uboot/arch/arm/cpu/tegra20-common/clock.c
<<
>>
Prefs
   1/*
   2 * Copyright (c) 2011 The Chromium OS Authors.
   3 * See file CREDITS for list of people who contributed to this
   4 * project.
   5 *
   6 * This program is free software; you can redistribute it and/or
   7 * modify it under the terms of the GNU General Public License as
   8 * published by the Free Software Foundation; either version 2 of
   9 * the License, or (at your option) any later version.
  10 *
  11 * This program is distributed in the hope that it will be useful,
  12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  14 * GNU General Public License for more details.
  15 *
  16 * You should have received a copy of the GNU General Public License
  17 * along with this program; if not, write to the Free Software
  18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
  19 * MA 02111-1307 USA
  20 */
  21
  22/* Tegra20 Clock control functions */
  23
  24#include <asm/io.h>
  25#include <asm/arch/clk_rst.h>
  26#include <asm/arch/clock.h>
  27#include <asm/arch/timer.h>
  28#include <asm/arch/tegra20.h>
  29#include <common.h>
  30#include <div64.h>
  31#include <fdtdec.h>
  32
  33/*
  34 * This is our record of the current clock rate of each clock. We don't
  35 * fill all of these in since we are only really interested in clocks which
  36 * we use as parents.
  37 */
  38static unsigned pll_rate[CLOCK_ID_COUNT];
  39
  40/*
  41 * The oscillator frequency is fixed to one of four set values. Based on this
  42 * the other clocks are set up appropriately.
  43 */
  44static unsigned osc_freq[CLOCK_OSC_FREQ_COUNT] = {
  45        13000000,
  46        19200000,
  47        12000000,
  48        26000000,
  49};
  50
  51/*
  52 * Clock types that we can use as a source. The Tegra20 has muxes for the
  53 * peripheral clocks, and in most cases there are four options for the clock
  54 * source. This gives us a clock 'type' and exploits what commonality exists
  55 * in the device.
  56 *
  57 * Letters are obvious, except for T which means CLK_M, and S which means the
  58 * clock derived from 32KHz. Beware that CLK_M (also called OSC in the
  59 * datasheet) and PLL_M are different things. The former is the basic
  60 * clock supplied to the SOC from an external oscillator. The latter is the
  61 * memory clock PLL.
  62 *
  63 * See definitions in clock_id in the header file.
  64 */
  65enum clock_type_id {
  66        CLOCK_TYPE_AXPT,        /* PLL_A, PLL_X, PLL_P, CLK_M */
  67        CLOCK_TYPE_MCPA,        /* and so on */
  68        CLOCK_TYPE_MCPT,
  69        CLOCK_TYPE_PCM,
  70        CLOCK_TYPE_PCMT,
  71        CLOCK_TYPE_PCMT16,      /* CLOCK_TYPE_PCMT with 16-bit divider */
  72        CLOCK_TYPE_PCXTS,
  73        CLOCK_TYPE_PDCT,
  74
  75        CLOCK_TYPE_COUNT,
  76        CLOCK_TYPE_NONE = -1,   /* invalid clock type */
  77};
  78
  79/* return 1 if a peripheral ID is in range */
  80#define clock_type_id_isvalid(id) ((id) >= 0 && \
  81                (id) < CLOCK_TYPE_COUNT)
  82
  83char pllp_valid = 1;    /* PLLP is set up correctly */
  84
  85enum {
  86        CLOCK_MAX_MUX   = 4     /* number of source options for each clock */
  87};
  88
  89/*
  90 * Clock source mux for each clock type. This just converts our enum into
  91 * a list of mux sources for use by the code. Note that CLOCK_TYPE_PCXTS
  92 * is special as it has 5 sources. Since it also has a different number of
  93 * bits in its register for the source, we just handle it with a special
  94 * case in the code.
  95 */
  96#define CLK(x) CLOCK_ID_ ## x
  97static enum clock_id clock_source[CLOCK_TYPE_COUNT][CLOCK_MAX_MUX] = {
  98        { CLK(AUDIO),   CLK(XCPU),      CLK(PERIPH),    CLK(OSC)        },
  99        { CLK(MEMORY),  CLK(CGENERAL),  CLK(PERIPH),    CLK(AUDIO)      },
 100        { CLK(MEMORY),  CLK(CGENERAL),  CLK(PERIPH),    CLK(OSC)        },
 101        { CLK(PERIPH),  CLK(CGENERAL),  CLK(MEMORY),    CLK(NONE)       },
 102        { CLK(PERIPH),  CLK(CGENERAL),  CLK(MEMORY),    CLK(OSC)        },
 103        { CLK(PERIPH),  CLK(CGENERAL),  CLK(MEMORY),    CLK(OSC)        },
 104        { CLK(PERIPH),  CLK(CGENERAL),  CLK(XCPU),      CLK(OSC)        },
 105        { CLK(PERIPH),  CLK(DISPLAY),   CLK(CGENERAL),  CLK(OSC)        },
 106};
 107
 108/*
 109 * Clock peripheral IDs which sadly don't match up with PERIPH_ID. This is
 110 * not in the header file since it is for purely internal use - we want
 111 * callers to use the PERIPH_ID for all access to peripheral clocks to avoid
 112 * confusion bewteen PERIPH_ID_... and PERIPHC_...
 113 *
 114 * We don't call this CLOCK_PERIPH_ID or PERIPH_CLOCK_ID as it would just be
 115 * confusing.
 116 *
 117 * Note to SOC vendors: perhaps define a unified numbering for peripherals and
 118 * use it for reset, clock enable, clock source/divider and even pinmuxing
 119 * if you can.
 120 */
 121enum periphc_internal_id {
 122        /* 0x00 */
 123        PERIPHC_I2S1,
 124        PERIPHC_I2S2,
 125        PERIPHC_SPDIF_OUT,
 126        PERIPHC_SPDIF_IN,
 127        PERIPHC_PWM,
 128        PERIPHC_SPI1,
 129        PERIPHC_SPI2,
 130        PERIPHC_SPI3,
 131
 132        /* 0x08 */
 133        PERIPHC_XIO,
 134        PERIPHC_I2C1,
 135        PERIPHC_DVC_I2C,
 136        PERIPHC_TWC,
 137        PERIPHC_0c,
 138        PERIPHC_10,     /* PERIPHC_SPI1, what is this really? */
 139        PERIPHC_DISP1,
 140        PERIPHC_DISP2,
 141
 142        /* 0x10 */
 143        PERIPHC_CVE,
 144        PERIPHC_IDE0,
 145        PERIPHC_VI,
 146        PERIPHC_1c,
 147        PERIPHC_SDMMC1,
 148        PERIPHC_SDMMC2,
 149        PERIPHC_G3D,
 150        PERIPHC_G2D,
 151
 152        /* 0x18 */
 153        PERIPHC_NDFLASH,
 154        PERIPHC_SDMMC4,
 155        PERIPHC_VFIR,
 156        PERIPHC_EPP,
 157        PERIPHC_MPE,
 158        PERIPHC_MIPI,
 159        PERIPHC_UART1,
 160        PERIPHC_UART2,
 161
 162        /* 0x20 */
 163        PERIPHC_HOST1X,
 164        PERIPHC_21,
 165        PERIPHC_TVO,
 166        PERIPHC_HDMI,
 167        PERIPHC_24,
 168        PERIPHC_TVDAC,
 169        PERIPHC_I2C2,
 170        PERIPHC_EMC,
 171
 172        /* 0x28 */
 173        PERIPHC_UART3,
 174        PERIPHC_29,
 175        PERIPHC_VI_SENSOR,
 176        PERIPHC_2b,
 177        PERIPHC_2c,
 178        PERIPHC_SPI4,
 179        PERIPHC_I2C3,
 180        PERIPHC_SDMMC3,
 181
 182        /* 0x30 */
 183        PERIPHC_UART4,
 184        PERIPHC_UART5,
 185        PERIPHC_VDE,
 186        PERIPHC_OWR,
 187        PERIPHC_NOR,
 188        PERIPHC_CSITE,
 189
 190        PERIPHC_COUNT,
 191
 192        PERIPHC_NONE = -1,
 193};
 194
 195/* return 1 if a periphc_internal_id is in range */
 196#define periphc_internal_id_isvalid(id) ((id) >= 0 && \
 197                (id) < PERIPHC_COUNT)
 198
 199/*
 200 * Clock type for each peripheral clock source. We put the name in each
 201 * record just so it is easy to match things up
 202 */
 203#define TYPE(name, type) type
 204static enum clock_type_id clock_periph_type[PERIPHC_COUNT] = {
 205        /* 0x00 */
 206        TYPE(PERIPHC_I2S1,      CLOCK_TYPE_AXPT),
 207        TYPE(PERIPHC_I2S2,      CLOCK_TYPE_AXPT),
 208        TYPE(PERIPHC_SPDIF_OUT, CLOCK_TYPE_AXPT),
 209        TYPE(PERIPHC_SPDIF_IN,  CLOCK_TYPE_PCM),
 210        TYPE(PERIPHC_PWM,       CLOCK_TYPE_PCXTS),
 211        TYPE(PERIPHC_SPI1,      CLOCK_TYPE_PCMT),
 212        TYPE(PERIPHC_SPI22,     CLOCK_TYPE_PCMT),
 213        TYPE(PERIPHC_SPI3,      CLOCK_TYPE_PCMT),
 214
 215        /* 0x08 */
 216        TYPE(PERIPHC_XIO,       CLOCK_TYPE_PCMT),
 217        TYPE(PERIPHC_I2C1,      CLOCK_TYPE_PCMT16),
 218        TYPE(PERIPHC_DVC_I2C,   CLOCK_TYPE_PCMT16),
 219        TYPE(PERIPHC_TWC,       CLOCK_TYPE_PCMT),
 220        TYPE(PERIPHC_NONE,      CLOCK_TYPE_NONE),
 221        TYPE(PERIPHC_SPI1,      CLOCK_TYPE_PCMT),
 222        TYPE(PERIPHC_DISP1,     CLOCK_TYPE_PDCT),
 223        TYPE(PERIPHC_DISP2,     CLOCK_TYPE_PDCT),
 224
 225        /* 0x10 */
 226        TYPE(PERIPHC_CVE,       CLOCK_TYPE_PDCT),
 227        TYPE(PERIPHC_IDE0,      CLOCK_TYPE_PCMT),
 228        TYPE(PERIPHC_VI,        CLOCK_TYPE_MCPA),
 229        TYPE(PERIPHC_NONE,      CLOCK_TYPE_NONE),
 230        TYPE(PERIPHC_SDMMC1,    CLOCK_TYPE_PCMT),
 231        TYPE(PERIPHC_SDMMC2,    CLOCK_TYPE_PCMT),
 232        TYPE(PERIPHC_G3D,       CLOCK_TYPE_MCPA),
 233        TYPE(PERIPHC_G2D,       CLOCK_TYPE_MCPA),
 234
 235        /* 0x18 */
 236        TYPE(PERIPHC_NDFLASH,   CLOCK_TYPE_PCMT),
 237        TYPE(PERIPHC_SDMMC4,    CLOCK_TYPE_PCMT),
 238        TYPE(PERIPHC_VFIR,      CLOCK_TYPE_PCMT),
 239        TYPE(PERIPHC_EPP,       CLOCK_TYPE_MCPA),
 240        TYPE(PERIPHC_MPE,       CLOCK_TYPE_MCPA),
 241        TYPE(PERIPHC_MIPI,      CLOCK_TYPE_PCMT),
 242        TYPE(PERIPHC_UART1,     CLOCK_TYPE_PCMT),
 243        TYPE(PERIPHC_UART2,     CLOCK_TYPE_PCMT),
 244
 245        /* 0x20 */
 246        TYPE(PERIPHC_HOST1X,    CLOCK_TYPE_MCPA),
 247        TYPE(PERIPHC_NONE,      CLOCK_TYPE_NONE),
 248        TYPE(PERIPHC_TVO,       CLOCK_TYPE_PDCT),
 249        TYPE(PERIPHC_HDMI,      CLOCK_TYPE_PDCT),
 250        TYPE(PERIPHC_NONE,      CLOCK_TYPE_NONE),
 251        TYPE(PERIPHC_TVDAC,     CLOCK_TYPE_PDCT),
 252        TYPE(PERIPHC_I2C2,      CLOCK_TYPE_PCMT16),
 253        TYPE(PERIPHC_EMC,       CLOCK_TYPE_MCPT),
 254
 255        /* 0x28 */
 256        TYPE(PERIPHC_UART3,     CLOCK_TYPE_PCMT),
 257        TYPE(PERIPHC_NONE,      CLOCK_TYPE_NONE),
 258        TYPE(PERIPHC_VI,        CLOCK_TYPE_MCPA),
 259        TYPE(PERIPHC_NONE,      CLOCK_TYPE_NONE),
 260        TYPE(PERIPHC_NONE,      CLOCK_TYPE_NONE),
 261        TYPE(PERIPHC_SPI4,      CLOCK_TYPE_PCMT),
 262        TYPE(PERIPHC_I2C3,      CLOCK_TYPE_PCMT16),
 263        TYPE(PERIPHC_SDMMC3,    CLOCK_TYPE_PCMT),
 264
 265        /* 0x30 */
 266        TYPE(PERIPHC_UART4,     CLOCK_TYPE_PCMT),
 267        TYPE(PERIPHC_UART5,     CLOCK_TYPE_PCMT),
 268        TYPE(PERIPHC_VDE,       CLOCK_TYPE_PCMT),
 269        TYPE(PERIPHC_OWR,       CLOCK_TYPE_PCMT),
 270        TYPE(PERIPHC_NOR,       CLOCK_TYPE_PCMT),
 271        TYPE(PERIPHC_CSITE,     CLOCK_TYPE_PCMT),
 272};
 273
 274/*
 275 * This array translates a periph_id to a periphc_internal_id
 276 *
 277 * Not present/matched up:
 278 *      uint vi_sensor;  _VI_SENSOR_0,          0x1A8
 279 *      SPDIF - which is both 0x08 and 0x0c
 280 *
 281 */
 282#define NONE(name) (-1)
 283#define OFFSET(name, value) PERIPHC_ ## name
 284static s8 periph_id_to_internal_id[PERIPH_ID_COUNT] = {
 285        /* Low word: 31:0 */
 286        NONE(CPU),
 287        NONE(RESERVED1),
 288        NONE(RESERVED2),
 289        NONE(AC97),
 290        NONE(RTC),
 291        NONE(TMR),
 292        PERIPHC_UART1,
 293        PERIPHC_UART2,  /* and vfir 0x68 */
 294
 295        /* 0x08 */
 296        NONE(GPIO),
 297        PERIPHC_SDMMC2,
 298        NONE(SPDIF),            /* 0x08 and 0x0c, unclear which to use */
 299        PERIPHC_I2S1,
 300        PERIPHC_I2C1,
 301        PERIPHC_NDFLASH,
 302        PERIPHC_SDMMC1,
 303        PERIPHC_SDMMC4,
 304
 305        /* 0x10 */
 306        PERIPHC_TWC,
 307        PERIPHC_PWM,
 308        PERIPHC_I2S2,
 309        PERIPHC_EPP,
 310        PERIPHC_VI,
 311        PERIPHC_G2D,
 312        NONE(USBD),
 313        NONE(ISP),
 314
 315        /* 0x18 */
 316        PERIPHC_G3D,
 317        PERIPHC_IDE0,
 318        PERIPHC_DISP2,
 319        PERIPHC_DISP1,
 320        PERIPHC_HOST1X,
 321        NONE(VCP),
 322        NONE(RESERVED30),
 323        NONE(CACHE2),
 324
 325        /* Middle word: 63:32 */
 326        NONE(MEM),
 327        NONE(AHBDMA),
 328        NONE(APBDMA),
 329        NONE(RESERVED35),
 330        NONE(KBC),
 331        NONE(STAT_MON),
 332        NONE(PMC),
 333        NONE(FUSE),
 334
 335        /* 0x28 */
 336        NONE(KFUSE),
 337        NONE(SBC1),     /* SBC1, 0x34, is this SPI1? */
 338        PERIPHC_NOR,
 339        PERIPHC_SPI1,
 340        PERIPHC_SPI2,
 341        PERIPHC_XIO,
 342        PERIPHC_SPI3,
 343        PERIPHC_DVC_I2C,
 344
 345        /* 0x30 */
 346        NONE(DSI),
 347        PERIPHC_TVO,    /* also CVE 0x40 */
 348        PERIPHC_MIPI,
 349        PERIPHC_HDMI,
 350        PERIPHC_CSITE,
 351        PERIPHC_TVDAC,
 352        PERIPHC_I2C2,
 353        PERIPHC_UART3,
 354
 355        /* 0x38 */
 356        NONE(RESERVED56),
 357        PERIPHC_EMC,
 358        NONE(USB2),
 359        NONE(USB3),
 360        PERIPHC_MPE,
 361        PERIPHC_VDE,
 362        NONE(BSEA),
 363        NONE(BSEV),
 364
 365        /* Upper word 95:64 */
 366        NONE(SPEEDO),
 367        PERIPHC_UART4,
 368        PERIPHC_UART5,
 369        PERIPHC_I2C3,
 370        PERIPHC_SPI4,
 371        PERIPHC_SDMMC3,
 372        NONE(PCIE),
 373        PERIPHC_OWR,
 374
 375        /* 0x48 */
 376        NONE(AFI),
 377        NONE(CORESIGHT),
 378        NONE(RESERVED74),
 379        NONE(AVPUCQ),
 380        NONE(RESERVED76),
 381        NONE(RESERVED77),
 382        NONE(RESERVED78),
 383        NONE(RESERVED79),
 384
 385        /* 0x50 */
 386        NONE(RESERVED80),
 387        NONE(RESERVED81),
 388        NONE(RESERVED82),
 389        NONE(RESERVED83),
 390        NONE(IRAMA),
 391        NONE(IRAMB),
 392        NONE(IRAMC),
 393        NONE(IRAMD),
 394
 395        /* 0x58 */
 396        NONE(CRAM2),
 397};
 398
 399/*
 400 * Get the oscillator frequency, from the corresponding hardware configuration
 401 * field.
 402 */
 403enum clock_osc_freq clock_get_osc_freq(void)
 404{
 405        struct clk_rst_ctlr *clkrst =
 406                        (struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
 407        u32 reg;
 408
 409        reg = readl(&clkrst->crc_osc_ctrl);
 410        return (reg & OSC_FREQ_MASK) >> OSC_FREQ_SHIFT;
 411}
 412
 413int clock_get_osc_bypass(void)
 414{
 415        struct clk_rst_ctlr *clkrst =
 416                        (struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
 417        u32 reg;
 418
 419        reg = readl(&clkrst->crc_osc_ctrl);
 420        return (reg & OSC_XOBP_MASK) >> OSC_XOBP_SHIFT;
 421}
 422
 423/* Returns a pointer to the registers of the given pll */
 424static struct clk_pll *get_pll(enum clock_id clkid)
 425{
 426        struct clk_rst_ctlr *clkrst =
 427                        (struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
 428
 429        assert(clock_id_is_pll(clkid));
 430        return &clkrst->crc_pll[clkid];
 431}
 432
 433int clock_ll_read_pll(enum clock_id clkid, u32 *divm, u32 *divn,
 434                u32 *divp, u32 *cpcon, u32 *lfcon)
 435{
 436        struct clk_pll *pll = get_pll(clkid);
 437        u32 data;
 438
 439        assert(clkid != CLOCK_ID_USB);
 440
 441        /* Safety check, adds to code size but is small */
 442        if (!clock_id_is_pll(clkid) || clkid == CLOCK_ID_USB)
 443                return -1;
 444        data = readl(&pll->pll_base);
 445        *divm = (data & PLL_DIVM_MASK) >> PLL_DIVM_SHIFT;
 446        *divn = (data & PLL_DIVN_MASK) >> PLL_DIVN_SHIFT;
 447        *divp = (data & PLL_DIVP_MASK) >> PLL_DIVP_SHIFT;
 448        data = readl(&pll->pll_misc);
 449        *cpcon = (data & PLL_CPCON_MASK) >> PLL_CPCON_SHIFT;
 450        *lfcon = (data & PLL_LFCON_MASK) >> PLL_LFCON_SHIFT;
 451
 452        return 0;
 453}
 454
 455unsigned long clock_start_pll(enum clock_id clkid, u32 divm, u32 divn,
 456                u32 divp, u32 cpcon, u32 lfcon)
 457{
 458        struct clk_pll *pll = get_pll(clkid);
 459        u32 data;
 460
 461        /*
 462         * We cheat by treating all PLL (except PLLU) in the same fashion.
 463         * This works only because:
 464         * - same fields are always mapped at same offsets, except DCCON
 465         * - DCCON is always 0, doesn't conflict
 466         * - M,N, P of PLLP values are ignored for PLLP
 467         */
 468        data = (cpcon << PLL_CPCON_SHIFT) | (lfcon << PLL_LFCON_SHIFT);
 469        writel(data, &pll->pll_misc);
 470
 471        data = (divm << PLL_DIVM_SHIFT) | (divn << PLL_DIVN_SHIFT) |
 472                        (0 << PLL_BYPASS_SHIFT) | (1 << PLL_ENABLE_SHIFT);
 473
 474        if (clkid == CLOCK_ID_USB)
 475                data |= divp << PLLU_VCO_FREQ_SHIFT;
 476        else
 477                data |= divp << PLL_DIVP_SHIFT;
 478        writel(data, &pll->pll_base);
 479
 480        /* calculate the stable time */
 481        return timer_get_us() + CLOCK_PLL_STABLE_DELAY_US;
 482}
 483
 484/* return 1 if a peripheral ID is in range and valid */
 485static int clock_periph_id_isvalid(enum periph_id id)
 486{
 487        if (id < PERIPH_ID_FIRST || id >= PERIPH_ID_COUNT)
 488                printf("Peripheral id %d out of range\n", id);
 489        else {
 490                switch (id) {
 491                case PERIPH_ID_RESERVED1:
 492                case PERIPH_ID_RESERVED2:
 493                case PERIPH_ID_RESERVED30:
 494                case PERIPH_ID_RESERVED35:
 495                case PERIPH_ID_RESERVED56:
 496                case PERIPH_ID_RESERVED74:
 497                case PERIPH_ID_RESERVED76:
 498                case PERIPH_ID_RESERVED77:
 499                case PERIPH_ID_RESERVED78:
 500                case PERIPH_ID_RESERVED79:
 501                case PERIPH_ID_RESERVED80:
 502                case PERIPH_ID_RESERVED81:
 503                case PERIPH_ID_RESERVED82:
 504                case PERIPH_ID_RESERVED83:
 505                        printf("Peripheral id %d is reserved\n", id);
 506                        break;
 507                default:
 508                        return 1;
 509                }
 510        }
 511        return 0;
 512}
 513
 514/* Returns a pointer to the clock source register for a peripheral */
 515static u32 *get_periph_source_reg(enum periph_id periph_id)
 516{
 517        struct clk_rst_ctlr *clkrst =
 518                        (struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
 519        enum periphc_internal_id internal_id;
 520
 521        assert(clock_periph_id_isvalid(periph_id));
 522        internal_id = periph_id_to_internal_id[periph_id];
 523        assert(internal_id != -1);
 524        return &clkrst->crc_clk_src[internal_id];
 525}
 526
 527void clock_ll_set_source_divisor(enum periph_id periph_id, unsigned source,
 528                              unsigned divisor)
 529{
 530        u32 *reg = get_periph_source_reg(periph_id);
 531        u32 value;
 532
 533        value = readl(reg);
 534
 535        value &= ~OUT_CLK_SOURCE_MASK;
 536        value |= source << OUT_CLK_SOURCE_SHIFT;
 537
 538        value &= ~OUT_CLK_DIVISOR_MASK;
 539        value |= divisor << OUT_CLK_DIVISOR_SHIFT;
 540
 541        writel(value, reg);
 542}
 543
 544void clock_ll_set_source(enum periph_id periph_id, unsigned source)
 545{
 546        u32 *reg = get_periph_source_reg(periph_id);
 547
 548        clrsetbits_le32(reg, OUT_CLK_SOURCE_MASK,
 549                        source << OUT_CLK_SOURCE_SHIFT);
 550}
 551
 552/**
 553 * Given the parent's rate and the required rate for the children, this works
 554 * out the peripheral clock divider to use, in 7.1 binary format.
 555 *
 556 * @param divider_bits  number of divider bits (8 or 16)
 557 * @param parent_rate   clock rate of parent clock in Hz
 558 * @param rate          required clock rate for this clock
 559 * @return divider which should be used
 560 */
 561static int clk_get_divider(unsigned divider_bits, unsigned long parent_rate,
 562                           unsigned long rate)
 563{
 564        u64 divider = parent_rate * 2;
 565        unsigned max_divider = 1 << divider_bits;
 566
 567        divider += rate - 1;
 568        do_div(divider, rate);
 569
 570        if ((s64)divider - 2 < 0)
 571                return 0;
 572
 573        if ((s64)divider - 2 >= max_divider)
 574                return -1;
 575
 576        return divider - 2;
 577}
 578
 579/**
 580 * Given the parent's rate and the divider in 7.1 format, this works out the
 581 * resulting peripheral clock rate.
 582 *
 583 * @param parent_rate   clock rate of parent clock in Hz
 584 * @param divider which should be used in 7.1 format
 585 * @return effective clock rate of peripheral
 586 */
 587static unsigned long get_rate_from_divider(unsigned long parent_rate,
 588                                           int divider)
 589{
 590        u64 rate;
 591
 592        rate = (u64)parent_rate * 2;
 593        do_div(rate, divider + 2);
 594        return rate;
 595}
 596
 597unsigned long clock_get_periph_rate(enum periph_id periph_id,
 598                enum clock_id parent)
 599{
 600        u32 *reg = get_periph_source_reg(periph_id);
 601
 602        return get_rate_from_divider(pll_rate[parent],
 603                (readl(reg) & OUT_CLK_DIVISOR_MASK) >> OUT_CLK_DIVISOR_SHIFT);
 604}
 605
 606/**
 607 * Find the best available 7.1 format divisor given a parent clock rate and
 608 * required child clock rate. This function assumes that a second-stage
 609 * divisor is available which can divide by powers of 2 from 1 to 256.
 610 *
 611 * @param divider_bits  number of divider bits (8 or 16)
 612 * @param parent_rate   clock rate of parent clock in Hz
 613 * @param rate          required clock rate for this clock
 614 * @param extra_div     value for the second-stage divisor (not set if this
 615 *                      function returns -1.
 616 * @return divider which should be used, or -1 if nothing is valid
 617 *
 618 */
 619static int find_best_divider(unsigned divider_bits, unsigned long parent_rate,
 620                             unsigned long rate, int *extra_div)
 621{
 622        int shift;
 623        int best_divider = -1;
 624        int best_error = rate;
 625
 626        /* try dividers from 1 to 256 and find closest match */
 627        for (shift = 0; shift <= 8 && best_error > 0; shift++) {
 628                unsigned divided_parent = parent_rate >> shift;
 629                int divider = clk_get_divider(divider_bits, divided_parent,
 630                                              rate);
 631                unsigned effective_rate = get_rate_from_divider(divided_parent,
 632                                                       divider);
 633                int error = rate - effective_rate;
 634
 635                /* Given a valid divider, look for the lowest error */
 636                if (divider != -1 && error < best_error) {
 637                        best_error = error;
 638                        *extra_div = 1 << shift;
 639                        best_divider = divider;
 640                }
 641        }
 642
 643        /* return what we found - *extra_div will already be set */
 644        return best_divider;
 645}
 646
 647/**
 648 * Given a peripheral ID and the required source clock, this returns which
 649 * value should be programmed into the source mux for that peripheral.
 650 *
 651 * There is special code here to handle the one source type with 5 sources.
 652 *
 653 * @param periph_id     peripheral to start
 654 * @param source        PLL id of required parent clock
 655 * @param mux_bits      Set to number of bits in mux register: 2 or 4
 656 * @param divider_bits  Set to number of divider bits (8 or 16)
 657 * @return mux value (0-4, or -1 if not found)
 658 */
 659static int get_periph_clock_source(enum periph_id periph_id,
 660                enum clock_id parent, int *mux_bits, int *divider_bits)
 661{
 662        enum clock_type_id type;
 663        enum periphc_internal_id internal_id;
 664        int mux;
 665
 666        assert(clock_periph_id_isvalid(periph_id));
 667
 668        internal_id = periph_id_to_internal_id[periph_id];
 669        assert(periphc_internal_id_isvalid(internal_id));
 670
 671        type = clock_periph_type[internal_id];
 672        assert(clock_type_id_isvalid(type));
 673
 674        /*
 675         * Special cases here for the clock with a 4-bit source mux and I2C
 676         * with its 16-bit divisor
 677         */
 678        if (type == CLOCK_TYPE_PCXTS)
 679                *mux_bits = 4;
 680        else
 681                *mux_bits = 2;
 682        if (type == CLOCK_TYPE_PCMT16)
 683                *divider_bits = 16;
 684        else
 685                *divider_bits = 8;
 686
 687        for (mux = 0; mux < CLOCK_MAX_MUX; mux++)
 688                if (clock_source[type][mux] == parent)
 689                        return mux;
 690
 691        /*
 692         * Not found: it might be looking for the 'S' in CLOCK_TYPE_PCXTS
 693         * which is not in our table. If not, then they are asking for a
 694         * source which this peripheral can't access through its mux.
 695         */
 696        assert(type == CLOCK_TYPE_PCXTS);
 697        assert(parent == CLOCK_ID_SFROM32KHZ);
 698        if (type == CLOCK_TYPE_PCXTS && parent == CLOCK_ID_SFROM32KHZ)
 699                return 4;       /* mux value for this clock */
 700
 701        /* if we get here, either us or the caller has made a mistake */
 702        printf("Caller requested bad clock: periph=%d, parent=%d\n", periph_id,
 703                parent);
 704        return -1;
 705}
 706
 707/**
 708 * Adjust peripheral PLL to use the given divider and source.
 709 *
 710 * @param periph_id     peripheral to adjust
 711 * @param source        Source number (0-3 or 0-7)
 712 * @param mux_bits      Number of mux bits (2 or 4)
 713 * @param divider       Required divider in 7.1 or 15.1 format
 714 * @return 0 if ok, -1 on error (requesting a parent clock which is not valid
 715 *              for this peripheral)
 716 */
 717static int adjust_periph_pll(enum periph_id periph_id, int source,
 718                             int mux_bits, unsigned divider)
 719{
 720        u32 *reg = get_periph_source_reg(periph_id);
 721
 722        clrsetbits_le32(reg, OUT_CLK_DIVISOR_MASK,
 723                        divider << OUT_CLK_DIVISOR_SHIFT);
 724        udelay(1);
 725
 726        /* work out the source clock and set it */
 727        if (source < 0)
 728                return -1;
 729        if (mux_bits == 4) {
 730                clrsetbits_le32(reg, OUT_CLK_SOURCE4_MASK,
 731                        source << OUT_CLK_SOURCE4_SHIFT);
 732        } else {
 733                clrsetbits_le32(reg, OUT_CLK_SOURCE_MASK,
 734                        source << OUT_CLK_SOURCE_SHIFT);
 735        }
 736        udelay(2);
 737        return 0;
 738}
 739
 740unsigned clock_adjust_periph_pll_div(enum periph_id periph_id,
 741                enum clock_id parent, unsigned rate, int *extra_div)
 742{
 743        unsigned effective_rate;
 744        int mux_bits, divider_bits, source;
 745        int divider;
 746
 747        /* work out the source clock and set it */
 748        source = get_periph_clock_source(periph_id, parent, &mux_bits,
 749                                         &divider_bits);
 750
 751        if (extra_div)
 752                divider = find_best_divider(divider_bits, pll_rate[parent],
 753                                            rate, extra_div);
 754        else
 755                divider = clk_get_divider(divider_bits, pll_rate[parent],
 756                                          rate);
 757        assert(divider >= 0);
 758        if (adjust_periph_pll(periph_id, source, mux_bits, divider))
 759                return -1U;
 760        debug("periph %d, rate=%d, reg=%p = %x\n", periph_id, rate,
 761                get_periph_source_reg(periph_id),
 762                readl(get_periph_source_reg(periph_id)));
 763
 764        /* Check what we ended up with. This shouldn't matter though */
 765        effective_rate = clock_get_periph_rate(periph_id, parent);
 766        if (extra_div)
 767                effective_rate /= *extra_div;
 768        if (rate != effective_rate)
 769                debug("Requested clock rate %u not honored (got %u)\n",
 770                       rate, effective_rate);
 771        return effective_rate;
 772}
 773
 774unsigned clock_start_periph_pll(enum periph_id periph_id,
 775                enum clock_id parent, unsigned rate)
 776{
 777        unsigned effective_rate;
 778
 779        reset_set_enable(periph_id, 1);
 780        clock_enable(periph_id);
 781
 782        effective_rate = clock_adjust_periph_pll_div(periph_id, parent, rate,
 783                                                 NULL);
 784
 785        reset_set_enable(periph_id, 0);
 786        return effective_rate;
 787}
 788
 789void clock_set_enable(enum periph_id periph_id, int enable)
 790{
 791        struct clk_rst_ctlr *clkrst =
 792                        (struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
 793        u32 *clk = &clkrst->crc_clk_out_enb[PERIPH_REG(periph_id)];
 794        u32 reg;
 795
 796        /* Enable/disable the clock to this peripheral */
 797        assert(clock_periph_id_isvalid(periph_id));
 798        reg = readl(clk);
 799        if (enable)
 800                reg |= PERIPH_MASK(periph_id);
 801        else
 802                reg &= ~PERIPH_MASK(periph_id);
 803        writel(reg, clk);
 804}
 805
 806void clock_enable(enum periph_id clkid)
 807{
 808        clock_set_enable(clkid, 1);
 809}
 810
 811void clock_disable(enum periph_id clkid)
 812{
 813        clock_set_enable(clkid, 0);
 814}
 815
 816void reset_set_enable(enum periph_id periph_id, int enable)
 817{
 818        struct clk_rst_ctlr *clkrst =
 819                        (struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
 820        u32 *reset = &clkrst->crc_rst_dev[PERIPH_REG(periph_id)];
 821        u32 reg;
 822
 823        /* Enable/disable reset to the peripheral */
 824        assert(clock_periph_id_isvalid(periph_id));
 825        reg = readl(reset);
 826        if (enable)
 827                reg |= PERIPH_MASK(periph_id);
 828        else
 829                reg &= ~PERIPH_MASK(periph_id);
 830        writel(reg, reset);
 831}
 832
 833void reset_periph(enum periph_id periph_id, int us_delay)
 834{
 835        /* Put peripheral into reset */
 836        reset_set_enable(periph_id, 1);
 837        udelay(us_delay);
 838
 839        /* Remove reset */
 840        reset_set_enable(periph_id, 0);
 841
 842        udelay(us_delay);
 843}
 844
 845void reset_cmplx_set_enable(int cpu, int which, int reset)
 846{
 847        struct clk_rst_ctlr *clkrst =
 848                        (struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
 849        u32 mask;
 850
 851        /* Form the mask, which depends on the cpu chosen. Tegra20 has 2 */
 852        assert(cpu >= 0 && cpu < 2);
 853        mask = which << cpu;
 854
 855        /* either enable or disable those reset for that CPU */
 856        if (reset)
 857                writel(mask, &clkrst->crc_cpu_cmplx_set);
 858        else
 859                writel(mask, &clkrst->crc_cpu_cmplx_clr);
 860}
 861
 862unsigned clock_get_rate(enum clock_id clkid)
 863{
 864        struct clk_pll *pll;
 865        u32 base;
 866        u32 divm;
 867        u64 parent_rate;
 868        u64 rate;
 869
 870        parent_rate = osc_freq[clock_get_osc_freq()];
 871        if (clkid == CLOCK_ID_OSC)
 872                return parent_rate;
 873
 874        pll = get_pll(clkid);
 875        base = readl(&pll->pll_base);
 876
 877        /* Oh for bf_unpack()... */
 878        rate = parent_rate * ((base & PLL_DIVN_MASK) >> PLL_DIVN_SHIFT);
 879        divm = (base & PLL_DIVM_MASK) >> PLL_DIVM_SHIFT;
 880        if (clkid == CLOCK_ID_USB)
 881                divm <<= (base & PLLU_VCO_FREQ_MASK) >> PLLU_VCO_FREQ_SHIFT;
 882        else
 883                divm <<= (base & PLL_DIVP_MASK) >> PLL_DIVP_SHIFT;
 884        do_div(rate, divm);
 885        return rate;
 886}
 887
 888/**
 889 * Set the output frequency you want for each PLL clock.
 890 * PLL output frequencies are programmed by setting their N, M and P values.
 891 * The governing equations are:
 892 *     VCO = (Fi / m) * n, Fo = VCO / (2^p)
 893 *     where Fo is the output frequency from the PLL.
 894 * Example: Set the output frequency to 216Mhz(Fo) with 12Mhz OSC(Fi)
 895 *     216Mhz = ((12Mhz / m) * n) / (2^p) so n=432,m=12,p=1
 896 * Please see Tegra TRM section 5.3 to get the detail for PLL Programming
 897 *
 898 * @param n PLL feedback divider(DIVN)
 899 * @param m PLL input divider(DIVN)
 900 * @param p post divider(DIVP)
 901 * @param cpcon base PLL charge pump(CPCON)
 902 * @return 0 if ok, -1 on error (the requested PLL is incorrect and cannot
 903 *              be overriden), 1 if PLL is already correct
 904 */
 905static int clock_set_rate(enum clock_id clkid, u32 n, u32 m, u32 p, u32 cpcon)
 906{
 907        u32 base_reg;
 908        u32 misc_reg;
 909        struct clk_pll *pll;
 910
 911        pll = get_pll(clkid);
 912
 913        base_reg = readl(&pll->pll_base);
 914
 915        /* Set BYPASS, m, n and p to PLL_BASE */
 916        base_reg &= ~PLL_DIVM_MASK;
 917        base_reg |= m << PLL_DIVM_SHIFT;
 918
 919        base_reg &= ~PLL_DIVN_MASK;
 920        base_reg |= n << PLL_DIVN_SHIFT;
 921
 922        base_reg &= ~PLL_DIVP_MASK;
 923        base_reg |= p << PLL_DIVP_SHIFT;
 924
 925        if (clkid == CLOCK_ID_PERIPH) {
 926                /*
 927                 * If the PLL is already set up, check that it is correct
 928                 * and record this info for clock_verify() to check.
 929                 */
 930                if (base_reg & PLL_BASE_OVRRIDE_MASK) {
 931                        base_reg |= PLL_ENABLE_MASK;
 932                        if (base_reg != readl(&pll->pll_base))
 933                                pllp_valid = 0;
 934                        return pllp_valid ? 1 : -1;
 935                }
 936                base_reg |= PLL_BASE_OVRRIDE_MASK;
 937        }
 938
 939        base_reg |= PLL_BYPASS_MASK;
 940        writel(base_reg, &pll->pll_base);
 941
 942        /* Set cpcon to PLL_MISC */
 943        misc_reg = readl(&pll->pll_misc);
 944        misc_reg &= ~PLL_CPCON_MASK;
 945        misc_reg |= cpcon << PLL_CPCON_SHIFT;
 946        writel(misc_reg, &pll->pll_misc);
 947
 948        /* Enable PLL */
 949        base_reg |= PLL_ENABLE_MASK;
 950        writel(base_reg, &pll->pll_base);
 951
 952        /* Disable BYPASS */
 953        base_reg &= ~PLL_BYPASS_MASK;
 954        writel(base_reg, &pll->pll_base);
 955
 956        return 0;
 957}
 958
 959void clock_ll_start_uart(enum periph_id periph_id)
 960{
 961        /* Assert UART reset and enable clock */
 962        reset_set_enable(periph_id, 1);
 963        clock_enable(periph_id);
 964        clock_ll_set_source(periph_id, 0); /* UARTx_CLK_SRC = 00, PLLP_OUT0 */
 965
 966        /* wait for 2us */
 967        udelay(2);
 968
 969        /* De-assert reset to UART */
 970        reset_set_enable(periph_id, 0);
 971}
 972
 973#ifdef CONFIG_OF_CONTROL
 974/*
 975 * Convert a device tree clock ID to our peripheral ID. They are mostly
 976 * the same but we are very cautious so we check that a valid clock ID is
 977 * provided.
 978 *
 979 * @param clk_id        Clock ID according to tegra20 device tree binding
 980 * @return peripheral ID, or PERIPH_ID_NONE if the clock ID is invalid
 981 */
 982static enum periph_id clk_id_to_periph_id(int clk_id)
 983{
 984        if (clk_id > 95)
 985                return PERIPH_ID_NONE;
 986
 987        switch (clk_id) {
 988        case 1:
 989        case 2:
 990        case 7:
 991        case 10:
 992        case 20:
 993        case 30:
 994        case 35:
 995        case 49:
 996        case 56:
 997        case 74:
 998        case 76:
 999        case 77:
1000        case 78:
1001        case 79:
1002        case 80:
1003        case 81:
1004        case 82:
1005        case 83:
1006        case 91:
1007        case 95:
1008                return PERIPH_ID_NONE;
1009        default:
1010                return clk_id;
1011        }
1012}
1013
1014int clock_decode_periph_id(const void *blob, int node)
1015{
1016        enum periph_id id;
1017        u32 cell[2];
1018        int err;
1019
1020        err = fdtdec_get_int_array(blob, node, "clocks", cell,
1021                                   ARRAY_SIZE(cell));
1022        if (err)
1023                return -1;
1024        id = clk_id_to_periph_id(cell[1]);
1025        assert(clock_periph_id_isvalid(id));
1026        return id;
1027}
1028#endif /* CONFIG_OF_CONTROL */
1029
1030int clock_verify(void)
1031{
1032        struct clk_pll *pll = get_pll(CLOCK_ID_PERIPH);
1033        u32 reg = readl(&pll->pll_base);
1034
1035        if (!pllp_valid) {
1036                printf("Warning: PLLP %x is not correct\n", reg);
1037                return -1;
1038        }
1039        debug("PLLX %x is correct\n", reg);
1040        return 0;
1041}
1042
1043void clock_early_init(void)
1044{
1045        /*
1046         * PLLP output frequency set to 216MHz
1047         * PLLC output frequency set to 600Mhz
1048         *
1049         * TODO: Can we calculate these values instead of hard-coding?
1050         */
1051        switch (clock_get_osc_freq()) {
1052        case CLOCK_OSC_FREQ_12_0: /* OSC is 12Mhz */
1053                clock_set_rate(CLOCK_ID_PERIPH, 432, 12, 1, 8);
1054                clock_set_rate(CLOCK_ID_CGENERAL, 600, 12, 0, 8);
1055                break;
1056
1057        case CLOCK_OSC_FREQ_26_0: /* OSC is 26Mhz */
1058                clock_set_rate(CLOCK_ID_PERIPH, 432, 26, 1, 8);
1059                clock_set_rate(CLOCK_ID_CGENERAL, 600, 26, 0, 8);
1060                break;
1061
1062        case CLOCK_OSC_FREQ_13_0: /* OSC is 13Mhz */
1063                clock_set_rate(CLOCK_ID_PERIPH, 432, 13, 1, 8);
1064                clock_set_rate(CLOCK_ID_CGENERAL, 600, 13, 0, 8);
1065                break;
1066        case CLOCK_OSC_FREQ_19_2:
1067        default:
1068                /*
1069                 * These are not supported. It is too early to print a
1070                 * message and the UART likely won't work anyway due to the
1071                 * oscillator being wrong.
1072                 */
1073                break;
1074        }
1075}
1076
1077void clock_init(void)
1078{
1079        pll_rate[CLOCK_ID_MEMORY] = clock_get_rate(CLOCK_ID_MEMORY);
1080        pll_rate[CLOCK_ID_PERIPH] = clock_get_rate(CLOCK_ID_PERIPH);
1081        pll_rate[CLOCK_ID_CGENERAL] = clock_get_rate(CLOCK_ID_CGENERAL);
1082        pll_rate[CLOCK_ID_OSC] = clock_get_rate(CLOCK_ID_OSC);
1083        pll_rate[CLOCK_ID_SFROM32KHZ] = 32768;
1084        debug("Osc = %d\n", pll_rate[CLOCK_ID_OSC]);
1085        debug("PLLM = %d\n", pll_rate[CLOCK_ID_MEMORY]);
1086        debug("PLLP = %d\n", pll_rate[CLOCK_ID_PERIPH]);
1087}
1088