uboot/drivers/mtd/ubi/scan.c
<<
>>
Prefs
   1/*
   2 * Copyright (c) International Business Machines Corp., 2006
   3 *
   4 * This program is free software; you can redistribute it and/or modify
   5 * it under the terms of the GNU General Public License as published by
   6 * the Free Software Foundation; either version 2 of the License, or
   7 * (at your option) any later version.
   8 *
   9 * This program is distributed in the hope that it will be useful,
  10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
  12 * the GNU General Public License for more details.
  13 *
  14 * You should have received a copy of the GNU General Public License
  15 * along with this program; if not, write to the Free Software
  16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  17 *
  18 * Author: Artem Bityutskiy (Битюцкий Артём)
  19 */
  20
  21/*
  22 * UBI scanning unit.
  23 *
  24 * This unit is responsible for scanning the flash media, checking UBI
  25 * headers and providing complete information about the UBI flash image.
  26 *
  27 * The scanning information is represented by a &struct ubi_scan_info' object.
  28 * Information about found volumes is represented by &struct ubi_scan_volume
  29 * objects which are kept in volume RB-tree with root at the @volumes field.
  30 * The RB-tree is indexed by the volume ID.
  31 *
  32 * Found logical eraseblocks are represented by &struct ubi_scan_leb objects.
  33 * These objects are kept in per-volume RB-trees with the root at the
  34 * corresponding &struct ubi_scan_volume object. To put it differently, we keep
  35 * an RB-tree of per-volume objects and each of these objects is the root of
  36 * RB-tree of per-eraseblock objects.
  37 *
  38 * Corrupted physical eraseblocks are put to the @corr list, free physical
  39 * eraseblocks are put to the @free list and the physical eraseblock to be
  40 * erased are put to the @erase list.
  41 */
  42
  43#ifdef UBI_LINUX
  44#include <linux/err.h>
  45#include <linux/crc32.h>
  46#include <asm/div64.h>
  47#endif
  48
  49#include <ubi_uboot.h>
  50#include "ubi.h"
  51
  52#ifdef CONFIG_MTD_UBI_DEBUG_PARANOID
  53static int paranoid_check_si(struct ubi_device *ubi, struct ubi_scan_info *si);
  54#else
  55#define paranoid_check_si(ubi, si) 0
  56#endif
  57
  58/* Temporary variables used during scanning */
  59static struct ubi_ec_hdr *ech;
  60static struct ubi_vid_hdr *vidh;
  61
  62/**
  63 * add_to_list - add physical eraseblock to a list.
  64 * @si: scanning information
  65 * @pnum: physical eraseblock number to add
  66 * @ec: erase counter of the physical eraseblock
  67 * @list: the list to add to
  68 *
  69 * This function adds physical eraseblock @pnum to free, erase, corrupted or
  70 * alien lists. Returns zero in case of success and a negative error code in
  71 * case of failure.
  72 */
  73static int add_to_list(struct ubi_scan_info *si, int pnum, int ec,
  74                       struct list_head *list)
  75{
  76        struct ubi_scan_leb *seb;
  77
  78        if (list == &si->free)
  79                dbg_bld("add to free: PEB %d, EC %d", pnum, ec);
  80        else if (list == &si->erase)
  81                dbg_bld("add to erase: PEB %d, EC %d", pnum, ec);
  82        else if (list == &si->corr)
  83                dbg_bld("add to corrupted: PEB %d, EC %d", pnum, ec);
  84        else if (list == &si->alien)
  85                dbg_bld("add to alien: PEB %d, EC %d", pnum, ec);
  86        else
  87                BUG();
  88
  89        seb = kmalloc(sizeof(struct ubi_scan_leb), GFP_KERNEL);
  90        if (!seb)
  91                return -ENOMEM;
  92
  93        seb->pnum = pnum;
  94        seb->ec = ec;
  95        list_add_tail(&seb->u.list, list);
  96        return 0;
  97}
  98
  99/**
 100 * validate_vid_hdr - check that volume identifier header is correct and
 101 * consistent.
 102 * @vid_hdr: the volume identifier header to check
 103 * @sv: information about the volume this logical eraseblock belongs to
 104 * @pnum: physical eraseblock number the VID header came from
 105 *
 106 * This function checks that data stored in @vid_hdr is consistent. Returns
 107 * non-zero if an inconsistency was found and zero if not.
 108 *
 109 * Note, UBI does sanity check of everything it reads from the flash media.
 110 * Most of the checks are done in the I/O unit. Here we check that the
 111 * information in the VID header is consistent to the information in other VID
 112 * headers of the same volume.
 113 */
 114static int validate_vid_hdr(const struct ubi_vid_hdr *vid_hdr,
 115                            const struct ubi_scan_volume *sv, int pnum)
 116{
 117        int vol_type = vid_hdr->vol_type;
 118        int vol_id = be32_to_cpu(vid_hdr->vol_id);
 119        int used_ebs = be32_to_cpu(vid_hdr->used_ebs);
 120        int data_pad = be32_to_cpu(vid_hdr->data_pad);
 121
 122        if (sv->leb_count != 0) {
 123                int sv_vol_type;
 124
 125                /*
 126                 * This is not the first logical eraseblock belonging to this
 127                 * volume. Ensure that the data in its VID header is consistent
 128                 * to the data in previous logical eraseblock headers.
 129                 */
 130
 131                if (vol_id != sv->vol_id) {
 132                        dbg_err("inconsistent vol_id");
 133                        goto bad;
 134                }
 135
 136                if (sv->vol_type == UBI_STATIC_VOLUME)
 137                        sv_vol_type = UBI_VID_STATIC;
 138                else
 139                        sv_vol_type = UBI_VID_DYNAMIC;
 140
 141                if (vol_type != sv_vol_type) {
 142                        dbg_err("inconsistent vol_type");
 143                        goto bad;
 144                }
 145
 146                if (used_ebs != sv->used_ebs) {
 147                        dbg_err("inconsistent used_ebs");
 148                        goto bad;
 149                }
 150
 151                if (data_pad != sv->data_pad) {
 152                        dbg_err("inconsistent data_pad");
 153                        goto bad;
 154                }
 155        }
 156
 157        return 0;
 158
 159bad:
 160        ubi_err("inconsistent VID header at PEB %d", pnum);
 161        ubi_dbg_dump_vid_hdr(vid_hdr);
 162        ubi_dbg_dump_sv(sv);
 163        return -EINVAL;
 164}
 165
 166/**
 167 * add_volume - add volume to the scanning information.
 168 * @si: scanning information
 169 * @vol_id: ID of the volume to add
 170 * @pnum: physical eraseblock number
 171 * @vid_hdr: volume identifier header
 172 *
 173 * If the volume corresponding to the @vid_hdr logical eraseblock is already
 174 * present in the scanning information, this function does nothing. Otherwise
 175 * it adds corresponding volume to the scanning information. Returns a pointer
 176 * to the scanning volume object in case of success and a negative error code
 177 * in case of failure.
 178 */
 179static struct ubi_scan_volume *add_volume(struct ubi_scan_info *si, int vol_id,
 180                                          int pnum,
 181                                          const struct ubi_vid_hdr *vid_hdr)
 182{
 183        struct ubi_scan_volume *sv;
 184        struct rb_node **p = &si->volumes.rb_node, *parent = NULL;
 185
 186        ubi_assert(vol_id == be32_to_cpu(vid_hdr->vol_id));
 187
 188        /* Walk the volume RB-tree to look if this volume is already present */
 189        while (*p) {
 190                parent = *p;
 191                sv = rb_entry(parent, struct ubi_scan_volume, rb);
 192
 193                if (vol_id == sv->vol_id)
 194                        return sv;
 195
 196                if (vol_id > sv->vol_id)
 197                        p = &(*p)->rb_left;
 198                else
 199                        p = &(*p)->rb_right;
 200        }
 201
 202        /* The volume is absent - add it */
 203        sv = kmalloc(sizeof(struct ubi_scan_volume), GFP_KERNEL);
 204        if (!sv)
 205                return ERR_PTR(-ENOMEM);
 206
 207        sv->highest_lnum = sv->leb_count = 0;
 208        sv->vol_id = vol_id;
 209        sv->root = RB_ROOT;
 210        sv->used_ebs = be32_to_cpu(vid_hdr->used_ebs);
 211        sv->data_pad = be32_to_cpu(vid_hdr->data_pad);
 212        sv->compat = vid_hdr->compat;
 213        sv->vol_type = vid_hdr->vol_type == UBI_VID_DYNAMIC ? UBI_DYNAMIC_VOLUME
 214                                                            : UBI_STATIC_VOLUME;
 215        if (vol_id > si->highest_vol_id)
 216                si->highest_vol_id = vol_id;
 217
 218        rb_link_node(&sv->rb, parent, p);
 219        rb_insert_color(&sv->rb, &si->volumes);
 220        si->vols_found += 1;
 221        dbg_bld("added volume %d", vol_id);
 222        return sv;
 223}
 224
 225/**
 226 * compare_lebs - find out which logical eraseblock is newer.
 227 * @ubi: UBI device description object
 228 * @seb: first logical eraseblock to compare
 229 * @pnum: physical eraseblock number of the second logical eraseblock to
 230 * compare
 231 * @vid_hdr: volume identifier header of the second logical eraseblock
 232 *
 233 * This function compares 2 copies of a LEB and informs which one is newer. In
 234 * case of success this function returns a positive value, in case of failure, a
 235 * negative error code is returned. The success return codes use the following
 236 * bits:
 237 *     o bit 0 is cleared: the first PEB (described by @seb) is newer then the
 238 *       second PEB (described by @pnum and @vid_hdr);
 239 *     o bit 0 is set: the second PEB is newer;
 240 *     o bit 1 is cleared: no bit-flips were detected in the newer LEB;
 241 *     o bit 1 is set: bit-flips were detected in the newer LEB;
 242 *     o bit 2 is cleared: the older LEB is not corrupted;
 243 *     o bit 2 is set: the older LEB is corrupted.
 244 */
 245static int compare_lebs(struct ubi_device *ubi, const struct ubi_scan_leb *seb,
 246                        int pnum, const struct ubi_vid_hdr *vid_hdr)
 247{
 248        void *buf;
 249        int len, err, second_is_newer, bitflips = 0, corrupted = 0;
 250        uint32_t data_crc, crc;
 251        struct ubi_vid_hdr *vh = NULL;
 252        unsigned long long sqnum2 = be64_to_cpu(vid_hdr->sqnum);
 253
 254        if (seb->sqnum == 0 && sqnum2 == 0) {
 255                long long abs, v1 = seb->leb_ver, v2 = be32_to_cpu(vid_hdr->leb_ver);
 256
 257                /*
 258                 * UBI constantly increases the logical eraseblock version
 259                 * number and it can overflow. Thus, we have to bear in mind
 260                 * that versions that are close to %0xFFFFFFFF are less then
 261                 * versions that are close to %0.
 262                 *
 263                 * The UBI WL unit guarantees that the number of pending tasks
 264                 * is not greater then %0x7FFFFFFF. So, if the difference
 265                 * between any two versions is greater or equivalent to
 266                 * %0x7FFFFFFF, there was an overflow and the logical
 267                 * eraseblock with lower version is actually newer then the one
 268                 * with higher version.
 269                 *
 270                 * FIXME: but this is anyway obsolete and will be removed at
 271                 * some point.
 272                 */
 273                dbg_bld("using old crappy leb_ver stuff");
 274
 275                if (v1 == v2) {
 276                        ubi_err("PEB %d and PEB %d have the same version %lld",
 277                                seb->pnum, pnum, v1);
 278                        return -EINVAL;
 279                }
 280
 281                abs = v1 - v2;
 282                if (abs < 0)
 283                        abs = -abs;
 284
 285                if (abs < 0x7FFFFFFF)
 286                        /* Non-overflow situation */
 287                        second_is_newer = (v2 > v1);
 288                else
 289                        second_is_newer = (v2 < v1);
 290        } else
 291                /* Obviously the LEB with lower sequence counter is older */
 292                second_is_newer = sqnum2 > seb->sqnum;
 293
 294        /*
 295         * Now we know which copy is newer. If the copy flag of the PEB with
 296         * newer version is not set, then we just return, otherwise we have to
 297         * check data CRC. For the second PEB we already have the VID header,
 298         * for the first one - we'll need to re-read it from flash.
 299         *
 300         * FIXME: this may be optimized so that we wouldn't read twice.
 301         */
 302
 303        if (second_is_newer) {
 304                if (!vid_hdr->copy_flag) {
 305                        /* It is not a copy, so it is newer */
 306                        dbg_bld("second PEB %d is newer, copy_flag is unset",
 307                                pnum);
 308                        return 1;
 309                }
 310        } else {
 311                pnum = seb->pnum;
 312
 313                vh = ubi_zalloc_vid_hdr(ubi, GFP_KERNEL);
 314                if (!vh)
 315                        return -ENOMEM;
 316
 317                err = ubi_io_read_vid_hdr(ubi, pnum, vh, 0);
 318                if (err) {
 319                        if (err == UBI_IO_BITFLIPS)
 320                                bitflips = 1;
 321                        else {
 322                                dbg_err("VID of PEB %d header is bad, but it "
 323                                        "was OK earlier", pnum);
 324                                if (err > 0)
 325                                        err = -EIO;
 326
 327                                goto out_free_vidh;
 328                        }
 329                }
 330
 331                if (!vh->copy_flag) {
 332                        /* It is not a copy, so it is newer */
 333                        dbg_bld("first PEB %d is newer, copy_flag is unset",
 334                                pnum);
 335                        err = bitflips << 1;
 336                        goto out_free_vidh;
 337                }
 338
 339                vid_hdr = vh;
 340        }
 341
 342        /* Read the data of the copy and check the CRC */
 343
 344        len = be32_to_cpu(vid_hdr->data_size);
 345        buf = vmalloc(len);
 346        if (!buf) {
 347                err = -ENOMEM;
 348                goto out_free_vidh;
 349        }
 350
 351        err = ubi_io_read_data(ubi, buf, pnum, 0, len);
 352        if (err && err != UBI_IO_BITFLIPS)
 353                goto out_free_buf;
 354
 355        data_crc = be32_to_cpu(vid_hdr->data_crc);
 356        crc = crc32(UBI_CRC32_INIT, buf, len);
 357        if (crc != data_crc) {
 358                dbg_bld("PEB %d CRC error: calculated %#08x, must be %#08x",
 359                        pnum, crc, data_crc);
 360                corrupted = 1;
 361                bitflips = 0;
 362                second_is_newer = !second_is_newer;
 363        } else {
 364                dbg_bld("PEB %d CRC is OK", pnum);
 365                bitflips = !!err;
 366        }
 367
 368        vfree(buf);
 369        ubi_free_vid_hdr(ubi, vh);
 370
 371        if (second_is_newer)
 372                dbg_bld("second PEB %d is newer, copy_flag is set", pnum);
 373        else
 374                dbg_bld("first PEB %d is newer, copy_flag is set", pnum);
 375
 376        return second_is_newer | (bitflips << 1) | (corrupted << 2);
 377
 378out_free_buf:
 379        vfree(buf);
 380out_free_vidh:
 381        ubi_free_vid_hdr(ubi, vh);
 382        return err;
 383}
 384
 385/**
 386 * ubi_scan_add_used - add information about a physical eraseblock to the
 387 * scanning information.
 388 * @ubi: UBI device description object
 389 * @si: scanning information
 390 * @pnum: the physical eraseblock number
 391 * @ec: erase counter
 392 * @vid_hdr: the volume identifier header
 393 * @bitflips: if bit-flips were detected when this physical eraseblock was read
 394 *
 395 * This function adds information about a used physical eraseblock to the
 396 * 'used' tree of the corresponding volume. The function is rather complex
 397 * because it has to handle cases when this is not the first physical
 398 * eraseblock belonging to the same logical eraseblock, and the newer one has
 399 * to be picked, while the older one has to be dropped. This function returns
 400 * zero in case of success and a negative error code in case of failure.
 401 */
 402int ubi_scan_add_used(struct ubi_device *ubi, struct ubi_scan_info *si,
 403                      int pnum, int ec, const struct ubi_vid_hdr *vid_hdr,
 404                      int bitflips)
 405{
 406        int err, vol_id, lnum;
 407        uint32_t leb_ver;
 408        unsigned long long sqnum;
 409        struct ubi_scan_volume *sv;
 410        struct ubi_scan_leb *seb;
 411        struct rb_node **p, *parent = NULL;
 412
 413        vol_id = be32_to_cpu(vid_hdr->vol_id);
 414        lnum = be32_to_cpu(vid_hdr->lnum);
 415        sqnum = be64_to_cpu(vid_hdr->sqnum);
 416        leb_ver = be32_to_cpu(vid_hdr->leb_ver);
 417
 418        dbg_bld("PEB %d, LEB %d:%d, EC %d, sqnum %llu, ver %u, bitflips %d",
 419                pnum, vol_id, lnum, ec, sqnum, leb_ver, bitflips);
 420
 421        sv = add_volume(si, vol_id, pnum, vid_hdr);
 422        if (IS_ERR(sv) < 0)
 423                return PTR_ERR(sv);
 424
 425        if (si->max_sqnum < sqnum)
 426                si->max_sqnum = sqnum;
 427
 428        /*
 429         * Walk the RB-tree of logical eraseblocks of volume @vol_id to look
 430         * if this is the first instance of this logical eraseblock or not.
 431         */
 432        p = &sv->root.rb_node;
 433        while (*p) {
 434                int cmp_res;
 435
 436                parent = *p;
 437                seb = rb_entry(parent, struct ubi_scan_leb, u.rb);
 438                if (lnum != seb->lnum) {
 439                        if (lnum < seb->lnum)
 440                                p = &(*p)->rb_left;
 441                        else
 442                                p = &(*p)->rb_right;
 443                        continue;
 444                }
 445
 446                /*
 447                 * There is already a physical eraseblock describing the same
 448                 * logical eraseblock present.
 449                 */
 450
 451                dbg_bld("this LEB already exists: PEB %d, sqnum %llu, "
 452                        "LEB ver %u, EC %d", seb->pnum, seb->sqnum,
 453                        seb->leb_ver, seb->ec);
 454
 455                /*
 456                 * Make sure that the logical eraseblocks have different
 457                 * versions. Otherwise the image is bad.
 458                 */
 459                if (seb->leb_ver == leb_ver && leb_ver != 0) {
 460                        ubi_err("two LEBs with same version %u", leb_ver);
 461                        ubi_dbg_dump_seb(seb, 0);
 462                        ubi_dbg_dump_vid_hdr(vid_hdr);
 463                        return -EINVAL;
 464                }
 465
 466                /*
 467                 * Make sure that the logical eraseblocks have different
 468                 * sequence numbers. Otherwise the image is bad.
 469                 *
 470                 * FIXME: remove 'sqnum != 0' check when leb_ver is removed.
 471                 */
 472                if (seb->sqnum == sqnum && sqnum != 0) {
 473                        ubi_err("two LEBs with same sequence number %llu",
 474                                sqnum);
 475                        ubi_dbg_dump_seb(seb, 0);
 476                        ubi_dbg_dump_vid_hdr(vid_hdr);
 477                        return -EINVAL;
 478                }
 479
 480                /*
 481                 * Now we have to drop the older one and preserve the newer
 482                 * one.
 483                 */
 484                cmp_res = compare_lebs(ubi, seb, pnum, vid_hdr);
 485                if (cmp_res < 0)
 486                        return cmp_res;
 487
 488                if (cmp_res & 1) {
 489                        /*
 490                         * This logical eraseblock is newer then the one
 491                         * found earlier.
 492                         */
 493                        err = validate_vid_hdr(vid_hdr, sv, pnum);
 494                        if (err)
 495                                return err;
 496
 497                        if (cmp_res & 4)
 498                                err = add_to_list(si, seb->pnum, seb->ec,
 499                                                  &si->corr);
 500                        else
 501                                err = add_to_list(si, seb->pnum, seb->ec,
 502                                                  &si->erase);
 503                        if (err)
 504                                return err;
 505
 506                        seb->ec = ec;
 507                        seb->pnum = pnum;
 508                        seb->scrub = ((cmp_res & 2) || bitflips);
 509                        seb->sqnum = sqnum;
 510                        seb->leb_ver = leb_ver;
 511
 512                        if (sv->highest_lnum == lnum)
 513                                sv->last_data_size =
 514                                        be32_to_cpu(vid_hdr->data_size);
 515
 516                        return 0;
 517                } else {
 518                        /*
 519                         * This logical eraseblock is older then the one found
 520                         * previously.
 521                         */
 522                        if (cmp_res & 4)
 523                                return add_to_list(si, pnum, ec, &si->corr);
 524                        else
 525                                return add_to_list(si, pnum, ec, &si->erase);
 526                }
 527        }
 528
 529        /*
 530         * We've met this logical eraseblock for the first time, add it to the
 531         * scanning information.
 532         */
 533
 534        err = validate_vid_hdr(vid_hdr, sv, pnum);
 535        if (err)
 536                return err;
 537
 538        seb = kmalloc(sizeof(struct ubi_scan_leb), GFP_KERNEL);
 539        if (!seb)
 540                return -ENOMEM;
 541
 542        seb->ec = ec;
 543        seb->pnum = pnum;
 544        seb->lnum = lnum;
 545        seb->sqnum = sqnum;
 546        seb->scrub = bitflips;
 547        seb->leb_ver = leb_ver;
 548
 549        if (sv->highest_lnum <= lnum) {
 550                sv->highest_lnum = lnum;
 551                sv->last_data_size = be32_to_cpu(vid_hdr->data_size);
 552        }
 553
 554        sv->leb_count += 1;
 555        rb_link_node(&seb->u.rb, parent, p);
 556        rb_insert_color(&seb->u.rb, &sv->root);
 557        return 0;
 558}
 559
 560/**
 561 * ubi_scan_find_sv - find information about a particular volume in the
 562 * scanning information.
 563 * @si: scanning information
 564 * @vol_id: the requested volume ID
 565 *
 566 * This function returns a pointer to the volume description or %NULL if there
 567 * are no data about this volume in the scanning information.
 568 */
 569struct ubi_scan_volume *ubi_scan_find_sv(const struct ubi_scan_info *si,
 570                                         int vol_id)
 571{
 572        struct ubi_scan_volume *sv;
 573        struct rb_node *p = si->volumes.rb_node;
 574
 575        while (p) {
 576                sv = rb_entry(p, struct ubi_scan_volume, rb);
 577
 578                if (vol_id == sv->vol_id)
 579                        return sv;
 580
 581                if (vol_id > sv->vol_id)
 582                        p = p->rb_left;
 583                else
 584                        p = p->rb_right;
 585        }
 586
 587        return NULL;
 588}
 589
 590/**
 591 * ubi_scan_find_seb - find information about a particular logical
 592 * eraseblock in the volume scanning information.
 593 * @sv: a pointer to the volume scanning information
 594 * @lnum: the requested logical eraseblock
 595 *
 596 * This function returns a pointer to the scanning logical eraseblock or %NULL
 597 * if there are no data about it in the scanning volume information.
 598 */
 599struct ubi_scan_leb *ubi_scan_find_seb(const struct ubi_scan_volume *sv,
 600                                       int lnum)
 601{
 602        struct ubi_scan_leb *seb;
 603        struct rb_node *p = sv->root.rb_node;
 604
 605        while (p) {
 606                seb = rb_entry(p, struct ubi_scan_leb, u.rb);
 607
 608                if (lnum == seb->lnum)
 609                        return seb;
 610
 611                if (lnum > seb->lnum)
 612                        p = p->rb_left;
 613                else
 614                        p = p->rb_right;
 615        }
 616
 617        return NULL;
 618}
 619
 620/**
 621 * ubi_scan_rm_volume - delete scanning information about a volume.
 622 * @si: scanning information
 623 * @sv: the volume scanning information to delete
 624 */
 625void ubi_scan_rm_volume(struct ubi_scan_info *si, struct ubi_scan_volume *sv)
 626{
 627        struct rb_node *rb;
 628        struct ubi_scan_leb *seb;
 629
 630        dbg_bld("remove scanning information about volume %d", sv->vol_id);
 631
 632        while ((rb = rb_first(&sv->root))) {
 633                seb = rb_entry(rb, struct ubi_scan_leb, u.rb);
 634                rb_erase(&seb->u.rb, &sv->root);
 635                list_add_tail(&seb->u.list, &si->erase);
 636        }
 637
 638        rb_erase(&sv->rb, &si->volumes);
 639        kfree(sv);
 640        si->vols_found -= 1;
 641}
 642
 643/**
 644 * ubi_scan_erase_peb - erase a physical eraseblock.
 645 * @ubi: UBI device description object
 646 * @si: scanning information
 647 * @pnum: physical eraseblock number to erase;
 648 * @ec: erase counter value to write (%UBI_SCAN_UNKNOWN_EC if it is unknown)
 649 *
 650 * This function erases physical eraseblock 'pnum', and writes the erase
 651 * counter header to it. This function should only be used on UBI device
 652 * initialization stages, when the EBA unit had not been yet initialized. This
 653 * function returns zero in case of success and a negative error code in case
 654 * of failure.
 655 */
 656int ubi_scan_erase_peb(struct ubi_device *ubi, const struct ubi_scan_info *si,
 657                       int pnum, int ec)
 658{
 659        int err;
 660        struct ubi_ec_hdr *ec_hdr;
 661
 662        if ((long long)ec >= UBI_MAX_ERASECOUNTER) {
 663                /*
 664                 * Erase counter overflow. Upgrade UBI and use 64-bit
 665                 * erase counters internally.
 666                 */
 667                ubi_err("erase counter overflow at PEB %d, EC %d", pnum, ec);
 668                return -EINVAL;
 669        }
 670
 671        ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_KERNEL);
 672        if (!ec_hdr)
 673                return -ENOMEM;
 674
 675        ec_hdr->ec = cpu_to_be64(ec);
 676
 677        err = ubi_io_sync_erase(ubi, pnum, 0);
 678        if (err < 0)
 679                goto out_free;
 680
 681        err = ubi_io_write_ec_hdr(ubi, pnum, ec_hdr);
 682
 683out_free:
 684        kfree(ec_hdr);
 685        return err;
 686}
 687
 688/**
 689 * ubi_scan_get_free_peb - get a free physical eraseblock.
 690 * @ubi: UBI device description object
 691 * @si: scanning information
 692 *
 693 * This function returns a free physical eraseblock. It is supposed to be
 694 * called on the UBI initialization stages when the wear-leveling unit is not
 695 * initialized yet. This function picks a physical eraseblocks from one of the
 696 * lists, writes the EC header if it is needed, and removes it from the list.
 697 *
 698 * This function returns scanning physical eraseblock information in case of
 699 * success and an error code in case of failure.
 700 */
 701struct ubi_scan_leb *ubi_scan_get_free_peb(struct ubi_device *ubi,
 702                                           struct ubi_scan_info *si)
 703{
 704        int err = 0, i;
 705        struct ubi_scan_leb *seb;
 706
 707        if (!list_empty(&si->free)) {
 708                seb = list_entry(si->free.next, struct ubi_scan_leb, u.list);
 709                list_del(&seb->u.list);
 710                dbg_bld("return free PEB %d, EC %d", seb->pnum, seb->ec);
 711                return seb;
 712        }
 713
 714        for (i = 0; i < 2; i++) {
 715                struct list_head *head;
 716                struct ubi_scan_leb *tmp_seb;
 717
 718                if (i == 0)
 719                        head = &si->erase;
 720                else
 721                        head = &si->corr;
 722
 723                /*
 724                 * We try to erase the first physical eraseblock from the @head
 725                 * list and pick it if we succeed, or try to erase the
 726                 * next one if not. And so forth. We don't want to take care
 727                 * about bad eraseblocks here - they'll be handled later.
 728                 */
 729                list_for_each_entry_safe(seb, tmp_seb, head, u.list) {
 730                        if (seb->ec == UBI_SCAN_UNKNOWN_EC)
 731                                seb->ec = si->mean_ec;
 732
 733                        err = ubi_scan_erase_peb(ubi, si, seb->pnum, seb->ec+1);
 734                        if (err)
 735                                continue;
 736
 737                        seb->ec += 1;
 738                        list_del(&seb->u.list);
 739                        dbg_bld("return PEB %d, EC %d", seb->pnum, seb->ec);
 740                        return seb;
 741                }
 742        }
 743
 744        ubi_err("no eraseblocks found");
 745        return ERR_PTR(-ENOSPC);
 746}
 747
 748/**
 749 * process_eb - read UBI headers, check them and add corresponding data
 750 * to the scanning information.
 751 * @ubi: UBI device description object
 752 * @si: scanning information
 753 * @pnum: the physical eraseblock number
 754 *
 755 * This function returns a zero if the physical eraseblock was successfully
 756 * handled and a negative error code in case of failure.
 757 */
 758static int process_eb(struct ubi_device *ubi, struct ubi_scan_info *si, int pnum)
 759{
 760        long long uninitialized_var(ec);
 761        int err, bitflips = 0, vol_id, ec_corr = 0;
 762
 763        dbg_bld("scan PEB %d", pnum);
 764
 765        /* Skip bad physical eraseblocks */
 766        err = ubi_io_is_bad(ubi, pnum);
 767        if (err < 0)
 768                return err;
 769        else if (err) {
 770                /*
 771                 * FIXME: this is actually duty of the I/O unit to initialize
 772                 * this, but MTD does not provide enough information.
 773                 */
 774                si->bad_peb_count += 1;
 775                return 0;
 776        }
 777
 778        err = ubi_io_read_ec_hdr(ubi, pnum, ech, 0);
 779        if (err < 0)
 780                return err;
 781        else if (err == UBI_IO_BITFLIPS)
 782                bitflips = 1;
 783        else if (err == UBI_IO_PEB_EMPTY)
 784                return add_to_list(si, pnum, UBI_SCAN_UNKNOWN_EC, &si->erase);
 785        else if (err == UBI_IO_BAD_EC_HDR) {
 786                /*
 787                 * We have to also look at the VID header, possibly it is not
 788                 * corrupted. Set %bitflips flag in order to make this PEB be
 789                 * moved and EC be re-created.
 790                 */
 791                ec_corr = 1;
 792                ec = UBI_SCAN_UNKNOWN_EC;
 793                bitflips = 1;
 794        }
 795
 796        si->is_empty = 0;
 797
 798        if (!ec_corr) {
 799                /* Make sure UBI version is OK */
 800                if (ech->version != UBI_VERSION) {
 801                        ubi_err("this UBI version is %d, image version is %d",
 802                                UBI_VERSION, (int)ech->version);
 803                        return -EINVAL;
 804                }
 805
 806                ec = be64_to_cpu(ech->ec);
 807                if (ec > UBI_MAX_ERASECOUNTER) {
 808                        /*
 809                         * Erase counter overflow. The EC headers have 64 bits
 810                         * reserved, but we anyway make use of only 31 bit
 811                         * values, as this seems to be enough for any existing
 812                         * flash. Upgrade UBI and use 64-bit erase counters
 813                         * internally.
 814                         */
 815                        ubi_err("erase counter overflow, max is %d",
 816                                UBI_MAX_ERASECOUNTER);
 817                        ubi_dbg_dump_ec_hdr(ech);
 818                        return -EINVAL;
 819                }
 820        }
 821
 822        /* OK, we've done with the EC header, let's look at the VID header */
 823
 824        err = ubi_io_read_vid_hdr(ubi, pnum, vidh, 0);
 825        if (err < 0)
 826                return err;
 827        else if (err == UBI_IO_BITFLIPS)
 828                bitflips = 1;
 829        else if (err == UBI_IO_BAD_VID_HDR ||
 830                 (err == UBI_IO_PEB_FREE && ec_corr)) {
 831                /* VID header is corrupted */
 832                err = add_to_list(si, pnum, ec, &si->corr);
 833                if (err)
 834                        return err;
 835                goto adjust_mean_ec;
 836        } else if (err == UBI_IO_PEB_FREE) {
 837                /* No VID header - the physical eraseblock is free */
 838                err = add_to_list(si, pnum, ec, &si->free);
 839                if (err)
 840                        return err;
 841                goto adjust_mean_ec;
 842        }
 843
 844        vol_id = be32_to_cpu(vidh->vol_id);
 845        if (vol_id > UBI_MAX_VOLUMES && vol_id != UBI_LAYOUT_VOLUME_ID) {
 846                int lnum = be32_to_cpu(vidh->lnum);
 847
 848                /* Unsupported internal volume */
 849                switch (vidh->compat) {
 850                case UBI_COMPAT_DELETE:
 851                        ubi_msg("\"delete\" compatible internal volume %d:%d"
 852                                " found, remove it", vol_id, lnum);
 853                        err = add_to_list(si, pnum, ec, &si->corr);
 854                        if (err)
 855                                return err;
 856                        break;
 857
 858                case UBI_COMPAT_RO:
 859                        ubi_msg("read-only compatible internal volume %d:%d"
 860                                " found, switch to read-only mode",
 861                                vol_id, lnum);
 862                        ubi->ro_mode = 1;
 863                        break;
 864
 865                case UBI_COMPAT_PRESERVE:
 866                        ubi_msg("\"preserve\" compatible internal volume %d:%d"
 867                                " found", vol_id, lnum);
 868                        err = add_to_list(si, pnum, ec, &si->alien);
 869                        if (err)
 870                                return err;
 871                        si->alien_peb_count += 1;
 872                        return 0;
 873
 874                case UBI_COMPAT_REJECT:
 875                        ubi_err("incompatible internal volume %d:%d found",
 876                                vol_id, lnum);
 877                        return -EINVAL;
 878                }
 879        }
 880
 881        /* Both UBI headers seem to be fine */
 882        err = ubi_scan_add_used(ubi, si, pnum, ec, vidh, bitflips);
 883        if (err)
 884                return err;
 885
 886adjust_mean_ec:
 887        if (!ec_corr) {
 888                si->ec_sum += ec;
 889                si->ec_count += 1;
 890                if (ec > si->max_ec)
 891                        si->max_ec = ec;
 892                if (ec < si->min_ec)
 893                        si->min_ec = ec;
 894        }
 895
 896        return 0;
 897}
 898
 899/**
 900 * ubi_scan - scan an MTD device.
 901 * @ubi: UBI device description object
 902 *
 903 * This function does full scanning of an MTD device and returns complete
 904 * information about it. In case of failure, an error code is returned.
 905 */
 906struct ubi_scan_info *ubi_scan(struct ubi_device *ubi)
 907{
 908        int err, pnum;
 909        struct rb_node *rb1, *rb2;
 910        struct ubi_scan_volume *sv;
 911        struct ubi_scan_leb *seb;
 912        struct ubi_scan_info *si;
 913
 914        si = kzalloc(sizeof(struct ubi_scan_info), GFP_KERNEL);
 915        if (!si)
 916                return ERR_PTR(-ENOMEM);
 917
 918        INIT_LIST_HEAD(&si->corr);
 919        INIT_LIST_HEAD(&si->free);
 920        INIT_LIST_HEAD(&si->erase);
 921        INIT_LIST_HEAD(&si->alien);
 922        si->volumes = RB_ROOT;
 923        si->is_empty = 1;
 924
 925        err = -ENOMEM;
 926        ech = kzalloc(ubi->ec_hdr_alsize, GFP_KERNEL);
 927        if (!ech)
 928                goto out_si;
 929
 930        vidh = ubi_zalloc_vid_hdr(ubi, GFP_KERNEL);
 931        if (!vidh)
 932                goto out_ech;
 933
 934        for (pnum = 0; pnum < ubi->peb_count; pnum++) {
 935                cond_resched();
 936
 937                dbg_msg("process PEB %d", pnum);
 938                err = process_eb(ubi, si, pnum);
 939                if (err < 0)
 940                        goto out_vidh;
 941        }
 942
 943        dbg_msg("scanning is finished");
 944
 945        /* Calculate mean erase counter */
 946        if (si->ec_count) {
 947                do_div(si->ec_sum, si->ec_count);
 948                si->mean_ec = si->ec_sum;
 949        }
 950
 951        if (si->is_empty)
 952                ubi_msg("empty MTD device detected");
 953
 954        /*
 955         * In case of unknown erase counter we use the mean erase counter
 956         * value.
 957         */
 958        ubi_rb_for_each_entry(rb1, sv, &si->volumes, rb) {
 959                ubi_rb_for_each_entry(rb2, seb, &sv->root, u.rb)
 960                        if (seb->ec == UBI_SCAN_UNKNOWN_EC)
 961                                seb->ec = si->mean_ec;
 962        }
 963
 964        list_for_each_entry(seb, &si->free, u.list) {
 965                if (seb->ec == UBI_SCAN_UNKNOWN_EC)
 966                        seb->ec = si->mean_ec;
 967        }
 968
 969        list_for_each_entry(seb, &si->corr, u.list)
 970                if (seb->ec == UBI_SCAN_UNKNOWN_EC)
 971                        seb->ec = si->mean_ec;
 972
 973        list_for_each_entry(seb, &si->erase, u.list)
 974                if (seb->ec == UBI_SCAN_UNKNOWN_EC)
 975                        seb->ec = si->mean_ec;
 976
 977        err = paranoid_check_si(ubi, si);
 978        if (err) {
 979                if (err > 0)
 980                        err = -EINVAL;
 981                goto out_vidh;
 982        }
 983
 984        ubi_free_vid_hdr(ubi, vidh);
 985        kfree(ech);
 986
 987        return si;
 988
 989out_vidh:
 990        ubi_free_vid_hdr(ubi, vidh);
 991out_ech:
 992        kfree(ech);
 993out_si:
 994        ubi_scan_destroy_si(si);
 995        return ERR_PTR(err);
 996}
 997
 998/**
 999 * destroy_sv - free the scanning volume information
1000 * @sv: scanning volume information
1001 *
1002 * This function destroys the volume RB-tree (@sv->root) and the scanning
1003 * volume information.
1004 */
1005static void destroy_sv(struct ubi_scan_volume *sv)
1006{
1007        struct ubi_scan_leb *seb;
1008        struct rb_node *this = sv->root.rb_node;
1009
1010        while (this) {
1011                if (this->rb_left)
1012                        this = this->rb_left;
1013                else if (this->rb_right)
1014                        this = this->rb_right;
1015                else {
1016                        seb = rb_entry(this, struct ubi_scan_leb, u.rb);
1017                        this = rb_parent(this);
1018                        if (this) {
1019                                if (this->rb_left == &seb->u.rb)
1020                                        this->rb_left = NULL;
1021                                else
1022                                        this->rb_right = NULL;
1023                        }
1024
1025                        kfree(seb);
1026                }
1027        }
1028        kfree(sv);
1029}
1030
1031/**
1032 * ubi_scan_destroy_si - destroy scanning information.
1033 * @si: scanning information
1034 */
1035void ubi_scan_destroy_si(struct ubi_scan_info *si)
1036{
1037        struct ubi_scan_leb *seb, *seb_tmp;
1038        struct ubi_scan_volume *sv;
1039        struct rb_node *rb;
1040
1041        list_for_each_entry_safe(seb, seb_tmp, &si->alien, u.list) {
1042                list_del(&seb->u.list);
1043                kfree(seb);
1044        }
1045        list_for_each_entry_safe(seb, seb_tmp, &si->erase, u.list) {
1046                list_del(&seb->u.list);
1047                kfree(seb);
1048        }
1049        list_for_each_entry_safe(seb, seb_tmp, &si->corr, u.list) {
1050                list_del(&seb->u.list);
1051                kfree(seb);
1052        }
1053        list_for_each_entry_safe(seb, seb_tmp, &si->free, u.list) {
1054                list_del(&seb->u.list);
1055                kfree(seb);
1056        }
1057
1058        /* Destroy the volume RB-tree */
1059        rb = si->volumes.rb_node;
1060        while (rb) {
1061                if (rb->rb_left)
1062                        rb = rb->rb_left;
1063                else if (rb->rb_right)
1064                        rb = rb->rb_right;
1065                else {
1066                        sv = rb_entry(rb, struct ubi_scan_volume, rb);
1067
1068                        rb = rb_parent(rb);
1069                        if (rb) {
1070                                if (rb->rb_left == &sv->rb)
1071                                        rb->rb_left = NULL;
1072                                else
1073                                        rb->rb_right = NULL;
1074                        }
1075
1076                        destroy_sv(sv);
1077                }
1078        }
1079
1080        kfree(si);
1081}
1082
1083#ifdef CONFIG_MTD_UBI_DEBUG_PARANOID
1084
1085/**
1086 * paranoid_check_si - check if the scanning information is correct and
1087 * consistent.
1088 * @ubi: UBI device description object
1089 * @si: scanning information
1090 *
1091 * This function returns zero if the scanning information is all right, %1 if
1092 * not and a negative error code if an error occurred.
1093 */
1094static int paranoid_check_si(struct ubi_device *ubi, struct ubi_scan_info *si)
1095{
1096        int pnum, err, vols_found = 0;
1097        struct rb_node *rb1, *rb2;
1098        struct ubi_scan_volume *sv;
1099        struct ubi_scan_leb *seb, *last_seb;
1100        uint8_t *buf;
1101
1102        /*
1103         * At first, check that scanning information is OK.
1104         */
1105        ubi_rb_for_each_entry(rb1, sv, &si->volumes, rb) {
1106                int leb_count = 0;
1107
1108                cond_resched();
1109
1110                vols_found += 1;
1111
1112                if (si->is_empty) {
1113                        ubi_err("bad is_empty flag");
1114                        goto bad_sv;
1115                }
1116
1117                if (sv->vol_id < 0 || sv->highest_lnum < 0 ||
1118                    sv->leb_count < 0 || sv->vol_type < 0 || sv->used_ebs < 0 ||
1119                    sv->data_pad < 0 || sv->last_data_size < 0) {
1120                        ubi_err("negative values");
1121                        goto bad_sv;
1122                }
1123
1124                if (sv->vol_id >= UBI_MAX_VOLUMES &&
1125                    sv->vol_id < UBI_INTERNAL_VOL_START) {
1126                        ubi_err("bad vol_id");
1127                        goto bad_sv;
1128                }
1129
1130                if (sv->vol_id > si->highest_vol_id) {
1131                        ubi_err("highest_vol_id is %d, but vol_id %d is there",
1132                                si->highest_vol_id, sv->vol_id);
1133                        goto out;
1134                }
1135
1136                if (sv->vol_type != UBI_DYNAMIC_VOLUME &&
1137                    sv->vol_type != UBI_STATIC_VOLUME) {
1138                        ubi_err("bad vol_type");
1139                        goto bad_sv;
1140                }
1141
1142                if (sv->data_pad > ubi->leb_size / 2) {
1143                        ubi_err("bad data_pad");
1144                        goto bad_sv;
1145                }
1146
1147                last_seb = NULL;
1148                ubi_rb_for_each_entry(rb2, seb, &sv->root, u.rb) {
1149                        cond_resched();
1150
1151                        last_seb = seb;
1152                        leb_count += 1;
1153
1154                        if (seb->pnum < 0 || seb->ec < 0) {
1155                                ubi_err("negative values");
1156                                goto bad_seb;
1157                        }
1158
1159                        if (seb->ec < si->min_ec) {
1160                                ubi_err("bad si->min_ec (%d), %d found",
1161                                        si->min_ec, seb->ec);
1162                                goto bad_seb;
1163                        }
1164
1165                        if (seb->ec > si->max_ec) {
1166                                ubi_err("bad si->max_ec (%d), %d found",
1167                                        si->max_ec, seb->ec);
1168                                goto bad_seb;
1169                        }
1170
1171                        if (seb->pnum >= ubi->peb_count) {
1172                                ubi_err("too high PEB number %d, total PEBs %d",
1173                                        seb->pnum, ubi->peb_count);
1174                                goto bad_seb;
1175                        }
1176
1177                        if (sv->vol_type == UBI_STATIC_VOLUME) {
1178                                if (seb->lnum >= sv->used_ebs) {
1179                                        ubi_err("bad lnum or used_ebs");
1180                                        goto bad_seb;
1181                                }
1182                        } else {
1183                                if (sv->used_ebs != 0) {
1184                                        ubi_err("non-zero used_ebs");
1185                                        goto bad_seb;
1186                                }
1187                        }
1188
1189                        if (seb->lnum > sv->highest_lnum) {
1190                                ubi_err("incorrect highest_lnum or lnum");
1191                                goto bad_seb;
1192                        }
1193                }
1194
1195                if (sv->leb_count != leb_count) {
1196                        ubi_err("bad leb_count, %d objects in the tree",
1197                                leb_count);
1198                        goto bad_sv;
1199                }
1200
1201                if (!last_seb)
1202                        continue;
1203
1204                seb = last_seb;
1205
1206                if (seb->lnum != sv->highest_lnum) {
1207                        ubi_err("bad highest_lnum");
1208                        goto bad_seb;
1209                }
1210        }
1211
1212        if (vols_found != si->vols_found) {
1213                ubi_err("bad si->vols_found %d, should be %d",
1214                        si->vols_found, vols_found);
1215                goto out;
1216        }
1217
1218        /* Check that scanning information is correct */
1219        ubi_rb_for_each_entry(rb1, sv, &si->volumes, rb) {
1220                last_seb = NULL;
1221                ubi_rb_for_each_entry(rb2, seb, &sv->root, u.rb) {
1222                        int vol_type;
1223
1224                        cond_resched();
1225
1226                        last_seb = seb;
1227
1228                        err = ubi_io_read_vid_hdr(ubi, seb->pnum, vidh, 1);
1229                        if (err && err != UBI_IO_BITFLIPS) {
1230                                ubi_err("VID header is not OK (%d)", err);
1231                                if (err > 0)
1232                                        err = -EIO;
1233                                return err;
1234                        }
1235
1236                        vol_type = vidh->vol_type == UBI_VID_DYNAMIC ?
1237                                   UBI_DYNAMIC_VOLUME : UBI_STATIC_VOLUME;
1238                        if (sv->vol_type != vol_type) {
1239                                ubi_err("bad vol_type");
1240                                goto bad_vid_hdr;
1241                        }
1242
1243                        if (seb->sqnum != be64_to_cpu(vidh->sqnum)) {
1244                                ubi_err("bad sqnum %llu", seb->sqnum);
1245                                goto bad_vid_hdr;
1246                        }
1247
1248                        if (sv->vol_id != be32_to_cpu(vidh->vol_id)) {
1249                                ubi_err("bad vol_id %d", sv->vol_id);
1250                                goto bad_vid_hdr;
1251                        }
1252
1253                        if (sv->compat != vidh->compat) {
1254                                ubi_err("bad compat %d", vidh->compat);
1255                                goto bad_vid_hdr;
1256                        }
1257
1258                        if (seb->lnum != be32_to_cpu(vidh->lnum)) {
1259                                ubi_err("bad lnum %d", seb->lnum);
1260                                goto bad_vid_hdr;
1261                        }
1262
1263                        if (sv->used_ebs != be32_to_cpu(vidh->used_ebs)) {
1264                                ubi_err("bad used_ebs %d", sv->used_ebs);
1265                                goto bad_vid_hdr;
1266                        }
1267
1268                        if (sv->data_pad != be32_to_cpu(vidh->data_pad)) {
1269                                ubi_err("bad data_pad %d", sv->data_pad);
1270                                goto bad_vid_hdr;
1271                        }
1272
1273                        if (seb->leb_ver != be32_to_cpu(vidh->leb_ver)) {
1274                                ubi_err("bad leb_ver %u", seb->leb_ver);
1275                                goto bad_vid_hdr;
1276                        }
1277                }
1278
1279                if (!last_seb)
1280                        continue;
1281
1282                if (sv->highest_lnum != be32_to_cpu(vidh->lnum)) {
1283                        ubi_err("bad highest_lnum %d", sv->highest_lnum);
1284                        goto bad_vid_hdr;
1285                }
1286
1287                if (sv->last_data_size != be32_to_cpu(vidh->data_size)) {
1288                        ubi_err("bad last_data_size %d", sv->last_data_size);
1289                        goto bad_vid_hdr;
1290                }
1291        }
1292
1293        /*
1294         * Make sure that all the physical eraseblocks are in one of the lists
1295         * or trees.
1296         */
1297        buf = kzalloc(ubi->peb_count, GFP_KERNEL);
1298        if (!buf)
1299                return -ENOMEM;
1300
1301        for (pnum = 0; pnum < ubi->peb_count; pnum++) {
1302                err = ubi_io_is_bad(ubi, pnum);
1303                if (err < 0) {
1304                        kfree(buf);
1305                        return err;
1306                }
1307                else if (err)
1308                        buf[pnum] = 1;
1309        }
1310
1311        ubi_rb_for_each_entry(rb1, sv, &si->volumes, rb)
1312                ubi_rb_for_each_entry(rb2, seb, &sv->root, u.rb)
1313                        buf[seb->pnum] = 1;
1314
1315        list_for_each_entry(seb, &si->free, u.list)
1316                buf[seb->pnum] = 1;
1317
1318        list_for_each_entry(seb, &si->corr, u.list)
1319                buf[seb->pnum] = 1;
1320
1321        list_for_each_entry(seb, &si->erase, u.list)
1322                buf[seb->pnum] = 1;
1323
1324        list_for_each_entry(seb, &si->alien, u.list)
1325                buf[seb->pnum] = 1;
1326
1327        err = 0;
1328        for (pnum = 0; pnum < ubi->peb_count; pnum++)
1329                if (!buf[pnum]) {
1330                        ubi_err("PEB %d is not referred", pnum);
1331                        err = 1;
1332                }
1333
1334        kfree(buf);
1335        if (err)
1336                goto out;
1337        return 0;
1338
1339bad_seb:
1340        ubi_err("bad scanning information about LEB %d", seb->lnum);
1341        ubi_dbg_dump_seb(seb, 0);
1342        ubi_dbg_dump_sv(sv);
1343        goto out;
1344
1345bad_sv:
1346        ubi_err("bad scanning information about volume %d", sv->vol_id);
1347        ubi_dbg_dump_sv(sv);
1348        goto out;
1349
1350bad_vid_hdr:
1351        ubi_err("bad scanning information about volume %d", sv->vol_id);
1352        ubi_dbg_dump_sv(sv);
1353        ubi_dbg_dump_vid_hdr(vidh);
1354
1355out:
1356        ubi_dbg_dump_stack();
1357        return 1;
1358}
1359
1360#endif /* CONFIG_MTD_UBI_DEBUG_PARANOID */
1361