uboot/drivers/usb/gadget/omap1510_udc.c
<<
>>
Prefs
   1/*
   2 * (C) Copyright 2003
   3 * Gerry Hamel, geh@ti.com, Texas Instruments
   4 *
   5 * Based on
   6 * linux/drivers/usb/device/bi/omap.c
   7 * TI OMAP1510 USB bus interface driver
   8 *
   9 * Author: MontaVista Software, Inc.
  10 *         source@mvista.com
  11 *         (C) Copyright 2002
  12 *
  13 * This program is free software; you can redistribute it and/or modify
  14 * it under the terms of the GNU General Public License as published by
  15 * the Free Software Foundation; either version 2 of the License, or
  16 * (at your option) any later version.
  17 *
  18 * This program is distributed in the hope that it will be useful,
  19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  21 * GNU General Public License for more details.
  22 *
  23 * You should have received a copy of the GNU General Public License
  24 * along with this program; if not, write to the Free Software
  25 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
  26 *
  27 */
  28
  29#include <common.h>
  30#include <asm/io.h>
  31#ifdef CONFIG_OMAP_SX1
  32#include <i2c.h>
  33#endif
  34#include <usbdevice.h>
  35#include <usb/omap1510_udc.h>
  36
  37#include "ep0.h"
  38
  39
  40#define UDC_INIT_MDELAY              80 /* Device settle delay */
  41#define UDC_MAX_ENDPOINTS            31 /* Number of endpoints on this UDC */
  42
  43/* Some kind of debugging output... */
  44#if 1
  45#define UDCDBG(str)
  46#define UDCDBGA(fmt,args...)
  47#else  /* The bugs still exists... */
  48#define UDCDBG(str) serial_printf("[%s] %s:%d: " str "\n", __FILE__,__FUNCTION__,__LINE__)
  49#define UDCDBGA(fmt,args...) serial_printf("[%s] %s:%d: " fmt "\n", __FILE__,__FUNCTION__,__LINE__, ##args)
  50#endif
  51
  52#if 1
  53#define UDCREG(name)
  54#define UDCREGL(name)
  55#else  /* The bugs still exists... */
  56#define UDCREG(name)     serial_printf("%s():%d: %s[%08x]=%.4x\n",__FUNCTION__,__LINE__, (#name), name, inw(name))      /* For 16-bit regs */
  57#define UDCREGL(name)    serial_printf("%s():%d: %s[%08x]=%.8x\n",__FUNCTION__,__LINE__, (#name), name, inl(name))      /* For 32-bit regs */
  58#endif
  59
  60
  61static struct urb *ep0_urb = NULL;
  62
  63static struct usb_device_instance *udc_device;  /* Used in interrupt handler */
  64static u16 udc_devstat = 0;     /* UDC status (DEVSTAT) */
  65static u32 udc_interrupts = 0;
  66
  67static void udc_stall_ep (unsigned int ep_addr);
  68
  69
  70static struct usb_endpoint_instance *omap1510_find_ep (int ep)
  71{
  72        int i;
  73
  74        for (i = 0; i < udc_device->bus->max_endpoints; i++) {
  75                if (udc_device->bus->endpoint_array[i].endpoint_address == ep)
  76                        return &udc_device->bus->endpoint_array[i];
  77        }
  78        return NULL;
  79}
  80
  81/* ************************************************************************** */
  82/* IO
  83 */
  84
  85/*
  86 * omap1510_prepare_endpoint_for_rx
  87 *
  88 * This function implements TRM Figure 14-11.
  89 *
  90 * The endpoint to prepare for transfer is specified as a physical endpoint
  91 * number.  For OUT (rx) endpoints 1 through 15, the corresponding endpoint
  92 * configuration register is checked to see if the endpoint is ISO or not.
  93 * If the OUT endpoint is valid and is non-ISO then its FIFO is enabled.
  94 * No action is taken for endpoint 0 or for IN (tx) endpoints 16 through 30.
  95 */
  96static void omap1510_prepare_endpoint_for_rx (int ep_addr)
  97{
  98        int ep_num = ep_addr & USB_ENDPOINT_NUMBER_MASK;
  99
 100        UDCDBGA ("omap1510_prepare_endpoint %x", ep_addr);
 101        if (((ep_addr & USB_ENDPOINT_DIR_MASK) == USB_DIR_OUT)) {
 102                if ((inw (UDC_EP_RX (ep_num)) &
 103                     (UDC_EPn_RX_Valid | UDC_EPn_RX_Iso)) ==
 104                    UDC_EPn_RX_Valid) {
 105                        /* rx endpoint is valid, non-ISO, so enable its FIFO */
 106                        outw (UDC_EP_Sel | ep_num, UDC_EP_NUM);
 107                        outw (UDC_Set_FIFO_En, UDC_CTRL);
 108                        outw (0, UDC_EP_NUM);
 109                }
 110        }
 111}
 112
 113/* omap1510_configure_endpoints
 114 *
 115 * This function implements TRM Figure 14-10.
 116 */
 117static void omap1510_configure_endpoints (struct usb_device_instance *device)
 118{
 119        int ep;
 120        struct usb_bus_instance *bus;
 121        struct usb_endpoint_instance *endpoint;
 122        unsigned short ep_ptr;
 123        unsigned short ep_size;
 124        unsigned short ep_isoc;
 125        unsigned short ep_doublebuffer;
 126        int ep_addr;
 127        int packet_size;
 128        int buffer_size;
 129        int attributes;
 130
 131        bus = device->bus;
 132
 133        /* There is a dedicated 2048 byte buffer for USB packets that may be
 134         * arbitrarily partitioned among the endpoints on 8-byte boundaries.
 135         * The first 8 bytes are reserved for receiving setup packets on
 136         * endpoint 0.
 137         */
 138        ep_ptr = 8;             /* reserve the first 8 bytes for the setup fifo */
 139
 140        for (ep = 0; ep < bus->max_endpoints; ep++) {
 141                endpoint = bus->endpoint_array + ep;
 142                ep_addr = endpoint->endpoint_address;
 143                if ((ep_addr & USB_ENDPOINT_DIR_MASK) == USB_DIR_IN) {
 144                        /* IN endpoint */
 145                        packet_size = endpoint->tx_packetSize;
 146                        attributes = endpoint->tx_attributes;
 147                } else {
 148                        /* OUT endpoint */
 149                        packet_size = endpoint->rcv_packetSize;
 150                        attributes = endpoint->rcv_attributes;
 151                }
 152
 153                switch (packet_size) {
 154                case 0:
 155                        ep_size = 0;
 156                        break;
 157                case 8:
 158                        ep_size = 0;
 159                        break;
 160                case 16:
 161                        ep_size = 1;
 162                        break;
 163                case 32:
 164                        ep_size = 2;
 165                        break;
 166                case 64:
 167                        ep_size = 3;
 168                        break;
 169                case 128:
 170                        ep_size = 4;
 171                        break;
 172                case 256:
 173                        ep_size = 5;
 174                        break;
 175                case 512:
 176                        ep_size = 6;
 177                        break;
 178                default:
 179                        UDCDBGA ("ep 0x%02x has bad packet size %d",
 180                                 ep_addr, packet_size);
 181                        packet_size = 0;
 182                        ep_size = 0;
 183                        break;
 184                }
 185
 186                switch (attributes & USB_ENDPOINT_XFERTYPE_MASK) {
 187                case USB_ENDPOINT_XFER_CONTROL:
 188                case USB_ENDPOINT_XFER_BULK:
 189                case USB_ENDPOINT_XFER_INT:
 190                default:
 191                        /* A non-isochronous endpoint may optionally be
 192                         * double-buffered. For now we disable
 193                         * double-buffering.
 194                         */
 195                        ep_doublebuffer = 0;
 196                        ep_isoc = 0;
 197                        if (packet_size > 64)
 198                                packet_size = 0;
 199                        if (!ep || !ep_doublebuffer)
 200                                buffer_size = packet_size;
 201                        else
 202                                buffer_size = packet_size * 2;
 203                        break;
 204                case USB_ENDPOINT_XFER_ISOC:
 205                        /* Isochronous endpoints are always double-
 206                         * buffered, but the double-buffering bit
 207                         * in the endpoint configuration register
 208                         * becomes the msb of the endpoint size so we
 209                         * set the double-buffering flag to zero.
 210                         */
 211                        ep_doublebuffer = 0;
 212                        ep_isoc = 1;
 213                        buffer_size = packet_size * 2;
 214                        break;
 215                }
 216
 217                /* check to see if our packet buffer RAM is exhausted */
 218                if ((ep_ptr + buffer_size) > 2048) {
 219                        UDCDBGA ("out of packet RAM for ep 0x%02x buf size %d", ep_addr, buffer_size);
 220                        buffer_size = packet_size = 0;
 221                }
 222
 223                /* force a default configuration for endpoint 0 since it is
 224                 * always enabled
 225                 */
 226                if (!ep && ((packet_size < 8) || (packet_size > 64))) {
 227                        buffer_size = packet_size = 64;
 228                        ep_size = 3;
 229                }
 230
 231                if (!ep) {
 232                        /* configure endpoint 0 */
 233                        outw ((ep_size << 12) | (ep_ptr >> 3), UDC_EP0);
 234                        /*UDCDBGA("ep 0 buffer offset 0x%03x packet size 0x%03x", */
 235                        /*      ep_ptr, packet_size); */
 236                } else if ((ep_addr & USB_ENDPOINT_DIR_MASK) == USB_DIR_IN) {
 237                        /* IN endpoint */
 238                        if (packet_size) {
 239                                outw ((1 << 15) | (ep_doublebuffer << 14) |
 240                                      (ep_size << 12) | (ep_isoc << 11) |
 241                                      (ep_ptr >> 3),
 242                                      UDC_EP_TX (ep_addr &
 243                                                 USB_ENDPOINT_NUMBER_MASK));
 244                                UDCDBGA ("IN ep %d buffer offset 0x%03x"
 245                                         " packet size 0x%03x",
 246                                         ep_addr & USB_ENDPOINT_NUMBER_MASK,
 247                                         ep_ptr, packet_size);
 248                        } else {
 249                                outw (0,
 250                                      UDC_EP_TX (ep_addr &
 251                                                 USB_ENDPOINT_NUMBER_MASK));
 252                        }
 253                } else {
 254                        /* OUT endpoint */
 255                        if (packet_size) {
 256                                outw ((1 << 15) | (ep_doublebuffer << 14) |
 257                                      (ep_size << 12) | (ep_isoc << 11) |
 258                                      (ep_ptr >> 3),
 259                                      UDC_EP_RX (ep_addr &
 260                                                 USB_ENDPOINT_NUMBER_MASK));
 261                                UDCDBGA ("OUT ep %d buffer offset 0x%03x"
 262                                         " packet size 0x%03x",
 263                                         ep_addr & USB_ENDPOINT_NUMBER_MASK,
 264                                         ep_ptr, packet_size);
 265                        } else {
 266                                outw (0,
 267                                      UDC_EP_RX (ep_addr &
 268                                                 USB_ENDPOINT_NUMBER_MASK));
 269                        }
 270                }
 271                ep_ptr += buffer_size;
 272        }
 273}
 274
 275/* omap1510_deconfigure_device
 276 *
 277 * This function balances omap1510_configure_device.
 278 */
 279static void omap1510_deconfigure_device (void)
 280{
 281        int epnum;
 282
 283        UDCDBG ("clear Cfg_Lock");
 284        outw (inw (UDC_SYSCON1) & ~UDC_Cfg_Lock, UDC_SYSCON1);
 285        UDCREG (UDC_SYSCON1);
 286
 287        /* deconfigure all endpoints */
 288        for (epnum = 1; epnum <= 15; epnum++) {
 289                outw (0, UDC_EP_RX (epnum));
 290                outw (0, UDC_EP_TX (epnum));
 291        }
 292}
 293
 294/* omap1510_configure_device
 295 *
 296 * This function implements TRM Figure 14-9.
 297 */
 298static void omap1510_configure_device (struct usb_device_instance *device)
 299{
 300        omap1510_configure_endpoints (device);
 301
 302
 303        /* Figure 14-9 indicates we should enable interrupts here, but we have
 304         * other routines (udc_all_interrupts, udc_suspended_interrupts) to
 305         * do that.
 306         */
 307
 308        UDCDBG ("set Cfg_Lock");
 309        outw (inw (UDC_SYSCON1) | UDC_Cfg_Lock, UDC_SYSCON1);
 310        UDCREG (UDC_SYSCON1);
 311}
 312
 313/* omap1510_write_noniso_tx_fifo
 314 *
 315 * This function implements TRM Figure 14-30.
 316 *
 317 * If the endpoint has an active tx_urb, then the next packet of data from the
 318 * URB is written to the tx FIFO.  The total amount of data in the urb is given
 319 * by urb->actual_length.  The maximum amount of data that can be sent in any
 320 * one packet is given by endpoint->tx_packetSize.  The number of data bytes
 321 * from this URB that have already been transmitted is given by endpoint->sent.
 322 * endpoint->last is updated by this routine with the number of data bytes
 323 * transmitted in this packet.
 324 *
 325 * In accordance with Figure 14-30, the EP_NUM register must already have been
 326 * written with the value to select the appropriate tx FIFO before this routine
 327 * is called.
 328 */
 329static void omap1510_write_noniso_tx_fifo (struct usb_endpoint_instance
 330                                           *endpoint)
 331{
 332        struct urb *urb = endpoint->tx_urb;
 333
 334        if (urb) {
 335                unsigned int last, i;
 336
 337                UDCDBGA ("urb->buffer %p, buffer_length %d, actual_length %d",
 338                         urb->buffer, urb->buffer_length, urb->actual_length);
 339                if ((last =
 340                     MIN (urb->actual_length - endpoint->sent,
 341                          endpoint->tx_packetSize))) {
 342                        u8 *cp = urb->buffer + endpoint->sent;
 343
 344                        UDCDBGA ("endpoint->sent %d, tx_packetSize %d, last %d", endpoint->sent, endpoint->tx_packetSize, last);
 345
 346                        if (((u32) cp & 1) == 0) {      /* word aligned? */
 347                                outsw (UDC_DATA, cp, last >> 1);
 348                        } else {        /* byte aligned. */
 349                                for (i = 0; i < (last >> 1); i++) {
 350                                        u16 w = ((u16) cp[2 * i + 1] << 8) |
 351                                                (u16) cp[2 * i];
 352                                        outw (w, UDC_DATA);
 353                                }
 354                        }
 355                        if (last & 1) {
 356                                outb (*(cp + last - 1), UDC_DATA);
 357                        }
 358                }
 359                endpoint->last = last;
 360        }
 361}
 362
 363/* omap1510_read_noniso_rx_fifo
 364 *
 365 * This function implements TRM Figure 14-28.
 366 *
 367 * If the endpoint has an active rcv_urb, then the next packet of data is read
 368 * from the rcv FIFO and written to rcv_urb->buffer at offset
 369 * rcv_urb->actual_length to append the packet data to the data from any
 370 * previous packets for this transfer.  We assume that there is sufficient room
 371 * left in the buffer to hold an entire packet of data.
 372 *
 373 * The return value is the number of bytes read from the FIFO for this packet.
 374 *
 375 * In accordance with Figure 14-28, the EP_NUM register must already have been
 376 * written with the value to select the appropriate rcv FIFO before this routine
 377 * is called.
 378 */
 379static int omap1510_read_noniso_rx_fifo (struct usb_endpoint_instance
 380                                         *endpoint)
 381{
 382        struct urb *urb = endpoint->rcv_urb;
 383        int len = 0;
 384
 385        if (urb) {
 386                len = inw (UDC_RXFSTAT);
 387
 388                if (len) {
 389                        unsigned char *cp = urb->buffer + urb->actual_length;
 390
 391                        insw (UDC_DATA, cp, len >> 1);
 392                        if (len & 1)
 393                                *(cp + len - 1) = inb (UDC_DATA);
 394                }
 395        }
 396        return len;
 397}
 398
 399/* omap1510_prepare_for_control_write_status
 400 *
 401 * This function implements TRM Figure 14-17.
 402 *
 403 * We have to deal here with non-autodecoded control writes that haven't already
 404 * been dealt with by ep0_recv_setup.  The non-autodecoded standard control
 405 * write requests are:  set/clear endpoint feature, set configuration, set
 406 * interface, and set descriptor.  ep0_recv_setup handles set/clear requests for
 407 * ENDPOINT_HALT by halting the endpoint for a set request and resetting the
 408 * endpoint for a clear request.  ep0_recv_setup returns an error for
 409 * SET_DESCRIPTOR requests which causes them to be terminated with a stall by
 410 * the setup handler.  A SET_INTERFACE request is handled by ep0_recv_setup by
 411 * generating a DEVICE_SET_INTERFACE event.  This leaves only the
 412 * SET_CONFIGURATION event for us to deal with here.
 413 *
 414 */
 415static void omap1510_prepare_for_control_write_status (struct urb *urb)
 416{
 417        struct usb_device_request *request = &urb->device_request;;
 418
 419        /* check for a SET_CONFIGURATION request */
 420        if (request->bRequest == USB_REQ_SET_CONFIGURATION) {
 421                int configuration = le16_to_cpu (request->wValue) & 0xff;
 422                unsigned short devstat = inw (UDC_DEVSTAT);
 423
 424                if ((devstat & (UDC_ADD | UDC_CFG)) == UDC_ADD) {
 425                        /* device is currently in ADDRESSED state */
 426                        if (configuration) {
 427                                /* Assume the specified non-zero configuration
 428                                 * value is valid and switch to the CONFIGURED
 429                                 * state.
 430                                 */
 431                                outw (UDC_Dev_Cfg, UDC_SYSCON2);
 432                        }
 433                } else if ((devstat & UDC_CFG) == UDC_CFG) {
 434                        /* device is currently in CONFIGURED state */
 435                        if (!configuration) {
 436                                /* Switch to ADDRESSED state. */
 437                                outw (UDC_Clr_Cfg, UDC_SYSCON2);
 438                        }
 439                }
 440        }
 441
 442        /* select EP0 tx FIFO */
 443        outw (UDC_EP_Dir | UDC_EP_Sel, UDC_EP_NUM);
 444        /* clear endpoint (no data bytes in status stage) */
 445        outw (UDC_Clr_EP, UDC_CTRL);
 446        /* enable the EP0 tx FIFO */
 447        outw (UDC_Set_FIFO_En, UDC_CTRL);
 448        /* deselect the endpoint */
 449        outw (UDC_EP_Dir, UDC_EP_NUM);
 450}
 451
 452/* udc_state_transition_up
 453 * udc_state_transition_down
 454 *
 455 * Helper functions to implement device state changes.  The device states and
 456 * the events that transition between them are:
 457 *
 458 *                              STATE_ATTACHED
 459 *                              ||      /\
 460 *                              \/      ||
 461 *      DEVICE_HUB_CONFIGURED                   DEVICE_HUB_RESET
 462 *                              ||      /\
 463 *                              \/      ||
 464 *                              STATE_POWERED
 465 *                              ||      /\
 466 *                              \/      ||
 467 *      DEVICE_RESET                            DEVICE_POWER_INTERRUPTION
 468 *                              ||      /\
 469 *                              \/      ||
 470 *                              STATE_DEFAULT
 471 *                              ||      /\
 472 *                              \/      ||
 473 *      DEVICE_ADDRESS_ASSIGNED                 DEVICE_RESET
 474 *                              ||      /\
 475 *                              \/      ||
 476 *                              STATE_ADDRESSED
 477 *                              ||      /\
 478 *                              \/      ||
 479 *      DEVICE_CONFIGURED                       DEVICE_DE_CONFIGURED
 480 *                              ||      /\
 481 *                              \/      ||
 482 *                              STATE_CONFIGURED
 483 *
 484 * udc_state_transition_up transitions up (in the direction from STATE_ATTACHED
 485 * to STATE_CONFIGURED) from the specified initial state to the specified final
 486 * state, passing through each intermediate state on the way.  If the initial
 487 * state is at or above (i.e. nearer to STATE_CONFIGURED) the final state, then
 488 * no state transitions will take place.
 489 *
 490 * udc_state_transition_down transitions down (in the direction from
 491 * STATE_CONFIGURED to STATE_ATTACHED) from the specified initial state to the
 492 * specified final state, passing through each intermediate state on the way.
 493 * If the initial state is at or below (i.e. nearer to STATE_ATTACHED) the final
 494 * state, then no state transitions will take place.
 495 *
 496 * These functions must only be called with interrupts disabled.
 497 */
 498static void udc_state_transition_up (usb_device_state_t initial,
 499                                     usb_device_state_t final)
 500{
 501        if (initial < final) {
 502                switch (initial) {
 503                case STATE_ATTACHED:
 504                        usbd_device_event_irq (udc_device,
 505                                               DEVICE_HUB_CONFIGURED, 0);
 506                        if (final == STATE_POWERED)
 507                                break;
 508                case STATE_POWERED:
 509                        usbd_device_event_irq (udc_device, DEVICE_RESET, 0);
 510                        if (final == STATE_DEFAULT)
 511                                break;
 512                case STATE_DEFAULT:
 513                        usbd_device_event_irq (udc_device,
 514                                               DEVICE_ADDRESS_ASSIGNED, 0);
 515                        if (final == STATE_ADDRESSED)
 516                                break;
 517                case STATE_ADDRESSED:
 518                        usbd_device_event_irq (udc_device, DEVICE_CONFIGURED,
 519                                               0);
 520                case STATE_CONFIGURED:
 521                        break;
 522                default:
 523                        break;
 524                }
 525        }
 526}
 527
 528static void udc_state_transition_down (usb_device_state_t initial,
 529                                       usb_device_state_t final)
 530{
 531        if (initial > final) {
 532                switch (initial) {
 533                case STATE_CONFIGURED:
 534                        usbd_device_event_irq (udc_device, DEVICE_DE_CONFIGURED, 0);
 535                        if (final == STATE_ADDRESSED)
 536                                break;
 537                case STATE_ADDRESSED:
 538                        usbd_device_event_irq (udc_device, DEVICE_RESET, 0);
 539                        if (final == STATE_DEFAULT)
 540                                break;
 541                case STATE_DEFAULT:
 542                        usbd_device_event_irq (udc_device, DEVICE_POWER_INTERRUPTION, 0);
 543                        if (final == STATE_POWERED)
 544                                break;
 545                case STATE_POWERED:
 546                        usbd_device_event_irq (udc_device, DEVICE_HUB_RESET, 0);
 547                case STATE_ATTACHED:
 548                        break;
 549                default:
 550                        break;
 551                }
 552        }
 553}
 554
 555/* Handle all device state changes.
 556 * This function implements TRM Figure 14-21.
 557 */
 558static void omap1510_udc_state_changed (void)
 559{
 560        u16 bits;
 561        u16 devstat = inw (UDC_DEVSTAT);
 562
 563        UDCDBGA ("state changed, devstat %x, old %x", devstat, udc_devstat);
 564
 565        bits = devstat ^ udc_devstat;
 566        if (bits) {
 567                if (bits & UDC_ATT) {
 568                        if (devstat & UDC_ATT) {
 569                                UDCDBG ("device attached and powered");
 570                                udc_state_transition_up (udc_device->device_state, STATE_POWERED);
 571                        } else {
 572                                UDCDBG ("device detached or unpowered");
 573                                udc_state_transition_down (udc_device->device_state, STATE_ATTACHED);
 574                        }
 575                }
 576                if (bits & UDC_USB_Reset) {
 577                        if (devstat & UDC_USB_Reset) {
 578                                UDCDBG ("device reset in progess");
 579                                udc_state_transition_down (udc_device->device_state, STATE_POWERED);
 580                        } else {
 581                                UDCDBG ("device reset completed");
 582                        }
 583                }
 584                if (bits & UDC_DEF) {
 585                        if (devstat & UDC_DEF) {
 586                                UDCDBG ("device entering default state");
 587                                udc_state_transition_up (udc_device->device_state, STATE_DEFAULT);
 588                        } else {
 589                                UDCDBG ("device leaving default state");
 590                                udc_state_transition_down (udc_device->device_state, STATE_POWERED);
 591                        }
 592                }
 593                if (bits & UDC_SUS) {
 594                        if (devstat & UDC_SUS) {
 595                                UDCDBG ("entering suspended state");
 596                                usbd_device_event_irq (udc_device, DEVICE_BUS_INACTIVE, 0);
 597                        } else {
 598                                UDCDBG ("leaving suspended state");
 599                                usbd_device_event_irq (udc_device, DEVICE_BUS_ACTIVITY, 0);
 600                        }
 601                }
 602                if (bits & UDC_R_WK_OK) {
 603                        UDCDBGA ("remote wakeup %s", (devstat & UDC_R_WK_OK)
 604                                 ? "enabled" : "disabled");
 605                }
 606                if (bits & UDC_ADD) {
 607                        if (devstat & UDC_ADD) {
 608                                UDCDBG ("default -> addressed");
 609                                udc_state_transition_up (udc_device->device_state, STATE_ADDRESSED);
 610                        } else {
 611                                UDCDBG ("addressed -> default");
 612                                udc_state_transition_down (udc_device->device_state, STATE_DEFAULT);
 613                        }
 614                }
 615                if (bits & UDC_CFG) {
 616                        if (devstat & UDC_CFG) {
 617                                UDCDBG ("device configured");
 618                                /* The ep0_recv_setup function generates the
 619                                 * DEVICE_CONFIGURED event when a
 620                                 * USB_REQ_SET_CONFIGURATION setup packet is
 621                                 * received, so we should already be in the
 622                                 * state STATE_CONFIGURED.
 623                                 */
 624                                udc_state_transition_up (udc_device->device_state, STATE_CONFIGURED);
 625                        } else {
 626                                UDCDBG ("device deconfigured");
 627                                udc_state_transition_down (udc_device->device_state, STATE_ADDRESSED);
 628                        }
 629                }
 630        }
 631
 632        /* Clear interrupt source */
 633        outw (UDC_DS_Chg, UDC_IRQ_SRC);
 634
 635        /* Save current DEVSTAT */
 636        udc_devstat = devstat;
 637}
 638
 639/* Handle SETUP USB interrupt.
 640 * This function implements TRM Figure 14-14.
 641 */
 642static void omap1510_udc_setup (struct usb_endpoint_instance *endpoint)
 643{
 644        UDCDBG ("-> Entering device setup");
 645
 646        do {
 647                const int setup_pktsize = 8;
 648                unsigned char *datap =
 649                        (unsigned char *) &ep0_urb->device_request;
 650
 651                /* Gain access to EP 0 setup FIFO */
 652                outw (UDC_Setup_Sel, UDC_EP_NUM);
 653
 654                /* Read control request data */
 655                insb (UDC_DATA, datap, setup_pktsize);
 656
 657                UDCDBGA ("EP0 setup read [%x %x %x %x %x %x %x %x]",
 658                         *(datap + 0), *(datap + 1), *(datap + 2),
 659                         *(datap + 3), *(datap + 4), *(datap + 5),
 660                         *(datap + 6), *(datap + 7));
 661
 662                /* Reset EP0 setup FIFO */
 663                outw (0, UDC_EP_NUM);
 664        } while (inw (UDC_IRQ_SRC) & UDC_Setup);
 665
 666        /* Try to process setup packet */
 667        if (ep0_recv_setup (ep0_urb)) {
 668                /* Not a setup packet, stall next EP0 transaction */
 669                udc_stall_ep (0);
 670                UDCDBG ("can't parse setup packet, still waiting for setup");
 671                return;
 672        }
 673
 674        /* Check direction */
 675        if ((ep0_urb->device_request.bmRequestType & USB_REQ_DIRECTION_MASK)
 676            == USB_REQ_HOST2DEVICE) {
 677                UDCDBG ("control write on EP0");
 678                if (le16_to_cpu (ep0_urb->device_request.wLength)) {
 679                        /* We don't support control write data stages.
 680                         * The only standard control write request with a data
 681                         * stage is SET_DESCRIPTOR, and ep0_recv_setup doesn't
 682                         * support that so we just stall those requests.  A
 683                         * function driver might support a non-standard
 684                         * write request with a data stage, but it isn't
 685                         * obvious what we would do with the data if we read it
 686                         * so we'll just stall it.  It seems like the API isn't
 687                         * quite right here.
 688                         */
 689#if 0
 690                        /* Here is what we would do if we did support control
 691                         * write data stages.
 692                         */
 693                        ep0_urb->actual_length = 0;
 694                        outw (0, UDC_EP_NUM);
 695                        /* enable the EP0 rx FIFO */
 696                        outw (UDC_Set_FIFO_En, UDC_CTRL);
 697#else
 698                        /* Stall this request */
 699                        UDCDBG ("Stalling unsupported EP0 control write data "
 700                                "stage.");
 701                        udc_stall_ep (0);
 702#endif
 703                } else {
 704                        omap1510_prepare_for_control_write_status (ep0_urb);
 705                }
 706        } else {
 707                UDCDBG ("control read on EP0");
 708                /* The ep0_recv_setup function has already placed our response
 709                 * packet data in ep0_urb->buffer and the packet length in
 710                 * ep0_urb->actual_length.
 711                 */
 712                endpoint->tx_urb = ep0_urb;
 713                endpoint->sent = 0;
 714                /* select the EP0 tx FIFO */
 715                outw (UDC_EP_Dir | UDC_EP_Sel, UDC_EP_NUM);
 716                /* Write packet data to the FIFO.  omap1510_write_noniso_tx_fifo
 717                 * will update endpoint->last with the number of bytes written
 718                 * to the FIFO.
 719                 */
 720                omap1510_write_noniso_tx_fifo (endpoint);
 721                /* enable the FIFO to start the packet transmission */
 722                outw (UDC_Set_FIFO_En, UDC_CTRL);
 723                /* deselect the EP0 tx FIFO */
 724                outw (UDC_EP_Dir, UDC_EP_NUM);
 725        }
 726
 727        UDCDBG ("<- Leaving device setup");
 728}
 729
 730/* Handle endpoint 0 RX interrupt
 731 * This routine implements TRM Figure 14-16.
 732 */
 733static void omap1510_udc_ep0_rx (struct usb_endpoint_instance *endpoint)
 734{
 735        unsigned short status;
 736
 737        UDCDBG ("RX on EP0");
 738        /* select EP0 rx FIFO */
 739        outw (UDC_EP_Sel, UDC_EP_NUM);
 740
 741        status = inw (UDC_STAT_FLG);
 742
 743        if (status & UDC_ACK) {
 744                /* Check direction */
 745                if ((ep0_urb->device_request.bmRequestType
 746                     & USB_REQ_DIRECTION_MASK) == USB_REQ_HOST2DEVICE) {
 747                        /* This rx interrupt must be for a control write data
 748                         * stage packet.
 749                         *
 750                         * We don't support control write data stages.
 751                         * We should never end up here.
 752                         */
 753
 754                        /* clear the EP0 rx FIFO */
 755                        outw (UDC_Clr_EP, UDC_CTRL);
 756
 757                        /* deselect the EP0 rx FIFO */
 758                        outw (0, UDC_EP_NUM);
 759
 760                        UDCDBG ("Stalling unexpected EP0 control write "
 761                                "data stage packet");
 762                        udc_stall_ep (0);
 763                } else {
 764                        /* This rx interrupt must be for a control read status
 765                         * stage packet.
 766                         */
 767                        UDCDBG ("ACK on EP0 control read status stage packet");
 768                        /* deselect EP0 rx FIFO */
 769                        outw (0, UDC_EP_NUM);
 770                }
 771        } else if (status & UDC_STALL) {
 772                UDCDBG ("EP0 stall during RX");
 773                /* deselect EP0 rx FIFO */
 774                outw (0, UDC_EP_NUM);
 775        } else {
 776                /* deselect EP0 rx FIFO */
 777                outw (0, UDC_EP_NUM);
 778        }
 779}
 780
 781/* Handle endpoint 0 TX interrupt
 782 * This routine implements TRM Figure 14-18.
 783 */
 784static void omap1510_udc_ep0_tx (struct usb_endpoint_instance *endpoint)
 785{
 786        unsigned short status;
 787        struct usb_device_request *request = &ep0_urb->device_request;
 788
 789        UDCDBG ("TX on EP0");
 790        /* select EP0 TX FIFO */
 791        outw (UDC_EP_Dir | UDC_EP_Sel, UDC_EP_NUM);
 792
 793        status = inw (UDC_STAT_FLG);
 794        if (status & UDC_ACK) {
 795                /* Check direction */
 796                if ((request->bmRequestType & USB_REQ_DIRECTION_MASK) ==
 797                    USB_REQ_HOST2DEVICE) {
 798                        /* This tx interrupt must be for a control write status
 799                         * stage packet.
 800                         */
 801                        UDCDBG ("ACK on EP0 control write status stage packet");
 802                        /* deselect EP0 TX FIFO */
 803                        outw (UDC_EP_Dir, UDC_EP_NUM);
 804                } else {
 805                        /* This tx interrupt must be for a control read data
 806                         * stage packet.
 807                         */
 808                        int wLength = le16_to_cpu (request->wLength);
 809
 810                        /* Update our count of bytes sent so far in this
 811                         * transfer.
 812                         */
 813                        endpoint->sent += endpoint->last;
 814
 815                        /* We are finished with this transfer if we have sent
 816                         * all of the bytes in our tx urb (urb->actual_length)
 817                         * unless we need a zero-length terminating packet.  We
 818                         * need a zero-length terminating packet if we returned
 819                         * fewer bytes than were requested (wLength) by the host,
 820                         * and the number of bytes we returned is an exact
 821                         * multiple of the packet size endpoint->tx_packetSize.
 822                         */
 823                        if ((endpoint->sent == ep0_urb->actual_length)
 824                            && ((ep0_urb->actual_length == wLength)
 825                                || (endpoint->last !=
 826                                    endpoint->tx_packetSize))) {
 827                                /* Done with control read data stage. */
 828                                UDCDBG ("control read data stage complete");
 829                                /* deselect EP0 TX FIFO */
 830                                outw (UDC_EP_Dir, UDC_EP_NUM);
 831                                /* select EP0 RX FIFO to prepare for control
 832                                 * read status stage.
 833                                 */
 834                                outw (UDC_EP_Sel, UDC_EP_NUM);
 835                                /* clear the EP0 RX FIFO */
 836                                outw (UDC_Clr_EP, UDC_CTRL);
 837                                /* enable the EP0 RX FIFO */
 838                                outw (UDC_Set_FIFO_En, UDC_CTRL);
 839                                /* deselect the EP0 RX FIFO */
 840                                outw (0, UDC_EP_NUM);
 841                        } else {
 842                                /* We still have another packet of data to send
 843                                 * in this control read data stage or else we
 844                                 * need a zero-length terminating packet.
 845                                 */
 846                                UDCDBG ("ACK control read data stage packet");
 847                                omap1510_write_noniso_tx_fifo (endpoint);
 848                                /* enable the EP0 tx FIFO to start transmission */
 849                                outw (UDC_Set_FIFO_En, UDC_CTRL);
 850                                /* deselect EP0 TX FIFO */
 851                                outw (UDC_EP_Dir, UDC_EP_NUM);
 852                        }
 853                }
 854        } else if (status & UDC_STALL) {
 855                UDCDBG ("EP0 stall during TX");
 856                /* deselect EP0 TX FIFO */
 857                outw (UDC_EP_Dir, UDC_EP_NUM);
 858        } else {
 859                /* deselect EP0 TX FIFO */
 860                outw (UDC_EP_Dir, UDC_EP_NUM);
 861        }
 862}
 863
 864/* Handle RX transaction on non-ISO endpoint.
 865 * This function implements TRM Figure 14-27.
 866 * The ep argument is a physical endpoint number for a non-ISO OUT endpoint
 867 * in the range 1 to 15.
 868 */
 869static void omap1510_udc_epn_rx (int ep)
 870{
 871        unsigned short status;
 872
 873        /* Check endpoint status */
 874        status = inw (UDC_STAT_FLG);
 875
 876        if (status & UDC_ACK) {
 877                int nbytes;
 878                struct usb_endpoint_instance *endpoint =
 879                        omap1510_find_ep (ep);
 880
 881                nbytes = omap1510_read_noniso_rx_fifo (endpoint);
 882                usbd_rcv_complete (endpoint, nbytes, 0);
 883
 884                /* enable rx FIFO to prepare for next packet */
 885                outw (UDC_Set_FIFO_En, UDC_CTRL);
 886        } else if (status & UDC_STALL) {
 887                UDCDBGA ("STALL on RX endpoint %d", ep);
 888        } else if (status & UDC_NAK) {
 889                UDCDBGA ("NAK on RX ep %d", ep);
 890        } else {
 891                serial_printf ("omap-bi: RX on ep %d with status %x", ep,
 892                               status);
 893        }
 894}
 895
 896/* Handle TX transaction on non-ISO endpoint.
 897 * This function implements TRM Figure 14-29.
 898 * The ep argument is a physical endpoint number for a non-ISO IN endpoint
 899 * in the range 16 to 30.
 900 */
 901static void omap1510_udc_epn_tx (int ep)
 902{
 903        unsigned short status;
 904
 905        /*serial_printf("omap1510_udc_epn_tx( %x )\n",ep); */
 906
 907        /* Check endpoint status */
 908        status = inw (UDC_STAT_FLG);
 909
 910        if (status & UDC_ACK) {
 911                struct usb_endpoint_instance *endpoint =
 912                        omap1510_find_ep (ep);
 913
 914                /* We need to transmit a terminating zero-length packet now if
 915                 * we have sent all of the data in this URB and the transfer
 916                 * size was an exact multiple of the packet size.
 917                 */
 918                if (endpoint->tx_urb
 919                    && (endpoint->last == endpoint->tx_packetSize)
 920                    && (endpoint->tx_urb->actual_length - endpoint->sent -
 921                        endpoint->last == 0)) {
 922                        /* Prepare to transmit a zero-length packet. */
 923                        endpoint->sent += endpoint->last;
 924                        /* write 0 bytes of data to FIFO */
 925                        omap1510_write_noniso_tx_fifo (endpoint);
 926                        /* enable tx FIFO to start transmission */
 927                        outw (UDC_Set_FIFO_En, UDC_CTRL);
 928                } else if (endpoint->tx_urb
 929                           && endpoint->tx_urb->actual_length) {
 930                        /* retire the data that was just sent */
 931                        usbd_tx_complete (endpoint);
 932                        /* Check to see if we have more data ready to transmit
 933                         * now.
 934                         */
 935                        if (endpoint->tx_urb
 936                            && endpoint->tx_urb->actual_length) {
 937                                /* write data to FIFO */
 938                                omap1510_write_noniso_tx_fifo (endpoint);
 939                                /* enable tx FIFO to start transmission */
 940                                outw (UDC_Set_FIFO_En, UDC_CTRL);
 941                        }
 942                }
 943        } else if (status & UDC_STALL) {
 944                UDCDBGA ("STALL on TX endpoint %d", ep);
 945        } else if (status & UDC_NAK) {
 946                UDCDBGA ("NAK on TX endpoint %d", ep);
 947        } else {
 948                /*serial_printf("omap-bi: TX on ep %d with status %x\n", ep, status); */
 949        }
 950}
 951
 952
 953/*
 954-------------------------------------------------------------------------------
 955*/
 956
 957/* Handle general USB interrupts and dispatch according to type.
 958 * This function implements TRM Figure 14-13.
 959 */
 960void omap1510_udc_irq (void)
 961{
 962        u16 irq_src = inw (UDC_IRQ_SRC);
 963        int valid_irq = 0;
 964
 965        if (!(irq_src & ~UDC_SOF_Flg))  /* ignore SOF interrupts ) */
 966                return;
 967
 968        UDCDBGA ("< IRQ #%d start >- %x", udc_interrupts, irq_src);
 969        /*serial_printf("< IRQ #%d start >- %x\n", udc_interrupts, irq_src); */
 970
 971        if (irq_src & UDC_DS_Chg) {
 972                /* Device status changed */
 973                omap1510_udc_state_changed ();
 974                valid_irq++;
 975        }
 976        if (irq_src & UDC_EP0_RX) {
 977                /* Endpoint 0 receive */
 978                outw (UDC_EP0_RX, UDC_IRQ_SRC); /* ack interrupt */
 979                omap1510_udc_ep0_rx (udc_device->bus->endpoint_array + 0);
 980                valid_irq++;
 981        }
 982        if (irq_src & UDC_EP0_TX) {
 983                /* Endpoint 0 transmit */
 984                outw (UDC_EP0_TX, UDC_IRQ_SRC); /* ack interrupt */
 985                omap1510_udc_ep0_tx (udc_device->bus->endpoint_array + 0);
 986                valid_irq++;
 987        }
 988        if (irq_src & UDC_Setup) {
 989                /* Device setup */
 990                omap1510_udc_setup (udc_device->bus->endpoint_array + 0);
 991                valid_irq++;
 992        }
 993        /*if (!valid_irq) */
 994        /*      serial_printf("unknown interrupt, IRQ_SRC %.4x\n", irq_src); */
 995        UDCDBGA ("< IRQ #%d end >", udc_interrupts);
 996        udc_interrupts++;
 997}
 998
 999/* This function implements TRM Figure 14-26. */
1000void omap1510_udc_noniso_irq (void)
1001{
1002        unsigned short epnum;
1003        unsigned short irq_src = inw (UDC_IRQ_SRC);
1004        int valid_irq = 0;
1005
1006        if (!(irq_src & (UDC_EPn_RX | UDC_EPn_TX)))
1007                return;
1008
1009        UDCDBGA ("non-ISO IRQ, IRQ_SRC %x", inw (UDC_IRQ_SRC));
1010
1011        if (irq_src & UDC_EPn_RX) {     /* Endpoint N OUT transaction */
1012                /* Determine the endpoint number for this interrupt */
1013                epnum = (inw (UDC_EPN_STAT) & 0x0f00) >> 8;
1014                UDCDBGA ("RX on ep %x", epnum);
1015
1016                /* acknowledge interrupt */
1017                outw (UDC_EPn_RX, UDC_IRQ_SRC);
1018
1019                if (epnum) {
1020                        /* select the endpoint FIFO */
1021                        outw (UDC_EP_Sel | epnum, UDC_EP_NUM);
1022
1023                        omap1510_udc_epn_rx (epnum);
1024
1025                        /* deselect the endpoint FIFO */
1026                        outw (epnum, UDC_EP_NUM);
1027                }
1028                valid_irq++;
1029        }
1030        if (irq_src & UDC_EPn_TX) {     /* Endpoint N IN transaction */
1031                /* Determine the endpoint number for this interrupt */
1032                epnum = (inw (UDC_EPN_STAT) & 0x000f) | USB_DIR_IN;
1033                UDCDBGA ("TX on ep %x", epnum);
1034
1035                /* acknowledge interrupt */
1036                outw (UDC_EPn_TX, UDC_IRQ_SRC);
1037
1038                if (epnum) {
1039                        /* select the endpoint FIFO */
1040                        outw (UDC_EP_Sel | UDC_EP_Dir | epnum, UDC_EP_NUM);
1041
1042                        omap1510_udc_epn_tx (epnum);
1043
1044                        /* deselect the endpoint FIFO */
1045                        outw (UDC_EP_Dir | epnum, UDC_EP_NUM);
1046                }
1047                valid_irq++;
1048        }
1049        if (!valid_irq)
1050                serial_printf (": unknown non-ISO interrupt, IRQ_SRC %.4x\n",
1051                               irq_src);
1052}
1053
1054/*
1055-------------------------------------------------------------------------------
1056*/
1057
1058
1059/*
1060 * Start of public functions.
1061 */
1062
1063/* Called to start packet transmission. */
1064int udc_endpoint_write (struct usb_endpoint_instance *endpoint)
1065{
1066        unsigned short epnum =
1067                endpoint->endpoint_address & USB_ENDPOINT_NUMBER_MASK;
1068
1069        UDCDBGA ("Starting transmit on ep %x", epnum);
1070
1071        if (endpoint->tx_urb) {
1072                /* select the endpoint FIFO */
1073                outw (UDC_EP_Sel | UDC_EP_Dir | epnum, UDC_EP_NUM);
1074                /* write data to FIFO */
1075                omap1510_write_noniso_tx_fifo (endpoint);
1076                /* enable tx FIFO to start transmission */
1077                outw (UDC_Set_FIFO_En, UDC_CTRL);
1078                /* deselect the endpoint FIFO */
1079                outw (UDC_EP_Dir | epnum, UDC_EP_NUM);
1080        }
1081
1082        return 0;
1083}
1084
1085/* Start to initialize h/w stuff */
1086int udc_init (void)
1087{
1088        u16 udc_rev;
1089        uchar value;
1090        ulong gpio;
1091        int i;
1092
1093        /* Let the device settle down before we start */
1094        for (i = 0; i < UDC_INIT_MDELAY; i++) udelay(1000);
1095
1096        udc_device = NULL;
1097
1098        UDCDBG ("starting");
1099
1100        /* Check peripheral reset. Must be 1 to make sure
1101           MPU TIPB peripheral reset is inactive */
1102        UDCREG (ARM_RSTCT2);
1103
1104        /* Set and check clock control.
1105         * We might ought to be using the clock control API to do
1106         * this instead of fiddling with the clock registers directly
1107         * here.
1108         */
1109        outw ((1 << 4) | (1 << 5), CLOCK_CTRL);
1110        UDCREG (CLOCK_CTRL);
1111
1112#ifdef CONFIG_OMAP1510
1113        /* This code was originally implemented for OMAP1510 and
1114         * therefore is only applicable for OMAP1510 boards. For
1115         * OMAP5912 or OMAP16xx the register APLL_CTRL does not
1116         * exist and DPLL_CTRL is already configured.
1117         */
1118
1119        /* Set and check APLL */
1120        outw (0x0008, APLL_CTRL);
1121        UDCREG (APLL_CTRL);
1122        /* Set and check DPLL */
1123        outw (0x2210, DPLL_CTRL);
1124        UDCREG (DPLL_CTRL);
1125#endif
1126        /* Set and check SOFT
1127         * The below line of code has been changed to perform a
1128         * read-modify-write instead of a simple write for
1129         * configuring the SOFT_REQ register. This allows the code
1130         * to be compatible with OMAP5912 and OMAP16xx devices
1131         */
1132        outw ((1 << 4) | (1 << 3) | 1 | (inw(SOFT_REQ)), SOFT_REQ);
1133
1134        /* Short delay to wait for DPLL */
1135        udelay (1000);
1136
1137        /* Print banner with device revision */
1138        udc_rev = inw (UDC_REV) & 0xff;
1139#ifdef CONFIG_OMAP1510
1140        printf ("USB:   TI OMAP1510 USB function module rev %d.%d\n",
1141                udc_rev >> 4, udc_rev & 0xf);
1142#endif
1143
1144#ifdef CONFIG_OMAP1610
1145        printf ("USB:   TI OMAP5912 USB function module rev %d.%d\n",
1146                udc_rev >> 4, udc_rev & 0xf);
1147#endif
1148
1149#ifdef CONFIG_OMAP_SX1
1150        i2c_read (0x32, 0x04, 1, &value, 1);
1151        value |= 0x04;
1152        i2c_write (0x32, 0x04, 1, &value, 1);
1153
1154        i2c_read (0x32, 0x03, 1, &value, 1);
1155        value |= 0x01;
1156        i2c_write (0x32, 0x03, 1, &value, 1);
1157
1158        gpio = inl(GPIO_PIN_CONTROL_REG);
1159        gpio |=  0x0002; /* A_IRDA_OFF */
1160        gpio |=  0x0800; /* A_SWITCH   */
1161        gpio |=  0x8000; /* A_USB_ON   */
1162        outl (gpio, GPIO_PIN_CONTROL_REG);
1163
1164        gpio = inl(GPIO_DIR_CONTROL_REG);
1165        gpio &= ~0x0002; /* A_IRDA_OFF */
1166        gpio &= ~0x0800; /* A_SWITCH   */
1167        gpio &= ~0x8000; /* A_USB_ON   */
1168        outl (gpio, GPIO_DIR_CONTROL_REG);
1169
1170        gpio = inl(GPIO_DATA_OUTPUT_REG);
1171        gpio |=  0x0002; /* A_IRDA_OFF */
1172        gpio &= ~0x0800; /* A_SWITCH   */
1173        gpio &= ~0x8000; /* A_USB_ON   */
1174        outl (gpio, GPIO_DATA_OUTPUT_REG);
1175#endif
1176
1177        /* The VBUS_MODE bit selects whether VBUS detection is done via
1178         * software (1) or hardware (0).  When software detection is
1179         * selected, VBUS_CTRL selects whether USB is not connected (0)
1180         * or connected (1).
1181         */
1182        outl (inl (FUNC_MUX_CTRL_0) | UDC_VBUS_MODE, FUNC_MUX_CTRL_0);
1183        outl (inl (FUNC_MUX_CTRL_0) & ~UDC_VBUS_CTRL, FUNC_MUX_CTRL_0);
1184        UDCREGL (FUNC_MUX_CTRL_0);
1185
1186        /*
1187         * At this point, device is ready for configuration...
1188         */
1189
1190        UDCDBG ("disable USB interrupts");
1191        outw (0, UDC_IRQ_EN);
1192        UDCREG (UDC_IRQ_EN);
1193
1194        UDCDBG ("disable USB DMA");
1195        outw (0, UDC_DMA_IRQ_EN);
1196        UDCREG (UDC_DMA_IRQ_EN);
1197
1198        UDCDBG ("initialize SYSCON1");
1199        outw (UDC_Self_Pwr | UDC_Pullup_En, UDC_SYSCON1);
1200        UDCREG (UDC_SYSCON1);
1201
1202        return 0;
1203}
1204
1205/* Stall endpoint */
1206static void udc_stall_ep (unsigned int ep_addr)
1207{
1208        /*int ep_addr = PHYS_EP_TO_EP_ADDR(ep); */
1209        int ep_num = ep_addr & USB_ENDPOINT_NUMBER_MASK;
1210
1211        UDCDBGA ("stall ep_addr %d", ep_addr);
1212
1213        /* REVISIT?
1214         * The OMAP TRM section 14.2.4.2 says we must check that the FIFO
1215         * is empty before halting the endpoint.  The current implementation
1216         * doesn't check that the FIFO is empty.
1217         */
1218
1219        if (!ep_num) {
1220                outw (UDC_Stall_Cmd, UDC_SYSCON2);
1221        } else if ((ep_addr & USB_ENDPOINT_DIR_MASK) == USB_DIR_OUT) {
1222                if (inw (UDC_EP_RX (ep_num)) & UDC_EPn_RX_Valid) {
1223                        /* we have a valid rx endpoint, so halt it */
1224                        outw (UDC_EP_Sel | ep_num, UDC_EP_NUM);
1225                        outw (UDC_Set_Halt, UDC_CTRL);
1226                        outw (ep_num, UDC_EP_NUM);
1227                }
1228        } else {
1229                if (inw (UDC_EP_TX (ep_num)) & UDC_EPn_TX_Valid) {
1230                        /* we have a valid tx endpoint, so halt it */
1231                        outw (UDC_EP_Sel | UDC_EP_Dir | ep_num, UDC_EP_NUM);
1232                        outw (UDC_Set_Halt, UDC_CTRL);
1233                        outw (ep_num, UDC_EP_NUM);
1234                }
1235        }
1236}
1237
1238/* Reset endpoint */
1239#if 0
1240static void udc_reset_ep (unsigned int ep_addr)
1241{
1242        /*int ep_addr = PHYS_EP_TO_EP_ADDR(ep); */
1243        int ep_num = ep_addr & USB_ENDPOINT_NUMBER_MASK;
1244
1245        UDCDBGA ("reset ep_addr %d", ep_addr);
1246
1247        if (!ep_num) {
1248                /* control endpoint 0 can't be reset */
1249        } else if ((ep_addr & USB_ENDPOINT_DIR_MASK) == USB_DIR_OUT) {
1250                UDCDBGA ("UDC_EP_RX(%d) = 0x%04x", ep_num,
1251                         inw (UDC_EP_RX (ep_num)));
1252                if (inw (UDC_EP_RX (ep_num)) & UDC_EPn_RX_Valid) {
1253                        /* we have a valid rx endpoint, so reset it */
1254                        outw (ep_num | UDC_EP_Sel, UDC_EP_NUM);
1255                        outw (UDC_Reset_EP, UDC_CTRL);
1256                        outw (ep_num, UDC_EP_NUM);
1257                        UDCDBGA ("OUT endpoint %d reset", ep_num);
1258                }
1259        } else {
1260                UDCDBGA ("UDC_EP_TX(%d) = 0x%04x", ep_num,
1261                         inw (UDC_EP_TX (ep_num)));
1262                /* Resetting of tx endpoints seems to be causing the USB function
1263                 * module to fail, which causes problems when the driver is
1264                 * uninstalled.  We'll skip resetting tx endpoints for now until
1265                 * we figure out what the problem is.
1266                 */
1267#if 0
1268                if (inw (UDC_EP_TX (ep_num)) & UDC_EPn_TX_Valid) {
1269                        /* we have a valid tx endpoint, so reset it */
1270                        outw (ep_num | UDC_EP_Dir | UDC_EP_Sel, UDC_EP_NUM);
1271                        outw (UDC_Reset_EP, UDC_CTRL);
1272                        outw (ep_num | UDC_EP_Dir, UDC_EP_NUM);
1273                        UDCDBGA ("IN endpoint %d reset", ep_num);
1274                }
1275#endif
1276        }
1277}
1278#endif
1279
1280/* ************************************************************************** */
1281
1282/**
1283 * udc_check_ep - check logical endpoint
1284  *
1285 * Return physical endpoint number to use for this logical endpoint or zero if not valid.
1286 */
1287#if 0
1288int udc_check_ep (int logical_endpoint, int packetsize)
1289{
1290        if ((logical_endpoint == 0x80) ||
1291            ((logical_endpoint & 0x8f) != logical_endpoint)) {
1292                return 0;
1293        }
1294
1295        switch (packetsize) {
1296        case 8:
1297        case 16:
1298        case 32:
1299        case 64:
1300        case 128:
1301        case 256:
1302        case 512:
1303                break;
1304        default:
1305                return 0;
1306        }
1307
1308        return EP_ADDR_TO_PHYS_EP (logical_endpoint);
1309}
1310#endif
1311
1312/*
1313 * udc_setup_ep - setup endpoint
1314 *
1315 * Associate a physical endpoint with endpoint_instance
1316 */
1317void udc_setup_ep (struct usb_device_instance *device,
1318                   unsigned int ep, struct usb_endpoint_instance *endpoint)
1319{
1320        UDCDBGA ("setting up endpoint addr %x", endpoint->endpoint_address);
1321
1322        /* This routine gets called by bi_modinit for endpoint 0 and from
1323         * bi_config for all of the other endpoints.  bi_config gets called
1324         * during the DEVICE_CREATE, DEVICE_CONFIGURED, and
1325         * DEVICE_SET_INTERFACE events.  We need to reconfigure the OMAP packet
1326         * RAM after bi_config scans the selected device configuration and
1327         * initializes the endpoint structures, but before this routine enables
1328         * the OUT endpoint FIFOs.  Since bi_config calls this routine in a
1329         * loop for endpoints 1 through UDC_MAX_ENDPOINTS, we reconfigure our
1330         * packet RAM here when ep==1.
1331         * I really hate to do this here, but it seems like the API exported
1332         * by the USB bus interface controller driver to the usbd-bi module
1333         * isn't quite right so there is no good place to do this.
1334         */
1335        if (ep == 1) {
1336                omap1510_deconfigure_device ();
1337                omap1510_configure_device (device);
1338        }
1339
1340        if (endpoint && (ep < UDC_MAX_ENDPOINTS)) {
1341                int ep_addr = endpoint->endpoint_address;
1342
1343                if (!ep_addr) {
1344                        /* nothing to do for endpoint 0 */
1345                } else if ((ep_addr & USB_ENDPOINT_DIR_MASK) == USB_DIR_IN) {
1346                        /* nothing to do for IN (tx) endpoints */
1347                } else {        /* OUT (rx) endpoint */
1348                        if (endpoint->rcv_packetSize) {
1349                                /*struct urb* urb = &(urb_out_array[ep&0xFF]); */
1350                                /*urb->endpoint = endpoint; */
1351                                /*urb->device = device; */
1352                                /*urb->buffer_length = sizeof(urb->buffer); */
1353
1354                                /*endpoint->rcv_urb = urb; */
1355                                omap1510_prepare_endpoint_for_rx (ep_addr);
1356                        }
1357                }
1358        }
1359}
1360
1361/**
1362 * udc_disable_ep - disable endpoint
1363 * @ep:
1364 *
1365 * Disable specified endpoint
1366 */
1367#if 0
1368void udc_disable_ep (unsigned int ep_addr)
1369{
1370        /*int ep_addr = PHYS_EP_TO_EP_ADDR(ep); */
1371        int ep_num = ep_addr & USB_ENDPOINT_NUMBER_MASK;
1372        struct usb_endpoint_instance *endpoint = omap1510_find_ep (ep_addr);    /*udc_device->bus->endpoint_array + ep; */
1373
1374        UDCDBGA ("disable ep_addr %d", ep_addr);
1375
1376        if (!ep_num) {
1377                /* nothing to do for endpoint 0 */ ;
1378        } else if ((ep_addr & USB_ENDPOINT_DIR_MASK) == USB_DIR_IN) {
1379                if (endpoint->tx_packetSize) {
1380                        /* we have a valid tx endpoint */
1381                        /*usbd_flush_tx(endpoint); */
1382                        endpoint->tx_urb = NULL;
1383                }
1384        } else {
1385                if (endpoint->rcv_packetSize) {
1386                        /* we have a valid rx endpoint */
1387                        /*usbd_flush_rcv(endpoint); */
1388                        endpoint->rcv_urb = NULL;
1389                }
1390        }
1391}
1392#endif
1393
1394/* ************************************************************************** */
1395
1396/**
1397 * udc_connected - is the USB cable connected
1398 *
1399 * Return non-zero if cable is connected.
1400 */
1401#if 0
1402int udc_connected (void)
1403{
1404        return ((inw (UDC_DEVSTAT) & UDC_ATT) == UDC_ATT);
1405}
1406#endif
1407
1408/* Turn on the USB connection by enabling the pullup resistor */
1409void udc_connect (void)
1410{
1411        UDCDBG ("connect, enable Pullup");
1412        outl (0x00000018, FUNC_MUX_CTRL_D);
1413}
1414
1415/* Turn off the USB connection by disabling the pullup resistor */
1416void udc_disconnect (void)
1417{
1418        UDCDBG ("disconnect, disable Pullup");
1419        outl (0x00000000, FUNC_MUX_CTRL_D);
1420}
1421
1422/* ************************************************************************** */
1423
1424
1425/*
1426 * udc_disable_interrupts - disable interrupts
1427 * switch off interrupts
1428 */
1429#if 0
1430void udc_disable_interrupts (struct usb_device_instance *device)
1431{
1432        UDCDBG ("disabling all interrupts");
1433        outw (0, UDC_IRQ_EN);
1434}
1435#endif
1436
1437/* ************************************************************************** */
1438
1439/**
1440 * udc_ep0_packetsize - return ep0 packetsize
1441 */
1442#if 0
1443int udc_ep0_packetsize (void)
1444{
1445        return EP0_PACKETSIZE;
1446}
1447#endif
1448
1449/* Switch on the UDC */
1450void udc_enable (struct usb_device_instance *device)
1451{
1452        UDCDBGA ("enable device %p, status %d", device, device->status);
1453
1454        /* initialize driver state variables */
1455        udc_devstat = 0;
1456
1457        /* Save the device structure pointer */
1458        udc_device = device;
1459
1460        /* Setup ep0 urb */
1461        if (!ep0_urb) {
1462                ep0_urb =
1463                        usbd_alloc_urb (udc_device,
1464                                        udc_device->bus->endpoint_array);
1465        } else {
1466                serial_printf ("udc_enable: ep0_urb already allocated %p\n",
1467                               ep0_urb);
1468        }
1469
1470        UDCDBG ("Check clock status");
1471        UDCREG (STATUS_REQ);
1472
1473        /* The VBUS_MODE bit selects whether VBUS detection is done via
1474         * software (1) or hardware (0).  When software detection is
1475         * selected, VBUS_CTRL selects whether USB is not connected (0)
1476         * or connected (1).
1477         */
1478        outl (inl (FUNC_MUX_CTRL_0) | UDC_VBUS_CTRL | UDC_VBUS_MODE,
1479              FUNC_MUX_CTRL_0);
1480        UDCREGL (FUNC_MUX_CTRL_0);
1481
1482        omap1510_configure_device (device);
1483}
1484
1485/* Switch off the UDC */
1486void udc_disable (void)
1487{
1488        UDCDBG ("disable UDC");
1489
1490        omap1510_deconfigure_device ();
1491
1492        /* The VBUS_MODE bit selects whether VBUS detection is done via
1493         * software (1) or hardware (0).  When software detection is
1494         * selected, VBUS_CTRL selects whether USB is not connected (0)
1495         * or connected (1).
1496         */
1497        outl (inl (FUNC_MUX_CTRL_0) | UDC_VBUS_MODE, FUNC_MUX_CTRL_0);
1498        outl (inl (FUNC_MUX_CTRL_0) & ~UDC_VBUS_CTRL, FUNC_MUX_CTRL_0);
1499        UDCREGL (FUNC_MUX_CTRL_0);
1500
1501        /* Free ep0 URB */
1502        if (ep0_urb) {
1503                /*usbd_dealloc_urb(ep0_urb); */
1504                ep0_urb = NULL;
1505        }
1506
1507        /* Reset device pointer.
1508         * We ought to do this here to balance the initialization of udc_device
1509         * in udc_enable, but some of our other exported functions get called
1510         * by the bus interface driver after udc_disable, so we have to hang on
1511         * to the device pointer to avoid a null pointer dereference. */
1512        /* udc_device = NULL; */
1513}
1514
1515/**
1516 * udc_startup - allow udc code to do any additional startup
1517 */
1518void udc_startup_events (struct usb_device_instance *device)
1519{
1520        /* The DEVICE_INIT event puts the USB device in the state STATE_INIT. */
1521        usbd_device_event_irq (device, DEVICE_INIT, 0);
1522
1523        /* The DEVICE_CREATE event puts the USB device in the state
1524         * STATE_ATTACHED.
1525         */
1526        usbd_device_event_irq (device, DEVICE_CREATE, 0);
1527
1528        /* Some USB controller driver implementations signal
1529         * DEVICE_HUB_CONFIGURED and DEVICE_RESET events here.
1530         * DEVICE_HUB_CONFIGURED causes a transition to the state STATE_POWERED,
1531         * and DEVICE_RESET causes a transition to the state STATE_DEFAULT.
1532         * The OMAP USB client controller has the capability to detect when the
1533         * USB cable is connected to a powered USB bus via the ATT bit in the
1534         * DEVSTAT register, so we will defer the DEVICE_HUB_CONFIGURED and
1535         * DEVICE_RESET events until later.
1536         */
1537
1538        udc_enable (device);
1539}
1540
1541/**
1542 * udc_irq - do pseudo interrupts
1543 */
1544void udc_irq(void)
1545{
1546        /* Loop while we have interrupts.
1547         * If we don't do this, the input chain
1548         * polling delay is likely to miss
1549         * host requests.
1550         */
1551        while (inw (UDC_IRQ_SRC) & ~UDC_SOF_Flg) {
1552                /* Handle any new IRQs */
1553                omap1510_udc_irq ();
1554                omap1510_udc_noniso_irq ();
1555        }
1556}
1557
1558/* Flow control */
1559void udc_set_nak(int epid)
1560{
1561        /* TODO: implement this functionality in omap1510 */
1562}
1563
1564void udc_unset_nak (int epid)
1565{
1566        /* TODO: implement this functionality in omap1510 */
1567}
1568