uboot/arch/blackfin/cpu/start.S
<<
>>
Prefs
   1/*
   2 * U-boot - start.S Startup file for Blackfin u-boot
   3 *
   4 * Copyright (c) 2005-2008 Analog Devices Inc.
   5 *
   6 * This file is based on head.S
   7 * Copyright (c) 2003  Metrowerks/Motorola
   8 * Copyright (C) 1998  D. Jeff Dionne <jeff@ryeham.ee.ryerson.ca>,
   9 *                     Kenneth Albanowski <kjahds@kjahds.com>,
  10 *                     The Silver Hammer Group, Ltd.
  11 * (c) 1995, Dionne & Associates
  12 * (c) 1995, DKG Display Tech.
  13 *
  14 * See file CREDITS for list of people who contributed to this
  15 * project.
  16 *
  17 * This program is free software; you can redistribute it and/or
  18 * modify it under the terms of the GNU General Public License as
  19 * published by the Free Software Foundation; either version 2 of
  20 * the License, or (at your option) any later version.
  21 *
  22 * This program is distributed in the hope that it will be useful,
  23 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  24 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  25 * GNU General Public License for more details.
  26 *
  27 * You should have received a copy of the GNU General Public License
  28 * along with this program; if not, write to the Free Software
  29 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston,
  30 * MA 02110-1301 USA
  31 */
  32
  33#include <config.h>
  34#include <asm/blackfin.h>
  35#include <asm/mach-common/bits/core.h>
  36#include <asm/mach-common/bits/pll.h>
  37
  38#include "serial.h"
  39
  40/* It may seem odd that we make calls to functions even though we haven't
  41 * relocated ourselves yet out of {flash,ram,wherever}.  This is OK because
  42 * the "call" instruction in the Blackfin architecture is actually PC
  43 * relative.  So we can call functions all we want and not worry about them
  44 * not being relocated yet.
  45 */
  46
  47.text
  48ENTRY(_start)
  49
  50        /* Set our initial stack to L1 scratch space */
  51        sp.l = LO(L1_SRAM_SCRATCH_END - 20);
  52        sp.h = HI(L1_SRAM_SCRATCH_END - 20);
  53
  54        /* Optimization register tricks: keep a base value in the
  55         * reserved P registers so we use the load/store with an
  56         * offset syntax.  R0 = [P5 + <constant>];
  57         *   P4 - system MMR base
  58         *   P5 - core MMR base
  59         */
  60#ifdef CONFIG_HW_WATCHDOG
  61        p4.l = 0;
  62        p4.h = HI(SYSMMR_BASE);
  63#endif
  64        p5.l = 0;
  65        p5.h = HI(COREMMR_BASE);
  66
  67#ifdef CONFIG_HW_WATCHDOG
  68# ifndef CONFIG_HW_WATCHDOG_TIMEOUT_START
  69#  define CONFIG_HW_WATCHDOG_TIMEOUT_START 5000
  70# endif
  71        /* Program the watchdog with an initial timeout of ~5 seconds.
  72         * That should be long enough to bootstrap ourselves up and
  73         * then the common u-boot code can take over.
  74         */
  75        r0 = 0;
  76        r0.h = HI(MSEC_TO_SCLK(CONFIG_HW_WATCHDOG_TIMEOUT_START));
  77        [p4 + (WDOG_CNT - SYSMMR_BASE)] = r0;
  78        /* fire up the watchdog - R0.L above needs to be 0x0000 */
  79        W[p4 + (WDOG_CTL - SYSMMR_BASE)] = r0;
  80#endif
  81
  82        /* Turn on the serial for debugging the init process */
  83        serial_early_init
  84        serial_early_set_baud
  85
  86        serial_early_puts("Init Registers");
  87
  88        /* Disable self-nested interrupts and enable CYCLES for udelay() */
  89        R0 = CCEN | 0x30;
  90        SYSCFG = R0;
  91
  92        /* Zero out registers required by Blackfin ABI.
  93         * http://docs.blackfin.uclinux.org/doku.php?id=application_binary_interface
  94         */
  95        r1 = 0 (x);
  96        /* Disable circular buffers */
  97        l0 = r1;
  98        l1 = r1;
  99        l2 = r1;
 100        l3 = r1;
 101        /* Disable hardware loops in case we were started by 'go' */
 102        lc0 = r1;
 103        lc1 = r1;
 104
 105        /* Save RETX so we can pass it while booting Linux */
 106        r7 = RETX;
 107
 108#if CONFIG_MEM_SIZE
 109        /* Figure out where we are currently executing so that we can decide
 110         * how to best reprogram and relocate things.  We'll pass below:
 111         *  R4: load address of _start
 112         *  R5: current (not load) address of _start
 113         */
 114        serial_early_puts("Find ourselves");
 115
 116        call _get_pc;
 117.Loffset:
 118        r1.l = .Loffset;
 119        r1.h = .Loffset;
 120        r4.l = _start;
 121        r4.h = _start;
 122        r3 = r1 - r4;
 123        r5 = r0 - r3;
 124
 125        /* Inform upper layers if we had to do the relocation ourselves.
 126         * This allows us to detect whether we were loaded by 'go 0x1000'
 127         * or by the bootrom from an LDR.  "R6" is "loaded_from_ldr".
 128         */
 129        r6 = 1 (x);
 130        cc = r4 == r5;
 131        if cc jump .Lnorelocate;
 132        r6 = 0 (x);
 133
 134        /* Turn off caches as they require CPLBs and a CPLB miss requires
 135         * a software exception handler to process it.  But we're about to
 136         * clobber any previous executing software (like U-Boot that just
 137         * launched a new U-Boot via 'go'), so any handler state will be
 138         * unreliable after the memcpy below.
 139         */
 140        serial_early_puts("Kill Caches");
 141        r0 = 0;
 142        [p5 + (IMEM_CONTROL - COREMMR_BASE)] = r0;
 143        [p5 + (DMEM_CONTROL - COREMMR_BASE)] = r0;
 144        ssync;
 145
 146        /* In bypass mode, we don't have an LDR with an init block
 147         * so we need to explicitly call it ourselves.  This will
 148         * reprogram our clocks, memory, and setup our async banks.
 149         */
 150        serial_early_puts("Program Clocks");
 151
 152        /* if we're executing >=0x20000000, then we dont need to dma */
 153        r3 = 0x0;
 154        r3.h = 0x2000;
 155        cc = r5 < r3 (iu);
 156        if cc jump .Ldma_and_reprogram;
 157#else
 158        r6 = 1 (x);     /* fake loaded_from_ldr = 1 */
 159#endif
 160        r0 = 0 (x);     /* set bootstruct to NULL */
 161        call _initcode;
 162        jump .Lprogrammed;
 163
 164        /* we're sitting in external memory, so dma into L1 and reprogram */
 165.Ldma_and_reprogram:
 166        r0.l = LO(L1_INST_SRAM);
 167        r0.h = HI(L1_INST_SRAM);
 168        r1.l = __initcode_lma;
 169        r1.h = __initcode_lma;
 170        r2.l = __initcode_len;
 171        r2.h = __initcode_len;
 172        r1 = r1 - r4;   /* convert r1 from load address of initcode ... */
 173        r1 = r1 + r5;   /* ... to current (not load) address of initcode */
 174        p3 = r0;
 175        call _dma_memcpy_nocache;
 176        r0 = 0 (x);     /* set bootstruct to NULL */
 177        call (p3);
 178
 179        /* Since we reprogrammed SCLK, we need to update the serial divisor */
 180.Lprogrammed:
 181        serial_early_set_baud
 182
 183#if CONFIG_MEM_SIZE
 184        /* Relocate from wherever we are (FLASH/RAM/etc...) to the hardcoded
 185         * monitor location in the end of RAM.  We know that memcpy() only
 186         * uses registers, so it is safe to call here.  Note that this only
 187         * copies to external memory ... we do not start executing out of
 188         * it yet (see "lower to 15" below).
 189         */
 190        serial_early_puts("Relocate");
 191        r0 = r4;
 192        r1 = r5;
 193        r2.l = LO(CONFIG_SYS_MONITOR_LEN);
 194        r2.h = HI(CONFIG_SYS_MONITOR_LEN);
 195        call _memcpy_ASM;
 196#endif
 197
 198        /* Initialize BSS section ... we know that memset() does not
 199         * use the BSS, so it is safe to call here.  The bootrom LDR
 200         * takes care of clearing things for us.
 201         */
 202        serial_early_puts("Zero BSS");
 203        r0.l = __bss_vma;
 204        r0.h = __bss_vma;
 205        r1 = 0 (x);
 206        r2.l = __bss_len;
 207        r2.h = __bss_len;
 208        call _memset;
 209
 210.Lnorelocate:
 211
 212        /* Setup the actual stack in external memory */
 213        sp.h = HI(CONFIG_STACKBASE);
 214        sp.l = LO(CONFIG_STACKBASE);
 215        fp = sp;
 216
 217        /* Now lower ourselves from the highest interrupt level to
 218         * the lowest.  We do this by masking all interrupts but 15,
 219         * setting the 15 handler to ".Lenable_nested", raising the 15
 220         * interrupt, and then returning from the highest interrupt
 221         * level to the dummy "jump" until the interrupt controller
 222         * services the pending 15 interrupt.  If executing out of
 223         * flash, these steps also changes the code flow from flash
 224         * to external memory.
 225         */
 226        serial_early_puts("Lower to 15");
 227        r0 = r7;
 228        r1 = r6;
 229        p1.l = .Lenable_nested;
 230        p1.h = .Lenable_nested;
 231        [p5 + (EVT15 - COREMMR_BASE)] = p1;
 232        r7 = EVT_IVG15 (z);
 233        sti r7;
 234        raise 15;
 235        p3.l = .LWAIT_HERE;
 236        p3.h = .LWAIT_HERE;
 237        reti = p3;
 238        rti;
 239
 240        /* Enable nested interrupts before continuing with cpu init */
 241.Lenable_nested:
 242        cli r7;
 243        [--sp] = reti;
 244        jump.l _cpu_init_f;
 245
 246.LWAIT_HERE:
 247        jump .LWAIT_HERE;
 248ENDPROC(_start)
 249
 250LENTRY(_get_pc)
 251        r0 = rets;
 252#if ANOMALY_05000371
 253        NOP;
 254        NOP;
 255        NOP;
 256#endif
 257        rts;
 258ENDPROC(_get_pc)
 259