uboot/drivers/mtd/ubi/upd.c
<<
>>
Prefs
   1/*
   2 * Copyright (c) International Business Machines Corp., 2006
   3 * Copyright (c) Nokia Corporation, 2006
   4 *
   5 * This program is free software; you can redistribute it and/or modify
   6 * it under the terms of the GNU General Public License as published by
   7 * the Free Software Foundation; either version 2 of the License, or
   8 * (at your option) any later version.
   9 *
  10 * This program is distributed in the hope that it will be useful,
  11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
  13 * the GNU General Public License for more details.
  14 *
  15 * You should have received a copy of the GNU General Public License
  16 * along with this program; if not, write to the Free Software
  17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  18 *
  19 * Author: Artem Bityutskiy (Битюцкий Артём)
  20 *
  21 * Jan 2007: Alexander Schmidt, hacked per-volume update.
  22 */
  23
  24/*
  25 * This file contains implementation of the volume update and atomic LEB change
  26 * functionality.
  27 *
  28 * The update operation is based on the per-volume update marker which is
  29 * stored in the volume table. The update marker is set before the update
  30 * starts, and removed after the update has been finished. So if the update was
  31 * interrupted by an unclean re-boot or due to some other reasons, the update
  32 * marker stays on the flash media and UBI finds it when it attaches the MTD
  33 * device next time. If the update marker is set for a volume, the volume is
  34 * treated as damaged and most I/O operations are prohibited. Only a new update
  35 * operation is allowed.
  36 *
  37 * Note, in general it is possible to implement the update operation as a
  38 * transaction with a roll-back capability.
  39 */
  40
  41#ifdef UBI_LINUX
  42#include <linux/err.h>
  43#include <asm/uaccess.h>
  44#include <asm/div64.h>
  45#endif
  46
  47#include <ubi_uboot.h>
  48#include "ubi.h"
  49
  50/**
  51 * set_update_marker - set update marker.
  52 * @ubi: UBI device description object
  53 * @vol: volume description object
  54 *
  55 * This function sets the update marker flag for volume @vol. Returns zero
  56 * in case of success and a negative error code in case of failure.
  57 */
  58static int set_update_marker(struct ubi_device *ubi, struct ubi_volume *vol)
  59{
  60        int err;
  61        struct ubi_vtbl_record vtbl_rec;
  62
  63        dbg_msg("set update marker for volume %d", vol->vol_id);
  64
  65        if (vol->upd_marker) {
  66                ubi_assert(ubi->vtbl[vol->vol_id].upd_marker);
  67                dbg_msg("already set");
  68                return 0;
  69        }
  70
  71        memcpy(&vtbl_rec, &ubi->vtbl[vol->vol_id],
  72               sizeof(struct ubi_vtbl_record));
  73        vtbl_rec.upd_marker = 1;
  74
  75        mutex_lock(&ubi->volumes_mutex);
  76        err = ubi_change_vtbl_record(ubi, vol->vol_id, &vtbl_rec);
  77        mutex_unlock(&ubi->volumes_mutex);
  78        vol->upd_marker = 1;
  79        return err;
  80}
  81
  82/**
  83 * clear_update_marker - clear update marker.
  84 * @ubi: UBI device description object
  85 * @vol: volume description object
  86 * @bytes: new data size in bytes
  87 *
  88 * This function clears the update marker for volume @vol, sets new volume
  89 * data size and clears the "corrupted" flag (static volumes only). Returns
  90 * zero in case of success and a negative error code in case of failure.
  91 */
  92static int clear_update_marker(struct ubi_device *ubi, struct ubi_volume *vol,
  93                               long long bytes)
  94{
  95        int err;
  96        uint64_t tmp;
  97        struct ubi_vtbl_record vtbl_rec;
  98
  99        dbg_msg("clear update marker for volume %d", vol->vol_id);
 100
 101        memcpy(&vtbl_rec, &ubi->vtbl[vol->vol_id],
 102               sizeof(struct ubi_vtbl_record));
 103        ubi_assert(vol->upd_marker && vtbl_rec.upd_marker);
 104        vtbl_rec.upd_marker = 0;
 105
 106        if (vol->vol_type == UBI_STATIC_VOLUME) {
 107                vol->corrupted = 0;
 108                vol->used_bytes = tmp = bytes;
 109                vol->last_eb_bytes = do_div(tmp, vol->usable_leb_size);
 110                vol->used_ebs = tmp;
 111                if (vol->last_eb_bytes)
 112                        vol->used_ebs += 1;
 113                else
 114                        vol->last_eb_bytes = vol->usable_leb_size;
 115        }
 116
 117        mutex_lock(&ubi->volumes_mutex);
 118        err = ubi_change_vtbl_record(ubi, vol->vol_id, &vtbl_rec);
 119        mutex_unlock(&ubi->volumes_mutex);
 120        vol->upd_marker = 0;
 121        return err;
 122}
 123
 124/**
 125 * ubi_start_update - start volume update.
 126 * @ubi: UBI device description object
 127 * @vol: volume description object
 128 * @bytes: update bytes
 129 *
 130 * This function starts volume update operation. If @bytes is zero, the volume
 131 * is just wiped out. Returns zero in case of success and a negative error code
 132 * in case of failure.
 133 */
 134int ubi_start_update(struct ubi_device *ubi, struct ubi_volume *vol,
 135                     long long bytes)
 136{
 137        int i, err;
 138        uint64_t tmp;
 139
 140        dbg_msg("start update of volume %d, %llu bytes", vol->vol_id, bytes);
 141        ubi_assert(!vol->updating && !vol->changing_leb);
 142        vol->updating = 1;
 143
 144        err = set_update_marker(ubi, vol);
 145        if (err)
 146                return err;
 147
 148        /* Before updating - wipe out the volume */
 149        for (i = 0; i < vol->reserved_pebs; i++) {
 150                err = ubi_eba_unmap_leb(ubi, vol, i);
 151                if (err)
 152                        return err;
 153        }
 154
 155        if (bytes == 0) {
 156                err = clear_update_marker(ubi, vol, 0);
 157                if (err)
 158                        return err;
 159                err = ubi_wl_flush(ubi);
 160                if (!err)
 161                        vol->updating = 0;
 162        }
 163
 164        vol->upd_buf = vmalloc(ubi->leb_size);
 165        if (!vol->upd_buf)
 166                return -ENOMEM;
 167
 168        tmp = bytes;
 169        vol->upd_ebs = !!do_div(tmp, vol->usable_leb_size);
 170        vol->upd_ebs += tmp;
 171        vol->upd_bytes = bytes;
 172        vol->upd_received = 0;
 173        return 0;
 174}
 175
 176/**
 177 * ubi_start_leb_change - start atomic LEB change.
 178 * @ubi: UBI device description object
 179 * @vol: volume description object
 180 * @req: operation request
 181 *
 182 * This function starts atomic LEB change operation. Returns zero in case of
 183 * success and a negative error code in case of failure.
 184 */
 185int ubi_start_leb_change(struct ubi_device *ubi, struct ubi_volume *vol,
 186                         const struct ubi_leb_change_req *req)
 187{
 188        ubi_assert(!vol->updating && !vol->changing_leb);
 189
 190        dbg_msg("start changing LEB %d:%d, %u bytes",
 191                vol->vol_id, req->lnum, req->bytes);
 192        if (req->bytes == 0)
 193                return ubi_eba_atomic_leb_change(ubi, vol, req->lnum, NULL, 0,
 194                                                 req->dtype);
 195
 196        vol->upd_bytes = req->bytes;
 197        vol->upd_received = 0;
 198        vol->changing_leb = 1;
 199        vol->ch_lnum = req->lnum;
 200        vol->ch_dtype = req->dtype;
 201
 202        vol->upd_buf = vmalloc(req->bytes);
 203        if (!vol->upd_buf)
 204                return -ENOMEM;
 205
 206        return 0;
 207}
 208
 209/**
 210 * write_leb - write update data.
 211 * @ubi: UBI device description object
 212 * @vol: volume description object
 213 * @lnum: logical eraseblock number
 214 * @buf: data to write
 215 * @len: data size
 216 * @used_ebs: how many logical eraseblocks will this volume contain (static
 217 * volumes only)
 218 *
 219 * This function writes update data to corresponding logical eraseblock. In
 220 * case of dynamic volume, this function checks if the data contains 0xFF bytes
 221 * at the end. If yes, the 0xFF bytes are cut and not written. So if the whole
 222 * buffer contains only 0xFF bytes, the LEB is left unmapped.
 223 *
 224 * The reason why we skip the trailing 0xFF bytes in case of dynamic volume is
 225 * that we want to make sure that more data may be appended to the logical
 226 * eraseblock in future. Indeed, writing 0xFF bytes may have side effects and
 227 * this PEB won't be writable anymore. So if one writes the file-system image
 228 * to the UBI volume where 0xFFs mean free space - UBI makes sure this free
 229 * space is writable after the update.
 230 *
 231 * We do not do this for static volumes because they are read-only. But this
 232 * also cannot be done because we have to store per-LEB CRC and the correct
 233 * data length.
 234 *
 235 * This function returns zero in case of success and a negative error code in
 236 * case of failure.
 237 */
 238static int write_leb(struct ubi_device *ubi, struct ubi_volume *vol, int lnum,
 239                     void *buf, int len, int used_ebs)
 240{
 241        int err;
 242
 243        if (vol->vol_type == UBI_DYNAMIC_VOLUME) {
 244                int l = ALIGN(len, ubi->min_io_size);
 245
 246                memset(buf + len, 0xFF, l - len);
 247                len = ubi_calc_data_len(ubi, buf, l);
 248                if (len == 0) {
 249                        dbg_msg("all %d bytes contain 0xFF - skip", len);
 250                        return 0;
 251                }
 252
 253                err = ubi_eba_write_leb(ubi, vol, lnum, buf, 0, len, UBI_UNKNOWN);
 254        } else {
 255                /*
 256                 * When writing static volume, and this is the last logical
 257                 * eraseblock, the length (@len) does not have to be aligned to
 258                 * the minimal flash I/O unit. The 'ubi_eba_write_leb_st()'
 259                 * function accepts exact (unaligned) length and stores it in
 260                 * the VID header. And it takes care of proper alignment by
 261                 * padding the buffer. Here we just make sure the padding will
 262                 * contain zeros, not random trash.
 263                 */
 264                memset(buf + len, 0, vol->usable_leb_size - len);
 265                err = ubi_eba_write_leb_st(ubi, vol, lnum, buf, len,
 266                                           UBI_UNKNOWN, used_ebs);
 267        }
 268
 269        return err;
 270}
 271
 272/**
 273 * ubi_more_update_data - write more update data.
 274 * @vol: volume description object
 275 * @buf: write data (user-space memory buffer)
 276 * @count: how much bytes to write
 277 *
 278 * This function writes more data to the volume which is being updated. It may
 279 * be called arbitrary number of times until all the update data arriveis. This
 280 * function returns %0 in case of success, number of bytes written during the
 281 * last call if the whole volume update has been successfully finished, and a
 282 * negative error code in case of failure.
 283 */
 284int ubi_more_update_data(struct ubi_device *ubi, struct ubi_volume *vol,
 285                         const void __user *buf, int count)
 286{
 287        uint64_t tmp;
 288        int lnum, offs, err = 0, len, to_write = count;
 289
 290        dbg_msg("write %d of %lld bytes, %lld already passed",
 291                count, vol->upd_bytes, vol->upd_received);
 292
 293        if (ubi->ro_mode)
 294                return -EROFS;
 295
 296        tmp = vol->upd_received;
 297        offs = do_div(tmp, vol->usable_leb_size);
 298        lnum = tmp;
 299
 300        if (vol->upd_received + count > vol->upd_bytes)
 301                to_write = count = vol->upd_bytes - vol->upd_received;
 302
 303        /*
 304         * When updating volumes, we accumulate whole logical eraseblock of
 305         * data and write it at once.
 306         */
 307        if (offs != 0) {
 308                /*
 309                 * This is a write to the middle of the logical eraseblock. We
 310                 * copy the data to our update buffer and wait for more data or
 311                 * flush it if the whole eraseblock is written or the update
 312                 * is finished.
 313                 */
 314
 315                len = vol->usable_leb_size - offs;
 316                if (len > count)
 317                        len = count;
 318
 319                err = copy_from_user(vol->upd_buf + offs, buf, len);
 320                if (err)
 321                        return -EFAULT;
 322
 323                if (offs + len == vol->usable_leb_size ||
 324                    vol->upd_received + len == vol->upd_bytes) {
 325                        int flush_len = offs + len;
 326
 327                        /*
 328                         * OK, we gathered either the whole eraseblock or this
 329                         * is the last chunk, it's time to flush the buffer.
 330                         */
 331                        ubi_assert(flush_len <= vol->usable_leb_size);
 332                        err = write_leb(ubi, vol, lnum, vol->upd_buf, flush_len,
 333                                        vol->upd_ebs);
 334                        if (err)
 335                                return err;
 336                }
 337
 338                vol->upd_received += len;
 339                count -= len;
 340                buf += len;
 341                lnum += 1;
 342        }
 343
 344        /*
 345         * If we've got more to write, let's continue. At this point we know we
 346         * are starting from the beginning of an eraseblock.
 347         */
 348        while (count) {
 349                if (count > vol->usable_leb_size)
 350                        len = vol->usable_leb_size;
 351                else
 352                        len = count;
 353
 354                err = copy_from_user(vol->upd_buf, buf, len);
 355                if (err)
 356                        return -EFAULT;
 357
 358                if (len == vol->usable_leb_size ||
 359                    vol->upd_received + len == vol->upd_bytes) {
 360                        err = write_leb(ubi, vol, lnum, vol->upd_buf,
 361                                        len, vol->upd_ebs);
 362                        if (err)
 363                                break;
 364                }
 365
 366                vol->upd_received += len;
 367                count -= len;
 368                lnum += 1;
 369                buf += len;
 370        }
 371
 372        ubi_assert(vol->upd_received <= vol->upd_bytes);
 373        if (vol->upd_received == vol->upd_bytes) {
 374                /* The update is finished, clear the update marker */
 375                err = clear_update_marker(ubi, vol, vol->upd_bytes);
 376                if (err)
 377                        return err;
 378                err = ubi_wl_flush(ubi);
 379                if (err == 0) {
 380                        vol->updating = 0;
 381                        err = to_write;
 382                        vfree(vol->upd_buf);
 383                }
 384        }
 385
 386        return err;
 387}
 388
 389/**
 390 * ubi_more_leb_change_data - accept more data for atomic LEB change.
 391 * @vol: volume description object
 392 * @buf: write data (user-space memory buffer)
 393 * @count: how much bytes to write
 394 *
 395 * This function accepts more data to the volume which is being under the
 396 * "atomic LEB change" operation. It may be called arbitrary number of times
 397 * until all data arrives. This function returns %0 in case of success, number
 398 * of bytes written during the last call if the whole "atomic LEB change"
 399 * operation has been successfully finished, and a negative error code in case
 400 * of failure.
 401 */
 402int ubi_more_leb_change_data(struct ubi_device *ubi, struct ubi_volume *vol,
 403                             const void __user *buf, int count)
 404{
 405        int err;
 406
 407        dbg_msg("write %d of %lld bytes, %lld already passed",
 408                count, vol->upd_bytes, vol->upd_received);
 409
 410        if (ubi->ro_mode)
 411                return -EROFS;
 412
 413        if (vol->upd_received + count > vol->upd_bytes)
 414                count = vol->upd_bytes - vol->upd_received;
 415
 416        err = copy_from_user(vol->upd_buf + vol->upd_received, buf, count);
 417        if (err)
 418                return -EFAULT;
 419
 420        vol->upd_received += count;
 421
 422        if (vol->upd_received == vol->upd_bytes) {
 423                int len = ALIGN((int)vol->upd_bytes, ubi->min_io_size);
 424
 425                memset(vol->upd_buf + vol->upd_bytes, 0xFF, len - vol->upd_bytes);
 426                len = ubi_calc_data_len(ubi, vol->upd_buf, len);
 427                err = ubi_eba_atomic_leb_change(ubi, vol, vol->ch_lnum,
 428                                                vol->upd_buf, len, UBI_UNKNOWN);
 429                if (err)
 430                        return err;
 431        }
 432
 433        ubi_assert(vol->upd_received <= vol->upd_bytes);
 434        if (vol->upd_received == vol->upd_bytes) {
 435                vol->changing_leb = 0;
 436                err = count;
 437                vfree(vol->upd_buf);
 438        }
 439
 440        return err;
 441}
 442