uboot/nand_spl/nand_boot.c
<<
>>
Prefs
   1/*
   2 * (C) Copyright 2006-2008
   3 * Stefan Roese, DENX Software Engineering, sr@denx.de.
   4 *
   5 * This program is free software; you can redistribute it and/or
   6 * modify it under the terms of the GNU General Public License as
   7 * published by the Free Software Foundation; either version 2 of
   8 * the License, or (at your option) any later version.
   9 *
  10 * This program is distributed in the hope that it will be useful,
  11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  13 * GNU General Public License for more details.
  14 *
  15 * You should have received a copy of the GNU General Public License
  16 * along with this program; if not, write to the Free Software
  17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
  18 * MA 02111-1307 USA
  19 */
  20
  21#include <common.h>
  22#include <nand.h>
  23#include <asm/io.h>
  24
  25static int nand_ecc_pos[] = CONFIG_SYS_NAND_ECCPOS;
  26
  27#define ECCSTEPS        (CONFIG_SYS_NAND_PAGE_SIZE / \
  28                                        CONFIG_SYS_NAND_ECCSIZE)
  29#define ECCTOTAL        (ECCSTEPS * CONFIG_SYS_NAND_ECCBYTES)
  30
  31
  32#if (CONFIG_SYS_NAND_PAGE_SIZE <= 512)
  33/*
  34 * NAND command for small page NAND devices (512)
  35 */
  36static int nand_command(struct mtd_info *mtd, int block, int page, int offs, u8 cmd)
  37{
  38        struct nand_chip *this = mtd->priv;
  39        int page_addr = page + block * CONFIG_SYS_NAND_PAGE_COUNT;
  40
  41        while (!this->dev_ready(mtd))
  42                ;
  43
  44        /* Begin command latch cycle */
  45        this->cmd_ctrl(mtd, cmd, NAND_CTRL_CLE | NAND_CTRL_CHANGE);
  46        /* Set ALE and clear CLE to start address cycle */
  47        /* Column address */
  48        this->cmd_ctrl(mtd, offs, NAND_CTRL_ALE | NAND_CTRL_CHANGE);
  49        this->cmd_ctrl(mtd, page_addr & 0xff, NAND_CTRL_ALE); /* A[16:9] */
  50        this->cmd_ctrl(mtd, (page_addr >> 8) & 0xff,
  51                       NAND_CTRL_ALE); /* A[24:17] */
  52#ifdef CONFIG_SYS_NAND_4_ADDR_CYCLE
  53        /* One more address cycle for devices > 32MiB */
  54        this->cmd_ctrl(mtd, (page_addr >> 16) & 0x0f,
  55                       NAND_CTRL_ALE); /* A[28:25] */
  56#endif
  57        /* Latch in address */
  58        this->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
  59
  60        /*
  61         * Wait a while for the data to be ready
  62         */
  63        while (!this->dev_ready(mtd))
  64                ;
  65
  66        return 0;
  67}
  68#else
  69/*
  70 * NAND command for large page NAND devices (2k)
  71 */
  72static int nand_command(struct mtd_info *mtd, int block, int page, int offs, u8 cmd)
  73{
  74        struct nand_chip *this = mtd->priv;
  75        int page_addr = page + block * CONFIG_SYS_NAND_PAGE_COUNT;
  76        void (*hwctrl)(struct mtd_info *mtd, int cmd,
  77                        unsigned int ctrl) = this->cmd_ctrl;
  78
  79        while (!this->dev_ready(mtd))
  80                ;
  81
  82        /* Emulate NAND_CMD_READOOB */
  83        if (cmd == NAND_CMD_READOOB) {
  84                offs += CONFIG_SYS_NAND_PAGE_SIZE;
  85                cmd = NAND_CMD_READ0;
  86        }
  87
  88        /* Shift the offset from byte addressing to word addressing. */
  89        if (this->options & NAND_BUSWIDTH_16)
  90                offs >>= 1;
  91
  92        /* Begin command latch cycle */
  93        hwctrl(mtd, cmd, NAND_CTRL_CLE | NAND_CTRL_CHANGE);
  94        /* Set ALE and clear CLE to start address cycle */
  95        /* Column address */
  96        hwctrl(mtd, offs & 0xff,
  97                       NAND_CTRL_ALE | NAND_CTRL_CHANGE); /* A[7:0] */
  98        hwctrl(mtd, (offs >> 8) & 0xff, NAND_CTRL_ALE); /* A[11:9] */
  99        /* Row address */
 100        hwctrl(mtd, (page_addr & 0xff), NAND_CTRL_ALE); /* A[19:12] */
 101        hwctrl(mtd, ((page_addr >> 8) & 0xff),
 102                       NAND_CTRL_ALE); /* A[27:20] */
 103#ifdef CONFIG_SYS_NAND_5_ADDR_CYCLE
 104        /* One more address cycle for devices > 128MiB */
 105        hwctrl(mtd, (page_addr >> 16) & 0x0f,
 106                       NAND_CTRL_ALE); /* A[31:28] */
 107#endif
 108        /* Latch in address */
 109        hwctrl(mtd, NAND_CMD_READSTART,
 110                       NAND_CTRL_CLE | NAND_CTRL_CHANGE);
 111        hwctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
 112
 113        /*
 114         * Wait a while for the data to be ready
 115         */
 116        while (!this->dev_ready(mtd))
 117                ;
 118
 119        return 0;
 120}
 121#endif
 122
 123static int nand_is_bad_block(struct mtd_info *mtd, int block)
 124{
 125        struct nand_chip *this = mtd->priv;
 126
 127        nand_command(mtd, block, 0, CONFIG_SYS_NAND_BAD_BLOCK_POS, NAND_CMD_READOOB);
 128
 129        /*
 130         * Read one byte (or two if it's a 16 bit chip).
 131         */
 132        if (this->options & NAND_BUSWIDTH_16) {
 133                if (readw(this->IO_ADDR_R) != 0xffff)
 134                        return 1;
 135        } else {
 136                if (readb(this->IO_ADDR_R) != 0xff)
 137                        return 1;
 138        }
 139
 140        return 0;
 141}
 142
 143#if defined(CONFIG_SYS_NAND_4BIT_HW_ECC_OOBFIRST)
 144static int nand_read_page(struct mtd_info *mtd, int block, int page, uchar *dst)
 145{
 146        struct nand_chip *this = mtd->priv;
 147        u_char ecc_calc[ECCTOTAL];
 148        u_char ecc_code[ECCTOTAL];
 149        u_char oob_data[CONFIG_SYS_NAND_OOBSIZE];
 150        int i;
 151        int eccsize = CONFIG_SYS_NAND_ECCSIZE;
 152        int eccbytes = CONFIG_SYS_NAND_ECCBYTES;
 153        int eccsteps = ECCSTEPS;
 154        uint8_t *p = dst;
 155
 156        nand_command(mtd, block, page, 0, NAND_CMD_READOOB);
 157        this->read_buf(mtd, oob_data, CONFIG_SYS_NAND_OOBSIZE);
 158        nand_command(mtd, block, page, 0, NAND_CMD_READ0);
 159
 160        /* Pick the ECC bytes out of the oob data */
 161        for (i = 0; i < ECCTOTAL; i++)
 162                ecc_code[i] = oob_data[nand_ecc_pos[i]];
 163
 164
 165        for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
 166                this->ecc.hwctl(mtd, NAND_ECC_READ);
 167                this->read_buf(mtd, p, eccsize);
 168                this->ecc.calculate(mtd, p, &ecc_calc[i]);
 169                this->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
 170        }
 171
 172        return 0;
 173}
 174#else
 175static int nand_read_page(struct mtd_info *mtd, int block, int page, uchar *dst)
 176{
 177        struct nand_chip *this = mtd->priv;
 178        u_char ecc_calc[ECCTOTAL];
 179        u_char ecc_code[ECCTOTAL];
 180        u_char oob_data[CONFIG_SYS_NAND_OOBSIZE];
 181        int i;
 182        int eccsize = CONFIG_SYS_NAND_ECCSIZE;
 183        int eccbytes = CONFIG_SYS_NAND_ECCBYTES;
 184        int eccsteps = ECCSTEPS;
 185        uint8_t *p = dst;
 186
 187        nand_command(mtd, block, page, 0, NAND_CMD_READ0);
 188
 189        for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
 190                this->ecc.hwctl(mtd, NAND_ECC_READ);
 191                this->read_buf(mtd, p, eccsize);
 192                this->ecc.calculate(mtd, p, &ecc_calc[i]);
 193        }
 194        this->read_buf(mtd, oob_data, CONFIG_SYS_NAND_OOBSIZE);
 195
 196        /* Pick the ECC bytes out of the oob data */
 197        for (i = 0; i < ECCTOTAL; i++)
 198                ecc_code[i] = oob_data[nand_ecc_pos[i]];
 199
 200        eccsteps = ECCSTEPS;
 201        p = dst;
 202
 203        for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
 204                /* No chance to do something with the possible error message
 205                 * from correct_data(). We just hope that all possible errors
 206                 * are corrected by this routine.
 207                 */
 208                this->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
 209        }
 210
 211        return 0;
 212}
 213#endif /* #if defined(CONFIG_SYS_NAND_4BIT_HW_ECC_OOBFIRST) */
 214
 215static int nand_load(struct mtd_info *mtd, unsigned int offs,
 216                     unsigned int uboot_size, uchar *dst)
 217{
 218        unsigned int block, lastblock;
 219        unsigned int page;
 220
 221        /*
 222         * offs has to be aligned to a page address!
 223         */
 224        block = offs / CONFIG_SYS_NAND_BLOCK_SIZE;
 225        lastblock = (offs + uboot_size - 1) / CONFIG_SYS_NAND_BLOCK_SIZE;
 226        page = (offs % CONFIG_SYS_NAND_BLOCK_SIZE) / CONFIG_SYS_NAND_PAGE_SIZE;
 227
 228        while (block <= lastblock) {
 229                if (!nand_is_bad_block(mtd, block)) {
 230                        /*
 231                         * Skip bad blocks
 232                         */
 233                        while (page < CONFIG_SYS_NAND_PAGE_COUNT) {
 234                                nand_read_page(mtd, block, page, dst);
 235                                dst += CONFIG_SYS_NAND_PAGE_SIZE;
 236                                page++;
 237                        }
 238
 239                        page = 0;
 240                } else {
 241                        lastblock++;
 242                }
 243
 244                block++;
 245        }
 246
 247        return 0;
 248}
 249
 250/*
 251 * The main entry for NAND booting. It's necessary that SDRAM is already
 252 * configured and available since this code loads the main U-Boot image
 253 * from NAND into SDRAM and starts it from there.
 254 */
 255void nand_boot(void)
 256{
 257        struct nand_chip nand_chip;
 258        nand_info_t nand_info;
 259        __attribute__((noreturn)) void (*uboot)(void);
 260
 261        /*
 262         * Init board specific nand support
 263         */
 264        nand_chip.select_chip = NULL;
 265        nand_info.priv = &nand_chip;
 266        nand_chip.IO_ADDR_R = nand_chip.IO_ADDR_W = (void  __iomem *)CONFIG_SYS_NAND_BASE;
 267        nand_chip.dev_ready = NULL;     /* preset to NULL */
 268        nand_chip.options = 0;
 269        board_nand_init(&nand_chip);
 270
 271        if (nand_chip.select_chip)
 272                nand_chip.select_chip(&nand_info, 0);
 273
 274        /*
 275         * Load U-Boot image from NAND into RAM
 276         */
 277        nand_load(&nand_info, CONFIG_SYS_NAND_U_BOOT_OFFS, CONFIG_SYS_NAND_U_BOOT_SIZE,
 278                  (uchar *)CONFIG_SYS_NAND_U_BOOT_DST);
 279
 280#ifdef CONFIG_NAND_ENV_DST
 281        nand_load(&nand_info, CONFIG_ENV_OFFSET, CONFIG_ENV_SIZE,
 282                  (uchar *)CONFIG_NAND_ENV_DST);
 283
 284#ifdef CONFIG_ENV_OFFSET_REDUND
 285        nand_load(&nand_info, CONFIG_ENV_OFFSET_REDUND, CONFIG_ENV_SIZE,
 286                  (uchar *)CONFIG_NAND_ENV_DST + CONFIG_ENV_SIZE);
 287#endif
 288#endif
 289
 290        if (nand_chip.select_chip)
 291                nand_chip.select_chip(&nand_info, -1);
 292
 293        /*
 294         * Jump to U-Boot image
 295         */
 296        uboot = (void *)CONFIG_SYS_NAND_U_BOOT_START;
 297        (*uboot)();
 298}
 299