uboot/drivers/mtd/nand/nand_util.c
<<
>>
Prefs
   1/*
   2 * drivers/mtd/nand/nand_util.c
   3 *
   4 * Copyright (C) 2006 by Weiss-Electronic GmbH.
   5 * All rights reserved.
   6 *
   7 * @author:     Guido Classen <clagix@gmail.com>
   8 * @descr:      NAND Flash support
   9 * @references: borrowed heavily from Linux mtd-utils code:
  10 *              flash_eraseall.c by Arcom Control System Ltd
  11 *              nandwrite.c by Steven J. Hill (sjhill@realitydiluted.com)
  12 *                             and Thomas Gleixner (tglx@linutronix.de)
  13 *
  14 * Copyright (C) 2008 Nokia Corporation: drop_ffs() function by
  15 * Artem Bityutskiy <dedekind1@gmail.com> from mtd-utils
  16 *
  17 * See file CREDITS for list of people who contributed to this
  18 * project.
  19 *
  20 * This program is free software; you can redistribute it and/or
  21 * modify it under the terms of the GNU General Public License version
  22 * 2 as published by the Free Software Foundation.
  23 *
  24 * This program is distributed in the hope that it will be useful,
  25 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  26 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  27 * GNU General Public License for more details.
  28 *
  29 * You should have received a copy of the GNU General Public License
  30 * along with this program; if not, write to the Free Software
  31 * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
  32 * MA 02111-1307 USA
  33 *
  34 * Copyright 2010 Freescale Semiconductor
  35 * The portions of this file whose copyright is held by Freescale and which
  36 * are not considered a derived work of GPL v2-only code may be distributed
  37 * and/or modified under the terms of the GNU General Public License as
  38 * published by the Free Software Foundation; either version 2 of the
  39 * License, or (at your option) any later version.
  40 */
  41
  42#include <common.h>
  43#include <command.h>
  44#include <watchdog.h>
  45#include <malloc.h>
  46#include <div64.h>
  47
  48#include <asm/errno.h>
  49#include <linux/mtd/mtd.h>
  50#include <nand.h>
  51#include <jffs2/jffs2.h>
  52
  53typedef struct erase_info erase_info_t;
  54typedef struct mtd_info   mtd_info_t;
  55
  56/* support only for native endian JFFS2 */
  57#define cpu_to_je16(x) (x)
  58#define cpu_to_je32(x) (x)
  59
  60/*****************************************************************************/
  61static int nand_block_bad_scrub(struct mtd_info *mtd, loff_t ofs, int getchip)
  62{
  63        return 0;
  64}
  65
  66/**
  67 * nand_erase_opts: - erase NAND flash with support for various options
  68 *                    (jffs2 formating)
  69 *
  70 * @param meminfo       NAND device to erase
  71 * @param opts          options,  @see struct nand_erase_options
  72 * @return              0 in case of success
  73 *
  74 * This code is ported from flash_eraseall.c from Linux mtd utils by
  75 * Arcom Control System Ltd.
  76 */
  77int nand_erase_opts(nand_info_t *meminfo, const nand_erase_options_t *opts)
  78{
  79        struct jffs2_unknown_node cleanmarker;
  80        erase_info_t erase;
  81        unsigned long erase_length, erased_length; /* in blocks */
  82        int bbtest = 1;
  83        int result;
  84        int percent_complete = -1;
  85        int (*nand_block_bad_old)(struct mtd_info *, loff_t, int) = NULL;
  86        const char *mtd_device = meminfo->name;
  87        struct mtd_oob_ops oob_opts;
  88        struct nand_chip *chip = meminfo->priv;
  89
  90        if ((opts->offset & (meminfo->writesize - 1)) != 0) {
  91                printf("Attempt to erase non page aligned data\n");
  92                return -1;
  93        }
  94
  95        memset(&erase, 0, sizeof(erase));
  96        memset(&oob_opts, 0, sizeof(oob_opts));
  97
  98        erase.mtd = meminfo;
  99        erase.len  = meminfo->erasesize;
 100        erase.addr = opts->offset;
 101        erase_length = lldiv(opts->length + meminfo->erasesize - 1,
 102                             meminfo->erasesize);
 103
 104        cleanmarker.magic = cpu_to_je16 (JFFS2_MAGIC_BITMASK);
 105        cleanmarker.nodetype = cpu_to_je16 (JFFS2_NODETYPE_CLEANMARKER);
 106        cleanmarker.totlen = cpu_to_je32(8);
 107
 108        /* scrub option allows to erase badblock. To prevent internal
 109         * check from erase() method, set block check method to dummy
 110         * and disable bad block table while erasing.
 111         */
 112        if (opts->scrub) {
 113                struct nand_chip *priv_nand = meminfo->priv;
 114
 115                nand_block_bad_old = priv_nand->block_bad;
 116                priv_nand->block_bad = nand_block_bad_scrub;
 117                /* we don't need the bad block table anymore...
 118                 * after scrub, there are no bad blocks left!
 119                 */
 120                if (priv_nand->bbt) {
 121                        kfree(priv_nand->bbt);
 122                }
 123                priv_nand->bbt = NULL;
 124        }
 125
 126        for (erased_length = 0;
 127             erased_length < erase_length;
 128             erase.addr += meminfo->erasesize) {
 129
 130                WATCHDOG_RESET ();
 131
 132                if (!opts->scrub && bbtest) {
 133                        int ret = meminfo->block_isbad(meminfo, erase.addr);
 134                        if (ret > 0) {
 135                                if (!opts->quiet)
 136                                        printf("\rSkipping bad block at  "
 137                                               "0x%08llx                 "
 138                                               "                         \n",
 139                                               erase.addr);
 140
 141                                if (!opts->spread)
 142                                        erased_length++;
 143
 144                                continue;
 145
 146                        } else if (ret < 0) {
 147                                printf("\n%s: MTD get bad block failed: %d\n",
 148                                       mtd_device,
 149                                       ret);
 150                                return -1;
 151                        }
 152                }
 153
 154                erased_length++;
 155
 156                result = meminfo->erase(meminfo, &erase);
 157                if (result != 0) {
 158                        printf("\n%s: MTD Erase failure: %d\n",
 159                               mtd_device, result);
 160                        continue;
 161                }
 162
 163                /* format for JFFS2 ? */
 164                if (opts->jffs2 && chip->ecc.layout->oobavail >= 8) {
 165                        chip->ops.ooblen = 8;
 166                        chip->ops.datbuf = NULL;
 167                        chip->ops.oobbuf = (uint8_t *)&cleanmarker;
 168                        chip->ops.ooboffs = 0;
 169                        chip->ops.mode = MTD_OOB_AUTO;
 170
 171                        result = meminfo->write_oob(meminfo,
 172                                                    erase.addr,
 173                                                    &chip->ops);
 174                        if (result != 0) {
 175                                printf("\n%s: MTD writeoob failure: %d\n",
 176                                       mtd_device, result);
 177                                continue;
 178                        }
 179                }
 180
 181                if (!opts->quiet) {
 182                        unsigned long long n = erased_length * 100ULL;
 183                        int percent;
 184
 185                        do_div(n, erase_length);
 186                        percent = (int)n;
 187
 188                        /* output progress message only at whole percent
 189                         * steps to reduce the number of messages printed
 190                         * on (slow) serial consoles
 191                         */
 192                        if (percent != percent_complete) {
 193                                percent_complete = percent;
 194
 195                                printf("\rErasing at 0x%llx -- %3d%% complete.",
 196                                       erase.addr, percent);
 197
 198                                if (opts->jffs2 && result == 0)
 199                                        printf(" Cleanmarker written at 0x%llx.",
 200                                               erase.addr);
 201                        }
 202                }
 203        }
 204        if (!opts->quiet)
 205                printf("\n");
 206
 207        if (nand_block_bad_old) {
 208                struct nand_chip *priv_nand = meminfo->priv;
 209
 210                priv_nand->block_bad = nand_block_bad_old;
 211                priv_nand->scan_bbt(meminfo);
 212        }
 213
 214        return 0;
 215}
 216
 217#ifdef CONFIG_CMD_NAND_LOCK_UNLOCK
 218
 219/******************************************************************************
 220 * Support for locking / unlocking operations of some NAND devices
 221 *****************************************************************************/
 222
 223#define NAND_CMD_LOCK           0x2a
 224#define NAND_CMD_LOCK_TIGHT     0x2c
 225#define NAND_CMD_UNLOCK1        0x23
 226#define NAND_CMD_UNLOCK2        0x24
 227#define NAND_CMD_LOCK_STATUS    0x7a
 228
 229/**
 230 * nand_lock: Set all pages of NAND flash chip to the LOCK or LOCK-TIGHT
 231 *            state
 232 *
 233 * @param mtd           nand mtd instance
 234 * @param tight         bring device in lock tight mode
 235 *
 236 * @return              0 on success, -1 in case of error
 237 *
 238 * The lock / lock-tight command only applies to the whole chip. To get some
 239 * parts of the chip lock and others unlocked use the following sequence:
 240 *
 241 * - Lock all pages of the chip using nand_lock(mtd, 0) (or the lockpre pin)
 242 * - Call nand_unlock() once for each consecutive area to be unlocked
 243 * - If desired: Bring the chip to the lock-tight state using nand_lock(mtd, 1)
 244 *
 245 *   If the device is in lock-tight state software can't change the
 246 *   current active lock/unlock state of all pages. nand_lock() / nand_unlock()
 247 *   calls will fail. It is only posible to leave lock-tight state by
 248 *   an hardware signal (low pulse on _WP pin) or by power down.
 249 */
 250int nand_lock(struct mtd_info *mtd, int tight)
 251{
 252        int ret = 0;
 253        int status;
 254        struct nand_chip *chip = mtd->priv;
 255
 256        /* select the NAND device */
 257        chip->select_chip(mtd, 0);
 258
 259        chip->cmdfunc(mtd,
 260                      (tight ? NAND_CMD_LOCK_TIGHT : NAND_CMD_LOCK),
 261                      -1, -1);
 262
 263        /* call wait ready function */
 264        status = chip->waitfunc(mtd, chip);
 265
 266        /* see if device thinks it succeeded */
 267        if (status & 0x01) {
 268                ret = -1;
 269        }
 270
 271        /* de-select the NAND device */
 272        chip->select_chip(mtd, -1);
 273        return ret;
 274}
 275
 276/**
 277 * nand_get_lock_status: - query current lock state from one page of NAND
 278 *                         flash
 279 *
 280 * @param mtd           nand mtd instance
 281 * @param offset        page address to query (muss be page aligned!)
 282 *
 283 * @return              -1 in case of error
 284 *                      >0 lock status:
 285 *                        bitfield with the following combinations:
 286 *                        NAND_LOCK_STATUS_TIGHT: page in tight state
 287 *                        NAND_LOCK_STATUS_LOCK:  page locked
 288 *                        NAND_LOCK_STATUS_UNLOCK: page unlocked
 289 *
 290 */
 291int nand_get_lock_status(struct mtd_info *mtd, loff_t offset)
 292{
 293        int ret = 0;
 294        int chipnr;
 295        int page;
 296        struct nand_chip *chip = mtd->priv;
 297
 298        /* select the NAND device */
 299        chipnr = (int)(offset >> chip->chip_shift);
 300        chip->select_chip(mtd, chipnr);
 301
 302
 303        if ((offset & (mtd->writesize - 1)) != 0) {
 304                printf ("nand_get_lock_status: "
 305                        "Start address must be beginning of "
 306                        "nand page!\n");
 307                ret = -1;
 308                goto out;
 309        }
 310
 311        /* check the Lock Status */
 312        page = (int)(offset >> chip->page_shift);
 313        chip->cmdfunc(mtd, NAND_CMD_LOCK_STATUS, -1, page & chip->pagemask);
 314
 315        ret = chip->read_byte(mtd) & (NAND_LOCK_STATUS_TIGHT
 316                                          | NAND_LOCK_STATUS_LOCK
 317                                          | NAND_LOCK_STATUS_UNLOCK);
 318
 319 out:
 320        /* de-select the NAND device */
 321        chip->select_chip(mtd, -1);
 322        return ret;
 323}
 324
 325/**
 326 * nand_unlock: - Unlock area of NAND pages
 327 *                only one consecutive area can be unlocked at one time!
 328 *
 329 * @param mtd           nand mtd instance
 330 * @param start         start byte address
 331 * @param length        number of bytes to unlock (must be a multiple of
 332 *                      page size nand->writesize)
 333 *
 334 * @return              0 on success, -1 in case of error
 335 */
 336int nand_unlock(struct mtd_info *mtd, ulong start, ulong length)
 337{
 338        int ret = 0;
 339        int chipnr;
 340        int status;
 341        int page;
 342        struct nand_chip *chip = mtd->priv;
 343        printf ("nand_unlock: start: %08x, length: %d!\n",
 344                (int)start, (int)length);
 345
 346        /* select the NAND device */
 347        chipnr = (int)(start >> chip->chip_shift);
 348        chip->select_chip(mtd, chipnr);
 349
 350        /* check the WP bit */
 351        chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
 352        if (!(chip->read_byte(mtd) & NAND_STATUS_WP)) {
 353                printf ("nand_unlock: Device is write protected!\n");
 354                ret = -1;
 355                goto out;
 356        }
 357
 358        if ((start & (mtd->erasesize - 1)) != 0) {
 359                printf ("nand_unlock: Start address must be beginning of "
 360                        "nand block!\n");
 361                ret = -1;
 362                goto out;
 363        }
 364
 365        if (length == 0 || (length & (mtd->erasesize - 1)) != 0) {
 366                printf ("nand_unlock: Length must be a multiple of nand block "
 367                        "size %08x!\n", mtd->erasesize);
 368                ret = -1;
 369                goto out;
 370        }
 371
 372        /*
 373         * Set length so that the last address is set to the
 374         * starting address of the last block
 375         */
 376        length -= mtd->erasesize;
 377
 378        /* submit address of first page to unlock */
 379        page = (int)(start >> chip->page_shift);
 380        chip->cmdfunc(mtd, NAND_CMD_UNLOCK1, -1, page & chip->pagemask);
 381
 382        /* submit ADDRESS of LAST page to unlock */
 383        page += (int)(length >> chip->page_shift);
 384        chip->cmdfunc(mtd, NAND_CMD_UNLOCK2, -1, page & chip->pagemask);
 385
 386        /* call wait ready function */
 387        status = chip->waitfunc(mtd, chip);
 388        /* see if device thinks it succeeded */
 389        if (status & 0x01) {
 390                /* there was an error */
 391                ret = -1;
 392                goto out;
 393        }
 394
 395 out:
 396        /* de-select the NAND device */
 397        chip->select_chip(mtd, -1);
 398        return ret;
 399}
 400#endif
 401
 402/**
 403 * check_skip_len
 404 *
 405 * Check if there are any bad blocks, and whether length including bad
 406 * blocks fits into device
 407 *
 408 * @param nand NAND device
 409 * @param offset offset in flash
 410 * @param length image length
 411 * @return 0 if the image fits and there are no bad blocks
 412 *         1 if the image fits, but there are bad blocks
 413 *        -1 if the image does not fit
 414 */
 415static int check_skip_len(nand_info_t *nand, loff_t offset, size_t length)
 416{
 417        size_t len_excl_bad = 0;
 418        int ret = 0;
 419
 420        while (len_excl_bad < length) {
 421                size_t block_len, block_off;
 422                loff_t block_start;
 423
 424                if (offset >= nand->size)
 425                        return -1;
 426
 427                block_start = offset & ~(loff_t)(nand->erasesize - 1);
 428                block_off = offset & (nand->erasesize - 1);
 429                block_len = nand->erasesize - block_off;
 430
 431                if (!nand_block_isbad(nand, block_start))
 432                        len_excl_bad += block_len;
 433                else
 434                        ret = 1;
 435
 436                offset += block_len;
 437        }
 438
 439        return ret;
 440}
 441
 442#ifdef CONFIG_CMD_NAND_TRIMFFS
 443static size_t drop_ffs(const nand_info_t *nand, const u_char *buf,
 444                        const size_t *len)
 445{
 446        size_t i, l = *len;
 447
 448        for (i = l - 1; i >= 0; i--)
 449                if (buf[i] != 0xFF)
 450                        break;
 451
 452        /* The resulting length must be aligned to the minimum flash I/O size */
 453        l = i + 1;
 454        l = (l + nand->writesize - 1) / nand->writesize;
 455        l *=  nand->writesize;
 456
 457        /*
 458         * since the input length may be unaligned, prevent access past the end
 459         * of the buffer
 460         */
 461        return min(l, *len);
 462}
 463#endif
 464
 465/**
 466 * nand_write_skip_bad:
 467 *
 468 * Write image to NAND flash.
 469 * Blocks that are marked bad are skipped and the is written to the next
 470 * block instead as long as the image is short enough to fit even after
 471 * skipping the bad blocks.
 472 *
 473 * @param nand          NAND device
 474 * @param offset        offset in flash
 475 * @param length        buffer length
 476 * @param buffer        buffer to read from
 477 * @param flags         flags modifying the behaviour of the write to NAND
 478 * @return              0 in case of success
 479 */
 480int nand_write_skip_bad(nand_info_t *nand, loff_t offset, size_t *length,
 481                        u_char *buffer, int flags)
 482{
 483        int rval = 0, blocksize;
 484        size_t left_to_write = *length;
 485        u_char *p_buffer = buffer;
 486        int need_skip;
 487
 488#ifdef CONFIG_CMD_NAND_YAFFS
 489        if (flags & WITH_YAFFS_OOB) {
 490                if (flags & ~WITH_YAFFS_OOB)
 491                        return -EINVAL;
 492
 493                int pages;
 494                pages = nand->erasesize / nand->writesize;
 495                blocksize = (pages * nand->oobsize) + nand->erasesize;
 496                if (*length % (nand->writesize + nand->oobsize)) {
 497                        printf ("Attempt to write incomplete page"
 498                                " in yaffs mode\n");
 499                        return -EINVAL;
 500                }
 501        } else
 502#endif
 503        {
 504                blocksize = nand->erasesize;
 505        }
 506
 507        /*
 508         * nand_write() handles unaligned, partial page writes.
 509         *
 510         * We allow length to be unaligned, for convenience in
 511         * using the $filesize variable.
 512         *
 513         * However, starting at an unaligned offset makes the
 514         * semantics of bad block skipping ambiguous (really,
 515         * you should only start a block skipping access at a
 516         * partition boundary).  So don't try to handle that.
 517         */
 518        if ((offset & (nand->writesize - 1)) != 0) {
 519                printf ("Attempt to write non page aligned data\n");
 520                *length = 0;
 521                return -EINVAL;
 522        }
 523
 524        need_skip = check_skip_len(nand, offset, *length);
 525        if (need_skip < 0) {
 526                printf ("Attempt to write outside the flash area\n");
 527                *length = 0;
 528                return -EINVAL;
 529        }
 530
 531        if (!need_skip && !(flags & WITH_DROP_FFS)) {
 532                rval = nand_write (nand, offset, length, buffer);
 533                if (rval == 0)
 534                        return 0;
 535
 536                *length = 0;
 537                printf ("NAND write to offset %llx failed %d\n",
 538                        offset, rval);
 539                return rval;
 540        }
 541
 542        while (left_to_write > 0) {
 543                size_t block_offset = offset & (nand->erasesize - 1);
 544                size_t write_size, truncated_write_size;
 545
 546                WATCHDOG_RESET ();
 547
 548                if (nand_block_isbad (nand, offset & ~(nand->erasesize - 1))) {
 549                        printf ("Skip bad block 0x%08llx\n",
 550                                offset & ~(nand->erasesize - 1));
 551                        offset += nand->erasesize - block_offset;
 552                        continue;
 553                }
 554
 555                if (left_to_write < (blocksize - block_offset))
 556                        write_size = left_to_write;
 557                else
 558                        write_size = blocksize - block_offset;
 559
 560#ifdef CONFIG_CMD_NAND_YAFFS
 561                if (flags & WITH_YAFFS_OOB) {
 562                        int page, pages;
 563                        size_t pagesize = nand->writesize;
 564                        size_t pagesize_oob = pagesize + nand->oobsize;
 565                        struct mtd_oob_ops ops;
 566
 567                        ops.len = pagesize;
 568                        ops.ooblen = nand->oobsize;
 569                        ops.mode = MTD_OOB_AUTO;
 570                        ops.ooboffs = 0;
 571
 572                        pages = write_size / pagesize_oob;
 573                        for (page = 0; page < pages; page++) {
 574                                WATCHDOG_RESET();
 575
 576                                ops.datbuf = p_buffer;
 577                                ops.oobbuf = ops.datbuf + pagesize;
 578
 579                                rval = nand->write_oob(nand, offset, &ops);
 580                                if (!rval)
 581                                        break;
 582
 583                                offset += pagesize;
 584                                p_buffer += pagesize_oob;
 585                        }
 586                }
 587                else
 588#endif
 589                {
 590                        truncated_write_size = write_size;
 591#ifdef CONFIG_CMD_NAND_TRIMFFS
 592                        if (flags & WITH_DROP_FFS)
 593                                truncated_write_size = drop_ffs(nand, p_buffer,
 594                                                &write_size);
 595#endif
 596
 597                        rval = nand_write(nand, offset, &truncated_write_size,
 598                                        p_buffer);
 599                        offset += write_size;
 600                        p_buffer += write_size;
 601                }
 602
 603                if (rval != 0) {
 604                        printf ("NAND write to offset %llx failed %d\n",
 605                                offset, rval);
 606                        *length -= left_to_write;
 607                        return rval;
 608                }
 609
 610                left_to_write -= write_size;
 611        }
 612
 613        return 0;
 614}
 615
 616/**
 617 * nand_read_skip_bad:
 618 *
 619 * Read image from NAND flash.
 620 * Blocks that are marked bad are skipped and the next block is readen
 621 * instead as long as the image is short enough to fit even after skipping the
 622 * bad blocks.
 623 *
 624 * @param nand NAND device
 625 * @param offset offset in flash
 626 * @param length buffer length, on return holds remaining bytes to read
 627 * @param buffer buffer to write to
 628 * @return 0 in case of success
 629 */
 630int nand_read_skip_bad(nand_info_t *nand, loff_t offset, size_t *length,
 631                       u_char *buffer)
 632{
 633        int rval;
 634        size_t left_to_read = *length;
 635        u_char *p_buffer = buffer;
 636        int need_skip;
 637
 638        if ((offset & (nand->writesize - 1)) != 0) {
 639                printf ("Attempt to read non page aligned data\n");
 640                *length = 0;
 641                return -EINVAL;
 642        }
 643
 644        need_skip = check_skip_len(nand, offset, *length);
 645        if (need_skip < 0) {
 646                printf ("Attempt to read outside the flash area\n");
 647                *length = 0;
 648                return -EINVAL;
 649        }
 650
 651        if (!need_skip) {
 652                rval = nand_read (nand, offset, length, buffer);
 653                if (!rval || rval == -EUCLEAN)
 654                        return 0;
 655
 656                *length = 0;
 657                printf ("NAND read from offset %llx failed %d\n",
 658                        offset, rval);
 659                return rval;
 660        }
 661
 662        while (left_to_read > 0) {
 663                size_t block_offset = offset & (nand->erasesize - 1);
 664                size_t read_length;
 665
 666                WATCHDOG_RESET ();
 667
 668                if (nand_block_isbad (nand, offset & ~(nand->erasesize - 1))) {
 669                        printf ("Skipping bad block 0x%08llx\n",
 670                                offset & ~(nand->erasesize - 1));
 671                        offset += nand->erasesize - block_offset;
 672                        continue;
 673                }
 674
 675                if (left_to_read < (nand->erasesize - block_offset))
 676                        read_length = left_to_read;
 677                else
 678                        read_length = nand->erasesize - block_offset;
 679
 680                rval = nand_read (nand, offset, &read_length, p_buffer);
 681                if (rval && rval != -EUCLEAN) {
 682                        printf ("NAND read from offset %llx failed %d\n",
 683                                offset, rval);
 684                        *length -= left_to_read;
 685                        return rval;
 686                }
 687
 688                left_to_read -= read_length;
 689                offset       += read_length;
 690                p_buffer     += read_length;
 691        }
 692
 693        return 0;
 694}
 695