(this))
 811                return status;
 812
 813        /* check if we failed due to uncorrectable error */
 814        if (status != -EBADMSG && status != ONENAND_BBT_READ_ECC_ERROR)
 815                return status;
 816
 817        /* check if address lies in MLC region */
 818        i = flexonenand_region(mtd, addr);
 819        if (mtd->eraseregions[i].erasesize < (1 << this->erase_shift))
 820                return status;
 821
 822        printk("onenand_recover_lsb:"
 823                "Attempting to recover from uncorrectable read\n");
 824
 825        /* Issue the LSB page recovery command */
 826        this->command(mtd, FLEXONENAND_CMD_RECOVER_LSB, addr, this->writesize);
 827        return this->wait(mtd, FL_READING);
 828}
 829
 830/**
 831 * onenand_read_ops_nolock - [OneNAND Interface] OneNAND read main and/or out-of-band
 832 * @param mtd           MTD device structure
 833 * @param from          offset to read from
 834 * @param ops           oob operation description structure
 835 *
 836 * OneNAND read main and/or out-of-band data
 837 */
 838static int onenand_read_ops_nolock(struct mtd_info *mtd, loff_t from,
 839                struct mtd_oob_ops *ops)
 840{
 841        struct onenand_chip *this = mtd->priv;
 842        struct mtd_ecc_stats stats;
 843        size_t len = ops->len;
 844        size_t ooblen = ops->ooblen;
 845        u_char *buf = ops->datbuf;
 846        u_char *oobbuf = ops->oobbuf;
 847        int read = 0, column, thislen;
 848        int oobread = 0, oobcolumn, thisooblen, oobsize;
 849        int ret = 0, boundary = 0;
 850        int writesize = this->writesize;
 851
 852        MTDDEBUG(MTD_DEBUG_LEVEL3, "onenand_read_ops_nolock: from = 0x%08x, len = %i\n", (unsigned int) from, (int) len);
 853
 854        if (ops->mode == MTD_OOB_AUTO)
 855                oobsize = this->ecclayout->oobavail;
 856        else
 857                oobsize = mtd->oobsize;
 858
 859        oobcolumn = from & (mtd->oobsize - 1);
 860
 861        /* Do not allow reads past end of device */
 862        if ((from + len) > mtd->size) {
 863                printk(KERN_ERR "onenand_read_ops_nolock: Attempt read beyond end of device\n");
 864                ops->retlen = 0;
 865                ops->oobretlen = 0;
 866                return -EINVAL;
 867        }
 868
 869        stats = mtd->ecc_stats;
 870
 871        /* Read-while-load method */
 872        /* Note: We can't use this feature in MLC */
 873
 874        /* Do first load to bufferRAM */
 875        if (read < len) {
 876                if (!onenand_check_bufferram(mtd, from)) {
 877                        this->main_buf = buf;
 878                        this->command(mtd, ONENAND_CMD_READ, from, writesize);
 879                        ret = this->wait(mtd, FL_READING);
 880                        if (unlikely(ret))
 881                                ret = onenand_recover_lsb(mtd, from, ret);
 882                        onenand_update_bufferram(mtd, from, !ret);
 883                        if (ret == -EBADMSG)
 884                                ret = 0;
 885                }
 886        }
 887
 888        thislen = min_t(int, writesize, len - read);
 889        column = from & (writesize - 1);
 890        if (column + thislen > writesize)
 891                thislen = writesize - column;
 892
 893        while (!ret) {
 894                /* If there is more to load then start next load */
 895                from += thislen;
 896                if (!ONENAND_IS_MLC(this) && read + thislen < len) {
 897                        this->main_buf = buf + thislen;
 898                        this->command(mtd, ONENAND_CMD_READ, from, writesize);
 899                        /*
 900                         * Chip boundary handling in DDP
 901                         * Now we issued chip 1 read and pointed chip 1
 902                         * bufferam so we have to point chip 0 bufferam.
 903                         */
 904                        if (ONENAND_IS_DDP(this) &&
 905                                        unlikely(from == (this->chipsize >> 1))) {
 906                                this->write_word(ONENAND_DDP_CHIP0, this->base + ONENAND_REG_START_ADDRESS2);
 907                                boundary = 1;
 908                        } else
 909                                boundary = 0;
 910                        ONENAND_SET_PREV_BUFFERRAM(this);
 911                }
 912
 913                /* While load is going, read from last bufferRAM */
 914                this->read_bufferram(mtd, from - thislen, ONENAND_DATARAM, buf, column, thislen);
 915
 916                /* Read oob area if needed */
 917                if (oobbuf) {
 918                        thisooblen = oobsize - oobcolumn;
 919                        thisooblen = min_t(int, thisooblen, ooblen - oobread);
 920
 921                        if (ops->mode == MTD_OOB_AUTO)
 922                                onenand_transfer_auto_oob(mtd, oobbuf, oobcolumn, thisooblen);
 923                        else
 924                                this->read_bufferram(mtd, 0, ONENAND_SPARERAM, oobbuf, oobcolumn, thisooblen);
 925                        oobread += thisooblen;
 926                        oobbuf += thisooblen;
 927                        oobcolumn = 0;
 928                }
 929
 930                if (ONENAND_IS_MLC(this) && (read + thislen < len)) {
 931                        this->command(mtd, ONENAND_CMD_READ, from, writesize);
 932                        ret = this->wait(mtd, FL_READING);
 933                        if (unlikely(ret))
 934                                ret = onenand_recover_lsb(mtd, from, ret);
 935                        onenand_update_bufferram(mtd, from, !ret);
 936                        if (ret == -EBADMSG)
 937                                ret = 0;
 938                }
 939
 940                /* See if we are done */
 941                read += thislen;
 942                if (read == len)
 943                        break;
 944                /* Set up for next read from bufferRAM */
 945                if (unlikely(boundary))
 946                        this->write_word(ONENAND_DDP_CHIP1, this->base + ONENAND_REG_START_ADDRESS2);
 947                if (!ONENAND_IS_MLC(this))
 948                        ONENAND_SET_NEXT_BUFFERRAM(this);
 949                buf += thislen;
 950                thislen = min_t(int, writesize, len - read);
 951                column = 0;
 952
 953                if (!ONENAND_IS_MLC(this)) {
 954                        /* Now wait for load */
 955                        ret = this->wait(mtd, FL_READING);
 956                        onenand_update_bufferram(mtd, from, !ret);
 957                        if (ret == -EBADMSG)
 958                                ret = 0;
 959                }
 960        }
 961
 962        /*
 963         * Return success, if no ECC failures, else -EBADMSG
 964         * fs driver will take care of that, because
 965         * retlen == desired len and result == -EBADMSG
 966         */
 967        ops->retlen = read;
 968        ops->oobretlen = oobread;
 969
 970        if (ret)
 971                return ret;
 972
 973        if (mtd->ecc_stats.failed - stats.failed)
 974                return -EBADMSG;
 975
 976        return mtd->ecc_stats.corrected - stats.corrected ? -EUCLEAN : 0;
 977}
 978
 979/**
 980 * onenand_read_oob_nolock - [MTD Interface] OneNAND read out-of-band
 981 * @param mtd           MTD device structure
 982 * @param from          offset to read from
 983 * @param ops           oob operation description structure
 984 *
 985 * OneNAND read out-of-band data from the spare area
 986 */
 987static int onenand_read_oob_nolock(struct mtd_info *mtd, loff_t from,
 988                struct mtd_oob_ops *ops)
 989{
 990        struct onenand_chip *this = mtd->priv;
 991        struct mtd_ecc_stats stats;
 992        int read = 0, thislen, column, oobsize;
 993        size_t len = ops->ooblen;
 994        mtd_oob_mode_t mode = ops->mode;
 995        u_char *buf = ops->oobbuf;
 996        int ret = 0, readcmd;
 997
 998        from += ops->ooboffs;
 999
1000        MTDDEBUG(MTD_DEBUG_LEVEL3, "onenand_read_oob_nolock: from = 0x%08x, len = %i\n", (unsigned int) from, (int) len);
1001
1002        /* Initialize return length value */
1003        ops->oobretlen = 0;
1004
1005        if (mode == MTD_OOB_AUTO)
1006                oobsize = this->ecclayout->oobavail;
1007        else
1008                oobsize = mtd->oobsize;
1009
1010        column = from & (mtd->oobsize - 1);
1011
1012        if (unlikely(column >= oobsize)) {
1013                printk(KERN_ERR "onenand_read_oob_nolock: Attempted to start read outside oob\n");
1014                return -EINVAL;
1015        }
1016
1017        /* Do not allow reads past end of device */
1018        if (unlikely(from >= mtd->size ||
1019                column + len > ((mtd->size >> this->page_shift) -
1020                                (from >> this->page_shift)) * oobsize)) {
1021                printk(KERN_ERR "onenand_read_oob_nolock: Attempted to read beyond end of device\n");
1022                return -EINVAL;
1023        }
1024
1025        stats = mtd->ecc_stats;
1026
1027        readcmd = ONENAND_IS_MLC(this) ? ONENAND_CMD_READ : ONENAND_CMD_READOOB;
1028
1029        while (read < len) {
1030                thislen = oobsize - column;
1031                thislen = min_t(int, thislen, len);
1032
1033                this->spare_buf = buf;
1034                this->command(mtd, readcmd, from, mtd->oobsize);
1035
1036                onenand_update_bufferram(mtd, from, 0);
1037
1038                ret = this->wait(mtd, FL_READING);
1039                if (unlikely(ret))
1040                        ret = onenand_recover_lsb(mtd, from, ret);
1041
1042                if (ret && ret != -EBADMSG) {
1043                        printk(KERN_ERR "onenand_read_oob_nolock: read failed = 0x%x\n", ret);
1044                        break;
1045                }
1046
1047                if (mode == MTD_OOB_AUTO)
1048                        onenand_transfer_auto_oob(mtd, buf, column, thislen);
1049                else
1050                        this->read_bufferram(mtd, 0, ONENAND_SPARERAM, buf, column, thislen);
1051
1052                read += thislen;
1053
1054                if (read == len)
1055                        break;
1056
1057                buf += thislen;
1058
1059                /* Read more? */
1060                if (read < len) {
1061                        /* Page size */
1062                        from += mtd->writesize;
1063                        column = 0;
1064                }
1065        }
1066
1067        ops->oobretlen = read;
1068
1069        if (ret)
1070                return ret;
1071
1072        if (mtd->ecc_stats.failed - stats.failed)
1073                return -EBADMSG;
1074
1075        return 0;
1076}
1077
1078/**
1079 * onenand_read - [MTD Interface] MTD compability function for onenand_read_ecc
1080 * @param mtd           MTD device structure
1081 * @param from          offset to read from
1082 * @param len           number of bytes to read
1083 * @param retlen        pointer to variable to store the number of read bytes
1084 * @param buf           the databuffer to put data
1085 *
1086 * This function simply calls onenand_read_ecc with oob buffer and oobsel = NULL
1087*/
1088int onenand_read(struct mtd_info *mtd, loff_t from, size_t len,
1089                 size_t * retlen, u_char * buf)
1090{
1091        struct mtd_oob_ops ops = {
1092                .len    = len,
1093                .ooblen = 0,
1094                .datbuf = buf,
1095                .oobbuf = NULL,
1096        };
1097        int ret;
1098
1099        onenand_get_device(mtd, FL_READING);
1100        ret = onenand_read_ops_nolock(mtd, from, &ops);
1101        onenand_release_device(mtd);
1102
1103        *retlen = ops.retlen;
1104        return ret;
1105}
1106
1107/**
1108 * onenand_read_oob - [MTD Interface] OneNAND read out-of-band
1109 * @param mtd           MTD device structure
1110 * @param from          offset to read from
1111 * @param ops           oob operations description structure
1112 *
1113 * OneNAND main and/or out-of-band
1114 */
1115int onenand_read_oob(struct mtd_info *mtd, loff_t from,
1116                        struct mtd_oob_ops *ops)
1117{
1118        int ret;
1119
1120        switch (ops->mode) {
1121        case MTD_OOB_PLACE:
1122        case MTD_OOB_AUTO:
1123                break;
1124        case MTD_OOB_RAW:
1125                /* Not implemented yet */
1126        default:
1127                return -EINVAL;
1128        }
1129
1130        onenand_get_device(mtd, FL_READING);
1131        if (ops->datbuf)
1132                ret = onenand_read_ops_nolock(mtd, from, ops);
1133        else
1134                ret = onenand_read_oob_nolock(mtd, from, ops);
1135        onenand_release_device(mtd);
1136
1137        return ret;
1138}
1139
1140/**
1141 * onenand_bbt_wait - [DEFAULT] wait until the command is done
1142 * @param mtd           MTD device structure
1143 * @param state         state to select the max. timeout value
1144 *
1145 * Wait for command done.
1146 */
1147static int onenand_bbt_wait(struct mtd_info *mtd, int state)
1148{
1149        struct onenand_chip *this = mtd->priv;
1150        unsigned int flags = ONENAND_INT_MASTER;
1151        unsigned int interrupt;
1152        unsigned int ctrl;
1153
1154        while (1) {
1155                interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
1156                if (interrupt & flags)
1157                        break;
1158        }
1159
1160        /* To get correct interrupt status in timeout case */
1161        interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
1162        ctrl = this->read_word(this->base + ONENAND_REG_CTRL_STATUS);
1163
1164        if (interrupt & ONENAND_INT_READ) {
1165                int ecc = onenand_read_ecc(this);
1166                if (ecc & ONENAND_ECC_2BIT_ALL) {
1167                        printk(KERN_INFO "onenand_bbt_wait: ecc error = 0x%04x"
1168                                ", controller = 0x%04x\n", ecc, ctrl);
1169                        return ONENAND_BBT_READ_ERROR;
1170                }
1171        } else {
1172                printk(KERN_ERR "onenand_bbt_wait: read timeout!"
1173                                "ctrl=0x%04x intr=0x%04x\n", ctrl, interrupt);
1174                return ONENAND_BBT_READ_FATAL_ERROR;
1175        }
1176
1177        /* Initial bad block case: 0x2400 or 0x0400 */
1178        if (ctrl & ONENAND_CTRL_ERROR) {
1179                printk(KERN_DEBUG "onenand_bbt_wait: controller error = 0x%04x\n", ctrl);
1180                return ONENAND_BBT_READ_ERROR;
1181        }
1182
1183        return 0;
1184}
1185
1186/**
1187 * onenand_bbt_read_oob - [MTD Interface] OneNAND read out-of-band for bbt scan
1188 * @param mtd           MTD device structure
1189 * @param from          offset to read from
1190 * @param ops           oob operation description structure
1191 *
1192 * OneNAND read out-of-band data from the spare area for bbt scan
1193 */
1194int onenand_bbt_read_oob(struct mtd_info *mtd, loff_t from,
1195                struct mtd_oob_ops *ops)
1196{
1197        struct onenand_chip *this = mtd->priv;
1198        int read = 0, thislen, column;
1199        int ret = 0, readcmd;
1200        size_t len = ops->ooblen;
1201        u_char *buf = ops->oobbuf;
1202
1203        MTDDEBUG(MTD_DEBUG_LEVEL3, "onenand_bbt_read_oob: from = 0x%08x, len = %zi\n", (unsigned int) from, len);
1204
1205        readcmd = ONENAND_IS_MLC(this) ? ONENAND_CMD_READ : ONENAND_CMD_READOOB;
1206
1207        /* Initialize return value */
1208        ops->oobretlen = 0;
1209
1210        /* Do not allow reads past end of device */
1211        if (unlikely((from + len) > mtd->size)) {
1212                printk(KERN_ERR "onenand_bbt_read_oob: Attempt read beyond end of device\n");
1213                return ONENAND_BBT_READ_FATAL_ERROR;
1214        }
1215
1216        /* Grab the lock and see if the device is available */
1217        onenand_get_device(mtd, FL_READING);
1218
1219        column = from & (mtd->oobsize - 1);
1220
1221        while (read < len) {
1222
1223                thislen = mtd->oobsize - column;
1224                thislen = min_t(int, thislen, len);
1225
1226                this->spare_buf = buf;
1227                this->command(mtd, readcmd, from, mtd->oobsize);
1228
1229                onenand_update_bufferram(mtd, from, 0);
1230
1231                ret = this->bbt_wait(mtd, FL_READING);
1232                if (unlikely(ret))
1233                        ret = onenand_recover_lsb(mtd, from, ret);
1234
1235                if (ret)
1236                        break;
1237
1238                this->read_bufferram(mtd, 0, ONENAND_SPARERAM, buf, column, thislen);
1239                read += thislen;
1240                if (read == len)
1241                        break;
1242
1243                buf += thislen;
1244
1245                /* Read more? */
1246                if (read < len) {
1247                        /* Update Page size */
1248                        from += this->writesize;
1249                        column = 0;
1250                }
1251        }
1252
1253        /* Deselect and wake up anyone waiting on the device */
1254        onenand_release_device(mtd);
1255
1256        ops->oobretlen = read;
1257        return ret;
1258}
1259
1260
1261#ifdef CONFIG_MTD_ONENAND_VERIFY_WRITE
1262/**
1263 * onenand_verify_oob - [GENERIC] verify the oob contents after a write
1264 * @param mtd           MTD device structure
1265 * @param buf           the databuffer to verify
1266 * @param to            offset to read from
1267 */
1268static int onenand_verify_oob(struct mtd_info *mtd, const u_char *buf, loff_t to)
1269{
1270        struct onenand_chip *this = mtd->priv;
1271        u_char *oob_buf = this->oob_buf;
1272        int status, i, readcmd;
1273
1274        readcmd = ONENAND_IS_MLC(this) ? ONENAND_CMD_READ : ONENAND_CMD_READOOB;
1275
1276        this->command(mtd, readcmd, to, mtd->oobsize);
1277        onenand_update_bufferram(mtd, to, 0);
1278        status = this->wait(mtd, FL_READING);
1279        if (status)
1280                return status;
1281
1282        this->read_bufferram(mtd, 0, ONENAND_SPARERAM, oob_buf, 0, mtd->oobsize);
1283        for (i = 0; i < mtd->oobsize; i++)
1284                if (buf[i] != 0xFF && buf[i] != oob_buf[i])
1285                        return -EBADMSG;
1286
1287        return 0;
1288}
1289
1290/**
1291 * onenand_verify - [GENERIC] verify the chip contents after a write
1292 * @param mtd          MTD device structure
1293 * @param buf          the databuffer to verify
1294 * @param addr         offset to read from
1295 * @param len          number of bytes to read and compare
1296 */
1297static int onenand_verify(struct mtd_info *mtd, const u_char *buf, loff_t addr, size_t len)
1298{
1299        struct onenand_chip *this = mtd->priv;
1300        void __iomem *dataram;
1301        int ret = 0;
1302        int thislen, column;
1303
1304        while (len != 0) {
1305                thislen = min_t(int, this->writesize, len);
1306                column = addr & (this->writesize - 1);
1307                if (column + thislen > this->writesize)
1308                        thislen = this->writesize - column;
1309
1310                this->command(mtd, ONENAND_CMD_READ, addr, this->writesize);
1311
1312                onenand_update_bufferram(mtd, addr, 0);
1313
1314                ret = this->wait(mtd, FL_READING);
1315                if (ret)
1316                        return ret;
1317
1318                onenand_update_bufferram(mtd, addr, 1);
1319
1320                dataram = this->base + ONENAND_DATARAM;
1321                dataram += onenand_bufferram_offset(mtd, ONENAND_DATARAM);
1322
1323                if (memcmp(buf, dataram + column, thislen))
1324                        return -EBADMSG;
1325
1326                len -= thislen;
1327                buf += thislen;
1328                addr += thislen;
1329        }
1330
1331        return 0;
1332}
1333#else
1334#define onenand_verify(...)             (0)
1335#define onenand_verify_oob(...)         (0)
1336#endif
1337
1338#define NOTALIGNED(x)   ((x & (this->subpagesize - 1)) != 0)
1339
1340/**
1341 * onenand_fill_auto_oob - [Internal] oob auto-placement transfer
1342 * @param mtd           MTD device structure
1343 * @param oob_buf       oob buffer
1344 * @param buf           source address
1345 * @param column        oob offset to write to
1346 * @param thislen       oob length to write
1347 */
1348static int onenand_fill_auto_oob(struct mtd_info *mtd, u_char *oob_buf,
1349                const u_char *buf, int column, int thislen)
1350{
1351        struct onenand_chip *this = mtd->priv;
1352        struct nand_oobfree *free;
1353        int writecol = column;
1354        int writeend = column + thislen;
1355        int lastgap = 0;
1356        unsigned int i;
1357
1358        free = this->ecclayout->oobfree;
1359        for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES && free->length; i++, free++) {
1360                if (writecol >= lastgap)
1361                        writecol += free->offset - lastgap;
1362                if (writeend >= lastgap)
1363                        writeend += free->offset - lastgap;
1364                lastgap = free->offset + free->length;
1365        }
1366        free = this->ecclayout->oobfree;
1367        for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES && free->length; i++, free++) {
1368                int free_end = free->offset + free->length;
1369                if (free->offset < writeend && free_end > writecol) {
1370                        int st = max_t(int,free->offset,writecol);
1371                        int ed = min_t(int,free_end,writeend);
1372                        int n = ed - st;
1373                        memcpy(oob_buf + st, buf, n);
1374                        buf += n;
1375                } else if (column == 0)
1376                        break;
1377        }
1378        return 0;
1379}
1380
1381/**
1382 * onenand_write_ops_nolock - [OneNAND Interface] write main and/or out-of-band
1383 * @param mtd           MTD device structure
1384 * @param to            offset to write to
1385 * @param ops           oob operation description structure
1386 *
1387 * Write main and/or oob with ECC
1388 */
1389static int onenand_write_ops_nolock(struct mtd_info *mtd, loff_t to,
1390                struct mtd_oob_ops *ops)
1391{
1392        struct onenand_chip *this = mtd->priv;
1393        int written = 0, column, thislen, subpage;
1394        int oobwritten = 0, oobcolumn, thisooblen, oobsize;
1395        size_t len = ops->len;
1396        size_t ooblen = ops->ooblen;
1397        const u_char *buf = ops->datbuf;
1398        const u_char *oob = ops->oobbuf;
1399        u_char *oobbuf;
1400        int ret = 0;
1401
1402        MTDDEBUG(MTD_DEBUG_LEVEL3, "onenand_write_ops_nolock: to = 0x%08x, len = %i\n", (unsigned int) to, (int) len);
1403
1404        /* Initialize retlen, in case of early exit */
1405        ops->retlen = 0;
1406        ops->oobretlen = 0;
1407
1408        /* Do not allow writes past end of device */
1409        if (unlikely((to + len) > mtd->size)) {
1410                printk(KERN_ERR "onenand_write_ops_nolock: Attempt write to past end of device\n");
1411                return -EINVAL;
1412        }
1413
1414        /* Reject writes, which are not page aligned */
1415        if (unlikely(NOTALIGNED(to) || NOTALIGNED(len))) {
1416                printk(KERN_ERR "onenand_write_ops_nolock: Attempt to write not page aligned data\n");
1417                return -EINVAL;
1418        }
1419
1420        if (ops->mode == MTD_OOB_AUTO)
1421                oobsize = this->ecclayout->oobavail;
1422        else
1423                oobsize = mtd->oobsize;
1424
1425        oobcolumn = to & (mtd->oobsize - 1);
1426
1427        column = to & (mtd->writesize - 1);
1428
1429        /* Loop until all data write */
1430        while (written < len) {
1431                u_char *wbuf = (u_char *) buf;
1432
1433                thislen = min_t(int, mtd->writesize - column, len - written);
1434                thisooblen = min_t(int, oobsize - oobcolumn, ooblen - oobwritten);
1435
1436                this->command(mtd, ONENAND_CMD_BUFFERRAM, to, thislen);
1437
1438                /* Partial page write */
1439                subpage = thislen < mtd->writesize;
1440                if (subpage) {
1441                        memset(this->page_buf, 0xff, mtd->writesize);
1442                        memcpy(this->page_buf + column, buf, thislen);
1443                        wbuf = this->page_buf;
1444                }
1445
1446                this->write_bufferram(mtd, to, ONENAND_DATARAM, wbuf, 0, mtd->writesize);
1447
1448                if (oob) {
1449                        oobbuf = this->oob_buf;
1450
1451                        /* We send data to spare ram with oobsize
1452                         *                          * to prevent byte access */
1453                        memset(oobbuf, 0xff, mtd->oobsize);
1454                        if (ops->mode == MTD_OOB_AUTO)
1455                                onenand_fill_auto_oob(mtd, oobbuf, oob, oobcolumn, thisooblen);
1456                        else
1457                                memcpy(oobbuf + oobcolumn, oob, thisooblen);
1458
1459                        oobwritten += thisooblen;
1460                        oob += thisooblen;
1461                        oobcolumn = 0;
1462                } else
1463                        oobbuf = (u_char *) ffchars;
1464
1465                this->write_bufferram(mtd, 0, ONENAND_SPARERAM, oobbuf, 0, mtd->oobsize);
1466
1467                this->command(mtd, ONENAND_CMD_PROG, to, mtd->writesize);
1468
1469                ret = this->wait(mtd, FL_WRITING);
1470
1471                /* In partial page write we don't update bufferram */
1472                onenand_update_bufferram(mtd, to, !ret && !subpage);
1473                if (ONENAND_IS_2PLANE(this)) {
1474                        ONENAND_SET_BUFFERRAM1(this);
1475                        onenand_update_bufferram(mtd, to + this->writesize, !ret && !subpage);
1476                }
1477
1478                if (ret) {
1479                        printk(KERN_ERR "onenand_write_ops_nolock: write filaed %d\n", ret);
1480                        break;
1481                }
1482
1483                /* Only check verify write turn on */
1484                ret = onenand_verify(mtd, buf, to, thislen);
1485                if (ret) {
1486                        printk(KERN_ERR "onenand_write_ops_nolock: verify failed %d\n", ret);
1487                        break;
1488                }
1489
1490                written += thislen;
1491
1492                if (written == len)
1493                        break;
1494
1495                column = 0;
1496                to += thislen;
1497                buf += thislen;
1498        }
1499
1500        ops->retlen = written;
1501
1502        return ret;
1503}
1504
1505/**
1506 * onenand_write_oob_nolock - [Internal] OneNAND write out-of-band
1507 * @param mtd           MTD device structure
1508 * @param to            offset to write to
1509 * @param len           number of bytes to write
1510 * @param retlen        pointer to variable to store the number of written bytes
1511 * @param buf           the data to write
1512 * @param mode          operation mode
1513 *
1514 * OneNAND write out-of-band
1515 */
1516static int onenand_write_oob_nolock(struct mtd_info *mtd, loff_t to,
1517                struct mtd_oob_ops *ops)
1518{
1519        struct onenand_chip *this = mtd->priv;
1520        int column, ret = 0, oobsize;
1521        int written = 0, oobcmd;
1522        u_char *oobbuf;
1523        size_t len = ops->ooblen;
1524        const u_char *buf = ops->oobbuf;
1525        mtd_oob_mode_t mode = ops->mode;
1526
1527        to += ops->ooboffs;
1528
1529        MTDDEBUG(MTD_DEBUG_LEVEL3, "onenand_write_oob_nolock: to = 0x%08x, len = %i\n", (unsigned int) to, (int) len);
1530
1531        /* Initialize retlen, in case of early exit */
1532        ops->oobretlen = 0;
1533
1534        if (mode == MTD_OOB_AUTO)
1535                oobsize = this->ecclayout->oobavail;
1536        else
1537                oobsize = mtd->oobsize;
1538
1539        column = to & (mtd->oobsize - 1);
1540
1541        if (unlikely(column >= oobsize)) {
1542                printk(KERN_ERR "onenand_write_oob_nolock: Attempted to start write outside oob\n");
1543                return -EINVAL;
1544        }
1545
1546        /* For compatibility with NAND: Do not allow write past end of page */
1547        if (unlikely(column + len > oobsize)) {
1548                printk(KERN_ERR "onenand_write_oob_nolock: "
1549                                "Attempt to write past end of page\n");
1550                return -EINVAL;
1551        }
1552
1553        /* Do not allow reads past end of device */
1554        if (unlikely(to >= mtd->size ||
1555                                column + len > ((mtd->size >> this->page_shift) -
1556                                        (to >> this->page_shift)) * oobsize)) {
1557                printk(KERN_ERR "onenand_write_oob_nolock: Attempted to write past end of device\n");
1558                return -EINVAL;
1559        }
1560
1561        oobbuf = this->oob_buf;
1562
1563        oobcmd = ONENAND_IS_MLC(this) ? ONENAND_CMD_PROG : ONENAND_CMD_PROGOOB;
1564
1565        /* Loop until all data write */
1566        while (written < len) {
1567                int thislen = min_t(int, oobsize, len - written);
1568
1569                this->command(mtd, ONENAND_CMD_BUFFERRAM, to, mtd->oobsize);
1570
1571                /* We send data to spare ram with oobsize
1572                 * to prevent byte access */
1573                memset(oobbuf, 0xff, mtd->oobsize);
1574                if (mode == MTD_OOB_AUTO)
1575                        onenand_fill_auto_oob(mtd, oobbuf, buf, column, thislen);
1576                else
1577                        memcpy(oobbuf + column, buf, thislen);
1578                this->write_bufferram(mtd, 0, ONENAND_SPARERAM, oobbuf, 0, mtd->oobsize);
1579
1580                if (ONENAND_IS_MLC(this)) {
1581                        /* Set main area of DataRAM to 0xff*/
1582                        memset(this->page_buf, 0xff, mtd->writesize);
1583                        this->write_bufferram(mtd, 0, ONENAND_DATARAM,
1584                                this->page_buf, 0, mtd->writesize);
1585                }
1586
1587                this->command(mtd, oobcmd, to, mtd->oobsize);
1588
1589                onenand_update_bufferram(mtd, to, 0);
1590                if (ONENAND_IS_2PLANE(this)) {
1591                        ONENAND_SET_BUFFERRAM1(this);
1592                        onenand_update_bufferram(mtd, to + this->writesize, 0);
1593                }
1594
1595                ret = this->wait(mtd, FL_WRITING);
1596                if (ret) {
1597                        printk(KERN_ERR "onenand_write_oob_nolock: write failed %d\n", ret);
1598                        break;
1599                }
1600
1601                ret = onenand_verify_oob(mtd, oobbuf, to);
1602                if (ret) {
1603                        printk(KERN_ERR "onenand_write_oob_nolock: verify failed %d\n", ret);
1604                        break;
1605                }
1606
1607                written += thislen;
1608                if (written == len)
1609                        break;
1610
1611                to += mtd->writesize;
1612                buf += thislen;
1613                column = 0;
1614        }
1615
1616        ops->oobretlen = written;
1617
1618        return ret;
1619}
1620
1621/**
1622 * onenand_write - [MTD Interface] compability function for onenand_write_ecc
1623 * @param mtd           MTD device structure
1624 * @param to            offset to write to
1625 * @param len           number of bytes to write
1626 * @param retlen        pointer to variable to store the number of written bytes
1627 * @param buf           the data to write
1628 *
1629 * Write with ECC
1630 */
1631int onenand_write(struct mtd_info *mtd, loff_t to, size_t len,
1632                  size_t * retlen, const u_char * buf)
1633{
1634        struct mtd_oob_ops ops = {
1635                .len    = len,
1636                .ooblen = 0,
1637                .datbuf = (u_char *) buf,
1638                .oobbuf = NULL,
1639        };
1640        int ret;
1641
1642        onenand_get_device(mtd, FL_WRITING);
1643        ret = onenand_write_ops_nolock(mtd, to, &ops);
1644        onenand_release_device(mtd);
1645
1646        *retlen = ops.retlen;
1647        return ret;
1648}
1649
1650/**
1651 * onenand_write_oob - [MTD Interface] OneNAND write out-of-band
1652 * @param mtd           MTD device structure
1653 * @param to            offset to write to
1654 * @param ops           oob operation description structure
1655 *
1656 * OneNAND write main and/or out-of-band
1657 */
1658int onenand_write_oob(struct mtd_info *mtd, loff_t to,
1659                        struct mtd_oob_ops *ops)
1660{
1661        int ret;
1662
1663        switch (ops->mode) {
1664        case MTD_OOB_PLACE:
1665        case MTD_OOB_AUTO:
1666                break;
1667        case MTD_OOB_RAW:
1668                /* Not implemented yet */
1669        default:
1670                return -EINVAL;
1671        }
1672
1673        onenand_get_device(mtd, FL_WRITING);
1674        if (ops->datbuf)
1675                ret = onenand_write_ops_nolock(mtd, to, ops);
1676        else
1677                ret = onenand_write_oob_nolock(mtd, to, ops);
1678        onenand_release_device(mtd);
1679
1680        return ret;
1681
1682}
1683
1684/**
1685 * onenand_block_isbad_nolock - [GENERIC] Check if a block is marked bad
1686 * @param mtd           MTD device structure
1687 * @param ofs           offset from device start
1688 * @param allowbbt      1, if its allowed to access the bbt area
1689 *
1690 * Check, if the block is bad, Either by reading the bad block table or
1691 * calling of the scan function.
1692 */
1693static int onenand_block_isbad_nolock(struct mtd_info *mtd, loff_t ofs, int allowbbt)
1694{
1695        struct onenand_chip *this = mtd->priv;
1696        struct bbm_info *bbm = this->bbm;
1697
1698        /* Return info from the table */
1699        return bbm->isbad_bbt(mtd, ofs, allowbbt);
1700}
1701
1702
1703/**
1704 * onenand_erase - [MTD Interface] erase block(s)
1705 * @param mtd           MTD device structure
1706 * @param instr         erase instruction
1707 *
1708 * Erase one ore more blocks
1709 */
1710int onenand_erase(struct mtd_info *mtd, struct erase_info *instr)
1711{
1712        struct onenand_chip *this = mtd->priv;
1713        unsigned int block_size;
1714        loff_t addr = instr->addr;
1715        unsigned int len = instr->len;
1716        int ret = 0, i;
1717        struct mtd_erase_region_info *region = NULL;
1718        unsigned int region_end = 0;
1719
1720        MTDDEBUG(MTD_DEBUG_LEVEL3, "onenand_erase: start = 0x%08x, len = %i\n",
1721                        (unsigned int) addr, len);
1722
1723        /* Do not allow erase past end of device */
1724        if (unlikely((len + addr) > mtd->size)) {
1725                MTDDEBUG(MTD_DEBUG_LEVEL0, "onenand_erase:"
1726                                        "Erase past end of device\n");
1727                return -EINVAL;
1728        }
1729
1730        if (FLEXONENAND(this)) {
1731                /* Find the eraseregion of this address */
1732                i = flexonenand_region(mtd, addr);
1733                region = &mtd->eraseregions[i];
1734
1735                block_size = region->erasesize;
1736                region_end = region->offset
1737                        + region->erasesize * region->numblocks;
1738
1739                /* Start address within region must align on block boundary.
1740                 * Erase region's start offset is always block start address.
1741                 */
1742                if (unlikely((addr - region->offset) & (block_size - 1))) {
1743                        MTDDEBUG(MTD_DEBUG_LEVEL0, "onenand_erase:"
1744                                " Unaligned address\n");
1745                        return -EINVAL;
1746                }
1747        } else {
1748                block_size = 1 << this->erase_shift;
1749
1750                /* Start address must align on block boundary */
1751                if (unlikely(addr & (block_size - 1))) {
1752                        MTDDEBUG(MTD_DEBUG_LEVEL0, "onenand_erase:"
1753                                                "Unaligned address\n");
1754                        return -EINVAL;
1755                }
1756        }
1757
1758        /* Length must align on block boundary */
1759        if (unlikely(len & (block_size - 1))) {
1760                MTDDEBUG (MTD_DEBUG_LEVEL0,
1761                         "onenand_erase: Length not block aligned\n");
1762                return -EINVAL;
1763        }
1764
1765        instr->fail_addr = 0xffffffff;
1766
1767        /* Grab the lock and see if the device is available */
1768        onenand_get_device(mtd, FL_ERASING);
1769
1770        /* Loop throught the pages */
1771        instr->state = MTD_ERASING;
1772
1773        while (len) {
1774
1775                /* Check if we have a bad block, we do not erase bad blocks */
1776                if (instr->priv == 0 && onenand_block_isbad_nolock(mtd, addr, 0)) {
1777                        printk(KERN_WARNING "onenand_erase: attempt to erase"
1778                                " a bad block at addr 0x%08x\n",
1779                                (unsigned int) addr);
1780                        instr->state = MTD_ERASE_FAILED;
1781                        goto erase_exit;
1782                }
1783
1784                this->command(mtd, ONENAND_CMD_ERASE, addr, block_size);
1785
1786                onenand_invalidate_bufferram(mtd, addr, block_size);
1787
1788                ret = this->wait(mtd, FL_ERASING);
1789                /* Check, if it is write protected */
1790                if (ret) {
1791                        if (ret == -EPERM)
1792                                MTDDEBUG (MTD_DEBUG_LEVEL0, "onenand_erase: "
1793                                          "Device is write protected!!!\n");
1794                        else
1795                                MTDDEBUG (MTD_DEBUG_LEVEL0, "onenand_erase: "
1796                                          "Failed erase, block %d\n",
1797                                        onenand_block(this, addr));
1798                        instr->state = MTD_ERASE_FAILED;
1799                        instr->fail_addr = addr;
1800
1801                        goto erase_exit;
1802                }
1803
1804                len -= block_size;
1805                addr += block_size;
1806
1807                if (addr == region_end) {
1808                        if (!len)
1809                                break;
1810                        region++;
1811
1812                        block_size = region->erasesize;
1813                        region_end = region->offset
1814                                + region->erasesize * region->numblocks;
1815
1816                        if (len & (block_size - 1)) {
1817                                /* This has been checked at MTD
1818                                 * partitioning level. */
1819                                printk("onenand_erase: Unaligned address\n");
1820                                goto erase_exit;
1821                        }
1822                }
1823        }
1824
1825        instr->state = MTD_ERASE_DONE;
1826
1827erase_exit:
1828
1829        ret = instr->state == MTD_ERASE_DONE ? 0 : -EIO;
1830        /* Do call back function */
1831        if (!ret)
1832                mtd_erase_callback(instr);
1833
1834        /* Deselect and wake up anyone waiting on the device */
1835        onenand_release_device(mtd);
1836
1837        return ret;
1838}
1839
1840/**
1841 * onenand_sync - [MTD Interface] sync
1842 * @param mtd           MTD device structure
1843 *
1844 * Sync is actually a wait for chip ready function
1845 */
1846void onenand_sync(struct mtd_info *mtd)
1847{
1848        MTDDEBUG (MTD_DEBUG_LEVEL3, "onenand_sync: called\n");
1849
1850        /* Grab the lock and see if the device is available */
1851        onenand_get_device(mtd, FL_SYNCING);
1852
1853        /* Release it and go back */
1854        onenand_release_device(mtd);
1855}
1856
1857/**
1858 * onenand_block_isbad - [MTD Interface] Check whether the block at the given offset is bad
1859 * @param mtd           MTD device structure
1860 * @param ofs           offset relative to mtd start
1861 *
1862 * Check whether the block is bad
1863 */
1864int onenand_block_isbad(struct mtd_info *mtd, loff_t ofs)
1865{
1866        int ret;
1867
1868        /* Check for invalid offset */
1869        if (ofs > mtd->size)
1870                return -EINVAL;
1871
1872        onenand_get_device(mtd, FL_READING);
1873        ret = onenand_block_isbad_nolock(mtd,ofs, 0);
1874        onenand_release_device(mtd);
1875        return ret;
1876}
1877
1878/**
1879 * onenand_default_block_markbad - [DEFAULT] mark a block bad
1880 * @param mtd           MTD device structure
1881 * @param ofs           offset from device start
1882 *
1883 * This is the default implementation, which can be overridden by
1884 * a hardware specific driver.
1885 */
1886static int onenand_default_block_markbad(struct mtd_info *mtd, loff_t ofs)
1887{
1888        struct onenand_chip *this = mtd->priv;
1889        struct bbm_info *bbm = this->bbm;
1890        u_char buf[2] = {0, 0};
1891        struct mtd_oob_ops ops = {
1892                .mode = MTD_OOB_PLACE,
1893                .ooblen = 2,
1894                .oobbuf = buf,
1895                .ooboffs = 0,
1896        };
1897        int block;
1898
1899        /* Get block number */
1900        block = onenand_block(this, ofs);
1901        if (bbm->bbt)
1902                bbm->bbt[block >> 2] |= 0x01 << ((block & 0x03) << 1);
1903
1904        /* We write two bytes, so we dont have to mess with 16 bit access */
1905        ofs += mtd->oobsize + (bbm->badblockpos & ~0x01);
1906        return onenand_write_oob_nolock(mtd, ofs, &ops);
1907}
1908
1909/**
1910 * onenand_block_markbad - [MTD Interface] Mark the block at the given offset as bad
1911 * @param mtd           MTD device structure
1912 * @param ofs           offset relative to mtd start
1913 *
1914 * Mark the block as bad
1915 */
1916int onenand_block_markbad(struct mtd_info *mtd, loff_t ofs)
1917{
1918        struct onenand_chip *this = mtd->priv;
1919        int ret;
1920
1921        ret = onenand_block_isbad(mtd, ofs);
1922        if (ret) {
1923                /* If it was bad already, return success and do nothing */
1924                if (ret > 0)
1925                        return 0;
1926                return ret;
1927        }
1928
1929        ret = this->block_markbad(mtd, ofs);
1930        return ret;
1931}
1932
1933/**
1934 * onenand_do_lock_cmd - [OneNAND Interface] Lock or unlock block(s)
1935 * @param mtd           MTD device structure
1936 * @param ofs           offset relative to mtd start
1937 * @param len           number of bytes to lock or unlock
1938 * @param cmd           lock or unlock command
1939 *
1940 * Lock or unlock one or more blocks
1941 */
1942static int onenand_do_lock_cmd(struct mtd_info *mtd, loff_t ofs, size_t len, int cmd)
1943{
1944        struct onenand_chip *this = mtd->priv;
1945        int start, end, block, value, status;
1946        int wp_status_mask;
1947
1948        start = onenand_block(this, ofs);
1949        end = onenand_block(this, ofs + len);
1950
1951        if (cmd == ONENAND_CMD_LOCK)
1952                wp_status_mask = ONENAND_WP_LS;
1953        else
1954                wp_status_mask = ONENAND_WP_US;
1955
1956        /* Continuous lock scheme */
1957        if (this->options & ONENAND_HAS_CONT_LOCK) {
1958                /* Set start block address */
1959                this->write_word(start,
1960                                 this->base + ONENAND_REG_START_BLOCK_ADDRESS);
1961                /* Set end block address */
1962                this->write_word(end - 1,
1963                                 this->base + ONENAND_REG_END_BLOCK_ADDRESS);
1964                /* Write unlock command */
1965                this->command(mtd, cmd, 0, 0);
1966
1967                /* There's no return value */
1968                this->wait(mtd, FL_UNLOCKING);
1969
1970                /* Sanity check */
1971                while (this->read_word(this->base + ONENAND_REG_CTRL_STATUS)
1972                       & ONENAND_CTRL_ONGO)
1973                        continue;
1974
1975                /* Check lock status */
1976                status = this->read_word(this->base + ONENAND_REG_WP_STATUS);
1977                if (!(status & ONENAND_WP_US))
1978                        printk(KERN_ERR "wp status = 0x%x\n", status);
1979
1980                return 0;
1981        }
1982
1983        /* Block lock scheme */
1984        for (block = start; block < end; block++) {
1985                /* Set block address */
1986                value = onenand_block_address(this, block);
1987                this->write_word(value, this->base + ONENAND_REG_START_ADDRESS1);
1988                /* Select DataRAM for DDP */
1989                value = onenand_bufferram_address(this, block);
1990                this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
1991
1992                /* Set start block address */
1993                this->write_word(block,
1994                                 this->base + ONENAND_REG_START_BLOCK_ADDRESS);
1995                /* Write unlock command */
1996                this->command(mtd, ONENAND_CMD_UNLOCK, 0, 0);
1997
1998                /* There's no return value */
1999                this->wait(mtd, FL_UNLOCKING);
2000
2001                /* Sanity check */
2002                while (this->read_word(this->base + ONENAND_REG_CTRL_STATUS)
2003                       & ONENAND_CTRL_ONGO)
2004                        continue;
2005
2006                /* Check lock status */
2007                status = this->read_word(this->base + ONENAND_REG_WP_STATUS);
2008                if (!(status & ONENAND_WP_US))
2009                        printk(KERN_ERR "block = %d, wp status = 0x%x\n",
2010                               block, status);
2011        }
2012
2013        return 0;
2014}
2015
2016#ifdef ONENAND_LINUX
2017/**
2018 * onenand_lock - [MTD Interface] Lock block(s)
2019 * @param mtd           MTD device structure
2020 * @param ofs           offset relative to mtd start
2021 * @param len           number of bytes to unlock
2022 *
2023 * Lock one or more blocks
2024 */
2025static int onenand_lock(struct mtd_info *mtd, loff_t ofs, size_t len)
2026{
2027        int ret;
2028
2029        onenand_get_device(mtd, FL_LOCKING);
2030        ret = onenand_do_lock_cmd(mtd, ofs, len, ONENAND_CMD_LOCK);
2031        onenand_release_device(mtd);
2032        return ret;
2033}
2034
2035/**
2036 * onenand_unlock - [MTD Interface] Unlock block(s)
2037 * @param mtd           MTD device structure
2038 * @param ofs           offset relative to mtd start
2039 * @param len           number of bytes to unlock
2040 *
2041 * Unlock one or more blocks
2042 */
2043static int onenand_unlock(struct mtd_info *mtd, loff_t ofs, size_t len)
2044{
2045        int ret;
2046
2047        onenand_get_device(mtd, FL_LOCKING);
2048        ret = onenand_do_lock_cmd(mtd, ofs, len, ONENAND_CMD_UNLOCK);
2049        onenand_release_device(mtd);
2050        return ret;
2051}
2052#endif
2053
2054/**
2055 * onenand_check_lock_status - [OneNAND Interface] Check lock status
2056 * @param this          onenand chip data structure
2057 *
2058 * Check lock status
2059 */
2060static int onenand_check_lock_status(struct onenand_chip *this)
2061{
2062        unsigned int value, block, status;
2063        unsigned int end;
2064
2065        end = this->chipsize >> this->erase_shift;
2066        for (block = 0; block < end; block++) {
2067                /* Set block address */
2068                value = onenand_block_address(this, block);
2069                this->write_word(value, this->base + ONENAND_REG_START_ADDRESS1);
2070                /* Select DataRAM for DDP */
2071                value = onenand_bufferram_address(this, block);
2072                this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
2073                /* Set start block address */
2074                this->write_word(block, this->base + ONENAND_REG_START_BLOCK_ADDRESS);
2075
2076                /* Check lock status */
2077                status = this->read_word(this->base + ONENAND_REG_WP_STATUS);
2078                if (!(status & ONENAND_WP_US)) {
2079                        printk(KERN_ERR "block = %d, wp status = 0x%x\n", block, status);
2080                        return 0;
2081                }
2082        }
2083
2084        return 1;
2085}
2086
2087/**
2088 * onenand_unlock_all - [OneNAND Interface] unlock all blocks
2089 * @param mtd           MTD device structure
2090 *
2091 * Unlock all blocks
2092 */
2093static void onenand_unlock_all(struct mtd_info *mtd)
2094{
2095        struct onenand_chip *this = mtd->priv;
2096        loff_t ofs = 0;
2097        size_t len = mtd->size;
2098
2099        if (this->options & ONENAND_HAS_UNLOCK_ALL) {
2100                /* Set start block address */
2101                this->write_word(0, this->base + ONENAND_REG_START_BLOCK_ADDRESS);
2102                /* Write unlock command */
2103                this->command(mtd, ONENAND_CMD_UNLOCK_ALL, 0, 0);
2104
2105                /* There's no return value */
2106                this->wait(mtd, FL_LOCKING);
2107
2108                /* Sanity check */
2109                while (this->read_word(this->base + ONENAND_REG_CTRL_STATUS)
2110                                & ONENAND_CTRL_ONGO)
2111                        continue;
2112
2113                /* Check lock status */
2114                if (onenand_check_lock_status(this))
2115                        return;
2116
2117                /* Workaround for all block unlock in DDP */
2118                if (ONENAND_IS_DDP(this) && !FLEXONENAND(this)) {
2119                        /* All blocks on another chip */
2120                        ofs = this->chipsize >> 1;
2121                        len = this->chipsize >> 1;
2122                }
2123        }
2124
2125        onenand_do_lock_cmd(mtd, ofs, len, ONENAND_CMD_UNLOCK);
2126}
2127
2128
2129/**
2130 * onenand_check_features - Check and set OneNAND features
2131 * @param mtd           MTD data structure
2132 *
2133 * Check and set OneNAND features
2134 * - lock scheme
2135 * - two plane
2136 */
2137static void onenand_check_features(struct mtd_info *mtd)
2138{
2139        struct onenand_chip *this = mtd->priv;
2140        unsigned int density, process;
2141
2142        /* Lock scheme depends on density and process */
2143        density = onenand_get_density(this->device_id);
2144        process = this->version_id >> ONENAND_VERSION_PROCESS_SHIFT;
2145
2146        /* Lock scheme */
2147        switch (density) {
2148        case ONENAND_DEVICE_DENSITY_4Gb:
2149                this->options |= ONENAND_HAS_2PLANE;
2150
2151        case ONENAND_DEVICE_DENSITY_2Gb:
2152                /* 2Gb DDP don't have 2 plane */
2153                if (!ONENAND_IS_DDP(this))
2154                        this->options |= ONENAND_HAS_2PLANE;
2155                this->options |= ONENAND_HAS_UNLOCK_ALL;
2156
2157        case ONENAND_DEVICE_DENSITY_1Gb:
2158                /* A-Die has all block unlock */
2159                if (process)
2160                        this->options |= ONENAND_HAS_UNLOCK_ALL;
2161                break;
2162
2163        default:
2164                /* Some OneNAND has continuous lock scheme */
2165                if (!process)
2166                        this->options |= ONENAND_HAS_CONT_LOCK;
2167                break;
2168        }
2169
2170        if (ONENAND_IS_MLC(this))
2171                this->options &= ~ONENAND_HAS_2PLANE;
2172
2173        if (FLEXONENAND(this)) {
2174                this->options &= ~ONENAND_HAS_CONT_LOCK;
2175                this->options |= ONENAND_HAS_UNLOCK_ALL;
2176        }
2177
2178        if (this->options & ONENAND_HAS_CONT_LOCK)
2179                printk(KERN_DEBUG "Lock scheme is Continuous Lock\n");
2180        if (this->options & ONENAND_HAS_UNLOCK_ALL)
2181                printk(KERN_DEBUG "Chip support all block unlock\n");
2182        if (this->options & ONENAND_HAS_2PLANE)
2183                printk(KERN_DEBUG "Chip has 2 plane\n");
2184}
2185
2186/**
2187 * onenand_print_device_info - Print device ID
2188 * @param device        device ID
2189 *
2190 * Print device ID
2191 */
2192char *onenand_print_device_info(int device, int version)
2193{
2194        int vcc, demuxed, ddp, density, flexonenand;
2195        char *dev_info = malloc(80);
2196        char *p = dev_info;
2197
2198        vcc = device & ONENAND_DEVICE_VCC_MASK;
2199        demuxed = device & ONENAND_DEVICE_IS_DEMUX;
2200        ddp = device & ONENAND_DEVICE_IS_DDP;
2201        density = onenand_get_density(device);
2202        flexonenand = device & DEVICE_IS_FLEXONENAND;
2203        p += sprintf(dev_info, "%s%sOneNAND%s %dMB %sV 16-bit (0x%02x)",
2204               demuxed ? "" : "Muxed ",
2205               flexonenand ? "Flex-" : "",
2206               ddp ? "(DDP)" : "",
2207               (16 << density), vcc ? "2.65/3.3" : "1.8", device);
2208
2209        sprintf(p, "\nOneNAND version = 0x%04x", version);
2210        printk("%s\n", dev_info);
2211
2212        return dev_info;
2213}
2214
2215static const struct onenand_manufacturers onenand_manuf_ids[] = {
2216        {ONENAND_MFR_NUMONYX, "Numonyx"},
2217        {ONENAND_MFR_SAMSUNG, "Samsung"},
2218};
2219
2220/**
2221 * onenand_check_maf - Check manufacturer ID
2222 * @param manuf         manufacturer ID
2223 *
2224 * Check manufacturer ID
2225 */
2226static int onenand_check_maf(int manuf)
2227{
2228        int size = ARRAY_SIZE(onenand_manuf_ids);
2229        char *name;
2230        int i;
2231
2232        for (i = 0; i < size; i++)
2233                if (manuf == onenand_manuf_ids[i].id)
2234                        break;
2235
2236        if (i < size)
2237                name = onenand_manuf_ids[i].name;
2238        else
2239                name = "Unknown";
2240
2241#ifdef ONENAND_DEBUG
2242        printk(KERN_DEBUG "OneNAND Manufacturer: %s (0x%0x)\n", name, manuf);
2243#endif
2244
2245        return i == size;
2246}
2247
2248/**
2249* flexonenand_get_boundary      - Reads the SLC boundary
2250* @param onenand_info           - onenand info structure
2251*
2252* Fill up boundary[] field in onenand_chip
2253**/
2254static int flexonenand_get_boundary(struct mtd_info *mtd)
2255{
2256        struct onenand_chip *this = mtd->priv;
2257        unsigned int die, bdry;
2258        int ret, syscfg, locked;
2259
2260        /* Disable ECC */
2261        syscfg = this->read_word(this->base + ONENAND_REG_SYS_CFG1);
2262        this->write_word((syscfg | 0x0100), this->base + ONENAND_REG_SYS_CFG1);
2263
2264        for (die = 0; die < this->dies; die++) {
2265                this->command(mtd, FLEXONENAND_CMD_PI_ACCESS, die, 0);
2266                this->wait(mtd, FL_SYNCING);
2267
2268                this->command(mtd, FLEXONENAND_CMD_READ_PI, die, 0);
2269                ret = this->wait(mtd, FL_READING);
2270
2271                bdry = this->read_word(this->base + ONENAND_DATARAM);
2272                if ((bdry >> FLEXONENAND_PI_UNLOCK_SHIFT) == 3)
2273                        locked = 0;
2274                else
2275                        locked = 1;
2276                this->boundary[die] = bdry & FLEXONENAND_PI_MASK;
2277
2278                this->command(mtd, ONENAND_CMD_RESET, 0, 0);
2279                ret = this->wait(mtd, FL_RESETING);
2280
2281                printk(KERN_INFO "Die %d boundary: %d%s\n", die,
2282                       this->boundary[die], locked ? "(Locked)" : "(Unlocked)");
2283        }
2284
2285        /* Enable ECC */
2286        this->write_word(syscfg, this->base + ONENAND_REG_SYS_CFG1);
2287        return 0;
2288}
2289
2290/**
2291 * flexonenand_get_size - Fill up fields in onenand_chip and mtd_info
2292 *                        boundary[], diesize[], mtd->size, mtd->erasesize,
2293 *                        mtd->eraseregions
2294 * @param mtd           - MTD device structure
2295 */
2296static void flexonenand_get_size(struct mtd_info *mtd)
2297{
2298        struct onenand_chip *this = mtd->priv;
2299        int die, i, eraseshift, density;
2300        int blksperdie, maxbdry;
2301        loff_t ofs;
2302
2303        density = onenand_get_density(this->device_id);
2304        blksperdie = ((loff_t)(16 << density) << 20) >> (this->erase_shift);
2305        blksperdie >>= ONENAND_IS_DDP(this) ? 1 : 0;
2306        maxbdry = blksperdie - 1;
2307        eraseshift = this->erase_shift - 1;
2308
2309        mtd->numeraseregions = this->dies << 1;
2310
2311        /* This fills up the device boundary */
2312        flexonenand_get_boundary(mtd);
2313        die = 0;
2314        ofs = 0;
2315        i = -1;
2316        for (; die < this->dies; die++) {
2317                if (!die || this->boundary[die-1] != maxbdry) {
2318                        i++;
2319                        mtd->eraseregions[i].offset = ofs;
2320                        mtd->eraseregions[i].erasesize = 1 << eraseshift;
2321                        mtd->eraseregions[i].numblocks =
2322                                                        this->boundary[die] + 1;
2323                        ofs += mtd->eraseregions[i].numblocks << eraseshift;
2324                        eraseshift++;
2325                } else {
2326                        mtd->numeraseregions -= 1;
2327                        mtd->eraseregions[i].numblocks +=
2328                                                        this->boundary[die] + 1;
2329                        ofs += (this->boundary[die] + 1) << (eraseshift - 1);
2330                }
2331                if (this->boundary[die] != maxbdry) {
2332                        i++;
2333                        mtd->eraseregions[i].offset = ofs;
2334                        mtd->eraseregions[i].erasesize = 1 << eraseshift;
2335                        mtd->eraseregions[i].numblocks = maxbdry ^
2336                                                         this->boundary[die];
2337                        ofs += mtd->eraseregions[i].numblocks << eraseshift;
2338                        eraseshift--;
2339                } else
2340                        mtd->numeraseregions -= 1;
2341        }
2342
2343        /* Expose MLC erase size except when all blocks are SLC */
2344        mtd->erasesize = 1 << this->erase_shift;
2345        if (mtd->numeraseregions == 1)
2346                mtd->erasesize >>= 1;
2347
2348        printk(KERN_INFO "Device has %d eraseregions\n", mtd->numeraseregions);
2349        for (i = 0; i < mtd->numeraseregions; i++)
2350                printk(KERN_INFO "[offset: 0x%08llx, erasesize: 0x%05x,"
2351                        " numblocks: %04u]\n", mtd->eraseregions[i].offset,
2352                        mtd->eraseregions[i].erasesize,
2353                        mtd->eraseregions[i].numblocks);
2354
2355        for (die = 0, mtd->size = 0; die < this->dies; die++) {
2356                this->diesize[die] = (loff_t) (blksperdie << this->erase_shift);
2357                this->diesize[die] -= (loff_t) (this->boundary[die] + 1)
2358                                                 << (this->erase_shift - 1);
2359                mtd->size += this->diesize[die];
2360        }
2361}
2362
2363/**
2364 * flexonenand_check_blocks_erased - Check if blocks are erased
2365 * @param mtd_info      - mtd info structure
2366 * @param start         - first erase block to check
2367 * @param end           - last erase block to check
2368 *
2369 * Converting an unerased block from MLC to SLC
2370 * causes byte values to change. Since both data and its ECC
2371 * have changed, reads on the block give uncorrectable error.
2372 * This might lead to the block being detected as bad.
2373 *
2374 * Avoid this by ensuring that the block to be converted is
2375 * erased.
2376 */
2377static int flexonenand_check_blocks_erased(struct mtd_info *mtd,
2378                                        int start, int end)
2379{
2380        struct onenand_chip *this = mtd->priv;
2381        int i, ret;
2382        int block;
2383        struct mtd_oob_ops ops = {
2384                .mode = MTD_OOB_PLACE,
2385                .ooboffs = 0,
2386                .ooblen = mtd->oobsize,
2387                .datbuf = NULL,
2388                .oobbuf = this->oob_buf,
2389        };
2390        loff_t addr;
2391
2392        printk(KERN_DEBUG "Check blocks from %d to %d\n", start, end);
2393
2394        for (block = start; block <= end; block++) {
2395                addr = flexonenand_addr(this, block);
2396                if (onenand_block_isbad_nolock(mtd, addr, 0))
2397                        continue;
2398
2399                /*
2400                 * Since main area write results in ECC write to spare,
2401                 * it is sufficient to check only ECC bytes for change.
2402                 */
2403                ret = onenand_read_oob_nolock(mtd, addr, &ops);
2404                if (ret)
2405                        return ret;
2406
2407                for (i = 0; i < mtd->oobsize; i++)
2408                        if (this->oob_buf[i] != 0xff)
2409                                break;
2410
2411                if (i != mtd->oobsize) {
2412                        printk(KERN_WARNING "Block %d not erased.\n", block);
2413                        return 1;
2414                }
2415        }
2416
2417        return 0;
2418}
2419
2420/**
2421 * flexonenand_set_boundary     - Writes the SLC boundary
2422 * @param mtd                   - mtd info structure
2423 */
2424int flexonenand_set_boundary(struct mtd_info *mtd, int die,
2425                                    int boundary, int lock)
2426{
2427        struct onenand_chip *this = mtd->priv;
2428        int ret, density, blksperdie, old, new, thisboundary;
2429        loff_t addr;
2430
2431        if (die >= this->dies)
2432                return -EINVAL;
2433
2434        if (boundary == this->boundary[die])
2435                return 0;
2436
2437        density = onenand_get_density(this->device_id);
2438        blksperdie = ((16 << density) << 20) >> this->erase_shift;
2439        blksperdie >>= ONENAND_IS_DDP(this) ? 1 : 0;
2440
2441        if (boundary >= blksperdie) {
2442                printk("flexonenand_set_boundary:"
2443                        "Invalid boundary value. "
2444                        "Boundary not changed.\n");
2445                return -EINVAL;
2446        }
2447
2448        /* Check if converting blocks are erased */
2449        old = this->boundary[die] + (die * this->density_mask);
2450        new = boundary + (die * this->density_mask);
2451        ret = flexonenand_check_blocks_erased(mtd, min(old, new)
2452                                                + 1, max(old, new));
2453        if (ret) {
2454                printk(KERN_ERR "flexonenand_set_boundary: Please erase blocks before boundary change\n");
2455                return ret;
2456        }
2457
2458        this->command(mtd, FLEXONENAND_CMD_PI_ACCESS, die, 0);
2459        this->wait(mtd, FL_SYNCING);
2460
2461        /* Check is boundary is locked */
2462        this->command(mtd, FLEXONENAND_CMD_READ_PI, die, 0);
2463        ret = this->wait(mtd, FL_READING);
2464
2465        thisboundary = this->read_word(this->base + ONENAND_DATARAM);
2466        if ((thisboundary >> FLEXONENAND_PI_UNLOCK_SHIFT) != 3) {
2467                printk(KERN_ERR "flexonenand_set_boundary: boundary locked\n");
2468                goto out;
2469        }
2470
2471        printk(KERN_INFO "flexonenand_set_boundary: Changing die %d boundary: %d%s\n",
2472                        die, boundary, lock ? "(Locked)" : "(Unlocked)");
2473
2474        boundary &= FLEXONENAND_PI_MASK;
2475        boundary |= lock ? 0 : (3 << FLEXONENAND_PI_UNLOCK_SHIFT);
2476
2477        addr = die ? this->diesize[0] : 0;
2478        this->command(mtd, ONENAND_CMD_ERASE, addr, 0);
2479        ret = this->wait(mtd, FL_ERASING);
2480        if (ret) {
2481                printk("flexonenand_set_boundary:"
2482                        "Failed PI erase for Die %d\n", die);
2483                goto out;
2484        }
2485
2486        this->write_word(boundary, this->base + ONENAND_DATARAM);
2487        this->command(mtd, ONENAND_CMD_PROG, addr, 0);
2488        ret = this->wait(mtd, FL_WRITING);
2489        if (ret) {
2490                printk("flexonenand_set_boundary:"
2491                        "Failed PI write for Die %d\n", die);
2492                goto out;
2493        }
2494
2495        this->command(mtd, FLEXONENAND_CMD_PI_UPDATE, die, 0);
2496        ret = this->wait(mtd, FL_WRITING);
2497out:
2498        this->write_word(ONENAND_CMD_RESET, this->base + ONENAND_REG_COMMAND);
2499        this->wait(mtd, FL_RESETING);
2500        if (!ret)
2501                /* Recalculate device size on boundary change*/
2502                flexonenand_get_size(mtd);
2503
2504        return ret;
2505}
2506
2507/**
2508 * onenand_probe - [OneNAND Interface] Probe the OneNAND device
2509 * @param mtd           MTD device structure
2510 *
2511 * OneNAND detection method:
2512 *   Compare the the values from command with ones from register
2513 */
2514static int onenand_probe(struct mtd_info *mtd)
2515{
2516        struct onenand_chip *this = mtd->priv;
2517        int bram_maf_id, bram_dev_id, maf_id, dev_id, ver_id;
2518        int density;
2519        int syscfg;
2520
2521        /* Save system configuration 1 */
2522        syscfg = this->read_word(this->base + ONENAND_REG_SYS_CFG1);
2523        /* Clear Sync. Burst Read mode to read BootRAM */
2524        this->write_word((syscfg & ~ONENAND_SYS_CFG1_SYNC_READ), this->base + ONENAND_REG_SYS_CFG1);
2525
2526        /* Send the command for reading device ID from BootRAM */
2527        this->write_word(ONENAND_CMD_READID, this->base + ONENAND_BOOTRAM);
2528
2529        /* Read manufacturer and device IDs from BootRAM */
2530        bram_maf_id = this->read_word(this->base + ONENAND_BOOTRAM + 0x0);
2531        bram_dev_id = this->read_word(this->base + ONENAND_BOOTRAM + 0x2);
2532
2533        /* Reset OneNAND to read default register values */
2534        this->write_word(ONENAND_CMD_RESET, this->base + ONENAND_BOOTRAM);
2535
2536        /* Wait reset */
2537        this->wait(mtd, FL_RESETING);
2538
2539        /* Restore system configuration 1 */
2540        this->write_word(syscfg, this->base + ONENAND_REG_SYS_CFG1);
2541
2542        /* Check manufacturer ID */
2543        if (onenand_check_maf(bram_maf_id))
2544                return -ENXIO;
2545
2546        /* Read manufacturer and device IDs from Register */
2547        maf_id = this->read_word(this->base + ONENAND_REG_MANUFACTURER_ID);
2548        dev_id = this->read_word(this->base + ONENAND_REG_DEVICE_ID);
2549        ver_id = this->read_word(this->base + ONENAND_REG_VERSION_ID);
2550        this->technology = this->read_word(this->base + ONENAND_REG_TECHNOLOGY);
2551
2552        /* Check OneNAND device */
2553        if (maf_id != bram_maf_id || dev_id != bram_dev_id)
2554                return -ENXIO;
2555
2556        /* Flash device information */
2557        mtd->name = onenand_print_device_info(dev_id, ver_id);
2558        this->device_id = dev_id;
2559        this->version_id = ver_id;
2560
2561        density = onenand_get_density(dev_id);
2562        if (FLEXONENAND(this)) {
2563                this->dies = ONENAND_IS_DDP(this) ? 2 : 1;
2564                /* Maximum possible erase regions */
2565                mtd->numeraseregions = this->dies << 1;
2566                mtd->eraseregions = malloc(sizeof(struct mtd_erase_region_info)
2567                                        * (this->dies << 1));
2568                if (!mtd->eraseregions)
2569                        return -ENOMEM;
2570        }
2571
2572        /*
2573         * For Flex-OneNAND, chipsize represents maximum possible device size.
2574         * mtd->size represents the actual device size.
2575         */
2576        this->chipsize = (16 << density) << 20;
2577
2578        /* OneNAND page size & block size */
2579        /* The data buffer size is equal to page size */
2580        mtd->writesize =
2581            this->read_word(this->base + ONENAND_REG_DATA_BUFFER_SIZE);
2582        /* We use the full BufferRAM */
2583        if (ONENAND_IS_MLC(this))
2584                mtd->writesize <<= 1;
2585
2586        mtd->oobsize = mtd->writesize >> 5;
2587        /* Pagers per block is always 64 in OneNAND */
2588        mtd->erasesize = mtd->writesize << 6;
2589        /*
2590         * Flex-OneNAND SLC area has 64 pages per block.
2591         * Flex-OneNAND MLC area has 128 pages per block.
2592         * Expose MLC erase size to find erase_shift and page_mask.
2593         */
2594        if (FLEXONENAND(this))
2595                mtd->erasesize <<= 1;
2596
2597        this->erase_shift = ffs(mtd->erasesize) - 1;
2598        this->page_shift = ffs(mtd->writesize) - 1;
2599        this->ppb_shift = (this->erase_shift - this->page_shift);
2600        this->page_mask = (mtd->erasesize / mtd->writesize) - 1;
2601        /* Set density mask. it is used for DDP */
2602        if (ONENAND_IS_DDP(this))
2603                this->density_mask = this->chipsize >> (this->erase_shift + 1);
2604        /* It's real page size */
2605        this->writesize = mtd->writesize;
2606
2607        /* REVIST: Multichip handling */
2608
2609        if (FLEXONENAND(this))
2610                flexonenand_get_size(mtd);
2611        else
2612                mtd->size = this->chipsize;
2613
2614        /* Check OneNAND features */
2615        onenand_check_features(mtd);
2616
2617        mtd->flags = MTD_CAP_NANDFLASH;
2618        mtd->erase = onenand_erase;
2619        mtd->read = onenand_read;
2620        mtd->write = onenand_write;
2621        mtd->read_oob = onenand_read_oob;
2622        mtd->write_oob = onenand_write_oob;
2623        mtd->sync = onenand_sync;
2624        mtd->block_isbad = onenand_block_isbad;
2625        mtd->block_markbad = onenand_block_markbad;
2626
2627        return 0;
2628}
2629
2630/**
2631 * onenand_scan - [OneNAND Interface] Scan for the OneNAND device
2632 * @param mtd           MTD device structure
2633 * @param maxchips      Number of chips to scan for
2634 *
2635 * This fills out all the not initialized function pointers
2636 * with the defaults.
2637 * The flash ID is read and the mtd/chip structures are
2638 * filled with the appropriate values.
2639 */
2640int onenand_scan(struct mtd_info *mtd, int maxchips)
2641{
2642        int i;
2643        struct onenand_chip *this = mtd->priv;
2644
2645        if (!this->read_word)
2646                this->read_word = onenand_readw;
2647        if (!this->write_word)
2648                this->write_word = onenand_writew;
2649
2650        if (!this->command)
2651                this->command = onenand_command;
2652        if (!this->wait)
2653                this->wait = onenand_wait;
2654        if (!this->bbt_wait)
2655                this->bbt_wait = onenand_bbt_wait;
2656
2657        if (!this->read_bufferram)
2658                this->read_bufferram = onenand_read_bufferram;
2659        if (!this->write_bufferram)
2660                this->write_bufferram = onenand_write_bufferram;
2661
2662        if (!this->block_markbad)
2663                this->block_markbad = onenand_default_block_markbad;
2664        if (!this->scan_bbt)
2665                this->scan_bbt = onenand_default_bbt;
2666
2667        if (onenand_probe(mtd))
2668                return -ENXIO;
2669
2670        /* Set Sync. Burst Read after probing */
2671        if (this->mmcontrol) {
2672                printk(KERN_INFO "OneNAND Sync. Burst Read support\n");
2673                this->read_bufferram = onenand_sync_read_bufferram;
2674        }
2675
2676        /* Allocate buffers, if necessary */
2677        if (!this->page_buf) {
2678                this->page_buf = kzalloc(mtd->writesize, GFP_KERNEL);
2679                if (!this->page_buf) {
2680                        printk(KERN_ERR "onenand_scan(): Can't allocate page_buf\n");
2681                        return -ENOMEM;
2682                }
2683                this->options |= ONENAND_PAGEBUF_ALLOC;
2684        }
2685        if (!this->oob_buf) {
2686                this->oob_buf = kzalloc(mtd->oobsize, GFP_KERNEL);
2687                if (!this->oob_buf) {
2688                        printk(KERN_ERR "onenand_scan: Can't allocate oob_buf\n");
2689                        if (this->options & ONENAND_PAGEBUF_ALLOC) {
2690                                this->options &= ~ONENAND_PAGEBUF_ALLOC;
2691                                kfree(this->page_buf);
2692                        }
2693                        return -ENOMEM;
2694                }
2695                this->options |= ONENAND_OOBBUF_ALLOC;
2696        }
2697
2698        this->state = FL_READY;
2699
2700        /*
2701         * Allow subpage writes up to oobsize.
2702         */
2703        switch (mtd->oobsize) {
2704        case 128:
2705                this->ecclayout = &onenand_oob_128;
2706                mtd->subpage_sft = 0;
2707                break;
2708
2709        case 64:
2710                this->ecclayout = &onenand_oob_64;
2711                mtd->subpage_sft = 2;
2712                break;
2713
2714        case 32:
2715                this->ecclayout = &onenand_oob_32;
2716                mtd->subpage_sft = 1;
2717                break;
2718
2719        default:
2720                printk(KERN_WARNING "No OOB scheme defined for oobsize %d\n",
2721                        mtd->oobsize);
2722                mtd->subpage_sft = 0;
2723                /* To prevent kernel oops */
2724                this->ecclayout = &onenand_oob_32;
2725                break;
2726        }
2727
2728        this->subpagesize = mtd->writesize >> mtd->subpage_sft;
2729
2730        /*
2731         * The number of bytes available for a client to place data into
2732         * the out of band area
2733         */
2734        this->ecclayout->oobavail = 0;
2735        for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES &&
2736            this->ecclayout->oobfree[i].length; i++)
2737                this->ecclayout->oobavail +=
2738                        this->ecclayout->oobfree[i].length;
2739        mtd->oobavail = this->ecclayout->oobavail;
2740
2741        mtd->ecclayout = this->ecclayout;
2742
2743        /* Unlock whole block */
2744        onenand_unlock_all(mtd);
2745
2746        return this->scan_bbt(mtd);
2747}
2748
2749/**
2750 * onenand_release - [OneNAND Interface] Free resources held by the OneNAND device
2751 * @param mtd           MTD device structure
2752 */
2753void onenand_release(struct mtd_info *mtd)
2754{
2755}
2756