uboot/drivers/net/e1000.c
<<
>>
Prefs
   1/**************************************************************************
   2Intel Pro 1000 for ppcboot/das-u-boot
   3Drivers are port from Intel's Linux driver e1000-4.3.15
   4and from Etherboot pro 1000 driver by mrakes at vivato dot net
   5tested on both gig copper and gig fiber boards
   6***************************************************************************/
   7/*******************************************************************************
   8
   9
  10  Copyright(c) 1999 - 2002 Intel Corporation. All rights reserved.
  11
  12  This program is free software; you can redistribute it and/or modify it
  13  under the terms of the GNU General Public License as published by the Free
  14  Software Foundation; either version 2 of the License, or (at your option)
  15  any later version.
  16
  17  This program is distributed in the hope that it will be useful, but WITHOUT
  18  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  19  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  20  more details.
  21
  22  You should have received a copy of the GNU General Public License along with
  23  this program; if not, write to the Free Software Foundation, Inc., 59
  24  Temple Place - Suite 330, Boston, MA  02111-1307, USA.
  25
  26  The full GNU General Public License is included in this distribution in the
  27  file called LICENSE.
  28
  29  Contact Information:
  30  Linux NICS <linux.nics@intel.com>
  31  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
  32
  33*******************************************************************************/
  34/*
  35 *  Copyright (C) Archway Digital Solutions.
  36 *
  37 *  written by Chrsitopher Li <cli at arcyway dot com> or <chrisl at gnuchina dot org>
  38 *  2/9/2002
  39 *
  40 *  Copyright (C) Linux Networx.
  41 *  Massive upgrade to work with the new intel gigabit NICs.
  42 *  <ebiederman at lnxi dot com>
  43 *
  44 *  Copyright 2011 Freescale Semiconductor, Inc.
  45 */
  46
  47#include "e1000.h"
  48
  49#define TOUT_LOOP   100000
  50
  51#define virt_to_bus(devno, v)   pci_virt_to_mem(devno, (void *) (v))
  52#define bus_to_phys(devno, a)   pci_mem_to_phys(devno, a)
  53
  54#define E1000_DEFAULT_PCI_PBA   0x00000030
  55#define E1000_DEFAULT_PCIE_PBA  0x000a0026
  56
  57/* NIC specific static variables go here */
  58
  59static char tx_pool[128 + 16];
  60static char rx_pool[128 + 16];
  61static char packet[2096];
  62
  63static struct e1000_tx_desc *tx_base;
  64static struct e1000_rx_desc *rx_base;
  65
  66static int tx_tail;
  67static int rx_tail, rx_last;
  68
  69static struct pci_device_id e1000_supported[] = {
  70        {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82542},
  71        {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82543GC_FIBER},
  72        {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82543GC_COPPER},
  73        {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82544EI_COPPER},
  74        {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82544EI_FIBER},
  75        {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82544GC_COPPER},
  76        {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82544GC_LOM},
  77        {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82540EM},
  78        {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82545EM_COPPER},
  79        {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82545GM_COPPER},
  80        {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82546EB_COPPER},
  81        {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82545EM_FIBER},
  82        {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82546EB_FIBER},
  83        {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82546GB_COPPER},
  84        {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82540EM_LOM},
  85        {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82541ER},
  86        {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82541GI_LF},
  87        /* E1000 PCIe card */
  88        {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_COPPER},
  89        {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_FIBER      },
  90        {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_SERDES     },
  91        {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_QUAD_COPPER},
  92        {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571PT_QUAD_COPPER},
  93        {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_QUAD_FIBER},
  94        {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_QUAD_COPPER_LOWPROFILE},
  95        {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_SERDES_DUAL},
  96        {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_SERDES_QUAD},
  97        {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82572EI_COPPER},
  98        {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82572EI_FIBER},
  99        {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82572EI_SERDES},
 100        {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82572EI},
 101        {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82573E},
 102        {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82573E_IAMT},
 103        {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82573L},
 104        {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82574L},
 105        {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82546GB_QUAD_COPPER_KSP3},
 106        {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_80003ES2LAN_COPPER_DPT},
 107        {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_80003ES2LAN_SERDES_DPT},
 108        {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_80003ES2LAN_COPPER_SPT},
 109        {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_80003ES2LAN_SERDES_SPT},
 110        {}
 111};
 112
 113/* Function forward declarations */
 114static int e1000_setup_link(struct eth_device *nic);
 115static int e1000_setup_fiber_link(struct eth_device *nic);
 116static int e1000_setup_copper_link(struct eth_device *nic);
 117static int e1000_phy_setup_autoneg(struct e1000_hw *hw);
 118static void e1000_config_collision_dist(struct e1000_hw *hw);
 119static int e1000_config_mac_to_phy(struct e1000_hw *hw);
 120static int e1000_config_fc_after_link_up(struct e1000_hw *hw);
 121static int e1000_check_for_link(struct eth_device *nic);
 122static int e1000_wait_autoneg(struct e1000_hw *hw);
 123static int e1000_get_speed_and_duplex(struct e1000_hw *hw, uint16_t * speed,
 124                                       uint16_t * duplex);
 125static int e1000_read_phy_reg(struct e1000_hw *hw, uint32_t reg_addr,
 126                              uint16_t * phy_data);
 127static int e1000_write_phy_reg(struct e1000_hw *hw, uint32_t reg_addr,
 128                               uint16_t phy_data);
 129static int32_t e1000_phy_hw_reset(struct e1000_hw *hw);
 130static int e1000_phy_reset(struct e1000_hw *hw);
 131static int e1000_detect_gig_phy(struct e1000_hw *hw);
 132static void e1000_put_hw_eeprom_semaphore(struct e1000_hw *hw);
 133static void e1000_set_media_type(struct e1000_hw *hw);
 134
 135static int32_t e1000_swfw_sync_acquire(struct e1000_hw *hw, uint16_t mask);
 136static int32_t e1000_check_phy_reset_block(struct e1000_hw *hw);
 137
 138#ifndef CONFIG_AP1000 /* remove for warnings */
 139static int32_t e1000_read_eeprom(struct e1000_hw *hw, uint16_t offset,
 140                uint16_t words,
 141                uint16_t *data);
 142/******************************************************************************
 143 * Raises the EEPROM's clock input.
 144 *
 145 * hw - Struct containing variables accessed by shared code
 146 * eecd - EECD's current value
 147 *****************************************************************************/
 148void e1000_raise_ee_clk(struct e1000_hw *hw, uint32_t * eecd)
 149{
 150        /* Raise the clock input to the EEPROM (by setting the SK bit), and then
 151         * wait 50 microseconds.
 152         */
 153        *eecd = *eecd | E1000_EECD_SK;
 154        E1000_WRITE_REG(hw, EECD, *eecd);
 155        E1000_WRITE_FLUSH(hw);
 156        udelay(50);
 157}
 158
 159/******************************************************************************
 160 * Lowers the EEPROM's clock input.
 161 *
 162 * hw - Struct containing variables accessed by shared code
 163 * eecd - EECD's current value
 164 *****************************************************************************/
 165void e1000_lower_ee_clk(struct e1000_hw *hw, uint32_t * eecd)
 166{
 167        /* Lower the clock input to the EEPROM (by clearing the SK bit), and then
 168         * wait 50 microseconds.
 169         */
 170        *eecd = *eecd & ~E1000_EECD_SK;
 171        E1000_WRITE_REG(hw, EECD, *eecd);
 172        E1000_WRITE_FLUSH(hw);
 173        udelay(50);
 174}
 175
 176/******************************************************************************
 177 * Shift data bits out to the EEPROM.
 178 *
 179 * hw - Struct containing variables accessed by shared code
 180 * data - data to send to the EEPROM
 181 * count - number of bits to shift out
 182 *****************************************************************************/
 183static void
 184e1000_shift_out_ee_bits(struct e1000_hw *hw, uint16_t data, uint16_t count)
 185{
 186        uint32_t eecd;
 187        uint32_t mask;
 188
 189        /* We need to shift "count" bits out to the EEPROM. So, value in the
 190         * "data" parameter will be shifted out to the EEPROM one bit at a time.
 191         * In order to do this, "data" must be broken down into bits.
 192         */
 193        mask = 0x01 << (count - 1);
 194        eecd = E1000_READ_REG(hw, EECD);
 195        eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
 196        do {
 197                /* A "1" is shifted out to the EEPROM by setting bit "DI" to a "1",
 198                 * and then raising and then lowering the clock (the SK bit controls
 199                 * the clock input to the EEPROM).  A "0" is shifted out to the EEPROM
 200                 * by setting "DI" to "0" and then raising and then lowering the clock.
 201                 */
 202                eecd &= ~E1000_EECD_DI;
 203
 204                if (data & mask)
 205                        eecd |= E1000_EECD_DI;
 206
 207                E1000_WRITE_REG(hw, EECD, eecd);
 208                E1000_WRITE_FLUSH(hw);
 209
 210                udelay(50);
 211
 212                e1000_raise_ee_clk(hw, &eecd);
 213                e1000_lower_ee_clk(hw, &eecd);
 214
 215                mask = mask >> 1;
 216
 217        } while (mask);
 218
 219        /* We leave the "DI" bit set to "0" when we leave this routine. */
 220        eecd &= ~E1000_EECD_DI;
 221        E1000_WRITE_REG(hw, EECD, eecd);
 222}
 223
 224/******************************************************************************
 225 * Shift data bits in from the EEPROM
 226 *
 227 * hw - Struct containing variables accessed by shared code
 228 *****************************************************************************/
 229static uint16_t
 230e1000_shift_in_ee_bits(struct e1000_hw *hw, uint16_t count)
 231{
 232        uint32_t eecd;
 233        uint32_t i;
 234        uint16_t data;
 235
 236        /* In order to read a register from the EEPROM, we need to shift 'count'
 237         * bits in from the EEPROM. Bits are "shifted in" by raising the clock
 238         * input to the EEPROM (setting the SK bit), and then reading the
 239         * value of the "DO" bit.  During this "shifting in" process the
 240         * "DI" bit should always be clear.
 241         */
 242
 243        eecd = E1000_READ_REG(hw, EECD);
 244
 245        eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
 246        data = 0;
 247
 248        for (i = 0; i < count; i++) {
 249                data = data << 1;
 250                e1000_raise_ee_clk(hw, &eecd);
 251
 252                eecd = E1000_READ_REG(hw, EECD);
 253
 254                eecd &= ~(E1000_EECD_DI);
 255                if (eecd & E1000_EECD_DO)
 256                        data |= 1;
 257
 258                e1000_lower_ee_clk(hw, &eecd);
 259        }
 260
 261        return data;
 262}
 263
 264/******************************************************************************
 265 * Returns EEPROM to a "standby" state
 266 *
 267 * hw - Struct containing variables accessed by shared code
 268 *****************************************************************************/
 269void e1000_standby_eeprom(struct e1000_hw *hw)
 270{
 271        struct e1000_eeprom_info *eeprom = &hw->eeprom;
 272        uint32_t eecd;
 273
 274        eecd = E1000_READ_REG(hw, EECD);
 275
 276        if (eeprom->type == e1000_eeprom_microwire) {
 277                eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
 278                E1000_WRITE_REG(hw, EECD, eecd);
 279                E1000_WRITE_FLUSH(hw);
 280                udelay(eeprom->delay_usec);
 281
 282                /* Clock high */
 283                eecd |= E1000_EECD_SK;
 284                E1000_WRITE_REG(hw, EECD, eecd);
 285                E1000_WRITE_FLUSH(hw);
 286                udelay(eeprom->delay_usec);
 287
 288                /* Select EEPROM */
 289                eecd |= E1000_EECD_CS;
 290                E1000_WRITE_REG(hw, EECD, eecd);
 291                E1000_WRITE_FLUSH(hw);
 292                udelay(eeprom->delay_usec);
 293
 294                /* Clock low */
 295                eecd &= ~E1000_EECD_SK;
 296                E1000_WRITE_REG(hw, EECD, eecd);
 297                E1000_WRITE_FLUSH(hw);
 298                udelay(eeprom->delay_usec);
 299        } else if (eeprom->type == e1000_eeprom_spi) {
 300                /* Toggle CS to flush commands */
 301                eecd |= E1000_EECD_CS;
 302                E1000_WRITE_REG(hw, EECD, eecd);
 303                E1000_WRITE_FLUSH(hw);
 304                udelay(eeprom->delay_usec);
 305                eecd &= ~E1000_EECD_CS;
 306                E1000_WRITE_REG(hw, EECD, eecd);
 307                E1000_WRITE_FLUSH(hw);
 308                udelay(eeprom->delay_usec);
 309        }
 310}
 311
 312/***************************************************************************
 313* Description:     Determines if the onboard NVM is FLASH or EEPROM.
 314*
 315* hw - Struct containing variables accessed by shared code
 316****************************************************************************/
 317static boolean_t e1000_is_onboard_nvm_eeprom(struct e1000_hw *hw)
 318{
 319        uint32_t eecd = 0;
 320
 321        DEBUGFUNC();
 322
 323        if (hw->mac_type == e1000_ich8lan)
 324                return FALSE;
 325
 326        if (hw->mac_type == e1000_82573 || hw->mac_type == e1000_82574) {
 327                eecd = E1000_READ_REG(hw, EECD);
 328
 329                /* Isolate bits 15 & 16 */
 330                eecd = ((eecd >> 15) & 0x03);
 331
 332                /* If both bits are set, device is Flash type */
 333                if (eecd == 0x03)
 334                        return FALSE;
 335        }
 336        return TRUE;
 337}
 338
 339/******************************************************************************
 340 * Prepares EEPROM for access
 341 *
 342 * hw - Struct containing variables accessed by shared code
 343 *
 344 * Lowers EEPROM clock. Clears input pin. Sets the chip select pin. This
 345 * function should be called before issuing a command to the EEPROM.
 346 *****************************************************************************/
 347int32_t e1000_acquire_eeprom(struct e1000_hw *hw)
 348{
 349        struct e1000_eeprom_info *eeprom = &hw->eeprom;
 350        uint32_t eecd, i = 0;
 351
 352        DEBUGFUNC();
 353
 354        if (e1000_swfw_sync_acquire(hw, E1000_SWFW_EEP_SM))
 355                return -E1000_ERR_SWFW_SYNC;
 356        eecd = E1000_READ_REG(hw, EECD);
 357
 358        if (hw->mac_type != e1000_82573 || hw->mac_type != e1000_82574) {
 359                /* Request EEPROM Access */
 360                if (hw->mac_type > e1000_82544) {
 361                        eecd |= E1000_EECD_REQ;
 362                        E1000_WRITE_REG(hw, EECD, eecd);
 363                        eecd = E1000_READ_REG(hw, EECD);
 364                        while ((!(eecd & E1000_EECD_GNT)) &&
 365                                (i < E1000_EEPROM_GRANT_ATTEMPTS)) {
 366                                i++;
 367                                udelay(5);
 368                                eecd = E1000_READ_REG(hw, EECD);
 369                        }
 370                        if (!(eecd & E1000_EECD_GNT)) {
 371                                eecd &= ~E1000_EECD_REQ;
 372                                E1000_WRITE_REG(hw, EECD, eecd);
 373                                DEBUGOUT("Could not acquire EEPROM grant\n");
 374                                return -E1000_ERR_EEPROM;
 375                        }
 376                }
 377        }
 378
 379        /* Setup EEPROM for Read/Write */
 380
 381        if (eeprom->type == e1000_eeprom_microwire) {
 382                /* Clear SK and DI */
 383                eecd &= ~(E1000_EECD_DI | E1000_EECD_SK);
 384                E1000_WRITE_REG(hw, EECD, eecd);
 385
 386                /* Set CS */
 387                eecd |= E1000_EECD_CS;
 388                E1000_WRITE_REG(hw, EECD, eecd);
 389        } else if (eeprom->type == e1000_eeprom_spi) {
 390                /* Clear SK and CS */
 391                eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
 392                E1000_WRITE_REG(hw, EECD, eecd);
 393                udelay(1);
 394        }
 395
 396        return E1000_SUCCESS;
 397}
 398
 399/******************************************************************************
 400 * Sets up eeprom variables in the hw struct.  Must be called after mac_type
 401 * is configured.  Additionally, if this is ICH8, the flash controller GbE
 402 * registers must be mapped, or this will crash.
 403 *
 404 * hw - Struct containing variables accessed by shared code
 405 *****************************************************************************/
 406static int32_t e1000_init_eeprom_params(struct e1000_hw *hw)
 407{
 408        struct e1000_eeprom_info *eeprom = &hw->eeprom;
 409        uint32_t eecd = E1000_READ_REG(hw, EECD);
 410        int32_t ret_val = E1000_SUCCESS;
 411        uint16_t eeprom_size;
 412
 413        DEBUGFUNC();
 414
 415        switch (hw->mac_type) {
 416        case e1000_82542_rev2_0:
 417        case e1000_82542_rev2_1:
 418        case e1000_82543:
 419        case e1000_82544:
 420                eeprom->type = e1000_eeprom_microwire;
 421                eeprom->word_size = 64;
 422                eeprom->opcode_bits = 3;
 423                eeprom->address_bits = 6;
 424                eeprom->delay_usec = 50;
 425                eeprom->use_eerd = FALSE;
 426                eeprom->use_eewr = FALSE;
 427        break;
 428        case e1000_82540:
 429        case e1000_82545:
 430        case e1000_82545_rev_3:
 431        case e1000_82546:
 432        case e1000_82546_rev_3:
 433                eeprom->type = e1000_eeprom_microwire;
 434                eeprom->opcode_bits = 3;
 435                eeprom->delay_usec = 50;
 436                if (eecd & E1000_EECD_SIZE) {
 437                        eeprom->word_size = 256;
 438                        eeprom->address_bits = 8;
 439                } else {
 440                        eeprom->word_size = 64;
 441                        eeprom->address_bits = 6;
 442                }
 443                eeprom->use_eerd = FALSE;
 444                eeprom->use_eewr = FALSE;
 445                break;
 446        case e1000_82541:
 447        case e1000_82541_rev_2:
 448        case e1000_82547:
 449        case e1000_82547_rev_2:
 450                if (eecd & E1000_EECD_TYPE) {
 451                        eeprom->type = e1000_eeprom_spi;
 452                        eeprom->opcode_bits = 8;
 453                        eeprom->delay_usec = 1;
 454                        if (eecd & E1000_EECD_ADDR_BITS) {
 455                                eeprom->page_size = 32;
 456                                eeprom->address_bits = 16;
 457                        } else {
 458                                eeprom->page_size = 8;
 459                                eeprom->address_bits = 8;
 460                        }
 461                } else {
 462                        eeprom->type = e1000_eeprom_microwire;
 463                        eeprom->opcode_bits = 3;
 464                        eeprom->delay_usec = 50;
 465                        if (eecd & E1000_EECD_ADDR_BITS) {
 466                                eeprom->word_size = 256;
 467                                eeprom->address_bits = 8;
 468                        } else {
 469                                eeprom->word_size = 64;
 470                                eeprom->address_bits = 6;
 471                        }
 472                }
 473                eeprom->use_eerd = FALSE;
 474                eeprom->use_eewr = FALSE;
 475                break;
 476        case e1000_82571:
 477        case e1000_82572:
 478                eeprom->type = e1000_eeprom_spi;
 479                eeprom->opcode_bits = 8;
 480                eeprom->delay_usec = 1;
 481                if (eecd & E1000_EECD_ADDR_BITS) {
 482                        eeprom->page_size = 32;
 483                        eeprom->address_bits = 16;
 484                } else {
 485                        eeprom->page_size = 8;
 486                        eeprom->address_bits = 8;
 487                }
 488                eeprom->use_eerd = FALSE;
 489                eeprom->use_eewr = FALSE;
 490                break;
 491        case e1000_82573:
 492        case e1000_82574:
 493                eeprom->type = e1000_eeprom_spi;
 494                eeprom->opcode_bits = 8;
 495                eeprom->delay_usec = 1;
 496                if (eecd & E1000_EECD_ADDR_BITS) {
 497                        eeprom->page_size = 32;
 498                        eeprom->address_bits = 16;
 499                } else {
 500                        eeprom->page_size = 8;
 501                        eeprom->address_bits = 8;
 502                }
 503                eeprom->use_eerd = TRUE;
 504                eeprom->use_eewr = TRUE;
 505                if (e1000_is_onboard_nvm_eeprom(hw) == FALSE) {
 506                        eeprom->type = e1000_eeprom_flash;
 507                        eeprom->word_size = 2048;
 508
 509                /* Ensure that the Autonomous FLASH update bit is cleared due to
 510                 * Flash update issue on parts which use a FLASH for NVM. */
 511                        eecd &= ~E1000_EECD_AUPDEN;
 512                        E1000_WRITE_REG(hw, EECD, eecd);
 513                }
 514                break;
 515        case e1000_80003es2lan:
 516                eeprom->type = e1000_eeprom_spi;
 517                eeprom->opcode_bits = 8;
 518                eeprom->delay_usec = 1;
 519                if (eecd & E1000_EECD_ADDR_BITS) {
 520                        eeprom->page_size = 32;
 521                        eeprom->address_bits = 16;
 522                } else {
 523                        eeprom->page_size = 8;
 524                        eeprom->address_bits = 8;
 525                }
 526                eeprom->use_eerd = TRUE;
 527                eeprom->use_eewr = FALSE;
 528                break;
 529
 530        /* ich8lan does not support currently. if needed, please
 531         * add corresponding code and functions.
 532         */
 533#if 0
 534        case e1000_ich8lan:
 535                {
 536                int32_t  i = 0;
 537
 538                eeprom->type = e1000_eeprom_ich8;
 539                eeprom->use_eerd = FALSE;
 540                eeprom->use_eewr = FALSE;
 541                eeprom->word_size = E1000_SHADOW_RAM_WORDS;
 542                uint32_t flash_size = E1000_READ_ICH_FLASH_REG(hw,
 543                                ICH_FLASH_GFPREG);
 544                /* Zero the shadow RAM structure. But don't load it from NVM
 545                 * so as to save time for driver init */
 546                if (hw->eeprom_shadow_ram != NULL) {
 547                        for (i = 0; i < E1000_SHADOW_RAM_WORDS; i++) {
 548                                hw->eeprom_shadow_ram[i].modified = FALSE;
 549                                hw->eeprom_shadow_ram[i].eeprom_word = 0xFFFF;
 550                        }
 551                }
 552
 553                hw->flash_base_addr = (flash_size & ICH_GFPREG_BASE_MASK) *
 554                                ICH_FLASH_SECTOR_SIZE;
 555
 556                hw->flash_bank_size = ((flash_size >> 16)
 557                                & ICH_GFPREG_BASE_MASK) + 1;
 558                hw->flash_bank_size -= (flash_size & ICH_GFPREG_BASE_MASK);
 559
 560                hw->flash_bank_size *= ICH_FLASH_SECTOR_SIZE;
 561
 562                hw->flash_bank_size /= 2 * sizeof(uint16_t);
 563                break;
 564                }
 565#endif
 566        default:
 567                break;
 568        }
 569
 570        if (eeprom->type == e1000_eeprom_spi) {
 571                /* eeprom_size will be an enum [0..8] that maps
 572                 * to eeprom sizes 128B to
 573                 * 32KB (incremented by powers of 2).
 574                 */
 575                if (hw->mac_type <= e1000_82547_rev_2) {
 576                        /* Set to default value for initial eeprom read. */
 577                        eeprom->word_size = 64;
 578                        ret_val = e1000_read_eeprom(hw, EEPROM_CFG, 1,
 579                                        &eeprom_size);
 580                        if (ret_val)
 581                                return ret_val;
 582                        eeprom_size = (eeprom_size & EEPROM_SIZE_MASK)
 583                                >> EEPROM_SIZE_SHIFT;
 584                        /* 256B eeprom size was not supported in earlier
 585                         * hardware, so we bump eeprom_size up one to
 586                         * ensure that "1" (which maps to 256B) is never
 587                         * the result used in the shifting logic below. */
 588                        if (eeprom_size)
 589                                eeprom_size++;
 590                } else {
 591                        eeprom_size = (uint16_t)((eecd &
 592                                E1000_EECD_SIZE_EX_MASK) >>
 593                                E1000_EECD_SIZE_EX_SHIFT);
 594                }
 595
 596                eeprom->word_size = 1 << (eeprom_size + EEPROM_WORD_SIZE_SHIFT);
 597        }
 598        return ret_val;
 599}
 600
 601/******************************************************************************
 602 * Polls the status bit (bit 1) of the EERD to determine when the read is done.
 603 *
 604 * hw - Struct containing variables accessed by shared code
 605 *****************************************************************************/
 606static int32_t
 607e1000_poll_eerd_eewr_done(struct e1000_hw *hw, int eerd)
 608{
 609        uint32_t attempts = 100000;
 610        uint32_t i, reg = 0;
 611        int32_t done = E1000_ERR_EEPROM;
 612
 613        for (i = 0; i < attempts; i++) {
 614                if (eerd == E1000_EEPROM_POLL_READ)
 615                        reg = E1000_READ_REG(hw, EERD);
 616                else
 617                        reg = E1000_READ_REG(hw, EEWR);
 618
 619                if (reg & E1000_EEPROM_RW_REG_DONE) {
 620                        done = E1000_SUCCESS;
 621                        break;
 622                }
 623                udelay(5);
 624        }
 625
 626        return done;
 627}
 628
 629/******************************************************************************
 630 * Reads a 16 bit word from the EEPROM using the EERD register.
 631 *
 632 * hw - Struct containing variables accessed by shared code
 633 * offset - offset of  word in the EEPROM to read
 634 * data - word read from the EEPROM
 635 * words - number of words to read
 636 *****************************************************************************/
 637static int32_t
 638e1000_read_eeprom_eerd(struct e1000_hw *hw,
 639                        uint16_t offset,
 640                        uint16_t words,
 641                        uint16_t *data)
 642{
 643        uint32_t i, eerd = 0;
 644        int32_t error = 0;
 645
 646        for (i = 0; i < words; i++) {
 647                eerd = ((offset+i) << E1000_EEPROM_RW_ADDR_SHIFT) +
 648                        E1000_EEPROM_RW_REG_START;
 649
 650                E1000_WRITE_REG(hw, EERD, eerd);
 651                error = e1000_poll_eerd_eewr_done(hw, E1000_EEPROM_POLL_READ);
 652
 653                if (error)
 654                        break;
 655                data[i] = (E1000_READ_REG(hw, EERD) >>
 656                                E1000_EEPROM_RW_REG_DATA);
 657
 658        }
 659
 660        return error;
 661}
 662
 663void e1000_release_eeprom(struct e1000_hw *hw)
 664{
 665        uint32_t eecd;
 666
 667        DEBUGFUNC();
 668
 669        eecd = E1000_READ_REG(hw, EECD);
 670
 671        if (hw->eeprom.type == e1000_eeprom_spi) {
 672                eecd |= E1000_EECD_CS;  /* Pull CS high */
 673                eecd &= ~E1000_EECD_SK; /* Lower SCK */
 674
 675                E1000_WRITE_REG(hw, EECD, eecd);
 676
 677                udelay(hw->eeprom.delay_usec);
 678        } else if (hw->eeprom.type == e1000_eeprom_microwire) {
 679                /* cleanup eeprom */
 680
 681                /* CS on Microwire is active-high */
 682                eecd &= ~(E1000_EECD_CS | E1000_EECD_DI);
 683
 684                E1000_WRITE_REG(hw, EECD, eecd);
 685
 686                /* Rising edge of clock */
 687                eecd |= E1000_EECD_SK;
 688                E1000_WRITE_REG(hw, EECD, eecd);
 689                E1000_WRITE_FLUSH(hw);
 690                udelay(hw->eeprom.delay_usec);
 691
 692                /* Falling edge of clock */
 693                eecd &= ~E1000_EECD_SK;
 694                E1000_WRITE_REG(hw, EECD, eecd);
 695                E1000_WRITE_FLUSH(hw);
 696                udelay(hw->eeprom.delay_usec);
 697        }
 698
 699        /* Stop requesting EEPROM access */
 700        if (hw->mac_type > e1000_82544) {
 701                eecd &= ~E1000_EECD_REQ;
 702                E1000_WRITE_REG(hw, EECD, eecd);
 703        }
 704}
 705/******************************************************************************
 706 * Reads a 16 bit word from the EEPROM.
 707 *
 708 * hw - Struct containing variables accessed by shared code
 709 *****************************************************************************/
 710static int32_t
 711e1000_spi_eeprom_ready(struct e1000_hw *hw)
 712{
 713        uint16_t retry_count = 0;
 714        uint8_t spi_stat_reg;
 715
 716        DEBUGFUNC();
 717
 718        /* Read "Status Register" repeatedly until the LSB is cleared.  The
 719         * EEPROM will signal that the command has been completed by clearing
 720         * bit 0 of the internal status register.  If it's not cleared within
 721         * 5 milliseconds, then error out.
 722         */
 723        retry_count = 0;
 724        do {
 725                e1000_shift_out_ee_bits(hw, EEPROM_RDSR_OPCODE_SPI,
 726                        hw->eeprom.opcode_bits);
 727                spi_stat_reg = (uint8_t)e1000_shift_in_ee_bits(hw, 8);
 728                if (!(spi_stat_reg & EEPROM_STATUS_RDY_SPI))
 729                        break;
 730
 731                udelay(5);
 732                retry_count += 5;
 733
 734                e1000_standby_eeprom(hw);
 735        } while (retry_count < EEPROM_MAX_RETRY_SPI);
 736
 737        /* ATMEL SPI write time could vary from 0-20mSec on 3.3V devices (and
 738         * only 0-5mSec on 5V devices)
 739         */
 740        if (retry_count >= EEPROM_MAX_RETRY_SPI) {
 741                DEBUGOUT("SPI EEPROM Status error\n");
 742                return -E1000_ERR_EEPROM;
 743        }
 744
 745        return E1000_SUCCESS;
 746}
 747
 748/******************************************************************************
 749 * Reads a 16 bit word from the EEPROM.
 750 *
 751 * hw - Struct containing variables accessed by shared code
 752 * offset - offset of  word in the EEPROM to read
 753 * data - word read from the EEPROM
 754 *****************************************************************************/
 755static int32_t
 756e1000_read_eeprom(struct e1000_hw *hw, uint16_t offset,
 757                uint16_t words, uint16_t *data)
 758{
 759        struct e1000_eeprom_info *eeprom = &hw->eeprom;
 760        uint32_t i = 0;
 761
 762        DEBUGFUNC();
 763
 764        /* If eeprom is not yet detected, do so now */
 765        if (eeprom->word_size == 0)
 766                e1000_init_eeprom_params(hw);
 767
 768        /* A check for invalid values:  offset too large, too many words,
 769         * and not enough words.
 770         */
 771        if ((offset >= eeprom->word_size) ||
 772                (words > eeprom->word_size - offset) ||
 773                (words == 0)) {
 774                DEBUGOUT("\"words\" parameter out of bounds."
 775                        "Words = %d, size = %d\n", offset, eeprom->word_size);
 776                return -E1000_ERR_EEPROM;
 777        }
 778
 779        /* EEPROM's that don't use EERD to read require us to bit-bang the SPI
 780         * directly. In this case, we need to acquire the EEPROM so that
 781         * FW or other port software does not interrupt.
 782         */
 783        if (e1000_is_onboard_nvm_eeprom(hw) == TRUE &&
 784                hw->eeprom.use_eerd == FALSE) {
 785
 786                /* Prepare the EEPROM for bit-bang reading */
 787                if (e1000_acquire_eeprom(hw) != E1000_SUCCESS)
 788                        return -E1000_ERR_EEPROM;
 789        }
 790
 791        /* Eerd register EEPROM access requires no eeprom aquire/release */
 792        if (eeprom->use_eerd == TRUE)
 793                return e1000_read_eeprom_eerd(hw, offset, words, data);
 794
 795        /* ich8lan does not support currently. if needed, please
 796         * add corresponding code and functions.
 797         */
 798#if 0
 799        /* ICH EEPROM access is done via the ICH flash controller */
 800        if (eeprom->type == e1000_eeprom_ich8)
 801                return e1000_read_eeprom_ich8(hw, offset, words, data);
 802#endif
 803        /* Set up the SPI or Microwire EEPROM for bit-bang reading.  We have
 804         * acquired the EEPROM at this point, so any returns should relase it */
 805        if (eeprom->type == e1000_eeprom_spi) {
 806                uint16_t word_in;
 807                uint8_t read_opcode = EEPROM_READ_OPCODE_SPI;
 808
 809                if (e1000_spi_eeprom_ready(hw)) {
 810                        e1000_release_eeprom(hw);
 811                        return -E1000_ERR_EEPROM;
 812                }
 813
 814                e1000_standby_eeprom(hw);
 815
 816                /* Some SPI eeproms use the 8th address bit embedded in
 817                 * the opcode */
 818                if ((eeprom->address_bits == 8) && (offset >= 128))
 819                        read_opcode |= EEPROM_A8_OPCODE_SPI;
 820
 821                /* Send the READ command (opcode + addr)  */
 822                e1000_shift_out_ee_bits(hw, read_opcode, eeprom->opcode_bits);
 823                e1000_shift_out_ee_bits(hw, (uint16_t)(offset*2),
 824                                eeprom->address_bits);
 825
 826                /* Read the data.  The address of the eeprom internally
 827                 * increments with each byte (spi) being read, saving on the
 828                 * overhead of eeprom setup and tear-down.  The address
 829                 * counter will roll over if reading beyond the size of
 830                 * the eeprom, thus allowing the entire memory to be read
 831                 * starting from any offset. */
 832                for (i = 0; i < words; i++) {
 833                        word_in = e1000_shift_in_ee_bits(hw, 16);
 834                        data[i] = (word_in >> 8) | (word_in << 8);
 835                }
 836        } else if (eeprom->type == e1000_eeprom_microwire) {
 837                for (i = 0; i < words; i++) {
 838                        /* Send the READ command (opcode + addr)  */
 839                        e1000_shift_out_ee_bits(hw,
 840                                EEPROM_READ_OPCODE_MICROWIRE,
 841                                eeprom->opcode_bits);
 842                        e1000_shift_out_ee_bits(hw, (uint16_t)(offset + i),
 843                                eeprom->address_bits);
 844
 845                        /* Read the data.  For microwire, each word requires
 846                         * the overhead of eeprom setup and tear-down. */
 847                        data[i] = e1000_shift_in_ee_bits(hw, 16);
 848                        e1000_standby_eeprom(hw);
 849                }
 850        }
 851
 852        /* End this read operation */
 853        e1000_release_eeprom(hw);
 854
 855        return E1000_SUCCESS;
 856}
 857
 858/******************************************************************************
 859 * Verifies that the EEPROM has a valid checksum
 860 *
 861 * hw - Struct containing variables accessed by shared code
 862 *
 863 * Reads the first 64 16 bit words of the EEPROM and sums the values read.
 864 * If the the sum of the 64 16 bit words is 0xBABA, the EEPROM's checksum is
 865 * valid.
 866 *****************************************************************************/
 867static int e1000_validate_eeprom_checksum(struct e1000_hw *hw)
 868{
 869        uint16_t i, checksum, checksum_reg, *buf;
 870
 871        DEBUGFUNC();
 872
 873        /* Allocate a temporary buffer */
 874        buf = malloc(sizeof(buf[0]) * (EEPROM_CHECKSUM_REG + 1));
 875        if (!buf) {
 876                E1000_ERR(hw->nic, "Unable to allocate EEPROM buffer!\n");
 877                return -E1000_ERR_EEPROM;
 878        }
 879
 880        /* Read the EEPROM */
 881        if (e1000_read_eeprom(hw, 0, EEPROM_CHECKSUM_REG + 1, buf) < 0) {
 882                E1000_ERR(hw->nic, "Unable to read EEPROM!\n");
 883                return -E1000_ERR_EEPROM;
 884        }
 885
 886        /* Compute the checksum */
 887        checksum = 0;
 888        for (i = 0; i < EEPROM_CHECKSUM_REG; i++)
 889                checksum += buf[i];
 890        checksum = ((uint16_t)EEPROM_SUM) - checksum;
 891        checksum_reg = buf[i];
 892
 893        /* Verify it! */
 894        if (checksum == checksum_reg)
 895                return 0;
 896
 897        /* Hrm, verification failed, print an error */
 898        E1000_ERR(hw->nic, "EEPROM checksum is incorrect!\n");
 899        E1000_ERR(hw->nic, "  ...register was 0x%04hx, calculated 0x%04hx\n",
 900                        checksum_reg, checksum);
 901
 902        return -E1000_ERR_EEPROM;
 903}
 904
 905/*****************************************************************************
 906 * Set PHY to class A mode
 907 * Assumes the following operations will follow to enable the new class mode.
 908 *  1. Do a PHY soft reset
 909 *  2. Restart auto-negotiation or force link.
 910 *
 911 * hw - Struct containing variables accessed by shared code
 912 ****************************************************************************/
 913static int32_t
 914e1000_set_phy_mode(struct e1000_hw *hw)
 915{
 916        int32_t ret_val;
 917        uint16_t eeprom_data;
 918
 919        DEBUGFUNC();
 920
 921        if ((hw->mac_type == e1000_82545_rev_3) &&
 922                (hw->media_type == e1000_media_type_copper)) {
 923                ret_val = e1000_read_eeprom(hw, EEPROM_PHY_CLASS_WORD,
 924                                1, &eeprom_data);
 925                if (ret_val)
 926                        return ret_val;
 927
 928                if ((eeprom_data != EEPROM_RESERVED_WORD) &&
 929                        (eeprom_data & EEPROM_PHY_CLASS_A)) {
 930                        ret_val = e1000_write_phy_reg(hw,
 931                                        M88E1000_PHY_PAGE_SELECT, 0x000B);
 932                        if (ret_val)
 933                                return ret_val;
 934                        ret_val = e1000_write_phy_reg(hw,
 935                                        M88E1000_PHY_GEN_CONTROL, 0x8104);
 936                        if (ret_val)
 937                                return ret_val;
 938
 939                        hw->phy_reset_disable = FALSE;
 940                }
 941        }
 942
 943        return E1000_SUCCESS;
 944}
 945#endif /* #ifndef CONFIG_AP1000 */
 946
 947/***************************************************************************
 948 *
 949 * Obtaining software semaphore bit (SMBI) before resetting PHY.
 950 *
 951 * hw: Struct containing variables accessed by shared code
 952 *
 953 * returns: - E1000_ERR_RESET if fail to obtain semaphore.
 954 *            E1000_SUCCESS at any other case.
 955 *
 956 ***************************************************************************/
 957static int32_t
 958e1000_get_software_semaphore(struct e1000_hw *hw)
 959{
 960         int32_t timeout = hw->eeprom.word_size + 1;
 961         uint32_t swsm;
 962
 963        DEBUGFUNC();
 964
 965        if (hw->mac_type != e1000_80003es2lan)
 966                return E1000_SUCCESS;
 967
 968        while (timeout) {
 969                swsm = E1000_READ_REG(hw, SWSM);
 970                /* If SMBI bit cleared, it is now set and we hold
 971                 * the semaphore */
 972                if (!(swsm & E1000_SWSM_SMBI))
 973                        break;
 974                mdelay(1);
 975                timeout--;
 976        }
 977
 978        if (!timeout) {
 979                DEBUGOUT("Driver can't access device - SMBI bit is set.\n");
 980                return -E1000_ERR_RESET;
 981        }
 982
 983        return E1000_SUCCESS;
 984}
 985
 986/***************************************************************************
 987 * This function clears HW semaphore bits.
 988 *
 989 * hw: Struct containing variables accessed by shared code
 990 *
 991 * returns: - None.
 992 *
 993 ***************************************************************************/
 994static void
 995e1000_put_hw_eeprom_semaphore(struct e1000_hw *hw)
 996{
 997         uint32_t swsm;
 998
 999        DEBUGFUNC();
1000
1001        if (!hw->eeprom_semaphore_present)
1002                return;
1003
1004        swsm = E1000_READ_REG(hw, SWSM);
1005        if (hw->mac_type == e1000_80003es2lan) {
1006                /* Release both semaphores. */
1007                swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
1008        } else
1009                swsm &= ~(E1000_SWSM_SWESMBI);
1010        E1000_WRITE_REG(hw, SWSM, swsm);
1011}
1012
1013/***************************************************************************
1014 *
1015 * Using the combination of SMBI and SWESMBI semaphore bits when resetting
1016 * adapter or Eeprom access.
1017 *
1018 * hw: Struct containing variables accessed by shared code
1019 *
1020 * returns: - E1000_ERR_EEPROM if fail to access EEPROM.
1021 *            E1000_SUCCESS at any other case.
1022 *
1023 ***************************************************************************/
1024static int32_t
1025e1000_get_hw_eeprom_semaphore(struct e1000_hw *hw)
1026{
1027        int32_t timeout;
1028        uint32_t swsm;
1029
1030        DEBUGFUNC();
1031
1032        if (!hw->eeprom_semaphore_present)
1033                return E1000_SUCCESS;
1034
1035        if (hw->mac_type == e1000_80003es2lan) {
1036                /* Get the SW semaphore. */
1037                if (e1000_get_software_semaphore(hw) != E1000_SUCCESS)
1038                        return -E1000_ERR_EEPROM;
1039        }
1040
1041        /* Get the FW semaphore. */
1042        timeout = hw->eeprom.word_size + 1;
1043        while (timeout) {
1044                swsm = E1000_READ_REG(hw, SWSM);
1045                swsm |= E1000_SWSM_SWESMBI;
1046                E1000_WRITE_REG(hw, SWSM, swsm);
1047                /* if we managed to set the bit we got the semaphore. */
1048                swsm = E1000_READ_REG(hw, SWSM);
1049                if (swsm & E1000_SWSM_SWESMBI)
1050                        break;
1051
1052                udelay(50);
1053                timeout--;
1054        }
1055
1056        if (!timeout) {
1057                /* Release semaphores */
1058                e1000_put_hw_eeprom_semaphore(hw);
1059                DEBUGOUT("Driver can't access the Eeprom - "
1060                                "SWESMBI bit is set.\n");
1061                return -E1000_ERR_EEPROM;
1062        }
1063
1064        return E1000_SUCCESS;
1065}
1066
1067static int32_t
1068e1000_swfw_sync_acquire(struct e1000_hw *hw, uint16_t mask)
1069{
1070        uint32_t swfw_sync = 0;
1071        uint32_t swmask = mask;
1072        uint32_t fwmask = mask << 16;
1073        int32_t timeout = 200;
1074
1075        DEBUGFUNC();
1076        while (timeout) {
1077                if (e1000_get_hw_eeprom_semaphore(hw))
1078                        return -E1000_ERR_SWFW_SYNC;
1079
1080                swfw_sync = E1000_READ_REG(hw, SW_FW_SYNC);
1081                if (!(swfw_sync & (fwmask | swmask)))
1082                        break;
1083
1084                /* firmware currently using resource (fwmask) */
1085                /* or other software thread currently using resource (swmask) */
1086                e1000_put_hw_eeprom_semaphore(hw);
1087                mdelay(5);
1088                timeout--;
1089        }
1090
1091        if (!timeout) {
1092                DEBUGOUT("Driver can't access resource, SW_FW_SYNC timeout.\n");
1093                return -E1000_ERR_SWFW_SYNC;
1094        }
1095
1096        swfw_sync |= swmask;
1097        E1000_WRITE_REG(hw, SW_FW_SYNC, swfw_sync);
1098
1099        e1000_put_hw_eeprom_semaphore(hw);
1100        return E1000_SUCCESS;
1101}
1102
1103static boolean_t e1000_is_second_port(struct e1000_hw *hw)
1104{
1105        switch (hw->mac_type) {
1106        case e1000_80003es2lan:
1107        case e1000_82546:
1108        case e1000_82571:
1109                if (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)
1110                        return TRUE;
1111                /* Fallthrough */
1112        default:
1113                return FALSE;
1114        }
1115}
1116
1117/******************************************************************************
1118 * Reads the adapter's MAC address from the EEPROM and inverts the LSB for the
1119 * second function of dual function devices
1120 *
1121 * nic - Struct containing variables accessed by shared code
1122 *****************************************************************************/
1123static int
1124e1000_read_mac_addr(struct eth_device *nic)
1125{
1126#ifndef CONFIG_AP1000
1127        struct e1000_hw *hw = nic->priv;
1128        uint16_t offset;
1129        uint16_t eeprom_data;
1130        int i;
1131
1132        DEBUGFUNC();
1133
1134        for (i = 0; i < NODE_ADDRESS_SIZE; i += 2) {
1135                offset = i >> 1;
1136                if (e1000_read_eeprom(hw, offset, 1, &eeprom_data) < 0) {
1137                        DEBUGOUT("EEPROM Read Error\n");
1138                        return -E1000_ERR_EEPROM;
1139                }
1140                nic->enetaddr[i] = eeprom_data & 0xff;
1141                nic->enetaddr[i + 1] = (eeprom_data >> 8) & 0xff;
1142        }
1143
1144        /* Invert the last bit if this is the second device */
1145        if (e1000_is_second_port(hw))
1146                nic->enetaddr[5] ^= 1;
1147
1148#ifdef CONFIG_E1000_FALLBACK_MAC
1149        if (!is_valid_ether_addr(nic->enetaddr)) {
1150                unsigned char fb_mac[NODE_ADDRESS_SIZE] = CONFIG_E1000_FALLBACK_MAC;
1151
1152                memcpy (nic->enetaddr, fb_mac, NODE_ADDRESS_SIZE);
1153        }
1154#endif
1155#else
1156        /*
1157         * The AP1000's e1000 has no eeprom; the MAC address is stored in the
1158         * environment variables.  Currently this does not support the addition
1159         * of a PMC e1000 card, which is certainly a possibility, so this should
1160         * be updated to properly use the env variable only for the onboard e1000
1161         */
1162
1163        int ii;
1164        char *s, *e;
1165
1166        DEBUGFUNC();
1167
1168        s = getenv ("ethaddr");
1169        if (s == NULL) {
1170                return -E1000_ERR_EEPROM;
1171        } else {
1172                for(ii = 0; ii < 6; ii++) {
1173                        nic->enetaddr[ii] = s ? simple_strtoul (s, &e, 16) : 0;
1174                        if (s){
1175                                s = (*e) ? e + 1 : e;
1176                        }
1177                }
1178        }
1179#endif
1180        return 0;
1181}
1182
1183/******************************************************************************
1184 * Initializes receive address filters.
1185 *
1186 * hw - Struct containing variables accessed by shared code
1187 *
1188 * Places the MAC address in receive address register 0 and clears the rest
1189 * of the receive addresss registers. Clears the multicast table. Assumes
1190 * the receiver is in reset when the routine is called.
1191 *****************************************************************************/
1192static void
1193e1000_init_rx_addrs(struct eth_device *nic)
1194{
1195        struct e1000_hw *hw = nic->priv;
1196        uint32_t i;
1197        uint32_t addr_low;
1198        uint32_t addr_high;
1199
1200        DEBUGFUNC();
1201
1202        /* Setup the receive address. */
1203        DEBUGOUT("Programming MAC Address into RAR[0]\n");
1204        addr_low = (nic->enetaddr[0] |
1205                    (nic->enetaddr[1] << 8) |
1206                    (nic->enetaddr[2] << 16) | (nic->enetaddr[3] << 24));
1207
1208        addr_high = (nic->enetaddr[4] | (nic->enetaddr[5] << 8) | E1000_RAH_AV);
1209
1210        E1000_WRITE_REG_ARRAY(hw, RA, 0, addr_low);
1211        E1000_WRITE_REG_ARRAY(hw, RA, 1, addr_high);
1212
1213        /* Zero out the other 15 receive addresses. */
1214        DEBUGOUT("Clearing RAR[1-15]\n");
1215        for (i = 1; i < E1000_RAR_ENTRIES; i++) {
1216                E1000_WRITE_REG_ARRAY(hw, RA, (i << 1), 0);
1217                E1000_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0);
1218        }
1219}
1220
1221/******************************************************************************
1222 * Clears the VLAN filer table
1223 *
1224 * hw - Struct containing variables accessed by shared code
1225 *****************************************************************************/
1226static void
1227e1000_clear_vfta(struct e1000_hw *hw)
1228{
1229        uint32_t offset;
1230
1231        for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++)
1232                E1000_WRITE_REG_ARRAY(hw, VFTA, offset, 0);
1233}
1234
1235/******************************************************************************
1236 * Set the mac type member in the hw struct.
1237 *
1238 * hw - Struct containing variables accessed by shared code
1239 *****************************************************************************/
1240int32_t
1241e1000_set_mac_type(struct e1000_hw *hw)
1242{
1243        DEBUGFUNC();
1244
1245        switch (hw->device_id) {
1246        case E1000_DEV_ID_82542:
1247                switch (hw->revision_id) {
1248                case E1000_82542_2_0_REV_ID:
1249                        hw->mac_type = e1000_82542_rev2_0;
1250                        break;
1251                case E1000_82542_2_1_REV_ID:
1252                        hw->mac_type = e1000_82542_rev2_1;
1253                        break;
1254                default:
1255                        /* Invalid 82542 revision ID */
1256                        return -E1000_ERR_MAC_TYPE;
1257                }
1258                break;
1259        case E1000_DEV_ID_82543GC_FIBER:
1260        case E1000_DEV_ID_82543GC_COPPER:
1261                hw->mac_type = e1000_82543;
1262                break;
1263        case E1000_DEV_ID_82544EI_COPPER:
1264        case E1000_DEV_ID_82544EI_FIBER:
1265        case E1000_DEV_ID_82544GC_COPPER:
1266        case E1000_DEV_ID_82544GC_LOM:
1267                hw->mac_type = e1000_82544;
1268                break;
1269        case E1000_DEV_ID_82540EM:
1270        case E1000_DEV_ID_82540EM_LOM:
1271        case E1000_DEV_ID_82540EP:
1272        case E1000_DEV_ID_82540EP_LOM:
1273        case E1000_DEV_ID_82540EP_LP:
1274                hw->mac_type = e1000_82540;
1275                break;
1276        case E1000_DEV_ID_82545EM_COPPER:
1277        case E1000_DEV_ID_82545EM_FIBER:
1278                hw->mac_type = e1000_82545;
1279                break;
1280        case E1000_DEV_ID_82545GM_COPPER:
1281        case E1000_DEV_ID_82545GM_FIBER:
1282        case E1000_DEV_ID_82545GM_SERDES:
1283                hw->mac_type = e1000_82545_rev_3;
1284                break;
1285        case E1000_DEV_ID_82546EB_COPPER:
1286        case E1000_DEV_ID_82546EB_FIBER:
1287        case E1000_DEV_ID_82546EB_QUAD_COPPER:
1288                hw->mac_type = e1000_82546;
1289                break;
1290        case E1000_DEV_ID_82546GB_COPPER:
1291        case E1000_DEV_ID_82546GB_FIBER:
1292        case E1000_DEV_ID_82546GB_SERDES:
1293        case E1000_DEV_ID_82546GB_PCIE:
1294        case E1000_DEV_ID_82546GB_QUAD_COPPER:
1295        case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1296                hw->mac_type = e1000_82546_rev_3;
1297                break;
1298        case E1000_DEV_ID_82541EI:
1299        case E1000_DEV_ID_82541EI_MOBILE:
1300        case E1000_DEV_ID_82541ER_LOM:
1301                hw->mac_type = e1000_82541;
1302                break;
1303        case E1000_DEV_ID_82541ER:
1304        case E1000_DEV_ID_82541GI:
1305        case E1000_DEV_ID_82541GI_LF:
1306        case E1000_DEV_ID_82541GI_MOBILE:
1307                hw->mac_type = e1000_82541_rev_2;
1308                break;
1309        case E1000_DEV_ID_82547EI:
1310        case E1000_DEV_ID_82547EI_MOBILE:
1311                hw->mac_type = e1000_82547;
1312                break;
1313        case E1000_DEV_ID_82547GI:
1314                hw->mac_type = e1000_82547_rev_2;
1315                break;
1316        case E1000_DEV_ID_82571EB_COPPER:
1317        case E1000_DEV_ID_82571EB_FIBER:
1318        case E1000_DEV_ID_82571EB_SERDES:
1319        case E1000_DEV_ID_82571EB_SERDES_DUAL:
1320        case E1000_DEV_ID_82571EB_SERDES_QUAD:
1321        case E1000_DEV_ID_82571EB_QUAD_COPPER:
1322        case E1000_DEV_ID_82571PT_QUAD_COPPER:
1323        case E1000_DEV_ID_82571EB_QUAD_FIBER:
1324        case E1000_DEV_ID_82571EB_QUAD_COPPER_LOWPROFILE:
1325                hw->mac_type = e1000_82571;
1326                break;
1327        case E1000_DEV_ID_82572EI_COPPER:
1328        case E1000_DEV_ID_82572EI_FIBER:
1329        case E1000_DEV_ID_82572EI_SERDES:
1330        case E1000_DEV_ID_82572EI:
1331                hw->mac_type = e1000_82572;
1332                break;
1333        case E1000_DEV_ID_82573E:
1334        case E1000_DEV_ID_82573E_IAMT:
1335        case E1000_DEV_ID_82573L:
1336                hw->mac_type = e1000_82573;
1337                break;
1338        case E1000_DEV_ID_82574L:
1339                hw->mac_type = e1000_82574;
1340                break;
1341        case E1000_DEV_ID_80003ES2LAN_COPPER_SPT:
1342        case E1000_DEV_ID_80003ES2LAN_SERDES_SPT:
1343        case E1000_DEV_ID_80003ES2LAN_COPPER_DPT:
1344        case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
1345                hw->mac_type = e1000_80003es2lan;
1346                break;
1347        case E1000_DEV_ID_ICH8_IGP_M_AMT:
1348        case E1000_DEV_ID_ICH8_IGP_AMT:
1349        case E1000_DEV_ID_ICH8_IGP_C:
1350        case E1000_DEV_ID_ICH8_IFE:
1351        case E1000_DEV_ID_ICH8_IFE_GT:
1352        case E1000_DEV_ID_ICH8_IFE_G:
1353        case E1000_DEV_ID_ICH8_IGP_M:
1354                hw->mac_type = e1000_ich8lan;
1355                break;
1356        default:
1357                /* Should never have loaded on this device */
1358                return -E1000_ERR_MAC_TYPE;
1359        }
1360        return E1000_SUCCESS;
1361}
1362
1363/******************************************************************************
1364 * Reset the transmit and receive units; mask and clear all interrupts.
1365 *
1366 * hw - Struct containing variables accessed by shared code
1367 *****************************************************************************/
1368void
1369e1000_reset_hw(struct e1000_hw *hw)
1370{
1371        uint32_t ctrl;
1372        uint32_t ctrl_ext;
1373        uint32_t manc;
1374        uint32_t pba = 0;
1375
1376        DEBUGFUNC();
1377
1378        /* get the correct pba value for both PCI and PCIe*/
1379        if (hw->mac_type <  e1000_82571)
1380                pba = E1000_DEFAULT_PCI_PBA;
1381        else
1382                pba = E1000_DEFAULT_PCIE_PBA;
1383
1384        /* For 82542 (rev 2.0), disable MWI before issuing a device reset */
1385        if (hw->mac_type == e1000_82542_rev2_0) {
1386                DEBUGOUT("Disabling MWI on 82542 rev 2.0\n");
1387                pci_write_config_word(hw->pdev, PCI_COMMAND,
1388                                hw->pci_cmd_word & ~PCI_COMMAND_INVALIDATE);
1389        }
1390
1391        /* Clear interrupt mask to stop board from generating interrupts */
1392        DEBUGOUT("Masking off all interrupts\n");
1393        E1000_WRITE_REG(hw, IMC, 0xffffffff);
1394
1395        /* Disable the Transmit and Receive units.  Then delay to allow
1396         * any pending transactions to complete before we hit the MAC with
1397         * the global reset.
1398         */
1399        E1000_WRITE_REG(hw, RCTL, 0);
1400        E1000_WRITE_REG(hw, TCTL, E1000_TCTL_PSP);
1401        E1000_WRITE_FLUSH(hw);
1402
1403        /* The tbi_compatibility_on Flag must be cleared when Rctl is cleared. */
1404        hw->tbi_compatibility_on = FALSE;
1405
1406        /* Delay to allow any outstanding PCI transactions to complete before
1407         * resetting the device
1408         */
1409        mdelay(10);
1410
1411        /* Issue a global reset to the MAC.  This will reset the chip's
1412         * transmit, receive, DMA, and link units.  It will not effect
1413         * the current PCI configuration.  The global reset bit is self-
1414         * clearing, and should clear within a microsecond.
1415         */
1416        DEBUGOUT("Issuing a global reset to MAC\n");
1417        ctrl = E1000_READ_REG(hw, CTRL);
1418
1419        E1000_WRITE_REG(hw, CTRL, (ctrl | E1000_CTRL_RST));
1420
1421        /* Force a reload from the EEPROM if necessary */
1422        if (hw->mac_type < e1000_82540) {
1423                /* Wait for reset to complete */
1424                udelay(10);
1425                ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
1426                ctrl_ext |= E1000_CTRL_EXT_EE_RST;
1427                E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
1428                E1000_WRITE_FLUSH(hw);
1429                /* Wait for EEPROM reload */
1430                mdelay(2);
1431        } else {
1432                /* Wait for EEPROM reload (it happens automatically) */
1433                mdelay(4);
1434                /* Dissable HW ARPs on ASF enabled adapters */
1435                manc = E1000_READ_REG(hw, MANC);
1436                manc &= ~(E1000_MANC_ARP_EN);
1437                E1000_WRITE_REG(hw, MANC, manc);
1438        }
1439
1440        /* Clear interrupt mask to stop board from generating interrupts */
1441        DEBUGOUT("Masking off all interrupts\n");
1442        E1000_WRITE_REG(hw, IMC, 0xffffffff);
1443
1444        /* Clear any pending interrupt events. */
1445        E1000_READ_REG(hw, ICR);
1446
1447        /* If MWI was previously enabled, reenable it. */
1448        if (hw->mac_type == e1000_82542_rev2_0) {
1449                pci_write_config_word(hw->pdev, PCI_COMMAND, hw->pci_cmd_word);
1450        }
1451        E1000_WRITE_REG(hw, PBA, pba);
1452}
1453
1454/******************************************************************************
1455 *
1456 * Initialize a number of hardware-dependent bits
1457 *
1458 * hw: Struct containing variables accessed by shared code
1459 *
1460 * This function contains hardware limitation workarounds for PCI-E adapters
1461 *
1462 *****************************************************************************/
1463static void
1464e1000_initialize_hardware_bits(struct e1000_hw *hw)
1465{
1466        if ((hw->mac_type >= e1000_82571) &&
1467                        (!hw->initialize_hw_bits_disable)) {
1468                /* Settings common to all PCI-express silicon */
1469                uint32_t reg_ctrl, reg_ctrl_ext;
1470                uint32_t reg_tarc0, reg_tarc1;
1471                uint32_t reg_tctl;
1472                uint32_t reg_txdctl, reg_txdctl1;
1473
1474                /* link autonegotiation/sync workarounds */
1475                reg_tarc0 = E1000_READ_REG(hw, TARC0);
1476                reg_tarc0 &= ~((1 << 30)|(1 << 29)|(1 << 28)|(1 << 27));
1477
1478                /* Enable not-done TX descriptor counting */
1479                reg_txdctl = E1000_READ_REG(hw, TXDCTL);
1480                reg_txdctl |= E1000_TXDCTL_COUNT_DESC;
1481                E1000_WRITE_REG(hw, TXDCTL, reg_txdctl);
1482
1483                reg_txdctl1 = E1000_READ_REG(hw, TXDCTL1);
1484                reg_txdctl1 |= E1000_TXDCTL_COUNT_DESC;
1485                E1000_WRITE_REG(hw, TXDCTL1, reg_txdctl1);
1486
1487                switch (hw->mac_type) {
1488                case e1000_82571:
1489                case e1000_82572:
1490                        /* Clear PHY TX compatible mode bits */
1491                        reg_tarc1 = E1000_READ_REG(hw, TARC1);
1492                        reg_tarc1 &= ~((1 << 30)|(1 << 29));
1493
1494                        /* link autonegotiation/sync workarounds */
1495                        reg_tarc0 |= ((1 << 26)|(1 << 25)|(1 << 24)|(1 << 23));
1496
1497                        /* TX ring control fixes */
1498                        reg_tarc1 |= ((1 << 26)|(1 << 25)|(1 << 24));
1499
1500                        /* Multiple read bit is reversed polarity */
1501                        reg_tctl = E1000_READ_REG(hw, TCTL);
1502                        if (reg_tctl & E1000_TCTL_MULR)
1503                                reg_tarc1 &= ~(1 << 28);
1504                        else
1505                                reg_tarc1 |= (1 << 28);
1506
1507                        E1000_WRITE_REG(hw, TARC1, reg_tarc1);
1508                        break;
1509                case e1000_82573:
1510                case e1000_82574:
1511                        reg_ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
1512                        reg_ctrl_ext &= ~(1 << 23);
1513                        reg_ctrl_ext |= (1 << 22);
1514
1515                        /* TX byte count fix */
1516                        reg_ctrl = E1000_READ_REG(hw, CTRL);
1517                        reg_ctrl &= ~(1 << 29);
1518
1519                        E1000_WRITE_REG(hw, CTRL_EXT, reg_ctrl_ext);
1520                        E1000_WRITE_REG(hw, CTRL, reg_ctrl);
1521                        break;
1522                case e1000_80003es2lan:
1523        /* improve small packet performace for fiber/serdes */
1524                        if ((hw->media_type == e1000_media_type_fiber)
1525                        || (hw->media_type ==
1526                                e1000_media_type_internal_serdes)) {
1527                                reg_tarc0 &= ~(1 << 20);
1528                        }
1529
1530                /* Multiple read bit is reversed polarity */
1531                        reg_tctl = E1000_READ_REG(hw, TCTL);
1532                        reg_tarc1 = E1000_READ_REG(hw, TARC1);
1533                        if (reg_tctl & E1000_TCTL_MULR)
1534                                reg_tarc1 &= ~(1 << 28);
1535                        else
1536                                reg_tarc1 |= (1 << 28);
1537
1538                        E1000_WRITE_REG(hw, TARC1, reg_tarc1);
1539                        break;
1540                case e1000_ich8lan:
1541                        /* Reduce concurrent DMA requests to 3 from 4 */
1542                        if ((hw->revision_id < 3) ||
1543                        ((hw->device_id != E1000_DEV_ID_ICH8_IGP_M_AMT) &&
1544                                (hw->device_id != E1000_DEV_ID_ICH8_IGP_M)))
1545                                reg_tarc0 |= ((1 << 29)|(1 << 28));
1546
1547                        reg_ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
1548                        reg_ctrl_ext |= (1 << 22);
1549                        E1000_WRITE_REG(hw, CTRL_EXT, reg_ctrl_ext);
1550
1551                        /* workaround TX hang with TSO=on */
1552                        reg_tarc0 |= ((1 << 27)|(1 << 26)|(1 << 24)|(1 << 23));
1553
1554                        /* Multiple read bit is reversed polarity */
1555                        reg_tctl = E1000_READ_REG(hw, TCTL);
1556                        reg_tarc1 = E1000_READ_REG(hw, TARC1);
1557                        if (reg_tctl & E1000_TCTL_MULR)
1558                                reg_tarc1 &= ~(1 << 28);
1559                        else
1560                                reg_tarc1 |= (1 << 28);
1561
1562                        /* workaround TX hang with TSO=on */
1563                        reg_tarc1 |= ((1 << 30)|(1 << 26)|(1 << 24));
1564
1565                        E1000_WRITE_REG(hw, TARC1, reg_tarc1);
1566                        break;
1567                default:
1568                        break;
1569                }
1570
1571                E1000_WRITE_REG(hw, TARC0, reg_tarc0);
1572        }
1573}
1574
1575/******************************************************************************
1576 * Performs basic configuration of the adapter.
1577 *
1578 * hw - Struct containing variables accessed by shared code
1579 *
1580 * Assumes that the controller has previously been reset and is in a
1581 * post-reset uninitialized state. Initializes the receive address registers,
1582 * multicast table, and VLAN filter table. Calls routines to setup link
1583 * configuration and flow control settings. Clears all on-chip counters. Leaves
1584 * the transmit and receive units disabled and uninitialized.
1585 *****************************************************************************/
1586static int
1587e1000_init_hw(struct eth_device *nic)
1588{
1589        struct e1000_hw *hw = nic->priv;
1590        uint32_t ctrl;
1591        uint32_t i;
1592        int32_t ret_val;
1593        uint16_t pcix_cmd_word;
1594        uint16_t pcix_stat_hi_word;
1595        uint16_t cmd_mmrbc;
1596        uint16_t stat_mmrbc;
1597        uint32_t mta_size;
1598        uint32_t reg_data;
1599        uint32_t ctrl_ext;
1600        DEBUGFUNC();
1601        /* force full DMA clock frequency for 10/100 on ICH8 A0-B0 */
1602        if ((hw->mac_type == e1000_ich8lan) &&
1603                ((hw->revision_id < 3) ||
1604                ((hw->device_id != E1000_DEV_ID_ICH8_IGP_M_AMT) &&
1605                (hw->device_id != E1000_DEV_ID_ICH8_IGP_M)))) {
1606                        reg_data = E1000_READ_REG(hw, STATUS);
1607                        reg_data &= ~0x80000000;
1608                        E1000_WRITE_REG(hw, STATUS, reg_data);
1609        }
1610        /* Do not need initialize Identification LED */
1611
1612        /* Set the media type and TBI compatibility */
1613        e1000_set_media_type(hw);
1614
1615        /* Must be called after e1000_set_media_type
1616         * because media_type is used */
1617        e1000_initialize_hardware_bits(hw);
1618
1619        /* Disabling VLAN filtering. */
1620        DEBUGOUT("Initializing the IEEE VLAN\n");
1621        /* VET hardcoded to standard value and VFTA removed in ICH8 LAN */
1622        if (hw->mac_type != e1000_ich8lan) {
1623                if (hw->mac_type < e1000_82545_rev_3)
1624                        E1000_WRITE_REG(hw, VET, 0);
1625                e1000_clear_vfta(hw);
1626        }
1627
1628        /* For 82542 (rev 2.0), disable MWI and put the receiver into reset */
1629        if (hw->mac_type == e1000_82542_rev2_0) {
1630                DEBUGOUT("Disabling MWI on 82542 rev 2.0\n");
1631                pci_write_config_word(hw->pdev, PCI_COMMAND,
1632                                      hw->
1633                                      pci_cmd_word & ~PCI_COMMAND_INVALIDATE);
1634                E1000_WRITE_REG(hw, RCTL, E1000_RCTL_RST);
1635                E1000_WRITE_FLUSH(hw);
1636                mdelay(5);
1637        }
1638
1639        /* Setup the receive address. This involves initializing all of the Receive
1640         * Address Registers (RARs 0 - 15).
1641         */
1642        e1000_init_rx_addrs(nic);
1643
1644        /* For 82542 (rev 2.0), take the receiver out of reset and enable MWI */
1645        if (hw->mac_type == e1000_82542_rev2_0) {
1646                E1000_WRITE_REG(hw, RCTL, 0);
1647                E1000_WRITE_FLUSH(hw);
1648                mdelay(1);
1649                pci_write_config_word(hw->pdev, PCI_COMMAND, hw->pci_cmd_word);
1650        }
1651
1652        /* Zero out the Multicast HASH table */
1653        DEBUGOUT("Zeroing the MTA\n");
1654        mta_size = E1000_MC_TBL_SIZE;
1655        if (hw->mac_type == e1000_ich8lan)
1656                mta_size = E1000_MC_TBL_SIZE_ICH8LAN;
1657        for (i = 0; i < mta_size; i++) {
1658                E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
1659                /* use write flush to prevent Memory Write Block (MWB) from
1660                 * occuring when accessing our register space */
1661                E1000_WRITE_FLUSH(hw);
1662        }
1663#if 0
1664        /* Set the PCI priority bit correctly in the CTRL register.  This
1665         * determines if the adapter gives priority to receives, or if it
1666         * gives equal priority to transmits and receives.  Valid only on
1667         * 82542 and 82543 silicon.
1668         */
1669        if (hw->dma_fairness && hw->mac_type <= e1000_82543) {
1670                ctrl = E1000_READ_REG(hw, CTRL);
1671                E1000_WRITE_REG(hw, CTRL, ctrl | E1000_CTRL_PRIOR);
1672        }
1673#endif
1674        switch (hw->mac_type) {
1675        case e1000_82545_rev_3:
1676        case e1000_82546_rev_3:
1677                break;
1678        default:
1679        /* Workaround for PCI-X problem when BIOS sets MMRBC incorrectly. */
1680        if (hw->bus_type == e1000_bus_type_pcix) {
1681                pci_read_config_word(hw->pdev, PCIX_COMMAND_REGISTER,
1682                                     &pcix_cmd_word);
1683                pci_read_config_word(hw->pdev, PCIX_STATUS_REGISTER_HI,
1684                                     &pcix_stat_hi_word);
1685                cmd_mmrbc =
1686                    (pcix_cmd_word & PCIX_COMMAND_MMRBC_MASK) >>
1687                    PCIX_COMMAND_MMRBC_SHIFT;
1688                stat_mmrbc =
1689                    (pcix_stat_hi_word & PCIX_STATUS_HI_MMRBC_MASK) >>
1690                    PCIX_STATUS_HI_MMRBC_SHIFT;
1691                if (stat_mmrbc == PCIX_STATUS_HI_MMRBC_4K)
1692                        stat_mmrbc = PCIX_STATUS_HI_MMRBC_2K;
1693                if (cmd_mmrbc > stat_mmrbc) {
1694                        pcix_cmd_word &= ~PCIX_COMMAND_MMRBC_MASK;
1695                        pcix_cmd_word |= stat_mmrbc << PCIX_COMMAND_MMRBC_SHIFT;
1696                        pci_write_config_word(hw->pdev, PCIX_COMMAND_REGISTER,
1697                                              pcix_cmd_word);
1698                }
1699        }
1700                break;
1701        }
1702
1703        /* More time needed for PHY to initialize */
1704        if (hw->mac_type == e1000_ich8lan)
1705                mdelay(15);
1706
1707        /* Call a subroutine to configure the link and setup flow control. */
1708        ret_val = e1000_setup_link(nic);
1709
1710        /* Set the transmit descriptor write-back policy */
1711        if (hw->mac_type > e1000_82544) {
1712                ctrl = E1000_READ_REG(hw, TXDCTL);
1713                ctrl =
1714                    (ctrl & ~E1000_TXDCTL_WTHRESH) |
1715                    E1000_TXDCTL_FULL_TX_DESC_WB;
1716                E1000_WRITE_REG(hw, TXDCTL, ctrl);
1717        }
1718
1719        switch (hw->mac_type) {
1720        default:
1721                break;
1722        case e1000_80003es2lan:
1723                /* Enable retransmit on late collisions */
1724                reg_data = E1000_READ_REG(hw, TCTL);
1725                reg_data |= E1000_TCTL_RTLC;
1726                E1000_WRITE_REG(hw, TCTL, reg_data);
1727
1728                /* Configure Gigabit Carry Extend Padding */
1729                reg_data = E1000_READ_REG(hw, TCTL_EXT);
1730                reg_data &= ~E1000_TCTL_EXT_GCEX_MASK;
1731                reg_data |= DEFAULT_80003ES2LAN_TCTL_EXT_GCEX;
1732                E1000_WRITE_REG(hw, TCTL_EXT, reg_data);
1733
1734                /* Configure Transmit Inter-Packet Gap */
1735                reg_data = E1000_READ_REG(hw, TIPG);
1736                reg_data &= ~E1000_TIPG_IPGT_MASK;
1737                reg_data |= DEFAULT_80003ES2LAN_TIPG_IPGT_1000;
1738                E1000_WRITE_REG(hw, TIPG, reg_data);
1739
1740                reg_data = E1000_READ_REG_ARRAY(hw, FFLT, 0x0001);
1741                reg_data &= ~0x00100000;
1742                E1000_WRITE_REG_ARRAY(hw, FFLT, 0x0001, reg_data);
1743                /* Fall through */
1744        case e1000_82571:
1745        case e1000_82572:
1746        case e1000_ich8lan:
1747                ctrl = E1000_READ_REG(hw, TXDCTL1);
1748                ctrl = (ctrl & ~E1000_TXDCTL_WTHRESH)
1749                        | E1000_TXDCTL_FULL_TX_DESC_WB;
1750                E1000_WRITE_REG(hw, TXDCTL1, ctrl);
1751                break;
1752        case e1000_82573:
1753        case e1000_82574:
1754                reg_data = E1000_READ_REG(hw, GCR);
1755                reg_data |= E1000_GCR_L1_ACT_WITHOUT_L0S_RX;
1756                E1000_WRITE_REG(hw, GCR, reg_data);
1757        }
1758
1759#if 0
1760        /* Clear all of the statistics registers (clear on read).  It is
1761         * important that we do this after we have tried to establish link
1762         * because the symbol error count will increment wildly if there
1763         * is no link.
1764         */
1765        e1000_clear_hw_cntrs(hw);
1766
1767        /* ICH8 No-snoop bits are opposite polarity.
1768         * Set to snoop by default after reset. */
1769        if (hw->mac_type == e1000_ich8lan)
1770                e1000_set_pci_ex_no_snoop(hw, PCI_EX_82566_SNOOP_ALL);
1771#endif
1772
1773        if (hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER ||
1774                hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3) {
1775                ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
1776                /* Relaxed ordering must be disabled to avoid a parity
1777                 * error crash in a PCI slot. */
1778                ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
1779                E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
1780        }
1781
1782        return ret_val;
1783}
1784
1785/******************************************************************************
1786 * Configures flow control and link settings.
1787 *
1788 * hw - Struct containing variables accessed by shared code
1789 *
1790 * Determines which flow control settings to use. Calls the apropriate media-
1791 * specific link configuration function. Configures the flow control settings.
1792 * Assuming the adapter has a valid link partner, a valid link should be
1793 * established. Assumes the hardware has previously been reset and the
1794 * transmitter and receiver are not enabled.
1795 *****************************************************************************/
1796static int
1797e1000_setup_link(struct eth_device *nic)
1798{
1799        struct e1000_hw *hw = nic->priv;
1800        uint32_t ctrl_ext;
1801        int32_t ret_val;
1802        uint16_t eeprom_data;
1803
1804        DEBUGFUNC();
1805
1806        /* In the case of the phy reset being blocked, we already have a link.
1807         * We do not have to set it up again. */
1808        if (e1000_check_phy_reset_block(hw))
1809                return E1000_SUCCESS;
1810
1811#ifndef CONFIG_AP1000
1812        /* Read and store word 0x0F of the EEPROM. This word contains bits
1813         * that determine the hardware's default PAUSE (flow control) mode,
1814         * a bit that determines whether the HW defaults to enabling or
1815         * disabling auto-negotiation, and the direction of the
1816         * SW defined pins. If there is no SW over-ride of the flow
1817         * control setting, then the variable hw->fc will
1818         * be initialized based on a value in the EEPROM.
1819         */
1820        if (e1000_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG, 1,
1821                                &eeprom_data) < 0) {
1822                DEBUGOUT("EEPROM Read Error\n");
1823                return -E1000_ERR_EEPROM;
1824        }
1825#else
1826        /* we have to hardcode the proper value for our hardware. */
1827        /* this value is for the 82540EM pci card used for prototyping, and it works. */
1828        eeprom_data = 0xb220;
1829#endif
1830
1831        if (hw->fc == e1000_fc_default) {
1832                switch (hw->mac_type) {
1833                case e1000_ich8lan:
1834                case e1000_82573:
1835                case e1000_82574:
1836                        hw->fc = e1000_fc_full;
1837                        break;
1838                default:
1839#ifndef CONFIG_AP1000
1840                        ret_val = e1000_read_eeprom(hw,
1841                                EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
1842                        if (ret_val) {
1843                                DEBUGOUT("EEPROM Read Error\n");
1844                                return -E1000_ERR_EEPROM;
1845                        }
1846#else
1847                        eeprom_data = 0xb220;
1848#endif
1849                        if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) == 0)
1850                                hw->fc = e1000_fc_none;
1851                        else if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) ==
1852                                    EEPROM_WORD0F_ASM_DIR)
1853                                hw->fc = e1000_fc_tx_pause;
1854                        else
1855                                hw->fc = e1000_fc_full;
1856                        break;
1857                }
1858        }
1859
1860        /* We want to save off the original Flow Control configuration just
1861         * in case we get disconnected and then reconnected into a different
1862         * hub or switch with different Flow Control capabilities.
1863         */
1864        if (hw->mac_type == e1000_82542_rev2_0)
1865                hw->fc &= (~e1000_fc_tx_pause);
1866
1867        if ((hw->mac_type < e1000_82543) && (hw->report_tx_early == 1))
1868                hw->fc &= (~e1000_fc_rx_pause);
1869
1870        hw->original_fc = hw->fc;
1871
1872        DEBUGOUT("After fix-ups FlowControl is now = %x\n", hw->fc);
1873
1874        /* Take the 4 bits from EEPROM word 0x0F that determine the initial
1875         * polarity value for the SW controlled pins, and setup the
1876         * Extended Device Control reg with that info.
1877         * This is needed because one of the SW controlled pins is used for
1878         * signal detection.  So this should be done before e1000_setup_pcs_link()
1879         * or e1000_phy_setup() is called.
1880         */
1881        if (hw->mac_type == e1000_82543) {
1882                ctrl_ext = ((eeprom_data & EEPROM_WORD0F_SWPDIO_EXT) <<
1883                            SWDPIO__EXT_SHIFT);
1884                E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
1885        }
1886
1887        /* Call the necessary subroutine to configure the link. */
1888        ret_val = (hw->media_type == e1000_media_type_fiber) ?
1889            e1000_setup_fiber_link(nic) : e1000_setup_copper_link(nic);
1890        if (ret_val < 0) {
1891                return ret_val;
1892        }
1893
1894        /* Initialize the flow control address, type, and PAUSE timer
1895         * registers to their default values.  This is done even if flow
1896         * control is disabled, because it does not hurt anything to
1897         * initialize these registers.
1898         */
1899        DEBUGOUT("Initializing the Flow Control address, type"
1900                        "and timer regs\n");
1901
1902        /* FCAL/H and FCT are hardcoded to standard values in e1000_ich8lan. */
1903        if (hw->mac_type != e1000_ich8lan) {
1904                E1000_WRITE_REG(hw, FCT, FLOW_CONTROL_TYPE);
1905                E1000_WRITE_REG(hw, FCAH, FLOW_CONTROL_ADDRESS_HIGH);
1906                E1000_WRITE_REG(hw, FCAL, FLOW_CONTROL_ADDRESS_LOW);
1907        }
1908
1909        E1000_WRITE_REG(hw, FCTTV, hw->fc_pause_time);
1910
1911        /* Set the flow control receive threshold registers.  Normally,
1912         * these registers will be set to a default threshold that may be
1913         * adjusted later by the driver's runtime code.  However, if the
1914         * ability to transmit pause frames in not enabled, then these
1915         * registers will be set to 0.
1916         */
1917        if (!(hw->fc & e1000_fc_tx_pause)) {
1918                E1000_WRITE_REG(hw, FCRTL, 0);
1919                E1000_WRITE_REG(hw, FCRTH, 0);
1920        } else {
1921                /* We need to set up the Receive Threshold high and low water marks
1922                 * as well as (optionally) enabling the transmission of XON frames.
1923                 */
1924                if (hw->fc_send_xon) {
1925                        E1000_WRITE_REG(hw, FCRTL,
1926                                        (hw->fc_low_water | E1000_FCRTL_XONE));
1927                        E1000_WRITE_REG(hw, FCRTH, hw->fc_high_water);
1928                } else {
1929                        E1000_WRITE_REG(hw, FCRTL, hw->fc_low_water);
1930                        E1000_WRITE_REG(hw, FCRTH, hw->fc_high_water);
1931                }
1932        }
1933        return ret_val;
1934}
1935
1936/******************************************************************************
1937 * Sets up link for a fiber based adapter
1938 *
1939 * hw - Struct containing variables accessed by shared code
1940 *
1941 * Manipulates Physical Coding Sublayer functions in order to configure
1942 * link. Assumes the hardware has been previously reset and the transmitter
1943 * and receiver are not enabled.
1944 *****************************************************************************/
1945static int
1946e1000_setup_fiber_link(struct eth_device *nic)
1947{
1948        struct e1000_hw *hw = nic->priv;
1949        uint32_t ctrl;
1950        uint32_t status;
1951        uint32_t txcw = 0;
1952        uint32_t i;
1953        uint32_t signal;
1954        int32_t ret_val;
1955
1956        DEBUGFUNC();
1957        /* On adapters with a MAC newer that 82544, SW Defineable pin 1 will be
1958         * set when the optics detect a signal. On older adapters, it will be
1959         * cleared when there is a signal
1960         */
1961        ctrl = E1000_READ_REG(hw, CTRL);
1962        if ((hw->mac_type > e1000_82544) && !(ctrl & E1000_CTRL_ILOS))
1963                signal = E1000_CTRL_SWDPIN1;
1964        else
1965                signal = 0;
1966
1967        printf("signal for %s is %x (ctrl %08x)!!!!\n", nic->name, signal,
1968               ctrl);
1969        /* Take the link out of reset */
1970        ctrl &= ~(E1000_CTRL_LRST);
1971
1972        e1000_config_collision_dist(hw);
1973
1974        /* Check for a software override of the flow control settings, and setup
1975         * the device accordingly.  If auto-negotiation is enabled, then software
1976         * will have to set the "PAUSE" bits to the correct value in the Tranmsit
1977         * Config Word Register (TXCW) and re-start auto-negotiation.  However, if
1978         * auto-negotiation is disabled, then software will have to manually
1979         * configure the two flow control enable bits in the CTRL register.
1980         *
1981         * The possible values of the "fc" parameter are:
1982         *      0:  Flow control is completely disabled
1983         *      1:  Rx flow control is enabled (we can receive pause frames, but
1984         *          not send pause frames).
1985         *      2:  Tx flow control is enabled (we can send pause frames but we do
1986         *          not support receiving pause frames).
1987         *      3:  Both Rx and TX flow control (symmetric) are enabled.
1988         */
1989        switch (hw->fc) {
1990        case e1000_fc_none:
1991                /* Flow control is completely disabled by a software over-ride. */
1992                txcw = (E1000_TXCW_ANE | E1000_TXCW_FD);
1993                break;
1994        case e1000_fc_rx_pause:
1995                /* RX Flow control is enabled and TX Flow control is disabled by a
1996                 * software over-ride. Since there really isn't a way to advertise
1997                 * that we are capable of RX Pause ONLY, we will advertise that we
1998                 * support both symmetric and asymmetric RX PAUSE. Later, we will
1999                 *  disable the adapter's ability to send PAUSE frames.
2000                 */
2001                txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
2002                break;
2003        case e1000_fc_tx_pause:
2004                /* TX Flow control is enabled, and RX Flow control is disabled, by a
2005                 * software over-ride.
2006                 */
2007                txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR);
2008                break;
2009        case e1000_fc_full:
2010                /* Flow control (both RX and TX) is enabled by a software over-ride. */
2011                txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
2012                break;
2013        default:
2014                DEBUGOUT("Flow control param set incorrectly\n");
2015                return -E1000_ERR_CONFIG;
2016                break;
2017        }
2018
2019        /* Since auto-negotiation is enabled, take the link out of reset (the link
2020         * will be in reset, because we previously reset the chip). This will
2021         * restart auto-negotiation.  If auto-neogtiation is successful then the
2022         * link-up status bit will be set and the flow control enable bits (RFCE
2023         * and TFCE) will be set according to their negotiated value.
2024         */
2025        DEBUGOUT("Auto-negotiation enabled (%#x)\n", txcw);
2026
2027        E1000_WRITE_REG(hw, TXCW, txcw);
2028        E1000_WRITE_REG(hw, CTRL, ctrl);
2029        E1000_WRITE_FLUSH(hw);
2030
2031        hw->txcw = txcw;
2032        mdelay(1);
2033
2034        /* If we have a signal (the cable is plugged in) then poll for a "Link-Up"
2035         * indication in the Device Status Register.  Time-out if a link isn't
2036         * seen in 500 milliseconds seconds (Auto-negotiation should complete in
2037         * less than 500 milliseconds even if the other end is doing it in SW).
2038         */
2039        if ((E1000_READ_REG(hw, CTRL) & E1000_CTRL_SWDPIN1) == signal) {
2040                DEBUGOUT("Looking for Link\n");
2041                for (i = 0; i < (LINK_UP_TIMEOUT / 10); i++) {
2042                        mdelay(10);
2043                        status = E1000_READ_REG(hw, STATUS);
2044                        if (status & E1000_STATUS_LU)
2045                                break;
2046                }
2047                if (i == (LINK_UP_TIMEOUT / 10)) {
2048                        /* AutoNeg failed to achieve a link, so we'll call
2049                         * e1000_check_for_link. This routine will force the link up if we
2050                         * detect a signal. This will allow us to communicate with
2051                         * non-autonegotiating link partners.
2052                         */
2053                        DEBUGOUT("Never got a valid link from auto-neg!!!\n");
2054                        hw->autoneg_failed = 1;
2055                        ret_val = e1000_check_for_link(nic);
2056                        if (ret_val < 0) {
2057                                DEBUGOUT("Error while checking for link\n");
2058                                return ret_val;
2059                        }
2060                        hw->autoneg_failed = 0;
2061                } else {
2062                        hw->autoneg_failed = 0;
2063                        DEBUGOUT("Valid Link Found\n");
2064                }
2065        } else {
2066                DEBUGOUT("No Signal Detected\n");
2067                return -E1000_ERR_NOLINK;
2068        }
2069        return 0;
2070}
2071
2072/******************************************************************************
2073* Make sure we have a valid PHY and change PHY mode before link setup.
2074*
2075* hw - Struct containing variables accessed by shared code
2076******************************************************************************/
2077static int32_t
2078e1000_copper_link_preconfig(struct e1000_hw *hw)
2079{
2080        uint32_t ctrl;
2081        int32_t ret_val;
2082        uint16_t phy_data;
2083
2084        DEBUGFUNC();
2085
2086        ctrl = E1000_READ_REG(hw, CTRL);
2087        /* With 82543, we need to force speed and duplex on the MAC equal to what
2088         * the PHY speed and duplex configuration is. In addition, we need to
2089         * perform a hardware reset on the PHY to take it out of reset.
2090         */
2091        if (hw->mac_type > e1000_82543) {
2092                ctrl |= E1000_CTRL_SLU;
2093                ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
2094                E1000_WRITE_REG(hw, CTRL, ctrl);
2095        } else {
2096                ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX
2097                                | E1000_CTRL_SLU);
2098                E1000_WRITE_REG(hw, CTRL, ctrl);
2099                ret_val = e1000_phy_hw_reset(hw);
2100                if (ret_val)
2101                        return ret_val;
2102        }
2103
2104        /* Make sure we have a valid PHY */
2105        ret_val = e1000_detect_gig_phy(hw);
2106        if (ret_val) {
2107                DEBUGOUT("Error, did not detect valid phy.\n");
2108                return ret_val;
2109        }
2110        DEBUGOUT("Phy ID = %x \n", hw->phy_id);
2111
2112#ifndef CONFIG_AP1000
2113        /* Set PHY to class A mode (if necessary) */
2114        ret_val = e1000_set_phy_mode(hw);
2115        if (ret_val)
2116                return ret_val;
2117#endif
2118        if ((hw->mac_type == e1000_82545_rev_3) ||
2119                (hw->mac_type == e1000_82546_rev_3)) {
2120                ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL,
2121                                &phy_data);
2122                phy_data |= 0x00000008;
2123                ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL,
2124                                phy_data);
2125        }
2126
2127        if (hw->mac_type <= e1000_82543 ||
2128                hw->mac_type == e1000_82541 || hw->mac_type == e1000_82547 ||
2129                hw->mac_type == e1000_82541_rev_2
2130                || hw->mac_type == e1000_82547_rev_2)
2131                        hw->phy_reset_disable = FALSE;
2132
2133        return E1000_SUCCESS;
2134}
2135
2136/*****************************************************************************
2137 *
2138 * This function sets the lplu state according to the active flag.  When
2139 * activating lplu this function also disables smart speed and vise versa.
2140 * lplu will not be activated unless the device autonegotiation advertisment
2141 * meets standards of either 10 or 10/100 or 10/100/1000 at all duplexes.
2142 * hw: Struct containing variables accessed by shared code
2143 * active - true to enable lplu false to disable lplu.
2144 *
2145 * returns: - E1000_ERR_PHY if fail to read/write the PHY
2146 *            E1000_SUCCESS at any other case.
2147 *
2148 ****************************************************************************/
2149
2150static int32_t
2151e1000_set_d3_lplu_state(struct e1000_hw *hw, boolean_t active)
2152{
2153        uint32_t phy_ctrl = 0;
2154        int32_t ret_val;
2155        uint16_t phy_data;
2156        DEBUGFUNC();
2157
2158        if (hw->phy_type != e1000_phy_igp && hw->phy_type != e1000_phy_igp_2
2159            && hw->phy_type != e1000_phy_igp_3)
2160                return E1000_SUCCESS;
2161
2162        /* During driver activity LPLU should not be used or it will attain link
2163         * from the lowest speeds starting from 10Mbps. The capability is used
2164         * for Dx transitions and states */
2165        if (hw->mac_type == e1000_82541_rev_2
2166                        || hw->mac_type == e1000_82547_rev_2) {
2167                ret_val = e1000_read_phy_reg(hw, IGP01E1000_GMII_FIFO,
2168                                &phy_data);
2169                if (ret_val)
2170                        return ret_val;
2171        } else if (hw->mac_type == e1000_ich8lan) {
2172                /* MAC writes into PHY register based on the state transition
2173                 * and start auto-negotiation. SW driver can overwrite the
2174                 * settings in CSR PHY power control E1000_PHY_CTRL register. */
2175                phy_ctrl = E1000_READ_REG(hw, PHY_CTRL);
2176        } else {
2177                ret_val = e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT,
2178                                &phy_data);
2179                if (ret_val)
2180                        return ret_val;
2181        }
2182
2183        if (!active) {
2184                if (hw->mac_type == e1000_82541_rev_2 ||
2185                        hw->mac_type == e1000_82547_rev_2) {
2186                        phy_data &= ~IGP01E1000_GMII_FLEX_SPD;
2187                        ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO,
2188                                        phy_data);
2189                        if (ret_val)
2190                                return ret_val;
2191                } else {
2192                        if (hw->mac_type == e1000_ich8lan) {
2193                                phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
2194                                E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
2195                        } else {
2196                                phy_data &= ~IGP02E1000_PM_D3_LPLU;
2197                                ret_val = e1000_write_phy_reg(hw,
2198                                        IGP02E1000_PHY_POWER_MGMT, phy_data);
2199                                if (ret_val)
2200                                        return ret_val;
2201                        }
2202                }
2203
2204        /* LPLU and SmartSpeed are mutually exclusive.  LPLU is used during
2205         * Dx states where the power conservation is most important.  During
2206         * driver activity we should enable SmartSpeed, so performance is
2207         * maintained. */
2208                if (hw->smart_speed == e1000_smart_speed_on) {
2209                        ret_val = e1000_read_phy_reg(hw,
2210                                        IGP01E1000_PHY_PORT_CONFIG, &phy_data);
2211                        if (ret_val)
2212                                return ret_val;
2213
2214                        phy_data |= IGP01E1000_PSCFR_SMART_SPEED;
2215                        ret_val = e1000_write_phy_reg(hw,
2216                                        IGP01E1000_PHY_PORT_CONFIG, phy_data);
2217                        if (ret_val)
2218                                return ret_val;
2219                } else if (hw->smart_speed == e1000_smart_speed_off) {
2220                        ret_val = e1000_read_phy_reg(hw,
2221                                        IGP01E1000_PHY_PORT_CONFIG, &phy_data);
2222                        if (ret_val)
2223                                return ret_val;
2224
2225                        phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2226                        ret_val = e1000_write_phy_reg(hw,
2227                                        IGP01E1000_PHY_PORT_CONFIG, phy_data);
2228                        if (ret_val)
2229                                return ret_val;
2230                }
2231
2232        } else if ((hw->autoneg_advertised == AUTONEG_ADVERTISE_SPEED_DEFAULT)
2233                || (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_ALL) ||
2234                (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_100_ALL)) {
2235
2236                if (hw->mac_type == e1000_82541_rev_2 ||
2237                    hw->mac_type == e1000_82547_rev_2) {
2238                        phy_data |= IGP01E1000_GMII_FLEX_SPD;
2239                        ret_val = e1000_write_phy_reg(hw,
2240                                        IGP01E1000_GMII_FIFO, phy_data);
2241                        if (ret_val)
2242                                return ret_val;
2243                } else {
2244                        if (hw->mac_type == e1000_ich8lan) {
2245                                phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
2246                                E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
2247                        } else {
2248                                phy_data |= IGP02E1000_PM_D3_LPLU;
2249                                ret_val = e1000_write_phy_reg(hw,
2250                                        IGP02E1000_PHY_POWER_MGMT, phy_data);
2251                                if (ret_val)
2252                                        return ret_val;
2253                        }
2254                }
2255
2256                /* When LPLU is enabled we should disable SmartSpeed */
2257                ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
2258                                &phy_data);
2259                if (ret_val)
2260                        return ret_val;
2261
2262                phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2263                ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
2264                                phy_data);
2265                if (ret_val)
2266                        return ret_val;
2267        }
2268        return E1000_SUCCESS;
2269}
2270
2271/*****************************************************************************
2272 *
2273 * This function sets the lplu d0 state according to the active flag.  When
2274 * activating lplu this function also disables smart speed and vise versa.
2275 * lplu will not be activated unless the device autonegotiation advertisment
2276 * meets standards of either 10 or 10/100 or 10/100/1000 at all duplexes.
2277 * hw: Struct containing variables accessed by shared code
2278 * active - true to enable lplu false to disable lplu.
2279 *
2280 * returns: - E1000_ERR_PHY if fail to read/write the PHY
2281 *            E1000_SUCCESS at any other case.
2282 *
2283 ****************************************************************************/
2284
2285static int32_t
2286e1000_set_d0_lplu_state(struct e1000_hw *hw, boolean_t active)
2287{
2288        uint32_t phy_ctrl = 0;
2289        int32_t ret_val;
2290        uint16_t phy_data;
2291        DEBUGFUNC();
2292
2293        if (hw->mac_type <= e1000_82547_rev_2)
2294                return E1000_SUCCESS;
2295
2296        if (hw->mac_type == e1000_ich8lan) {
2297                phy_ctrl = E1000_READ_REG(hw, PHY_CTRL);
2298        } else {
2299                ret_val = e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT,
2300                                &phy_data);
2301                if (ret_val)
2302                        return ret_val;
2303        }
2304
2305        if (!active) {
2306                if (hw->mac_type == e1000_ich8lan) {
2307                        phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
2308                        E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
2309                } else {
2310                        phy_data &= ~IGP02E1000_PM_D0_LPLU;
2311                        ret_val = e1000_write_phy_reg(hw,
2312                                        IGP02E1000_PHY_POWER_MGMT, phy_data);
2313                        if (ret_val)
2314                                return ret_val;
2315                }
2316
2317        /* LPLU and SmartSpeed are mutually exclusive.  LPLU is used during
2318         * Dx states where the power conservation is most important.  During
2319         * driver activity we should enable SmartSpeed, so performance is
2320         * maintained. */
2321                if (hw->smart_speed == e1000_smart_speed_on) {
2322                        ret_val = e1000_read_phy_reg(hw,
2323                                        IGP01E1000_PHY_PORT_CONFIG, &phy_data);
2324                        if (ret_val)
2325                                return ret_val;
2326
2327                        phy_data |= IGP01E1000_PSCFR_SMART_SPEED;
2328                        ret_val = e1000_write_phy_reg(hw,
2329                                        IGP01E1000_PHY_PORT_CONFIG, phy_data);
2330                        if (ret_val)
2331                                return ret_val;
2332                } else if (hw->smart_speed == e1000_smart_speed_off) {
2333                        ret_val = e1000_read_phy_reg(hw,
2334                                        IGP01E1000_PHY_PORT_CONFIG, &phy_data);
2335                        if (ret_val)
2336                                return ret_val;
2337
2338                        phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2339                        ret_val = e1000_write_phy_reg(hw,
2340                                        IGP01E1000_PHY_PORT_CONFIG, phy_data);
2341                        if (ret_val)
2342                                return ret_val;
2343                }
2344
2345
2346        } else {
2347
2348                if (hw->mac_type == e1000_ich8lan) {
2349                        phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
2350                        E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
2351                } else {
2352                        phy_data |= IGP02E1000_PM_D0_LPLU;
2353                        ret_val = e1000_write_phy_reg(hw,
2354                                        IGP02E1000_PHY_POWER_MGMT, phy_data);
2355                        if (ret_val)
2356                                return ret_val;
2357                }
2358
2359                /* When LPLU is enabled we should disable SmartSpeed */
2360                ret_val = e1000_read_phy_reg(hw,
2361                                IGP01E1000_PHY_PORT_CONFIG, &phy_data);
2362                if (ret_val)
2363                        return ret_val;
2364
2365                phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2366                ret_val = e1000_write_phy_reg(hw,
2367                                IGP01E1000_PHY_PORT_CONFIG, phy_data);
2368                if (ret_val)
2369                        return ret_val;
2370
2371        }
2372        return E1000_SUCCESS;
2373}
2374
2375/********************************************************************
2376* Copper link setup for e1000_phy_igp series.
2377*
2378* hw - Struct containing variables accessed by shared code
2379*********************************************************************/
2380static int32_t
2381e1000_copper_link_igp_setup(struct e1000_hw *hw)
2382{
2383        uint32_t led_ctrl;
2384        int32_t ret_val;
2385        uint16_t phy_data;
2386
2387        DEBUGFUNC();
2388
2389        if (hw->phy_reset_disable)
2390                return E1000_SUCCESS;
2391
2392        ret_val = e1000_phy_reset(hw);
2393        if (ret_val) {
2394                DEBUGOUT("Error Resetting the PHY\n");
2395                return ret_val;
2396        }
2397
2398        /* Wait 15ms for MAC to configure PHY from eeprom settings */
2399        mdelay(15);
2400        if (hw->mac_type != e1000_ich8lan) {
2401                /* Configure activity LED after PHY reset */
2402                led_ctrl = E1000_READ_REG(hw, LEDCTL);
2403                led_ctrl &= IGP_ACTIVITY_LED_MASK;
2404                led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
2405                E1000_WRITE_REG(hw, LEDCTL, led_ctrl);
2406        }
2407
2408        /* The NVM settings will configure LPLU in D3 for IGP2 and IGP3 PHYs */
2409        if (hw->phy_type == e1000_phy_igp) {
2410                /* disable lplu d3 during driver init */
2411                ret_val = e1000_set_d3_lplu_state(hw, FALSE);
2412                if (ret_val) {
2413                        DEBUGOUT("Error Disabling LPLU D3\n");
2414                        return ret_val;
2415                }
2416        }
2417
2418        /* disable lplu d0 during driver init */
2419        ret_val = e1000_set_d0_lplu_state(hw, FALSE);
2420        if (ret_val) {
2421                DEBUGOUT("Error Disabling LPLU D0\n");
2422                return ret_val;
2423        }
2424        /* Configure mdi-mdix settings */
2425        ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
2426        if (ret_val)
2427                return ret_val;
2428
2429        if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
2430                hw->dsp_config_state = e1000_dsp_config_disabled;
2431                /* Force MDI for earlier revs of the IGP PHY */
2432                phy_data &= ~(IGP01E1000_PSCR_AUTO_MDIX
2433                                | IGP01E1000_PSCR_FORCE_MDI_MDIX);
2434                hw->mdix = 1;
2435
2436        } else {
2437                hw->dsp_config_state = e1000_dsp_config_enabled;
2438                phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
2439
2440                switch (hw->mdix) {
2441                case 1:
2442                        phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
2443                        break;
2444                case 2:
2445                        phy_data |= IGP01E1000_PSCR_FORCE_MDI_MDIX;
2446                        break;
2447                case 0:
2448                default:
2449                        phy_data |= IGP01E1000_PSCR_AUTO_MDIX;
2450                        break;
2451                }
2452        }
2453        ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
2454        if (ret_val)
2455                return ret_val;
2456
2457        /* set auto-master slave resolution settings */
2458        if (hw->autoneg) {
2459                e1000_ms_type phy_ms_setting = hw->master_slave;
2460
2461                if (hw->ffe_config_state == e1000_ffe_config_active)
2462                        hw->ffe_config_state = e1000_ffe_config_enabled;
2463
2464                if (hw->dsp_config_state == e1000_dsp_config_activated)
2465                        hw->dsp_config_state = e1000_dsp_config_enabled;
2466
2467                /* when autonegotiation advertisment is only 1000Mbps then we
2468                  * should disable SmartSpeed and enable Auto MasterSlave
2469                  * resolution as hardware default. */
2470                if (hw->autoneg_advertised == ADVERTISE_1000_FULL) {
2471                        /* Disable SmartSpeed */
2472                        ret_val = e1000_read_phy_reg(hw,
2473                                        IGP01E1000_PHY_PORT_CONFIG, &phy_data);
2474                        if (ret_val)
2475                                return ret_val;
2476                        phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2477                        ret_val = e1000_write_phy_reg(hw,
2478                                        IGP01E1000_PHY_PORT_CONFIG, phy_data);
2479                        if (ret_val)
2480                                return ret_val;
2481                        /* Set auto Master/Slave resolution process */
2482                        ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL,
2483                                        &phy_data);
2484                        if (ret_val)
2485                                return ret_val;
2486                        phy_data &= ~CR_1000T_MS_ENABLE;
2487                        ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL,
2488                                        phy_data);
2489                        if (ret_val)
2490                                return ret_val;
2491                }
2492
2493                ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_data);
2494                if (ret_val)
2495                        return ret_val;
2496
2497                /* load defaults for future use */
2498                hw->original_master_slave = (phy_data & CR_1000T_MS_ENABLE) ?
2499                                ((phy_data & CR_1000T_MS_VALUE) ?
2500                                e1000_ms_force_master :
2501                                e1000_ms_force_slave) :
2502                                e1000_ms_auto;
2503
2504                switch (phy_ms_setting) {
2505                case e1000_ms_force_master:
2506                        phy_data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE);
2507                        break;
2508                case e1000_ms_force_slave:
2509                        phy_data |= CR_1000T_MS_ENABLE;
2510                        phy_data &= ~(CR_1000T_MS_VALUE);
2511                        break;
2512                case e1000_ms_auto:
2513                        phy_data &= ~CR_1000T_MS_ENABLE;
2514                default:
2515                        break;
2516                }
2517                ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_data);
2518                if (ret_val)
2519                        return ret_val;
2520        }
2521
2522        return E1000_SUCCESS;
2523}
2524
2525/*****************************************************************************
2526 * This function checks the mode of the firmware.
2527 *
2528 * returns  - TRUE when the mode is IAMT or FALSE.
2529 ****************************************************************************/
2530boolean_t
2531e1000_check_mng_mode(struct e1000_hw *hw)
2532{
2533        uint32_t fwsm;
2534        DEBUGFUNC();
2535
2536        fwsm = E1000_READ_REG(hw, FWSM);
2537
2538        if (hw->mac_type == e1000_ich8lan) {
2539                if ((fwsm & E1000_FWSM_MODE_MASK) ==
2540                    (E1000_MNG_ICH_IAMT_MODE << E1000_FWSM_MODE_SHIFT))
2541                        return TRUE;
2542        } else if ((fwsm & E1000_FWSM_MODE_MASK) ==
2543                       (E1000_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT))
2544                        return TRUE;
2545
2546        return FALSE;
2547}
2548
2549static int32_t
2550e1000_write_kmrn_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t data)
2551{
2552        uint16_t swfw = E1000_SWFW_PHY0_SM;
2553        uint32_t reg_val;
2554        DEBUGFUNC();
2555
2556        if (e1000_is_second_port(hw))
2557                swfw = E1000_SWFW_PHY1_SM;
2558
2559        if (e1000_swfw_sync_acquire(hw, swfw))
2560                return -E1000_ERR_SWFW_SYNC;
2561
2562        reg_val = ((reg_addr << E1000_KUMCTRLSTA_OFFSET_SHIFT)
2563                        & E1000_KUMCTRLSTA_OFFSET) | data;
2564        E1000_WRITE_REG(hw, KUMCTRLSTA, reg_val);
2565        udelay(2);
2566
2567        return E1000_SUCCESS;
2568}
2569
2570static int32_t
2571e1000_read_kmrn_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t *data)
2572{
2573        uint16_t swfw = E1000_SWFW_PHY0_SM;
2574        uint32_t reg_val;
2575        DEBUGFUNC();
2576
2577        if (e1000_is_second_port(hw))
2578                swfw = E1000_SWFW_PHY1_SM;
2579
2580        if (e1000_swfw_sync_acquire(hw, swfw))
2581                return -E1000_ERR_SWFW_SYNC;
2582
2583        /* Write register address */
2584        reg_val = ((reg_addr << E1000_KUMCTRLSTA_OFFSET_SHIFT) &
2585                        E1000_KUMCTRLSTA_OFFSET) | E1000_KUMCTRLSTA_REN;
2586        E1000_WRITE_REG(hw, KUMCTRLSTA, reg_val);
2587        udelay(2);
2588
2589        /* Read the data returned */
2590        reg_val = E1000_READ_REG(hw, KUMCTRLSTA);
2591        *data = (uint16_t)reg_val;
2592
2593        return E1000_SUCCESS;
2594}
2595
2596/********************************************************************
2597* Copper link setup for e1000_phy_gg82563 series.
2598*
2599* hw - Struct containing variables accessed by shared code
2600*********************************************************************/
2601static int32_t
2602e1000_copper_link_ggp_setup(struct e1000_hw *hw)
2603{
2604        int32_t ret_val;
2605        uint16_t phy_data;
2606        uint32_t reg_data;
2607
2608        DEBUGFUNC();
2609
2610        if (!hw->phy_reset_disable) {
2611                /* Enable CRS on TX for half-duplex operation. */
2612                ret_val = e1000_read_phy_reg(hw,
2613                                GG82563_PHY_MAC_SPEC_CTRL, &phy_data);
2614                if (ret_val)
2615                        return ret_val;
2616
2617                phy_data |= GG82563_MSCR_ASSERT_CRS_ON_TX;
2618                /* Use 25MHz for both link down and 1000BASE-T for Tx clock */
2619                phy_data |= GG82563_MSCR_TX_CLK_1000MBPS_25MHZ;
2620
2621                ret_val = e1000_write_phy_reg(hw,
2622                                GG82563_PHY_MAC_SPEC_CTRL, phy_data);
2623                if (ret_val)
2624                        return ret_val;
2625
2626                /* Options:
2627                 *   MDI/MDI-X = 0 (default)
2628                 *   0 - Auto for all speeds
2629                 *   1 - MDI mode
2630                 *   2 - MDI-X mode
2631                 *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
2632                 */
2633                ret_val = e1000_read_phy_reg(hw,
2634                                GG82563_PHY_SPEC_CTRL, &phy_data);
2635                if (ret_val)
2636                        return ret_val;
2637
2638                phy_data &= ~GG82563_PSCR_CROSSOVER_MODE_MASK;
2639
2640                switch (hw->mdix) {
2641                case 1:
2642                        phy_data |= GG82563_PSCR_CROSSOVER_MODE_MDI;
2643                        break;
2644                case 2:
2645                        phy_data |= GG82563_PSCR_CROSSOVER_MODE_MDIX;
2646                        break;
2647                case 0:
2648                default:
2649                        phy_data |= GG82563_PSCR_CROSSOVER_MODE_AUTO;
2650                        break;
2651                }
2652
2653                /* Options:
2654                 *   disable_polarity_correction = 0 (default)
2655                 *       Automatic Correction for Reversed Cable Polarity
2656                 *   0 - Disabled
2657                 *   1 - Enabled
2658                 */
2659                phy_data &= ~GG82563_PSCR_POLARITY_REVERSAL_DISABLE;
2660                ret_val = e1000_write_phy_reg(hw,
2661                                GG82563_PHY_SPEC_CTRL, phy_data);
2662
2663                if (ret_val)
2664                        return ret_val;
2665
2666                /* SW Reset the PHY so all changes take effect */
2667                ret_val = e1000_phy_reset(hw);
2668                if (ret_val) {
2669                        DEBUGOUT("Error Resetting the PHY\n");
2670                        return ret_val;
2671                }
2672        } /* phy_reset_disable */
2673
2674        if (hw->mac_type == e1000_80003es2lan) {
2675                /* Bypass RX and TX FIFO's */
2676                ret_val = e1000_write_kmrn_reg(hw,
2677                                E1000_KUMCTRLSTA_OFFSET_FIFO_CTRL,
2678                                E1000_KUMCTRLSTA_FIFO_CTRL_RX_BYPASS
2679                                | E1000_KUMCTRLSTA_FIFO_CTRL_TX_BYPASS);
2680                if (ret_val)
2681                        return ret_val;
2682
2683                ret_val = e1000_read_phy_reg(hw,
2684                                GG82563_PHY_SPEC_CTRL_2, &phy_data);
2685                if (ret_val)
2686                        return ret_val;
2687
2688                phy_data &= ~GG82563_PSCR2_REVERSE_AUTO_NEG;
2689                ret_val = e1000_write_phy_reg(hw,
2690                                GG82563_PHY_SPEC_CTRL_2, phy_data);
2691
2692                if (ret_val)
2693                        return ret_val;
2694
2695                reg_data = E1000_READ_REG(hw, CTRL_EXT);
2696                reg_data &= ~(E1000_CTRL_EXT_LINK_MODE_MASK);
2697                E1000_WRITE_REG(hw, CTRL_EXT, reg_data);
2698
2699                ret_val = e1000_read_phy_reg(hw,
2700                                GG82563_PHY_PWR_MGMT_CTRL, &phy_data);
2701                if (ret_val)
2702                        return ret_val;
2703
2704        /* Do not init these registers when the HW is in IAMT mode, since the
2705         * firmware will have already initialized them.  We only initialize
2706         * them if the HW is not in IAMT mode.
2707         */
2708                if (e1000_check_mng_mode(hw) == FALSE) {
2709                        /* Enable Electrical Idle on the PHY */
2710                        phy_data |= GG82563_PMCR_ENABLE_ELECTRICAL_IDLE;
2711                        ret_val = e1000_write_phy_reg(hw,
2712                                        GG82563_PHY_PWR_MGMT_CTRL, phy_data);
2713                        if (ret_val)
2714                                return ret_val;
2715
2716                        ret_val = e1000_read_phy_reg(hw,
2717                                        GG82563_PHY_KMRN_MODE_CTRL, &phy_data);
2718                        if (ret_val)
2719                                return ret_val;
2720
2721                        phy_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
2722                        ret_val = e1000_write_phy_reg(hw,
2723                                        GG82563_PHY_KMRN_MODE_CTRL, phy_data);
2724
2725                        if (ret_val)
2726                                return ret_val;
2727                }
2728
2729                /* Workaround: Disable padding in Kumeran interface in the MAC
2730                 * and in the PHY to avoid CRC errors.
2731                 */
2732                ret_val = e1000_read_phy_reg(hw,
2733                                GG82563_PHY_INBAND_CTRL, &phy_data);
2734                if (ret_val)
2735                        return ret_val;
2736                phy_data |= GG82563_ICR_DIS_PADDING;
2737                ret_val = e1000_write_phy_reg(hw,
2738                                GG82563_PHY_INBAND_CTRL, phy_data);
2739                if (ret_val)
2740                        return ret_val;
2741        }
2742        return E1000_SUCCESS;
2743}
2744
2745/********************************************************************
2746* Copper link setup for e1000_phy_m88 series.
2747*
2748* hw - Struct containing variables accessed by shared code
2749*********************************************************************/
2750static int32_t
2751e1000_copper_link_mgp_setup(struct e1000_hw *hw)
2752{
2753        int32_t ret_val;
2754        uint16_t phy_data;
2755
2756        DEBUGFUNC();
2757
2758        if (hw->phy_reset_disable)
2759                return E1000_SUCCESS;
2760
2761        /* Enable CRS on TX. This must be set for half-duplex operation. */
2762        ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
2763        if (ret_val)
2764                return ret_val;
2765
2766        phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
2767
2768        /* Options:
2769         *   MDI/MDI-X = 0 (default)
2770         *   0 - Auto for all speeds
2771         *   1 - MDI mode
2772         *   2 - MDI-X mode
2773         *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
2774         */
2775        phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
2776
2777        switch (hw->mdix) {
2778        case 1:
2779                phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
2780                break;
2781        case 2:
2782                phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
2783                break;
2784        case 3:
2785                phy_data |= M88E1000_PSCR_AUTO_X_1000T;
2786                break;
2787        case 0:
2788        default:
2789                phy_data |= M88E1000_PSCR_AUTO_X_MODE;
2790                break;
2791        }
2792
2793        /* Options:
2794         *   disable_polarity_correction = 0 (default)
2795         *       Automatic Correction for Reversed Cable Polarity
2796         *   0 - Disabled
2797         *   1 - Enabled
2798         */
2799        phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
2800        ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
2801        if (ret_val)
2802                return ret_val;
2803
2804        if (hw->phy_revision < M88E1011_I_REV_4) {
2805                /* Force TX_CLK in the Extended PHY Specific Control Register
2806                 * to 25MHz clock.
2807                 */
2808                ret_val = e1000_read_phy_reg(hw,
2809                                M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
2810                if (ret_val)
2811                        return ret_val;
2812
2813                phy_data |= M88E1000_EPSCR_TX_CLK_25;
2814
2815                if ((hw->phy_revision == E1000_REVISION_2) &&
2816                        (hw->phy_id == M88E1111_I_PHY_ID)) {
2817                        /* Vidalia Phy, set the downshift counter to 5x */
2818                        phy_data &= ~(M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK);
2819                        phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X;
2820                        ret_val = e1000_write_phy_reg(hw,
2821                                        M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
2822                        if (ret_val)
2823                                return ret_val;
2824                } else {
2825                        /* Configure Master and Slave downshift values */
2826                        phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK
2827                                        | M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK);
2828                        phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X
2829                                        | M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X);
2830                        ret_val = e1000_write_phy_reg(hw,
2831                                        M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
2832                        if (ret_val)
2833                                return ret_val;
2834                }
2835        }
2836
2837        /* SW Reset the PHY so all changes take effect */
2838        ret_val = e1000_phy_reset(hw);
2839        if (ret_val) {
2840                DEBUGOUT("Error Resetting the PHY\n");
2841                return ret_val;
2842        }
2843
2844        return E1000_SUCCESS;
2845}
2846
2847/********************************************************************
2848* Setup auto-negotiation and flow control advertisements,
2849* and then perform auto-negotiation.
2850*
2851* hw - Struct containing variables accessed by shared code
2852*********************************************************************/
2853static int32_t
2854e1000_copper_link_autoneg(struct e1000_hw *hw)
2855{
2856        int32_t ret_val;
2857        uint16_t phy_data;
2858
2859        DEBUGFUNC();
2860
2861        /* Perform some bounds checking on the hw->autoneg_advertised
2862         * parameter.  If this variable is zero, then set it to the default.
2863         */
2864        hw->autoneg_advertised &= AUTONEG_ADVERTISE_SPEED_DEFAULT;
2865
2866        /* If autoneg_advertised is zero, we assume it was not defaulted
2867         * by the calling code so we set to advertise full capability.
2868         */
2869        if (hw->autoneg_advertised == 0)
2870                hw->autoneg_advertised = AUTONEG_ADVERTISE_SPEED_DEFAULT;
2871
2872        /* IFE phy only supports 10/100 */
2873        if (hw->phy_type == e1000_phy_ife)
2874                hw->autoneg_advertised &= AUTONEG_ADVERTISE_10_100_ALL;
2875
2876        DEBUGOUT("Reconfiguring auto-neg advertisement params\n");
2877        ret_val = e1000_phy_setup_autoneg(hw);
2878        if (ret_val) {
2879                DEBUGOUT("Error Setting up Auto-Negotiation\n");
2880                return ret_val;
2881        }
2882        DEBUGOUT("Restarting Auto-Neg\n");
2883
2884        /* Restart auto-negotiation by setting the Auto Neg Enable bit and
2885         * the Auto Neg Restart bit in the PHY control register.
2886         */
2887        ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data);
2888        if (ret_val)
2889                return ret_val;
2890
2891        phy_data |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
2892        ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data);
2893        if (ret_val)
2894                return ret_val;
2895
2896        /* Does the user want to wait for Auto-Neg to complete here, or
2897         * check at a later time (for example, callback routine).
2898         */
2899        /* If we do not wait for autonegtation to complete I
2900         * do not see a valid link status.
2901         * wait_autoneg_complete = 1 .
2902         */
2903        if (hw->wait_autoneg_complete) {
2904                ret_val = e1000_wait_autoneg(hw);
2905                if (ret_val) {
2906                        DEBUGOUT("Error while waiting for autoneg"
2907                                        "to complete\n");
2908                        return ret_val;
2909                }
2910        }
2911
2912        hw->get_link_status = TRUE;
2913
2914        return E1000_SUCCESS;
2915}
2916
2917/******************************************************************************
2918* Config the MAC and the PHY after link is up.
2919*   1) Set up the MAC to the current PHY speed/duplex
2920*      if we are on 82543.  If we
2921*      are on newer silicon, we only need to configure
2922*      collision distance in the Transmit Control Register.
2923*   2) Set up flow control on the MAC to that established with
2924*      the link partner.
2925*   3) Config DSP to improve Gigabit link quality for some PHY revisions.
2926*
2927* hw - Struct containing variables accessed by shared code
2928******************************************************************************/
2929static int32_t
2930e1000_copper_link_postconfig(struct e1000_hw *hw)
2931{
2932        int32_t ret_val;
2933        DEBUGFUNC();
2934
2935        if (hw->mac_type >= e1000_82544) {
2936                e1000_config_collision_dist(hw);
2937        } else {
2938                ret_val = e1000_config_mac_to_phy(hw);
2939                if (ret_val) {
2940                        DEBUGOUT("Error configuring MAC to PHY settings\n");
2941                        return ret_val;
2942                }
2943        }
2944        ret_val = e1000_config_fc_after_link_up(hw);
2945        if (ret_val) {
2946                DEBUGOUT("Error Configuring Flow Control\n");
2947                return ret_val;
2948        }
2949        return E1000_SUCCESS;
2950}
2951
2952/******************************************************************************
2953* Detects which PHY is present and setup the speed and duplex
2954*
2955* hw - Struct containing variables accessed by shared code
2956******************************************************************************/
2957static int
2958e1000_setup_copper_link(struct eth_device *nic)
2959{
2960        struct e1000_hw *hw = nic->priv;
2961        int32_t ret_val;
2962        uint16_t i;
2963        uint16_t phy_data;
2964        uint16_t reg_data;
2965
2966        DEBUGFUNC();
2967
2968        switch (hw->mac_type) {
2969        case e1000_80003es2lan:
2970        case e1000_ich8lan:
2971                /* Set the mac to wait the maximum time between each
2972                 * iteration and increase the max iterations when
2973                 * polling the phy; this fixes erroneous timeouts at 10Mbps. */
2974                ret_val = e1000_write_kmrn_reg(hw,
2975                                GG82563_REG(0x34, 4), 0xFFFF);
2976                if (ret_val)
2977                        return ret_val;
2978                ret_val = e1000_read_kmrn_reg(hw,
2979                                GG82563_REG(0x34, 9), &reg_data);
2980                if (ret_val)
2981                        return ret_val;
2982                reg_data |= 0x3F;
2983                ret_val = e1000_write_kmrn_reg(hw,
2984                                GG82563_REG(0x34, 9), reg_data);
2985                if (ret_val)
2986                        return ret_val;
2987        default:
2988                break;
2989        }
2990
2991        /* Check if it is a valid PHY and set PHY mode if necessary. */
2992        ret_val = e1000_copper_link_preconfig(hw);
2993        if (ret_val)
2994                return ret_val;
2995        switch (hw->mac_type) {
2996        case e1000_80003es2lan:
2997                /* Kumeran registers are written-only */
2998                reg_data =
2999                E1000_KUMCTRLSTA_INB_CTRL_LINK_STATUS_TX_TIMEOUT_DEFAULT;
3000                reg_data |= E1000_KUMCTRLSTA_INB_CTRL_DIS_PADDING;
3001                ret_val = e1000_write_kmrn_reg(hw,
3002                                E1000_KUMCTRLSTA_OFFSET_INB_CTRL, reg_data);
3003                if (ret_val)
3004                        return ret_val;
3005                break;
3006        default:
3007                break;
3008        }
3009
3010        if (hw->phy_type == e1000_phy_igp ||
3011                hw->phy_type == e1000_phy_igp_3 ||
3012                hw->phy_type == e1000_phy_igp_2) {
3013                ret_val = e1000_copper_link_igp_setup(hw);
3014                if (ret_val)
3015                        return ret_val;
3016        } else if (hw->phy_type == e1000_phy_m88) {
3017                ret_val = e1000_copper_link_mgp_setup(hw);
3018                if (ret_val)
3019                        return ret_val;
3020        } else if (hw->phy_type == e1000_phy_gg82563) {
3021                ret_val = e1000_copper_link_ggp_setup(hw);
3022                if (ret_val)
3023                        return ret_val;
3024        }
3025
3026        /* always auto */
3027        /* Setup autoneg and flow control advertisement
3028          * and perform autonegotiation */
3029        ret_val = e1000_copper_link_autoneg(hw);
3030        if (ret_val)
3031                return ret_val;
3032
3033        /* Check link status. Wait up to 100 microseconds for link to become
3034         * valid.
3035         */
3036        for (i = 0; i < 10; i++) {
3037                ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
3038                if (ret_val)
3039                        return ret_val;
3040                ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
3041                if (ret_val)
3042                        return ret_val;
3043
3044                if (phy_data & MII_SR_LINK_STATUS) {
3045                        /* Config the MAC and PHY after link is up */
3046                        ret_val = e1000_copper_link_postconfig(hw);
3047                        if (ret_val)
3048                                return ret_val;
3049
3050                        DEBUGOUT("Valid link established!!!\n");
3051                        return E1000_SUCCESS;
3052                }
3053                udelay(10);
3054        }
3055
3056        DEBUGOUT("Unable to establish link!!!\n");
3057        return E1000_SUCCESS;
3058}
3059
3060/******************************************************************************
3061* Configures PHY autoneg and flow control advertisement settings
3062*
3063* hw - Struct containing variables accessed by shared code
3064******************************************************************************/
3065int32_t
3066e1000_phy_setup_autoneg(struct e1000_hw *hw)
3067{
3068        int32_t ret_val;
3069        uint16_t mii_autoneg_adv_reg;
3070        uint16_t mii_1000t_ctrl_reg;
3071
3072        DEBUGFUNC();
3073
3074        /* Read the MII Auto-Neg Advertisement Register (Address 4). */
3075        ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg);
3076        if (ret_val)
3077                return ret_val;
3078
3079        if (hw->phy_type != e1000_phy_ife) {
3080                /* Read the MII 1000Base-T Control Register (Address 9). */
3081                ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL,
3082                                &mii_1000t_ctrl_reg);
3083                if (ret_val)
3084                        return ret_val;
3085        } else
3086                mii_1000t_ctrl_reg = 0;
3087
3088        /* Need to parse both autoneg_advertised and fc and set up
3089         * the appropriate PHY registers.  First we will parse for
3090         * autoneg_advertised software override.  Since we can advertise
3091         * a plethora of combinations, we need to check each bit
3092         * individually.
3093         */
3094
3095        /* First we clear all the 10/100 mb speed bits in the Auto-Neg
3096         * Advertisement Register (Address 4) and the 1000 mb speed bits in
3097         * the  1000Base-T Control Register (Address 9).
3098         */
3099        mii_autoneg_adv_reg &= ~REG4_SPEED_MASK;
3100        mii_1000t_ctrl_reg &= ~REG9_SPEED_MASK;
3101
3102        DEBUGOUT("autoneg_advertised %x\n", hw->autoneg_advertised);
3103
3104        /* Do we want to advertise 10 Mb Half Duplex? */
3105        if (hw->autoneg_advertised & ADVERTISE_10_HALF) {
3106                DEBUGOUT("Advertise 10mb Half duplex\n");
3107                mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS;
3108        }
3109
3110        /* Do we want to advertise 10 Mb Full Duplex? */
3111        if (hw->autoneg_advertised & ADVERTISE_10_FULL) {
3112                DEBUGOUT("Advertise 10mb Full duplex\n");
3113                mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS;
3114        }
3115
3116        /* Do we want to advertise 100 Mb Half Duplex? */
3117        if (hw->autoneg_advertised & ADVERTISE_100_HALF) {
3118                DEBUGOUT("Advertise 100mb Half duplex\n");
3119                mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS;
3120        }
3121
3122        /* Do we want to advertise 100 Mb Full Duplex? */
3123        if (hw->autoneg_advertised & ADVERTISE_100_FULL) {
3124                DEBUGOUT("Advertise 100mb Full duplex\n");
3125                mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS;
3126        }
3127
3128        /* We do not allow the Phy to advertise 1000 Mb Half Duplex */
3129        if (hw->autoneg_advertised & ADVERTISE_1000_HALF) {
3130                DEBUGOUT
3131                    ("Advertise 1000mb Half duplex requested, request denied!\n");
3132        }
3133
3134        /* Do we want to advertise 1000 Mb Full Duplex? */
3135        if (hw->autoneg_advertised & ADVERTISE_1000_FULL) {
3136                DEBUGOUT("Advertise 1000mb Full duplex\n");
3137                mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS;
3138        }
3139
3140        /* Check for a software override of the flow control settings, and
3141         * setup the PHY advertisement registers accordingly.  If
3142         * auto-negotiation is enabled, then software will have to set the
3143         * "PAUSE" bits to the correct value in the Auto-Negotiation
3144         * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-negotiation.
3145         *
3146         * The possible values of the "fc" parameter are:
3147         *      0:  Flow control is completely disabled
3148         *      1:  Rx flow control is enabled (we can receive pause frames
3149         *          but not send pause frames).
3150         *      2:  Tx flow control is enabled (we can send pause frames
3151         *          but we do not support receiving pause frames).
3152         *      3:  Both Rx and TX flow control (symmetric) are enabled.
3153         *  other:  No software override.  The flow control configuration
3154         *          in the EEPROM is used.
3155         */
3156        switch (hw->fc) {
3157        case e1000_fc_none:     /* 0 */
3158                /* Flow control (RX & TX) is completely disabled by a
3159                 * software over-ride.
3160                 */
3161                mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
3162                break;
3163        case e1000_fc_rx_pause: /* 1 */
3164                /* RX Flow control is enabled, and TX Flow control is
3165                 * disabled, by a software over-ride.
3166                 */
3167                /* Since there really isn't a way to advertise that we are
3168                 * capable of RX Pause ONLY, we will advertise that we
3169                 * support both symmetric and asymmetric RX PAUSE.  Later
3170                 * (in e1000_config_fc_after_link_up) we will disable the
3171                 *hw's ability to send PAUSE frames.
3172                 */
3173                mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
3174                break;
3175        case e1000_fc_tx_pause: /* 2 */
3176                /* TX Flow control is enabled, and RX Flow control is
3177                 * disabled, by a software over-ride.
3178                 */
3179                mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR;
3180                mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE;
3181                break;
3182        case e1000_fc_full:     /* 3 */
3183                /* Flow control (both RX and TX) is enabled by a software
3184                 * over-ride.
3185                 */
3186                mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
3187                break;
3188        default:
3189                DEBUGOUT("Flow control param set incorrectly\n");
3190                return -E1000_ERR_CONFIG;
3191        }
3192
3193        ret_val = e1000_write_phy_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg);
3194        if (ret_val)
3195                return ret_val;
3196
3197        DEBUGOUT("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
3198
3199        if (hw->phy_type != e1000_phy_ife) {
3200                ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL,
3201                                mii_1000t_ctrl_reg);
3202                if (ret_val)
3203                        return ret_val;
3204        }
3205
3206        return E1000_SUCCESS;
3207}
3208
3209/******************************************************************************
3210* Sets the collision distance in the Transmit Control register
3211*
3212* hw - Struct containing variables accessed by shared code
3213*
3214* Link should have been established previously. Reads the speed and duplex
3215* information from the Device Status register.
3216******************************************************************************/
3217static void
3218e1000_config_collision_dist(struct e1000_hw *hw)
3219{
3220        uint32_t tctl, coll_dist;
3221
3222        DEBUGFUNC();
3223
3224        if (hw->mac_type < e1000_82543)
3225                coll_dist = E1000_COLLISION_DISTANCE_82542;
3226        else
3227                coll_dist = E1000_COLLISION_DISTANCE;
3228
3229        tctl = E1000_READ_REG(hw, TCTL);
3230
3231        tctl &= ~E1000_TCTL_COLD;
3232        tctl |= coll_dist << E1000_COLD_SHIFT;
3233
3234        E1000_WRITE_REG(hw, TCTL, tctl);
3235        E1000_WRITE_FLUSH(hw);
3236}
3237
3238/******************************************************************************
3239* Sets MAC speed and duplex settings to reflect the those in the PHY
3240*
3241* hw - Struct containing variables accessed by shared code
3242* mii_reg - data to write to the MII control register
3243*
3244* The contents of the PHY register containing the needed information need to
3245* be passed in.
3246******************************************************************************/
3247static int
3248e1000_config_mac_to_phy(struct e1000_hw *hw)
3249{
3250        uint32_t ctrl;
3251        uint16_t phy_data;
3252
3253        DEBUGFUNC();
3254
3255        /* Read the Device Control Register and set the bits to Force Speed
3256         * and Duplex.
3257         */
3258        ctrl = E1000_READ_REG(hw, CTRL);
3259        ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
3260        ctrl &= ~(E1000_CTRL_SPD_SEL | E1000_CTRL_ILOS);
3261
3262        /* Set up duplex in the Device Control and Transmit Control
3263         * registers depending on negotiated values.
3264         */
3265        if (e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data) < 0) {
3266                DEBUGOUT("PHY Read Error\n");
3267                return -E1000_ERR_PHY;
3268        }
3269        if (phy_data & M88E1000_PSSR_DPLX)
3270                ctrl |= E1000_CTRL_FD;
3271        else
3272                ctrl &= ~E1000_CTRL_FD;
3273
3274        e1000_config_collision_dist(hw);
3275
3276        /* Set up speed in the Device Control register depending on
3277         * negotiated values.
3278         */
3279        if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS)
3280                ctrl |= E1000_CTRL_SPD_1000;
3281        else if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_100MBS)
3282                ctrl |= E1000_CTRL_SPD_100;
3283        /* Write the configured values back to the Device Control Reg. */
3284        E1000_WRITE_REG(hw, CTRL, ctrl);
3285        return 0;
3286}
3287
3288/******************************************************************************
3289 * Forces the MAC's flow control settings.
3290 *
3291 * hw - Struct containing variables accessed by shared code
3292 *
3293 * Sets the TFCE and RFCE bits in the device control register to reflect
3294 * the adapter settings. TFCE and RFCE need to be explicitly set by
3295 * software when a Copper PHY is used because autonegotiation is managed
3296 * by the PHY rather than the MAC. Software must also configure these
3297 * bits when link is forced on a fiber connection.
3298 *****************************************************************************/
3299static int
3300e1000_force_mac_fc(struct e1000_hw *hw)
3301{
3302        uint32_t ctrl;
3303
3304        DEBUGFUNC();
3305
3306        /* Get the current configuration of the Device Control Register */
3307        ctrl = E1000_READ_REG(hw, CTRL);
3308
3309        /* Because we didn't get link via the internal auto-negotiation
3310         * mechanism (we either forced link or we got link via PHY
3311         * auto-neg), we have to manually enable/disable transmit an
3312         * receive flow control.
3313         *
3314         * The "Case" statement below enables/disable flow control
3315         * according to the "hw->fc" parameter.
3316         *
3317         * The possible values of the "fc" parameter are:
3318         *      0:  Flow control is completely disabled
3319         *      1:  Rx flow control is enabled (we can receive pause
3320         *          frames but not send pause frames).
3321         *      2:  Tx flow control is enabled (we can send pause frames
3322         *          frames but we do not receive pause frames).
3323         *      3:  Both Rx and TX flow control (symmetric) is enabled.
3324         *  other:  No other values should be possible at this point.
3325         */
3326
3327        switch (hw->fc) {
3328        case e1000_fc_none:
3329                ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE));
3330                break;
3331        case e1000_fc_rx_pause:
3332                ctrl &= (~E1000_CTRL_TFCE);
3333                ctrl |= E1000_CTRL_RFCE;
3334                break;
3335        case e1000_fc_tx_pause:
3336                ctrl &= (~E1000_CTRL_RFCE);
3337                ctrl |= E1000_CTRL_TFCE;
3338                break;
3339        case e1000_fc_full:
3340                ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE);
3341                break;
3342        default:
3343                DEBUGOUT("Flow control param set incorrectly\n");
3344                return -E1000_ERR_CONFIG;
3345        }
3346
3347        /* Disable TX Flow Control for 82542 (rev 2.0) */
3348        if (hw->mac_type == e1000_82542_rev2_0)
3349                ctrl &= (~E1000_CTRL_TFCE);
3350
3351        E1000_WRITE_REG(hw, CTRL, ctrl);
3352        return 0;
3353}
3354
3355/******************************************************************************
3356 * Configures flow control settings after link is established
3357 *
3358 * hw - Struct containing variables accessed by shared code
3359 *
3360 * Should be called immediately after a valid link has been established.
3361 * Forces MAC flow control settings if link was forced. When in MII/GMII mode
3362 * and autonegotiation is enabled, the MAC flow control settings will be set
3363 * based on the flow control negotiated by the PHY. In TBI mode, the TFCE
3364 * and RFCE bits will be automaticaly set to the negotiated flow control mode.
3365 *****************************************************************************/
3366static int32_t
3367e1000_config_fc_after_link_up(struct e1000_hw *hw)
3368{
3369        int32_t ret_val;
3370        uint16_t mii_status_reg;
3371        uint16_t mii_nway_adv_reg;
3372        uint16_t mii_nway_lp_ability_reg;
3373        uint16_t speed;
3374        uint16_t duplex;
3375
3376        DEBUGFUNC();
3377
3378        /* Check for the case where we have fiber media and auto-neg failed
3379         * so we had to force link.  In this case, we need to force the
3380         * configuration of the MAC to match the "fc" parameter.
3381         */
3382        if (((hw->media_type == e1000_media_type_fiber) && (hw->autoneg_failed))
3383                || ((hw->media_type == e1000_media_type_internal_serdes)
3384                && (hw->autoneg_failed))
3385                || ((hw->media_type == e1000_media_type_copper)
3386                && (!hw->autoneg))) {
3387                ret_val = e1000_force_mac_fc(hw);
3388                if (ret_val < 0) {
3389                        DEBUGOUT("Error forcing flow control settings\n");
3390                        return ret_val;
3391                }
3392        }
3393
3394        /* Check for the case where we have copper media and auto-neg is
3395         * enabled.  In this case, we need to check and see if Auto-Neg
3396         * has completed, and if so, how the PHY and link partner has
3397         * flow control configured.
3398         */
3399        if (hw->media_type == e1000_media_type_copper) {
3400                /* Read the MII Status Register and check to see if AutoNeg
3401                 * has completed.  We read this twice because this reg has
3402                 * some "sticky" (latched) bits.
3403                 */
3404                if (e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg) < 0) {
3405                        DEBUGOUT("PHY Read Error \n");
3406                        return -E1000_ERR_PHY;
3407                }
3408                if (e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg) < 0) {
3409                        DEBUGOUT("PHY Read Error \n");
3410                        return -E1000_ERR_PHY;
3411                }
3412
3413                if (mii_status_reg & MII_SR_AUTONEG_COMPLETE) {
3414                        /* The AutoNeg process has completed, so we now need to
3415                         * read both the Auto Negotiation Advertisement Register
3416                         * (Address 4) and the Auto_Negotiation Base Page Ability
3417                         * Register (Address 5) to determine how flow control was
3418                         * negotiated.
3419                         */
3420                        if (e1000_read_phy_reg
3421                            (hw, PHY_AUTONEG_ADV, &mii_nway_adv_reg) < 0) {
3422                                DEBUGOUT("PHY Read Error\n");
3423                                return -E1000_ERR_PHY;
3424                        }
3425                        if (e1000_read_phy_reg
3426                            (hw, PHY_LP_ABILITY,
3427                             &mii_nway_lp_ability_reg) < 0) {
3428                                DEBUGOUT("PHY Read Error\n");
3429                                return -E1000_ERR_PHY;
3430                        }
3431
3432                        /* Two bits in the Auto Negotiation Advertisement Register
3433                         * (Address 4) and two bits in the Auto Negotiation Base
3434                         * Page Ability Register (Address 5) determine flow control
3435                         * for both the PHY and the link partner.  The following
3436                         * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
3437                         * 1999, describes these PAUSE resolution bits and how flow
3438                         * control is determined based upon these settings.
3439                         * NOTE:  DC = Don't Care
3440                         *
3441                         *   LOCAL DEVICE  |   LINK PARTNER
3442                         * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
3443                         *-------|---------|-------|---------|--------------------
3444                         *   0   |    0    |  DC   |   DC    | e1000_fc_none
3445                         *   0   |    1    |   0   |   DC    | e1000_fc_none
3446                         *   0   |    1    |   1   |    0    | e1000_fc_none
3447                         *   0   |    1    |   1   |    1    | e1000_fc_tx_pause
3448                         *   1   |    0    |   0   |   DC    | e1000_fc_none
3449                         *   1   |   DC    |   1   |   DC    | e1000_fc_full
3450                         *   1   |    1    |   0   |    0    | e1000_fc_none
3451                         *   1   |    1    |   0   |    1    | e1000_fc_rx_pause
3452                         *
3453                         */
3454                        /* Are both PAUSE bits set to 1?  If so, this implies
3455                         * Symmetric Flow Control is enabled at both ends.  The
3456                         * ASM_DIR bits are irrelevant per the spec.
3457                         *
3458                         * For Symmetric Flow Control:
3459                         *
3460                         *   LOCAL DEVICE  |   LINK PARTNER
3461                         * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
3462                         *-------|---------|-------|---------|--------------------
3463                         *   1   |   DC    |   1   |   DC    | e1000_fc_full
3464                         *
3465                         */
3466                        if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
3467                            (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) {
3468                                /* Now we need to check if the user selected RX ONLY
3469                                 * of pause frames.  In this case, we had to advertise
3470                                 * FULL flow control because we could not advertise RX
3471                                 * ONLY. Hence, we must now check to see if we need to
3472                                 * turn OFF  the TRANSMISSION of PAUSE frames.
3473                                 */
3474                                if (hw->original_fc == e1000_fc_full) {
3475                                        hw->fc = e1000_fc_full;
3476                                        DEBUGOUT("Flow Control = FULL.\r\n");
3477                                } else {
3478                                        hw->fc = e1000_fc_rx_pause;
3479                                        DEBUGOUT
3480                                            ("Flow Control = RX PAUSE frames only.\r\n");
3481                                }
3482                        }
3483                        /* For receiving PAUSE frames ONLY.
3484                         *
3485                         *   LOCAL DEVICE  |   LINK PARTNER
3486                         * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
3487                         *-------|---------|-------|---------|--------------------
3488                         *   0   |    1    |   1   |    1    | e1000_fc_tx_pause
3489                         *
3490                         */
3491                        else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) &&
3492                                 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
3493                                 (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
3494                                 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR))
3495                        {
3496                                hw->fc = e1000_fc_tx_pause;
3497                                DEBUGOUT
3498                                    ("Flow Control = TX PAUSE frames only.\r\n");
3499                        }
3500                        /* For transmitting PAUSE frames ONLY.
3501                         *
3502                         *   LOCAL DEVICE  |   LINK PARTNER
3503                         * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
3504                         *-------|---------|-------|---------|--------------------
3505                         *   1   |    1    |   0   |    1    | e1000_fc_rx_pause
3506                         *
3507                         */
3508                        else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
3509                                 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
3510                                 !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
3511                                 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR))
3512                        {
3513                                hw->fc = e1000_fc_rx_pause;
3514                                DEBUGOUT
3515                                    ("Flow Control = RX PAUSE frames only.\r\n");
3516                        }
3517                        /* Per the IEEE spec, at this point flow control should be
3518                         * disabled.  However, we want to consider that we could
3519                         * be connected to a legacy switch that doesn't advertise
3520                         * desired flow control, but can be forced on the link
3521                         * partner.  So if we advertised no flow control, that is
3522                         * what we will resolve to.  If we advertised some kind of
3523                         * receive capability (Rx Pause Only or Full Flow Control)
3524                         * and the link partner advertised none, we will configure
3525                         * ourselves to enable Rx Flow Control only.  We can do
3526                         * this safely for two reasons:  If the link partner really
3527                         * didn't want flow control enabled, and we enable Rx, no
3528                         * harm done since we won't be receiving any PAUSE frames
3529                         * anyway.  If the intent on the link partner was to have
3530                         * flow control enabled, then by us enabling RX only, we
3531                         * can at least receive pause frames and process them.
3532                         * This is a good idea because in most cases, since we are
3533                         * predominantly a server NIC, more times than not we will
3534                         * be asked to delay transmission of packets than asking
3535                         * our link partner to pause transmission of frames.
3536                         */
3537                        else if (hw->original_fc == e1000_fc_none ||
3538                                 hw->original_fc == e1000_fc_tx_pause) {
3539                                hw->fc = e1000_fc_none;
3540                                DEBUGOUT("Flow Control = NONE.\r\n");
3541                        } else {
3542                                hw->fc = e1000_fc_rx_pause;
3543                                DEBUGOUT
3544                                    ("Flow Control = RX PAUSE frames only.\r\n");
3545                        }
3546
3547                        /* Now we need to do one last check...  If we auto-
3548                         * negotiated to HALF DUPLEX, flow control should not be
3549                         * enabled per IEEE 802.3 spec.
3550                         */
3551                        e1000_get_speed_and_duplex(hw, &speed, &duplex);
3552
3553                        if (duplex == HALF_DUPLEX)
3554                                hw->fc = e1000_fc_none;
3555
3556                        /* Now we call a subroutine to actually force the MAC
3557                         * controller to use the correct flow control settings.
3558                         */
3559                        ret_val = e1000_force_mac_fc(hw);
3560                        if (ret_val < 0) {
3561                                DEBUGOUT
3562                                    ("Error forcing flow control settings\n");
3563                                return ret_val;
3564                        }
3565                } else {
3566                        DEBUGOUT
3567                            ("Copper PHY and Auto Neg has not completed.\r\n");
3568                }
3569        }
3570        return E1000_SUCCESS;
3571}
3572
3573/******************************************************************************
3574 * Checks to see if the link status of the hardware has changed.
3575 *
3576 * hw - Struct containing variables accessed by shared code
3577 *
3578 * Called by any function that needs to check the link status of the adapter.
3579 *****************************************************************************/
3580static int
3581e1000_check_for_link(struct eth_device *nic)
3582{
3583        struct e1000_hw *hw = nic->priv;
3584        uint32_t rxcw;
3585        uint32_t ctrl;
3586        uint32_t status;
3587        uint32_t rctl;
3588        uint32_t signal;
3589        int32_t ret_val;
3590        uint16_t phy_data;
3591        uint16_t lp_capability;
3592
3593        DEBUGFUNC();
3594
3595        /* On adapters with a MAC newer that 82544, SW Defineable pin 1 will be
3596         * set when the optics detect a signal. On older adapters, it will be
3597         * cleared when there is a signal
3598         */
3599        ctrl = E1000_READ_REG(hw, CTRL);
3600        if ((hw->mac_type > e1000_82544) && !(ctrl & E1000_CTRL_ILOS))
3601                signal = E1000_CTRL_SWDPIN1;
3602        else
3603                signal = 0;
3604
3605        status = E1000_READ_REG(hw, STATUS);
3606        rxcw = E1000_READ_REG(hw, RXCW);
3607        DEBUGOUT("ctrl: %#08x status %#08x rxcw %#08x\n", ctrl, status, rxcw);
3608
3609        /* If we have a copper PHY then we only want to go out to the PHY
3610         * registers to see if Auto-Neg has completed and/or if our link
3611         * status has changed.  The get_link_status flag will be set if we
3612         * receive a Link Status Change interrupt or we have Rx Sequence
3613         * Errors.
3614         */
3615        if ((hw->media_type == e1000_media_type_copper) && hw->get_link_status) {
3616                /* First we want to see if the MII Status Register reports
3617                 * link.  If so, then we want to get the current speed/duplex
3618                 * of the PHY.
3619                 * Read the register twice since the link bit is sticky.
3620                 */
3621                if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
3622                        DEBUGOUT("PHY Read Error\n");
3623                        return -E1000_ERR_PHY;
3624                }
3625                if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
3626                        DEBUGOUT("PHY Read Error\n");
3627                        return -E1000_ERR_PHY;
3628                }
3629
3630                if (phy_data & MII_SR_LINK_STATUS) {
3631                        hw->get_link_status = FALSE;
3632                } else {
3633                        /* No link detected */
3634                        return -E1000_ERR_NOLINK;
3635                }
3636
3637                /* We have a M88E1000 PHY and Auto-Neg is enabled.  If we
3638                 * have Si on board that is 82544 or newer, Auto
3639                 * Speed Detection takes care of MAC speed/duplex
3640                 * configuration.  So we only need to configure Collision
3641                 * Distance in the MAC.  Otherwise, we need to force
3642                 * speed/duplex on the MAC to the current PHY speed/duplex
3643                 * settings.
3644                 */
3645                if (hw->mac_type >= e1000_82544)
3646                        e1000_config_collision_dist(hw);
3647                else {
3648                        ret_val = e1000_config_mac_to_phy(hw);
3649                        if (ret_val < 0) {
3650                                DEBUGOUT
3651                                    ("Error configuring MAC to PHY settings\n");
3652                                return ret_val;
3653                        }
3654                }
3655
3656                /* Configure Flow Control now that Auto-Neg has completed. First, we
3657                 * need to restore the desired flow control settings because we may
3658                 * have had to re-autoneg with a different link partner.
3659                 */
3660                ret_val = e1000_config_fc_after_link_up(hw);
3661                if (ret_val < 0) {
3662                        DEBUGOUT("Error configuring flow control\n");
3663                        return ret_val;
3664                }
3665
3666                /* At this point we know that we are on copper and we have
3667                 * auto-negotiated link.  These are conditions for checking the link
3668                 * parter capability register.  We use the link partner capability to
3669                 * determine if TBI Compatibility needs to be turned on or off.  If
3670                 * the link partner advertises any speed in addition to Gigabit, then
3671                 * we assume that they are GMII-based, and TBI compatibility is not
3672                 * needed. If no other speeds are advertised, we assume the link
3673                 * partner is TBI-based, and we turn on TBI Compatibility.
3674                 */
3675                if (hw->tbi_compatibility_en) {
3676                        if (e1000_read_phy_reg
3677                            (hw, PHY_LP_ABILITY, &lp_capability) < 0) {
3678                                DEBUGOUT("PHY Read Error\n");
3679                                return -E1000_ERR_PHY;
3680                        }
3681                        if (lp_capability & (NWAY_LPAR_10T_HD_CAPS |
3682                                             NWAY_LPAR_10T_FD_CAPS |
3683                                             NWAY_LPAR_100TX_HD_CAPS |
3684                                             NWAY_LPAR_100TX_FD_CAPS |
3685                                             NWAY_LPAR_100T4_CAPS)) {
3686                                /* If our link partner advertises anything in addition to
3687                                 * gigabit, we do not need to enable TBI compatibility.
3688                                 */
3689                                if (hw->tbi_compatibility_on) {
3690                                        /* If we previously were in the mode, turn it off. */
3691                                        rctl = E1000_READ_REG(hw, RCTL);
3692                                        rctl &= ~E1000_RCTL_SBP;
3693                                        E1000_WRITE_REG(hw, RCTL, rctl);
3694                                        hw->tbi_compatibility_on = FALSE;
3695                                }
3696                        } else {
3697                                /* If TBI compatibility is was previously off, turn it on. For
3698                                 * compatibility with a TBI link partner, we will store bad
3699                                 * packets. Some frames have an additional byte on the end and
3700                                 * will look like CRC errors to to the hardware.
3701                                 */
3702                                if (!hw->tbi_compatibility_on) {
3703                                        hw->tbi_compatibility_on = TRUE;
3704                                        rctl = E1000_READ_REG(hw, RCTL);
3705                                        rctl |= E1000_RCTL_SBP;
3706                                        E1000_WRITE_REG(hw, RCTL, rctl);
3707                                }
3708                        }
3709                }
3710        }
3711        /* If we don't have link (auto-negotiation failed or link partner cannot
3712         * auto-negotiate), the cable is plugged in (we have signal), and our
3713         * link partner is not trying to auto-negotiate with us (we are receiving
3714         * idles or data), we need to force link up. We also need to give
3715         * auto-negotiation time to complete, in case the cable was just plugged
3716         * in. The autoneg_failed flag does this.
3717         */
3718        else if ((hw->media_type == e1000_media_type_fiber) &&
3719                 (!(status & E1000_STATUS_LU)) &&
3720                 ((ctrl & E1000_CTRL_SWDPIN1) == signal) &&
3721                 (!(rxcw & E1000_RXCW_C))) {
3722                if (hw->autoneg_failed == 0) {
3723                        hw->autoneg_failed = 1;
3724                        return 0;
3725                }
3726                DEBUGOUT("NOT RXing /C/, disable AutoNeg and force link.\r\n");
3727
3728                /* Disable auto-negotiation in the TXCW register */
3729                E1000_WRITE_REG(hw, TXCW, (hw->txcw & ~E1000_TXCW_ANE));
3730
3731                /* Force link-up and also force full-duplex. */
3732                ctrl = E1000_READ_REG(hw, CTRL);
3733                ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
3734                E1000_WRITE_REG(hw, CTRL, ctrl);
3735
3736                /* Configure Flow Control after forcing link up. */
3737                ret_val = e1000_config_fc_after_link_up(hw);
3738                if (ret_val < 0) {
3739                        DEBUGOUT("Error configuring flow control\n");
3740                        return ret_val;
3741                }
3742        }
3743        /* If we are forcing link and we are receiving /C/ ordered sets, re-enable
3744         * auto-negotiation in the TXCW register and disable forced link in the
3745         * Device Control register in an attempt to auto-negotiate with our link
3746         * partner.
3747         */
3748        else if ((hw->media_type == e1000_media_type_fiber) &&
3749                 (ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
3750                DEBUGOUT
3751                    ("RXing /C/, enable AutoNeg and stop forcing link.\r\n");
3752                E1000_WRITE_REG(hw, TXCW, hw->txcw);
3753                E1000_WRITE_REG(hw, CTRL, (ctrl & ~E1000_CTRL_SLU));
3754        }
3755        return 0;
3756}
3757
3758/******************************************************************************
3759* Configure the MAC-to-PHY interface for 10/100Mbps
3760*
3761* hw - Struct containing variables accessed by shared code
3762******************************************************************************/
3763static int32_t
3764e1000_configure_kmrn_for_10_100(struct e1000_hw *hw, uint16_t duplex)
3765{
3766        int32_t ret_val = E1000_SUCCESS;
3767        uint32_t tipg;
3768        uint16_t reg_data;
3769
3770        DEBUGFUNC();
3771
3772        reg_data = E1000_KUMCTRLSTA_HD_CTRL_10_100_DEFAULT;
3773        ret_val = e1000_write_kmrn_reg(hw,
3774                        E1000_KUMCTRLSTA_OFFSET_HD_CTRL, reg_data);
3775        if (ret_val)
3776                return ret_val;
3777
3778        /* Configure Transmit Inter-Packet Gap */
3779        tipg = E1000_READ_REG(hw, TIPG);
3780        tipg &= ~E1000_TIPG_IPGT_MASK;
3781        tipg |= DEFAULT_80003ES2LAN_TIPG_IPGT_10_100;
3782        E1000_WRITE_REG(hw, TIPG, tipg);
3783
3784        ret_val = e1000_read_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data);
3785
3786        if (ret_val)
3787                return ret_val;
3788
3789        if (duplex == HALF_DUPLEX)
3790                reg_data |= GG82563_KMCR_PASS_FALSE_CARRIER;
3791        else
3792                reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
3793
3794        ret_val = e1000_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
3795
3796        return ret_val;
3797}
3798
3799static int32_t
3800e1000_configure_kmrn_for_1000(struct e1000_hw *hw)
3801{
3802        int32_t ret_val = E1000_SUCCESS;
3803        uint16_t reg_data;
3804        uint32_t tipg;
3805
3806        DEBUGFUNC();
3807
3808        reg_data = E1000_KUMCTRLSTA_HD_CTRL_1000_DEFAULT;
3809        ret_val = e1000_write_kmrn_reg(hw,
3810                        E1000_KUMCTRLSTA_OFFSET_HD_CTRL, reg_data);
3811        if (ret_val)
3812                return ret_val;
3813
3814        /* Configure Transmit Inter-Packet Gap */
3815        tipg = E1000_READ_REG(hw, TIPG);
3816        tipg &= ~E1000_TIPG_IPGT_MASK;
3817        tipg |= DEFAULT_80003ES2LAN_TIPG_IPGT_1000;
3818        E1000_WRITE_REG(hw, TIPG, tipg);
3819
3820        ret_val = e1000_read_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data);
3821
3822        if (ret_val)
3823                return ret_val;
3824
3825        reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
3826        ret_val = e1000_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
3827
3828        return ret_val;
3829}
3830
3831/******************************************************************************
3832 * Detects the current speed and duplex settings of the hardware.
3833 *
3834 * hw - Struct containing variables accessed by shared code
3835 * speed - Speed of the connection
3836 * duplex - Duplex setting of the connection
3837 *****************************************************************************/
3838static int
3839e1000_get_speed_and_duplex(struct e1000_hw *hw, uint16_t *speed,
3840                uint16_t *duplex)
3841{
3842        uint32_t status;
3843        int32_t ret_val;
3844        uint16_t phy_data;
3845
3846        DEBUGFUNC();
3847
3848        if (hw->mac_type >= e1000_82543) {
3849                status = E1000_READ_REG(hw, STATUS);
3850                if (status & E1000_STATUS_SPEED_1000) {
3851                        *speed = SPEED_1000;
3852                        DEBUGOUT("1000 Mbs, ");
3853                } else if (status & E1000_STATUS_SPEED_100) {
3854                        *speed = SPEED_100;
3855                        DEBUGOUT("100 Mbs, ");
3856                } else {
3857                        *speed = SPEED_10;
3858                        DEBUGOUT("10 Mbs, ");
3859                }
3860
3861                if (status & E1000_STATUS_FD) {
3862                        *duplex = FULL_DUPLEX;
3863                        DEBUGOUT("Full Duplex\r\n");
3864                } else {
3865                        *duplex = HALF_DUPLEX;
3866                        DEBUGOUT(" Half Duplex\r\n");
3867                }
3868        } else {
3869                DEBUGOUT("1000 Mbs, Full Duplex\r\n");
3870                *speed = SPEED_1000;
3871                *duplex = FULL_DUPLEX;
3872        }
3873
3874        /* IGP01 PHY may advertise full duplex operation after speed downgrade
3875         * even if it is operating at half duplex.  Here we set the duplex
3876         * settings to match the duplex in the link partner's capabilities.
3877         */
3878        if (hw->phy_type == e1000_phy_igp && hw->speed_downgraded) {
3879                ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_EXP, &phy_data);
3880                if (ret_val)
3881                        return ret_val;
3882
3883                if (!(phy_data & NWAY_ER_LP_NWAY_CAPS))
3884                        *duplex = HALF_DUPLEX;
3885                else {
3886                        ret_val = e1000_read_phy_reg(hw,
3887                                        PHY_LP_ABILITY, &phy_data);
3888                        if (ret_val)
3889                                return ret_val;
3890                        if ((*speed == SPEED_100 &&
3891                                !(phy_data & NWAY_LPAR_100TX_FD_CAPS))
3892                                || (*speed == SPEED_10
3893                                && !(phy_data & NWAY_LPAR_10T_FD_CAPS)))
3894                                *duplex = HALF_DUPLEX;
3895                }
3896        }
3897
3898        if ((hw->mac_type == e1000_80003es2lan) &&
3899                (hw->media_type == e1000_media_type_copper)) {
3900                if (*speed == SPEED_1000)
3901                        ret_val = e1000_configure_kmrn_for_1000(hw);
3902                else
3903                        ret_val = e1000_configure_kmrn_for_10_100(hw, *duplex);
3904                if (ret_val)
3905                        return ret_val;
3906        }
3907        return E1000_SUCCESS;
3908}
3909
3910/******************************************************************************
3911* Blocks until autoneg completes or times out (~4.5 seconds)
3912*
3913* hw - Struct containing variables accessed by shared code
3914******************************************************************************/
3915static int
3916e1000_wait_autoneg(struct e1000_hw *hw)
3917{
3918        uint16_t i;
3919        uint16_t phy_data;
3920
3921        DEBUGFUNC();
3922        DEBUGOUT("Waiting for Auto-Neg to complete.\n");
3923
3924        /* We will wait for autoneg to complete or 4.5 seconds to expire. */
3925        for (i = PHY_AUTO_NEG_TIME; i > 0; i--) {
3926                /* Read the MII Status Register and wait for Auto-Neg
3927                 * Complete bit to be set.
3928                 */
3929                if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
3930                        DEBUGOUT("PHY Read Error\n");
3931                        return -E1000_ERR_PHY;
3932                }
3933                if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
3934                        DEBUGOUT("PHY Read Error\n");
3935                        return -E1000_ERR_PHY;
3936                }
3937                if (phy_data & MII_SR_AUTONEG_COMPLETE) {
3938                        DEBUGOUT("Auto-Neg complete.\n");
3939                        return 0;
3940                }
3941                mdelay(100);
3942        }
3943        DEBUGOUT("Auto-Neg timedout.\n");
3944        return -E1000_ERR_TIMEOUT;
3945}
3946
3947/******************************************************************************
3948* Raises the Management Data Clock
3949*
3950* hw - Struct containing variables accessed by shared code
3951* ctrl - Device control register's current value
3952******************************************************************************/
3953static void
3954e1000_raise_mdi_clk(struct e1000_hw *hw, uint32_t * ctrl)
3955{
3956        /* Raise the clock input to the Management Data Clock (by setting the MDC
3957         * bit), and then delay 2 microseconds.
3958         */
3959        E1000_WRITE_REG(hw, CTRL, (*ctrl | E1000_CTRL_MDC));
3960        E1000_WRITE_FLUSH(hw);
3961        udelay(2);
3962}
3963
3964/******************************************************************************
3965* Lowers the Management Data Clock
3966*
3967* hw - Struct containing variables accessed by shared code
3968* ctrl - Device control register's current value
3969******************************************************************************/
3970static void
3971e1000_lower_mdi_clk(struct e1000_hw *hw, uint32_t * ctrl)
3972{
3973        /* Lower the clock input to the Management Data Clock (by clearing the MDC
3974         * bit), and then delay 2 microseconds.
3975         */
3976        E1000_WRITE_REG(hw, CTRL, (*ctrl & ~E1000_CTRL_MDC));
3977        E1000_WRITE_FLUSH(hw);
3978        udelay(2);
3979}
3980
3981/******************************************************************************
3982* Shifts data bits out to the PHY
3983*
3984* hw - Struct containing variables accessed by shared code
3985* data - Data to send out to the PHY
3986* count - Number of bits to shift out
3987*
3988* Bits are shifted out in MSB to LSB order.
3989******************************************************************************/
3990static void
3991e1000_shift_out_mdi_bits(struct e1000_hw *hw, uint32_t data, uint16_t count)
3992{
3993        uint32_t ctrl;
3994        uint32_t mask;
3995
3996        /* We need to shift "count" number of bits out to the PHY. So, the value
3997         * in the "data" parameter will be shifted out to the PHY one bit at a
3998         * time. In order to do this, "data" must be broken down into bits.
3999         */
4000        mask = 0x01;
4001        mask <<= (count - 1);
4002
4003        ctrl = E1000_READ_REG(hw, CTRL);
4004
4005        /* Set MDIO_DIR and MDC_DIR direction bits to be used as output pins. */
4006        ctrl |= (E1000_CTRL_MDIO_DIR | E1000_CTRL_MDC_DIR);
4007
4008        while (mask) {
4009                /* A "1" is shifted out to the PHY by setting the MDIO bit to "1" and
4010                 * then raising and lowering the Management Data Clock. A "0" is
4011                 * shifted out to the PHY by setting the MDIO bit to "0" and then
4012                 * raising and lowering the clock.
4013                 */
4014                if (data & mask)
4015                        ctrl |= E1000_CTRL_MDIO;
4016                else
4017                        ctrl &= ~E1000_CTRL_MDIO;
4018
4019                E1000_WRITE_REG(hw, CTRL, ctrl);
4020                E1000_WRITE_FLUSH(hw);
4021
4022                udelay(2);
4023
4024                e1000_raise_mdi_clk(hw, &ctrl);
4025                e1000_lower_mdi_clk(hw, &ctrl);
4026
4027                mask = mask >> 1;
4028        }
4029}
4030
4031/******************************************************************************
4032* Shifts data bits in from the PHY
4033*
4034* hw - Struct containing variables accessed by shared code
4035*
4036* Bits are shifted in in MSB to LSB order.
4037******************************************************************************/
4038static uint16_t
4039e1000_shift_in_mdi_bits(struct e1000_hw *hw)
4040{
4041        uint32_t ctrl;
4042        uint16_t data = 0;
4043        uint8_t i;
4044
4045        /* In order to read a register from the PHY, we need to shift in a total
4046         * of 18 bits from the PHY. The first two bit (turnaround) times are used
4047         * to avoid contention on the MDIO pin when a read operation is performed.
4048         * These two bits are ignored by us and thrown away. Bits are "shifted in"
4049         * by raising the input to the Management Data Clock (setting the MDC bit),
4050         * and then reading the value of the MDIO bit.
4051         */
4052        ctrl = E1000_READ_REG(hw, CTRL);
4053
4054        /* Clear MDIO_DIR (SWDPIO1) to indicate this bit is to be used as input. */
4055        ctrl &= ~E1000_CTRL_MDIO_DIR;
4056        ctrl &= ~E1000_CTRL_MDIO;
4057
4058        E1000_WRITE_REG(hw, CTRL, ctrl);
4059        E1000_WRITE_FLUSH(hw);
4060
4061        /* Raise and Lower the clock before reading in the data. This accounts for
4062         * the turnaround bits. The first clock occurred when we clocked out the
4063         * last bit of the Register Address.
4064         */
4065        e1000_raise_mdi_clk(hw, &ctrl);
4066        e1000_lower_mdi_clk(hw, &ctrl);
4067
4068        for (data = 0, i = 0; i < 16; i++) {
4069                data = data << 1;
4070                e1000_raise_mdi_clk(hw, &ctrl);
4071                ctrl = E1000_READ_REG(hw, CTRL);
4072                /* Check to see if we shifted in a "1". */
4073                if (ctrl & E1000_CTRL_MDIO)
4074                        data |= 1;
4075                e1000_lower_mdi_clk(hw, &ctrl);
4076        }
4077
4078        e1000_raise_mdi_clk(hw, &ctrl);
4079        e1000_lower_mdi_clk(hw, &ctrl);
4080
4081        return data;
4082}
4083
4084/*****************************************************************************
4085* Reads the value from a PHY register
4086*
4087* hw - Struct containing variables accessed by shared code
4088* reg_addr - address of the PHY register to read
4089******************************************************************************/
4090static int
4091e1000_read_phy_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t * phy_data)
4092{
4093        uint32_t i;
4094        uint32_t mdic = 0;
4095        const uint32_t phy_addr = 1;
4096
4097        if (reg_addr > MAX_PHY_REG_ADDRESS) {
4098                DEBUGOUT("PHY Address %d is out of range\n", reg_addr);
4099                return -E1000_ERR_PARAM;
4100        }
4101
4102        if (hw->mac_type > e1000_82543) {
4103                /* Set up Op-code, Phy Address, and register address in the MDI
4104                 * Control register.  The MAC will take care of interfacing with the
4105                 * PHY to retrieve the desired data.
4106                 */
4107                mdic = ((reg_addr << E1000_MDIC_REG_SHIFT) |
4108                        (phy_addr << E1000_MDIC_PHY_SHIFT) |
4109                        (E1000_MDIC_OP_READ));
4110
4111                E1000_WRITE_REG(hw, MDIC, mdic);
4112
4113                /* Poll the ready bit to see if the MDI read completed */
4114                for (i = 0; i < 64; i++) {
4115                        udelay(10);
4116                        mdic = E1000_READ_REG(hw, MDIC);
4117                        if (mdic & E1000_MDIC_READY)
4118                                break;
4119                }
4120                if (!(mdic & E1000_MDIC_READY)) {
4121                        DEBUGOUT("MDI Read did not complete\n");
4122                        return -E1000_ERR_PHY;
4123                }
4124                if (mdic & E1000_MDIC_ERROR) {
4125                        DEBUGOUT("MDI Error\n");
4126                        return -E1000_ERR_PHY;
4127                }
4128                *phy_data = (uint16_t) mdic;
4129        } else {
4130                /* We must first send a preamble through the MDIO pin to signal the
4131                 * beginning of an MII instruction.  This is done by sending 32
4132                 * consecutive "1" bits.
4133                 */
4134                e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
4135
4136                /* Now combine the next few fields that are required for a read
4137                 * operation.  We use this method instead of calling the
4138                 * e1000_shift_out_mdi_bits routine five different times. The format of
4139                 * a MII read instruction consists of a shift out of 14 bits and is
4140                 * defined as follows:
4141                 *    <Preamble><SOF><Op Code><Phy Addr><Reg Addr>
4142                 * followed by a shift in of 18 bits.  This first two bits shifted in
4143                 * are TurnAround bits used to avoid contention on the MDIO pin when a
4144                 * READ operation is performed.  These two bits are thrown away
4145                 * followed by a shift in of 16 bits which contains the desired data.
4146                 */
4147                mdic = ((reg_addr) | (phy_addr << 5) |
4148                        (PHY_OP_READ << 10) | (PHY_SOF << 12));
4149
4150                e1000_shift_out_mdi_bits(hw, mdic, 14);
4151
4152                /* Now that we've shifted out the read command to the MII, we need to
4153                 * "shift in" the 16-bit value (18 total bits) of the requested PHY
4154                 * register address.
4155                 */
4156                *phy_data = e1000_shift_in_mdi_bits(hw);
4157        }
4158        return 0;
4159}
4160
4161/******************************************************************************
4162* Writes a value to a PHY register
4163*
4164* hw - Struct containing variables accessed by shared code
4165* reg_addr - address of the PHY register to write
4166* data - data to write to the PHY
4167******************************************************************************/
4168static int
4169e1000_write_phy_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t phy_data)
4170{
4171        uint32_t i;
4172        uint32_t mdic = 0;
4173        const uint32_t phy_addr = 1;
4174
4175        if (reg_addr > MAX_PHY_REG_ADDRESS) {
4176                DEBUGOUT("PHY Address %d is out of range\n", reg_addr);
4177                return -E1000_ERR_PARAM;
4178        }
4179
4180        if (hw->mac_type > e1000_82543) {
4181                /* Set up Op-code, Phy Address, register address, and data intended
4182                 * for the PHY register in the MDI Control register.  The MAC will take
4183                 * care of interfacing with the PHY to send the desired data.
4184                 */
4185                mdic = (((uint32_t) phy_data) |
4186                        (reg_addr << E1000_MDIC_REG_SHIFT) |
4187                        (phy_addr << E1000_MDIC_PHY_SHIFT) |
4188                        (E1000_MDIC_OP_WRITE));
4189
4190                E1000_WRITE_REG(hw, MDIC, mdic);
4191
4192                /* Poll the ready bit to see if the MDI read completed */
4193                for (i = 0; i < 64; i++) {
4194                        udelay(10);
4195                        mdic = E1000_READ_REG(hw, MDIC);
4196                        if (mdic & E1000_MDIC_READY)
4197                                break;
4198                }
4199                if (!(mdic & E1000_MDIC_READY)) {
4200                        DEBUGOUT("MDI Write did not complete\n");
4201                        return -E1000_ERR_PHY;
4202                }
4203        } else {
4204                /* We'll need to use the SW defined pins to shift the write command
4205                 * out to the PHY. We first send a preamble to the PHY to signal the
4206                 * beginning of the MII instruction.  This is done by sending 32
4207                 * consecutive "1" bits.
4208                 */
4209                e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
4210
4211                /* Now combine the remaining required fields that will indicate a
4212                 * write operation. We use this method instead of calling the
4213                 * e1000_shift_out_mdi_bits routine for each field in the command. The
4214                 * format of a MII write instruction is as follows:
4215                 * <Preamble><SOF><Op Code><Phy Addr><Reg Addr><Turnaround><Data>.
4216                 */
4217                mdic = ((PHY_TURNAROUND) | (reg_addr << 2) | (phy_addr << 7) |
4218                        (PHY_OP_WRITE << 12) | (PHY_SOF << 14));
4219                mdic <<= 16;
4220                mdic |= (uint32_t) phy_data;
4221
4222                e1000_shift_out_mdi_bits(hw, mdic, 32);
4223        }
4224        return 0;
4225}
4226
4227/******************************************************************************
4228 * Checks if PHY reset is blocked due to SOL/IDER session, for example.
4229 * Returning E1000_BLK_PHY_RESET isn't necessarily an error.  But it's up to
4230 * the caller to figure out how to deal with it.
4231 *
4232 * hw - Struct containing variables accessed by shared code
4233 *
4234 * returns: - E1000_BLK_PHY_RESET
4235 *            E1000_SUCCESS
4236 *
4237 *****************************************************************************/
4238int32_t
4239e1000_check_phy_reset_block(struct e1000_hw *hw)
4240{
4241        uint32_t manc = 0;
4242        uint32_t fwsm = 0;
4243
4244        if (hw->mac_type == e1000_ich8lan) {
4245                fwsm = E1000_READ_REG(hw, FWSM);
4246                return (fwsm & E1000_FWSM_RSPCIPHY) ? E1000_SUCCESS
4247                                                : E1000_BLK_PHY_RESET;
4248        }
4249
4250        if (hw->mac_type > e1000_82547_rev_2)
4251                manc = E1000_READ_REG(hw, MANC);
4252        return (manc & E1000_MANC_BLK_PHY_RST_ON_IDE) ?
4253                E1000_BLK_PHY_RESET : E1000_SUCCESS;
4254}
4255
4256/***************************************************************************
4257 * Checks if the PHY configuration is done
4258 *
4259 * hw: Struct containing variables accessed by shared code
4260 *
4261 * returns: - E1000_ERR_RESET if fail to reset MAC
4262 *            E1000_SUCCESS at any other case.
4263 *
4264 ***************************************************************************/
4265static int32_t
4266e1000_get_phy_cfg_done(struct e1000_hw *hw)
4267{
4268        int32_t timeout = PHY_CFG_TIMEOUT;
4269        uint32_t cfg_mask = E1000_EEPROM_CFG_DONE;
4270
4271        DEBUGFUNC();
4272
4273        switch (hw->mac_type) {
4274        default:
4275                mdelay(10);
4276                break;
4277
4278        case e1000_80003es2lan:
4279                /* Separate *_CFG_DONE_* bit for each port */
4280                if (e1000_is_second_port(hw))
4281                        cfg_mask = E1000_EEPROM_CFG_DONE_PORT_1;
4282                /* Fall Through */
4283
4284        case e1000_82571:
4285        case e1000_82572:
4286                while (timeout) {
4287                        if (E1000_READ_REG(hw, EEMNGCTL) & cfg_mask)
4288                                break;
4289                        else
4290                                mdelay(1);
4291                        timeout--;
4292                }
4293                if (!timeout) {
4294                        DEBUGOUT("MNG configuration cycle has not "
4295                                        "completed.\n");
4296                        return -E1000_ERR_RESET;
4297                }
4298                break;
4299        }
4300
4301        return E1000_SUCCESS;
4302}
4303
4304/******************************************************************************
4305* Returns the PHY to the power-on reset state
4306*
4307* hw - Struct containing variables accessed by shared code
4308******************************************************************************/
4309int32_t
4310e1000_phy_hw_reset(struct e1000_hw *hw)
4311{
4312        uint16_t swfw = E1000_SWFW_PHY0_SM;
4313        uint32_t ctrl, ctrl_ext;
4314        uint32_t led_ctrl;
4315        int32_t ret_val;
4316
4317        DEBUGFUNC();
4318
4319        /* In the case of the phy reset being blocked, it's not an error, we
4320         * simply return success without performing the reset. */
4321        ret_val = e1000_check_phy_reset_block(hw);
4322        if (ret_val)
4323                return E1000_SUCCESS;
4324
4325        DEBUGOUT("Resetting Phy...\n");
4326
4327        if (hw->mac_type > e1000_82543) {
4328                if (e1000_is_second_port(hw))
4329                        swfw = E1000_SWFW_PHY1_SM;
4330
4331                if (e1000_swfw_sync_acquire(hw, swfw)) {
4332                        DEBUGOUT("Unable to acquire swfw sync\n");
4333                        return -E1000_ERR_SWFW_SYNC;
4334                }
4335
4336                /* Read the device control register and assert the E1000_CTRL_PHY_RST
4337                 * bit. Then, take it out of reset.
4338                 */
4339                ctrl = E1000_READ_REG(hw, CTRL);
4340                E1000_WRITE_REG(hw, CTRL, ctrl | E1000_CTRL_PHY_RST);
4341                E1000_WRITE_FLUSH(hw);
4342
4343                if (hw->mac_type < e1000_82571)
4344                        udelay(10);
4345                else
4346                        udelay(100);
4347
4348                E1000_WRITE_REG(hw, CTRL, ctrl);
4349                E1000_WRITE_FLUSH(hw);
4350
4351                if (hw->mac_type >= e1000_82571)
4352                        mdelay(10);
4353
4354        } else {
4355                /* Read the Extended Device Control Register, assert the PHY_RESET_DIR
4356                 * bit to put the PHY into reset. Then, take it out of reset.
4357                 */
4358                ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
4359                ctrl_ext |= E1000_CTRL_EXT_SDP4_DIR;
4360                ctrl_ext &= ~E1000_CTRL_EXT_SDP4_DATA;
4361                E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
4362                E1000_WRITE_FLUSH(hw);
4363                mdelay(10);
4364                ctrl_ext |= E1000_CTRL_EXT_SDP4_DATA;
4365                E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
4366                E1000_WRITE_FLUSH(hw);
4367        }
4368        udelay(150);
4369
4370        if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
4371                /* Configure activity LED after PHY reset */
4372                led_ctrl = E1000_READ_REG(hw, LEDCTL);
4373                led_ctrl &= IGP_ACTIVITY_LED_MASK;
4374                led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
4375                E1000_WRITE_REG(hw, LEDCTL, led_ctrl);
4376        }
4377
4378        /* Wait for FW to finish PHY configuration. */
4379        ret_val = e1000_get_phy_cfg_done(hw);
4380        if (ret_val != E1000_SUCCESS)
4381                return ret_val;
4382
4383        return ret_val;
4384}
4385
4386/******************************************************************************
4387 * IGP phy init script - initializes the GbE PHY
4388 *
4389 * hw - Struct containing variables accessed by shared code
4390 *****************************************************************************/
4391static void
4392e1000_phy_init_script(struct e1000_hw *hw)
4393{
4394        uint32_t ret_val;
4395        uint16_t phy_saved_data;
4396        DEBUGFUNC();
4397
4398        if (hw->phy_init_script) {
4399                mdelay(20);
4400
4401                /* Save off the current value of register 0x2F5B to be
4402                 * restored at the end of this routine. */
4403                ret_val = e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data);
4404
4405                /* Disabled the PHY transmitter */
4406                e1000_write_phy_reg(hw, 0x2F5B, 0x0003);
4407
4408                mdelay(20);
4409
4410                e1000_write_phy_reg(hw, 0x0000, 0x0140);
4411
4412                mdelay(5);
4413
4414                switch (hw->mac_type) {
4415                case e1000_82541:
4416                case e1000_82547:
4417                        e1000_write_phy_reg(hw, 0x1F95, 0x0001);
4418
4419                        e1000_write_phy_reg(hw, 0x1F71, 0xBD21);
4420
4421                        e1000_write_phy_reg(hw, 0x1F79, 0x0018);
4422
4423                        e1000_write_phy_reg(hw, 0x1F30, 0x1600);
4424
4425                        e1000_write_phy_reg(hw, 0x1F31, 0x0014);
4426
4427                        e1000_write_phy_reg(hw, 0x1F32, 0x161C);
4428
4429                        e1000_write_phy_reg(hw, 0x1F94, 0x0003);
4430
4431                        e1000_write_phy_reg(hw, 0x1F96, 0x003F);
4432
4433                        e1000_write_phy_reg(hw, 0x2010, 0x0008);
4434                        break;
4435
4436                case e1000_82541_rev_2:
4437                case e1000_82547_rev_2:
4438                        e1000_write_phy_reg(hw, 0x1F73, 0x0099);
4439                        break;
4440                default:
4441                        break;
4442                }
4443
4444                e1000_write_phy_reg(hw, 0x0000, 0x3300);
4445
4446                mdelay(20);
4447
4448                /* Now enable the transmitter */
4449                if (!ret_val)
4450                        e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data);
4451
4452                if (hw->mac_type == e1000_82547) {
4453                        uint16_t fused, fine, coarse;
4454
4455                        /* Move to analog registers page */
4456                        e1000_read_phy_reg(hw,
4457                                IGP01E1000_ANALOG_SPARE_FUSE_STATUS, &fused);
4458
4459                        if (!(fused & IGP01E1000_ANALOG_SPARE_FUSE_ENABLED)) {
4460                                e1000_read_phy_reg(hw,
4461                                        IGP01E1000_ANALOG_FUSE_STATUS, &fused);
4462
4463                                fine = fused & IGP01E1000_ANALOG_FUSE_FINE_MASK;
4464                                coarse = fused
4465                                        & IGP01E1000_ANALOG_FUSE_COARSE_MASK;
4466
4467                                if (coarse >
4468                                        IGP01E1000_ANALOG_FUSE_COARSE_THRESH) {
4469                                        coarse -=
4470                                        IGP01E1000_ANALOG_FUSE_COARSE_10;
4471                                        fine -= IGP01E1000_ANALOG_FUSE_FINE_1;
4472                                } else if (coarse
4473                                        == IGP01E1000_ANALOG_FUSE_COARSE_THRESH)
4474                                        fine -= IGP01E1000_ANALOG_FUSE_FINE_10;
4475
4476                                fused = (fused
4477                                        & IGP01E1000_ANALOG_FUSE_POLY_MASK) |
4478                                        (fine
4479                                        & IGP01E1000_ANALOG_FUSE_FINE_MASK) |
4480                                        (coarse
4481                                        & IGP01E1000_ANALOG_FUSE_COARSE_MASK);
4482
4483                                e1000_write_phy_reg(hw,
4484                                        IGP01E1000_ANALOG_FUSE_CONTROL, fused);
4485                                e1000_write_phy_reg(hw,
4486                                        IGP01E1000_ANALOG_FUSE_BYPASS,
4487                                IGP01E1000_ANALOG_FUSE_ENABLE_SW_CONTROL);
4488                        }
4489                }
4490        }
4491}
4492
4493/******************************************************************************
4494* Resets the PHY
4495*
4496* hw - Struct containing variables accessed by shared code
4497*
4498* Sets bit 15 of the MII Control register
4499******************************************************************************/
4500int32_t
4501e1000_phy_reset(struct e1000_hw *hw)
4502{
4503        int32_t ret_val;
4504        uint16_t phy_data;
4505
4506        DEBUGFUNC();
4507
4508        /* In the case of the phy reset being blocked, it's not an error, we
4509         * simply return success without performing the reset. */
4510        ret_val = e1000_check_phy_reset_block(hw);
4511        if (ret_val)
4512                return E1000_SUCCESS;
4513
4514        switch (hw->phy_type) {
4515        case e1000_phy_igp:
4516        case e1000_phy_igp_2:
4517        case e1000_phy_igp_3:
4518        case e1000_phy_ife:
4519                ret_val = e1000_phy_hw_reset(hw);
4520                if (ret_val)
4521                        return ret_val;
4522                break;
4523        default:
4524                ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data);
4525                if (ret_val)
4526                        return ret_val;
4527
4528                phy_data |= MII_CR_RESET;
4529                ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data);
4530                if (ret_val)
4531                        return ret_val;
4532
4533                udelay(1);
4534                break;
4535        }
4536
4537        if (hw->phy_type == e1000_phy_igp || hw->phy_type == e1000_phy_igp_2)
4538                e1000_phy_init_script(hw);
4539
4540        return E1000_SUCCESS;
4541}
4542
4543static int e1000_set_phy_type (struct e1000_hw *hw)
4544{
4545        DEBUGFUNC ();
4546
4547        if (hw->mac_type == e1000_undefined)
4548                return -E1000_ERR_PHY_TYPE;
4549
4550        switch (hw->phy_id) {
4551        case M88E1000_E_PHY_ID:
4552        case M88E1000_I_PHY_ID:
4553        case M88E1011_I_PHY_ID:
4554        case M88E1111_I_PHY_ID:
4555                hw->phy_type = e1000_phy_m88;
4556                break;
4557        case IGP01E1000_I_PHY_ID:
4558                if (hw->mac_type == e1000_82541 ||
4559                        hw->mac_type == e1000_82541_rev_2 ||
4560                        hw->mac_type == e1000_82547 ||
4561                        hw->mac_type == e1000_82547_rev_2) {
4562                        hw->phy_type = e1000_phy_igp;
4563                        hw->phy_type = e1000_phy_igp;
4564                        break;
4565                }
4566        case IGP03E1000_E_PHY_ID:
4567                hw->phy_type = e1000_phy_igp_3;
4568                break;
4569        case IFE_E_PHY_ID:
4570        case IFE_PLUS_E_PHY_ID:
4571        case IFE_C_E_PHY_ID:
4572                hw->phy_type = e1000_phy_ife;
4573                break;
4574        case GG82563_E_PHY_ID:
4575                if (hw->mac_type == e1000_80003es2lan) {
4576                        hw->phy_type = e1000_phy_gg82563;
4577                        break;
4578                }
4579        case BME1000_E_PHY_ID:
4580                hw->phy_type = e1000_phy_bm;
4581                break;
4582                /* Fall Through */
4583        default:
4584                /* Should never have loaded on this device */
4585                hw->phy_type = e1000_phy_undefined;
4586                return -E1000_ERR_PHY_TYPE;
4587        }
4588
4589        return E1000_SUCCESS;
4590}
4591
4592/******************************************************************************
4593* Probes the expected PHY address for known PHY IDs
4594*
4595* hw - Struct containing variables accessed by shared code
4596******************************************************************************/
4597static int32_t
4598e1000_detect_gig_phy(struct e1000_hw *hw)
4599{
4600        int32_t phy_init_status, ret_val;
4601        uint16_t phy_id_high, phy_id_low;
4602        boolean_t match = FALSE;
4603
4604        DEBUGFUNC();
4605
4606        /* The 82571 firmware may still be configuring the PHY.  In this
4607         * case, we cannot access the PHY until the configuration is done.  So
4608         * we explicitly set the PHY values. */
4609        if (hw->mac_type == e1000_82571 ||
4610                hw->mac_type == e1000_82572) {
4611                hw->phy_id = IGP01E1000_I_PHY_ID;
4612                hw->phy_type = e1000_phy_igp_2;
4613                return E1000_SUCCESS;
4614        }
4615
4616        /* ESB-2 PHY reads require e1000_phy_gg82563 to be set because of a
4617         * work- around that forces PHY page 0 to be set or the reads fail.
4618         * The rest of the code in this routine uses e1000_read_phy_reg to
4619         * read the PHY ID.  So for ESB-2 we need to have this set so our
4620         * reads won't fail.  If the attached PHY is not a e1000_phy_gg82563,
4621         * the routines below will figure this out as well. */
4622        if (hw->mac_type == e1000_80003es2lan)
4623                hw->phy_type = e1000_phy_gg82563;
4624
4625        /* Read the PHY ID Registers to identify which PHY is onboard. */
4626        ret_val = e1000_read_phy_reg(hw, PHY_ID1, &phy_id_high);
4627        if (ret_val)
4628                return ret_val;
4629
4630        hw->phy_id = (uint32_t) (phy_id_high << 16);
4631        udelay(20);
4632        ret_val = e1000_read_phy_reg(hw, PHY_ID2, &phy_id_low);
4633        if (ret_val)
4634                return ret_val;
4635
4636        hw->phy_id |= (uint32_t) (phy_id_low & PHY_REVISION_MASK);
4637        hw->phy_revision = (uint32_t) phy_id_low & ~PHY_REVISION_MASK;
4638
4639        switch (hw->mac_type) {
4640        case e1000_82543:
4641                if (hw->phy_id == M88E1000_E_PHY_ID)
4642                        match = TRUE;
4643                break;
4644        case e1000_82544:
4645                if (hw->phy_id == M88E1000_I_PHY_ID)
4646                        match = TRUE;
4647                break;
4648        case e1000_82540:
4649        case e1000_82545:
4650        case e1000_82545_rev_3:
4651        case e1000_82546:
4652        case e1000_82546_rev_3:
4653                if (hw->phy_id == M88E1011_I_PHY_ID)
4654                        match = TRUE;
4655                break;
4656        case e1000_82541:
4657        case e1000_82541_rev_2:
4658        case e1000_82547:
4659        case e1000_82547_rev_2:
4660                if(hw->phy_id == IGP01E1000_I_PHY_ID)
4661                        match = TRUE;
4662
4663                break;
4664        case e1000_82573:
4665                if (hw->phy_id == M88E1111_I_PHY_ID)
4666                        match = TRUE;
4667                break;
4668        case e1000_82574:
4669                if (hw->phy_id == BME1000_E_PHY_ID)
4670                        match = TRUE;
4671                break;
4672        case e1000_80003es2lan:
4673                if (hw->phy_id == GG82563_E_PHY_ID)
4674                        match = TRUE;
4675                break;
4676        case e1000_ich8lan:
4677                if (hw->phy_id == IGP03E1000_E_PHY_ID)
4678                        match = TRUE;
4679                if (hw->phy_id == IFE_E_PHY_ID)
4680                        match = TRUE;
4681                if (hw->phy_id == IFE_PLUS_E_PHY_ID)
4682                        match = TRUE;
4683                if (hw->phy_id == IFE_C_E_PHY_ID)
4684                        match = TRUE;
4685                break;
4686        default:
4687                DEBUGOUT("Invalid MAC type %d\n", hw->mac_type);
4688                return -E1000_ERR_CONFIG;
4689        }
4690
4691        phy_init_status = e1000_set_phy_type(hw);
4692
4693        if ((match) && (phy_init_status == E1000_SUCCESS)) {
4694                DEBUGOUT("PHY ID 0x%X detected\n", hw->phy_id);
4695                return 0;
4696        }
4697        DEBUGOUT("Invalid PHY ID 0x%X\n", hw->phy_id);
4698        return -E1000_ERR_PHY;
4699}
4700
4701/*****************************************************************************
4702 * Set media type and TBI compatibility.
4703 *
4704 * hw - Struct containing variables accessed by shared code
4705 * **************************************************************************/
4706void
4707e1000_set_media_type(struct e1000_hw *hw)
4708{
4709        uint32_t status;
4710
4711        DEBUGFUNC();
4712
4713        if (hw->mac_type != e1000_82543) {
4714                /* tbi_compatibility is only valid on 82543 */
4715                hw->tbi_compatibility_en = FALSE;
4716        }
4717
4718        switch (hw->device_id) {
4719        case E1000_DEV_ID_82545GM_SERDES:
4720        case E1000_DEV_ID_82546GB_SERDES:
4721        case E1000_DEV_ID_82571EB_SERDES:
4722        case E1000_DEV_ID_82571EB_SERDES_DUAL:
4723        case E1000_DEV_ID_82571EB_SERDES_QUAD:
4724        case E1000_DEV_ID_82572EI_SERDES:
4725        case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
4726                hw->media_type = e1000_media_type_internal_serdes;
4727                break;
4728        default:
4729                switch (hw->mac_type) {
4730                case e1000_82542_rev2_0:
4731                case e1000_82542_rev2_1:
4732                        hw->media_type = e1000_media_type_fiber;
4733                        break;
4734                case e1000_ich8lan:
4735                case e1000_82573:
4736                case e1000_82574:
4737                        /* The STATUS_TBIMODE bit is reserved or reused
4738                         * for the this device.
4739                         */
4740                        hw->media_type = e1000_media_type_copper;
4741                        break;
4742                default:
4743                        status = E1000_READ_REG(hw, STATUS);
4744                        if (status & E1000_STATUS_TBIMODE) {
4745                                hw->media_type = e1000_media_type_fiber;
4746                                /* tbi_compatibility not valid on fiber */
4747                                hw->tbi_compatibility_en = FALSE;
4748                        } else {
4749                                hw->media_type = e1000_media_type_copper;
4750                        }
4751                        break;
4752                }
4753        }
4754}
4755
4756/**
4757 * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
4758 *
4759 * e1000_sw_init initializes the Adapter private data structure.
4760 * Fields are initialized based on PCI device information and
4761 * OS network device settings (MTU size).
4762 **/
4763
4764static int
4765e1000_sw_init(struct eth_device *nic)
4766{
4767        struct e1000_hw *hw = (typeof(hw)) nic->priv;
4768        int result;
4769
4770        /* PCI config space info */
4771        pci_read_config_word(hw->pdev, PCI_VENDOR_ID, &hw->vendor_id);
4772        pci_read_config_word(hw->pdev, PCI_DEVICE_ID, &hw->device_id);
4773        pci_read_config_word(hw->pdev, PCI_SUBSYSTEM_VENDOR_ID,
4774                             &hw->subsystem_vendor_id);
4775        pci_read_config_word(hw->pdev, PCI_SUBSYSTEM_ID, &hw->subsystem_id);
4776
4777        pci_read_config_byte(hw->pdev, PCI_REVISION_ID, &hw->revision_id);
4778        pci_read_config_word(hw->pdev, PCI_COMMAND, &hw->pci_cmd_word);
4779
4780        /* identify the MAC */
4781        result = e1000_set_mac_type(hw);
4782        if (result) {
4783                E1000_ERR(hw->nic, "Unknown MAC Type\n");
4784                return result;
4785        }
4786
4787        switch (hw->mac_type) {
4788        default:
4789                break;
4790        case e1000_82541:
4791        case e1000_82547:
4792        case e1000_82541_rev_2:
4793        case e1000_82547_rev_2:
4794                hw->phy_init_script = 1;
4795                break;
4796        }
4797
4798        /* flow control settings */
4799        hw->fc_high_water = E1000_FC_HIGH_THRESH;
4800        hw->fc_low_water = E1000_FC_LOW_THRESH;
4801        hw->fc_pause_time = E1000_FC_PAUSE_TIME;
4802        hw->fc_send_xon = 1;
4803
4804        /* Media type - copper or fiber */
4805        e1000_set_media_type(hw);
4806
4807        if (hw->mac_type >= e1000_82543) {
4808                uint32_t status = E1000_READ_REG(hw, STATUS);
4809
4810                if (status & E1000_STATUS_TBIMODE) {
4811                        DEBUGOUT("fiber interface\n");
4812                        hw->media_type = e1000_media_type_fiber;
4813                } else {
4814                        DEBUGOUT("copper interface\n");
4815                        hw->media_type = e1000_media_type_copper;
4816                }
4817        } else {
4818                hw->media_type = e1000_media_type_fiber;
4819        }
4820
4821        hw->tbi_compatibility_en = TRUE;
4822        hw->wait_autoneg_complete = TRUE;
4823        if (hw->mac_type < e1000_82543)
4824                hw->report_tx_early = 0;
4825        else
4826                hw->report_tx_early = 1;
4827
4828        return E1000_SUCCESS;
4829}
4830
4831void
4832fill_rx(struct e1000_hw *hw)
4833{
4834        struct e1000_rx_desc *rd;
4835
4836        rx_last = rx_tail;
4837        rd = rx_base + rx_tail;
4838        rx_tail = (rx_tail + 1) % 8;
4839        memset(rd, 0, 16);
4840        rd->buffer_addr = cpu_to_le64((u32) & packet);
4841        E1000_WRITE_REG(hw, RDT, rx_tail);
4842}
4843
4844/**
4845 * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
4846 * @adapter: board private structure
4847 *
4848 * Configure the Tx unit of the MAC after a reset.
4849 **/
4850
4851static void
4852e1000_configure_tx(struct e1000_hw *hw)
4853{
4854        unsigned long ptr;
4855        unsigned long tctl;
4856        unsigned long tipg, tarc;
4857        uint32_t ipgr1, ipgr2;
4858
4859        ptr = (u32) tx_pool;
4860        if (ptr & 0xf)
4861                ptr = (ptr + 0x10) & (~0xf);
4862
4863        tx_base = (typeof(tx_base)) ptr;
4864
4865        E1000_WRITE_REG(hw, TDBAL, (u32) tx_base);
4866        E1000_WRITE_REG(hw, TDBAH, 0);
4867
4868        E1000_WRITE_REG(hw, TDLEN, 128);
4869
4870        /* Setup the HW Tx Head and Tail descriptor pointers */
4871        E1000_WRITE_REG(hw, TDH, 0);
4872        E1000_WRITE_REG(hw, TDT, 0);
4873        tx_tail = 0;
4874
4875        /* Set the default values for the Tx Inter Packet Gap timer */
4876        if (hw->mac_type <= e1000_82547_rev_2 &&
4877            (hw->media_type == e1000_media_type_fiber ||
4878             hw->media_type == e1000_media_type_internal_serdes))
4879                tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
4880        else
4881                tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
4882
4883        /* Set the default values for the Tx Inter Packet Gap timer */
4884        switch (hw->mac_type) {
4885        case e1000_82542_rev2_0:
4886        case e1000_82542_rev2_1:
4887                tipg = DEFAULT_82542_TIPG_IPGT;
4888                ipgr1 = DEFAULT_82542_TIPG_IPGR1;
4889                ipgr2 = DEFAULT_82542_TIPG_IPGR2;
4890                break;
4891        case e1000_80003es2lan:
4892                ipgr1 = DEFAULT_82543_TIPG_IPGR1;
4893                ipgr2 = DEFAULT_80003ES2LAN_TIPG_IPGR2;
4894                break;
4895        default:
4896                ipgr1 = DEFAULT_82543_TIPG_IPGR1;
4897                ipgr2 = DEFAULT_82543_TIPG_IPGR2;
4898                break;
4899        }
4900        tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
4901        tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
4902        E1000_WRITE_REG(hw, TIPG, tipg);
4903        /* Program the Transmit Control Register */
4904        tctl = E1000_READ_REG(hw, TCTL);
4905        tctl &= ~E1000_TCTL_CT;
4906        tctl |= E1000_TCTL_EN | E1000_TCTL_PSP |
4907            (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
4908
4909        if (hw->mac_type == e1000_82571 || hw->mac_type == e1000_82572) {
4910                tarc = E1000_READ_REG(hw, TARC0);
4911                /* set the speed mode bit, we'll clear it if we're not at
4912                 * gigabit link later */
4913                /* git bit can be set to 1*/
4914        } else if (hw->mac_type == e1000_80003es2lan) {
4915                tarc = E1000_READ_REG(hw, TARC0);
4916                tarc |= 1;
4917                E1000_WRITE_REG(hw, TARC0, tarc);
4918                tarc = E1000_READ_REG(hw, TARC1);
4919                tarc |= 1;
4920                E1000_WRITE_REG(hw, TARC1, tarc);
4921        }
4922
4923
4924        e1000_config_collision_dist(hw);
4925        /* Setup Transmit Descriptor Settings for eop descriptor */
4926        hw->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
4927
4928        /* Need to set up RS bit */
4929        if (hw->mac_type < e1000_82543)
4930                hw->txd_cmd |= E1000_TXD_CMD_RPS;
4931        else
4932                hw->txd_cmd |= E1000_TXD_CMD_RS;
4933        E1000_WRITE_REG(hw, TCTL, tctl);
4934}
4935
4936/**
4937 * e1000_setup_rctl - configure the receive control register
4938 * @adapter: Board private structure
4939 **/
4940static void
4941e1000_setup_rctl(struct e1000_hw *hw)
4942{
4943        uint32_t rctl;
4944
4945        rctl = E1000_READ_REG(hw, RCTL);
4946
4947        rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
4948
4949        rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_LBM_NO
4950                | E1000_RCTL_RDMTS_HALF;        /* |
4951                        (hw.mc_filter_type << E1000_RCTL_MO_SHIFT); */
4952
4953        if (hw->tbi_compatibility_on == 1)
4954                rctl |= E1000_RCTL_SBP;
4955        else
4956                rctl &= ~E1000_RCTL_SBP;
4957
4958        rctl &= ~(E1000_RCTL_SZ_4096);
4959                rctl |= E1000_RCTL_SZ_2048;
4960                rctl &= ~(E1000_RCTL_BSEX | E1000_RCTL_LPE);
4961        E1000_WRITE_REG(hw, RCTL, rctl);
4962}
4963
4964/**
4965 * e1000_configure_rx - Configure 8254x Receive Unit after Reset
4966 * @adapter: board private structure
4967 *
4968 * Configure the Rx unit of the MAC after a reset.
4969 **/
4970static void
4971e1000_configure_rx(struct e1000_hw *hw)
4972{
4973        unsigned long ptr;
4974        unsigned long rctl, ctrl_ext;
4975        rx_tail = 0;
4976        /* make sure receives are disabled while setting up the descriptors */
4977        rctl = E1000_READ_REG(hw, RCTL);
4978        E1000_WRITE_REG(hw, RCTL, rctl & ~E1000_RCTL_EN);
4979        if (hw->mac_type >= e1000_82540) {
4980                /* Set the interrupt throttling rate.  Value is calculated
4981                 * as DEFAULT_ITR = 1/(MAX_INTS_PER_SEC * 256ns) */
4982#define MAX_INTS_PER_SEC        8000
4983#define DEFAULT_ITR             1000000000/(MAX_INTS_PER_SEC * 256)
4984                E1000_WRITE_REG(hw, ITR, DEFAULT_ITR);
4985        }
4986
4987        if (hw->mac_type >= e1000_82571) {
4988                ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
4989                /* Reset delay timers after every interrupt */
4990                ctrl_ext |= E1000_CTRL_EXT_INT_TIMER_CLR;
4991                E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
4992                E1000_WRITE_FLUSH(hw);
4993        }
4994        /* Setup the Base and Length of the Rx Descriptor Ring */
4995        ptr = (u32) rx_pool;
4996        if (ptr & 0xf)
4997                ptr = (ptr + 0x10) & (~0xf);
4998        rx_base = (typeof(rx_base)) ptr;
4999        E1000_WRITE_REG(hw, RDBAL, (u32) rx_base);
5000        E1000_WRITE_REG(hw, RDBAH, 0);
5001
5002        E1000_WRITE_REG(hw, RDLEN, 128);
5003
5004        /* Setup the HW Rx Head and Tail Descriptor Pointers */
5005        E1000_WRITE_REG(hw, RDH, 0);
5006        E1000_WRITE_REG(hw, RDT, 0);
5007        /* Enable Receives */
5008
5009        E1000_WRITE_REG(hw, RCTL, rctl);
5010        fill_rx(hw);
5011}
5012
5013/**************************************************************************
5014POLL - Wait for a frame
5015***************************************************************************/
5016static int
5017e1000_poll(struct eth_device *nic)
5018{
5019        struct e1000_hw *hw = nic->priv;
5020        struct e1000_rx_desc *rd;
5021        /* return true if there's an ethernet packet ready to read */
5022        rd = rx_base + rx_last;
5023        if (!(le32_to_cpu(rd->status)) & E1000_RXD_STAT_DD)
5024                return 0;
5025        /*DEBUGOUT("recv: packet len=%d \n", rd->length); */
5026        NetReceive((uchar *)packet, le32_to_cpu(rd->length));
5027        fill_rx(hw);
5028        return 1;
5029}
5030
5031/**************************************************************************
5032TRANSMIT - Transmit a frame
5033***************************************************************************/
5034static int e1000_transmit(struct eth_device *nic, void *packet, int length)
5035{
5036        void *nv_packet = (void *)packet;
5037        struct e1000_hw *hw = nic->priv;
5038        struct e1000_tx_desc *txp;
5039        int i = 0;
5040
5041        txp = tx_base + tx_tail;
5042        tx_tail = (tx_tail + 1) % 8;
5043
5044        txp->buffer_addr = cpu_to_le64(virt_to_bus(hw->pdev, nv_packet));
5045        txp->lower.data = cpu_to_le32(hw->txd_cmd | length);
5046        txp->upper.data = 0;
5047        E1000_WRITE_REG(hw, TDT, tx_tail);
5048
5049        E1000_WRITE_FLUSH(hw);
5050        while (!(le32_to_cpu(txp->upper.data) & E1000_TXD_STAT_DD)) {
5051                if (i++ > TOUT_LOOP) {
5052                        DEBUGOUT("e1000: tx timeout\n");
5053                        return 0;
5054                }
5055                udelay(10);     /* give the nic a chance to write to the register */
5056        }
5057        return 1;
5058}
5059
5060/*reset function*/
5061static inline int
5062e1000_reset(struct eth_device *nic)
5063{
5064        struct e1000_hw *hw = nic->priv;
5065
5066        e1000_reset_hw(hw);
5067        if (hw->mac_type >= e1000_82544) {
5068                E1000_WRITE_REG(hw, WUC, 0);
5069        }
5070        return e1000_init_hw(nic);
5071}
5072
5073/**************************************************************************
5074DISABLE - Turn off ethernet interface
5075***************************************************************************/
5076static void
5077e1000_disable(struct eth_device *nic)
5078{
5079        struct e1000_hw *hw = nic->priv;
5080
5081        /* Turn off the ethernet interface */
5082        E1000_WRITE_REG(hw, RCTL, 0);
5083        E1000_WRITE_REG(hw, TCTL, 0);
5084
5085        /* Clear the transmit ring */
5086        E1000_WRITE_REG(hw, TDH, 0);
5087        E1000_WRITE_REG(hw, TDT, 0);
5088
5089        /* Clear the receive ring */
5090        E1000_WRITE_REG(hw, RDH, 0);
5091        E1000_WRITE_REG(hw, RDT, 0);
5092
5093        /* put the card in its initial state */
5094#if 0
5095        E1000_WRITE_REG(hw, CTRL, E1000_CTRL_RST);
5096#endif
5097        mdelay(10);
5098
5099}
5100
5101/**************************************************************************
5102INIT - set up ethernet interface(s)
5103***************************************************************************/
5104static int
5105e1000_init(struct eth_device *nic, bd_t * bis)
5106{
5107        struct e1000_hw *hw = nic->priv;
5108        int ret_val = 0;
5109
5110        ret_val = e1000_reset(nic);
5111        if (ret_val < 0) {
5112                if ((ret_val == -E1000_ERR_NOLINK) ||
5113                    (ret_val == -E1000_ERR_TIMEOUT)) {
5114                        E1000_ERR(hw->nic, "Valid Link not detected\n");
5115                } else {
5116                        E1000_ERR(hw->nic, "Hardware Initialization Failed\n");
5117                }
5118                return 0;
5119        }
5120        e1000_configure_tx(hw);
5121        e1000_setup_rctl(hw);
5122        e1000_configure_rx(hw);
5123        return 1;
5124}
5125
5126/******************************************************************************
5127 * Gets the current PCI bus type of hardware
5128 *
5129 * hw - Struct containing variables accessed by shared code
5130 *****************************************************************************/
5131void e1000_get_bus_type(struct e1000_hw *hw)
5132{
5133        uint32_t status;
5134
5135        switch (hw->mac_type) {
5136        case e1000_82542_rev2_0:
5137        case e1000_82542_rev2_1:
5138                hw->bus_type = e1000_bus_type_pci;
5139                break;
5140        case e1000_82571:
5141        case e1000_82572:
5142        case e1000_82573:
5143        case e1000_82574:
5144        case e1000_80003es2lan:
5145                hw->bus_type = e1000_bus_type_pci_express;
5146                break;
5147        case e1000_ich8lan:
5148                hw->bus_type = e1000_bus_type_pci_express;
5149                break;
5150        default:
5151                status = E1000_READ_REG(hw, STATUS);
5152                hw->bus_type = (status & E1000_STATUS_PCIX_MODE) ?
5153                                e1000_bus_type_pcix : e1000_bus_type_pci;
5154                break;
5155        }
5156}
5157
5158/* A list of all registered e1000 devices */
5159static LIST_HEAD(e1000_hw_list);
5160
5161/**************************************************************************
5162PROBE - Look for an adapter, this routine's visible to the outside
5163You should omit the last argument struct pci_device * for a non-PCI NIC
5164***************************************************************************/
5165int
5166e1000_initialize(bd_t * bis)
5167{
5168        unsigned int i;
5169        pci_dev_t devno;
5170
5171        DEBUGFUNC();
5172
5173        /* Find and probe all the matching PCI devices */
5174        for (i = 0; (devno = pci_find_devices(e1000_supported, i)) >= 0; i++) {
5175                u32 val;
5176
5177                /*
5178                 * These will never get freed due to errors, this allows us to
5179                 * perform SPI EEPROM programming from U-boot, for example.
5180                 */
5181                struct eth_device *nic = malloc(sizeof(*nic));
5182                struct e1000_hw *hw = malloc(sizeof(*hw));
5183                if (!nic || !hw) {
5184                        printf("e1000#%u: Out of Memory!\n", i);
5185                        free(nic);
5186                        free(hw);
5187                        continue;
5188                }
5189
5190                /* Make sure all of the fields are initially zeroed */
5191                memset(nic, 0, sizeof(*nic));
5192                memset(hw, 0, sizeof(*hw));
5193
5194                /* Assign the passed-in values */
5195                hw->cardnum = i;
5196                hw->pdev = devno;
5197                hw->nic = nic;
5198                nic->priv = hw;
5199
5200                /* Generate a card name */
5201                sprintf(nic->name, "e1000#%u", hw->cardnum);
5202
5203                /* Print a debug message with the IO base address */
5204                pci_read_config_dword(devno, PCI_BASE_ADDRESS_0, &val);
5205                E1000_DBG(nic, "iobase 0x%08x\n", val & 0xfffffff0);
5206
5207                /* Try to enable I/O accesses and bus-mastering */
5208                val = PCI_COMMAND_MEMORY | PCI_COMMAND_MASTER;
5209                pci_write_config_dword(devno, PCI_COMMAND, val);
5210
5211                /* Make sure it worked */
5212                pci_read_config_dword(devno, PCI_COMMAND, &val);
5213                if (!(val & PCI_COMMAND_MEMORY)) {
5214                        E1000_ERR(nic, "Can't enable I/O memory\n");
5215                        continue;
5216                }
5217                if (!(val & PCI_COMMAND_MASTER)) {
5218                        E1000_ERR(nic, "Can't enable bus-mastering\n");
5219                        continue;
5220                }
5221
5222                /* Are these variables needed? */
5223                hw->fc = e1000_fc_default;
5224                hw->original_fc = e1000_fc_default;
5225                hw->autoneg_failed = 0;
5226                hw->autoneg = 1;
5227                hw->get_link_status = TRUE;
5228                hw->hw_addr = pci_map_bar(devno,        PCI_BASE_ADDRESS_0,
5229                                                        PCI_REGION_MEM);
5230                hw->mac_type = e1000_undefined;
5231
5232                /* MAC and Phy settings */
5233                if (e1000_sw_init(nic) < 0) {
5234                        E1000_ERR(nic, "Software init failed\n");
5235                        continue;
5236                }
5237                if (e1000_check_phy_reset_block(hw))
5238                        E1000_ERR(nic, "PHY Reset is blocked!\n");
5239
5240                /* Basic init was OK, reset the hardware and allow SPI access */
5241                e1000_reset_hw(hw);
5242                list_add_tail(&hw->list_node, &e1000_hw_list);
5243
5244                /* Validate the EEPROM and get chipset information */
5245#if !(defined(CONFIG_AP1000) || defined(CONFIG_MVBC_1G))
5246                if (e1000_init_eeprom_params(hw)) {
5247                        E1000_ERR(nic, "EEPROM is invalid!\n");
5248                        continue;
5249                }
5250                if (e1000_validate_eeprom_checksum(hw))
5251                        continue;
5252#endif
5253                e1000_read_mac_addr(nic);
5254                e1000_get_bus_type(hw);
5255
5256                printf("e1000: %02x:%02x:%02x:%02x:%02x:%02x\n       ",
5257                       nic->enetaddr[0], nic->enetaddr[1], nic->enetaddr[2],
5258                       nic->enetaddr[3], nic->enetaddr[4], nic->enetaddr[5]);
5259
5260                /* Set up the function pointers and register the device */
5261                nic->init = e1000_init;
5262                nic->recv = e1000_poll;
5263                nic->send = e1000_transmit;
5264                nic->halt = e1000_disable;
5265                eth_register(nic);
5266        }
5267
5268        return i;
5269}
5270
5271struct e1000_hw *e1000_find_card(unsigned int cardnum)
5272{
5273        struct e1000_hw *hw;
5274
5275        list_for_each_entry(hw, &e1000_hw_list, list_node)
5276                if (hw->cardnum == cardnum)
5277                        return hw;
5278
5279        return NULL;
5280}
5281
5282#ifdef CONFIG_CMD_E1000
5283static int do_e1000(cmd_tbl_t *cmdtp, int flag,
5284                int argc, char * const argv[])
5285{
5286        struct e1000_hw *hw;
5287
5288        if (argc < 3) {
5289                cmd_usage(cmdtp);
5290                return 1;
5291        }
5292
5293        /* Make sure we can find the requested e1000 card */
5294        hw = e1000_find_card(simple_strtoul(argv[1], NULL, 10));
5295        if (!hw) {
5296                printf("e1000: ERROR: No such device: e1000#%s\n", argv[1]);
5297                return 1;
5298        }
5299
5300        if (!strcmp(argv[2], "print-mac-address")) {
5301                unsigned char *mac = hw->nic->enetaddr;
5302                printf("%02x:%02x:%02x:%02x:%02x:%02x\n",
5303                        mac[0], mac[1], mac[2], mac[3], mac[4], mac[5]);
5304                return 0;
5305        }
5306
5307#ifdef CONFIG_E1000_SPI
5308        /* Handle the "SPI" subcommand */
5309        if (!strcmp(argv[2], "spi"))
5310                return do_e1000_spi(cmdtp, hw, argc - 3, argv + 3);
5311#endif
5312
5313        cmd_usage(cmdtp);
5314        return 1;
5315}
5316
5317U_BOOT_CMD(
5318        e1000, 7, 0, do_e1000,
5319        "Intel e1000 controller management",
5320        /*  */"<card#> print-mac-address\n"
5321#ifdef CONFIG_E1000_SPI
5322        "e1000 <card#> spi show [<offset> [<length>]]\n"
5323        "e1000 <card#> spi dump <addr> <offset> <length>\n"
5324        "e1000 <card#> spi program <addr> <offset> <length>\n"
5325        "e1000 <card#> spi checksum [update]\n"
5326#endif
5327        "       - Manage the Intel E1000 PCI device"
5328);
5329#endif /* not CONFIG_CMD_E1000 */
5330