uboot/board/freescale/corenet_ds/eth_superhydra.c
<<
>>
Prefs
   1/*
   2 * Copyright 2009-2011 Freescale Semiconductor, Inc.
   3 * Author: Srikanth Srinivasan <srikanth.srinivasan@freescale.com>
   4 *
   5 * See file CREDITS for list of people who contributed to this
   6 * project.
   7 *
   8 * This program is free software; you can redistribute it and/or
   9 * modify it under the terms of the GNU General Public License as
  10 * published by the Free Software Foundation; either version 2 of
  11 * the License, or (at your option) any later version.
  12 *
  13 * This program is distributed in the hope that it will be useful,
  14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16 * GNU General Public License for more details.
  17 *
  18 * You should have received a copy of the GNU General Public License
  19 * along with this program; if not, write to the Free Software
  20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
  21 * MA 02111-1307 USA
  22 */
  23
  24/*
  25 * This file handles the board muxing between the Fman Ethernet MACs and
  26 * the RGMII/SGMII/XGMII PHYs on a Freescale P5040 "Super Hydra" reference
  27 * board. The RGMII PHYs are the two on-board 1Gb ports.  The SGMII PHYs are
  28 * provided by the standard Freescale four-port SGMII riser card.  The 10Gb
  29 * XGMII PHYs are provided via the XAUI riser card.  The P5040 has 2 FMans
  30 * and 5 1G interfaces and 10G interface per FMan. Based on the options in
  31 * the RCW, we could have upto 3 SGMII cards and 1 XAUI card at a time.
  32 *
  33 * Muxing is handled via the PIXIS BRDCFG1 register.  The EMI1 bits control
  34 * muxing among the RGMII PHYs and the SGMII PHYs.  The value for RGMII is
  35 * always the same (0).  The value for SGMII depends on which slot the riser is
  36 * inserted in.  The EMI2 bits control muxing for the the XGMII.  Like SGMII,
  37 * the value is based on which slot the XAUI is inserted in.
  38 *
  39 * The SERDES configuration is used to determine where the SGMII and XAUI cards
  40 * exist, and also which Fman's MACs are routed to which PHYs.  So for a given
  41 * Fman MAC, there is one and only PHY it connects to.  MACs cannot be routed
  42 * to PHYs dynamically.
  43 *
  44 *
  45 * This file also updates the device tree in three ways:
  46 *
  47 * 1) The status of each virtual MDIO node that is referenced by an Ethernet
  48 *    node is set to "okay".
  49 *
  50 * 2) The phy-handle property of each active Ethernet MAC node is set to the
  51 *    appropriate PHY node.
  52 *
  53 * 3) The "mux value" for each virtual MDIO node is set to the correct value,
  54 *    if necessary.  Some virtual MDIO nodes do not have configurable mux
  55 *    values, so those values are hard-coded in the DTS.  On the HYDRA board,
  56 *    the virtual MDIO node for the SGMII card needs to be updated.
  57 *
  58 * For all this to work, the device tree needs to have the following:
  59 *
  60 * 1) An alias for each PHY node that an Ethernet node could be routed to.
  61 *
  62 * 2) An alias for each real and virtual MDIO node that is disabled by default
  63 * and might need to be enabled, and also might need to have its mux-value
  64 * updated.
  65 */
  66
  67#include <common.h>
  68#include <netdev.h>
  69#include <asm/fsl_serdes.h>
  70#include <fm_eth.h>
  71#include <fsl_mdio.h>
  72#include <malloc.h>
  73#include <fdt_support.h>
  74#include <asm/fsl_dtsec.h>
  75
  76#include "../common/ngpixis.h"
  77#include "../common/fman.h"
  78
  79#ifdef CONFIG_FMAN_ENET
  80
  81#define BRDCFG1_EMI1_SEL_MASK   0x70
  82#define BRDCFG1_EMI1_SEL_SLOT1  0x10
  83#define BRDCFG1_EMI1_SEL_SLOT2  0x20
  84#define BRDCFG1_EMI1_SEL_SLOT5  0x30
  85#define BRDCFG1_EMI1_SEL_SLOT6  0x40
  86#define BRDCFG1_EMI1_SEL_SLOT7  0x50
  87#define BRDCFG1_EMI1_SEL_SLOT3  0x60
  88#define BRDCFG1_EMI1_SEL_RGMII  0x00
  89#define BRDCFG1_EMI1_EN         0x08
  90#define BRDCFG1_EMI2_SEL_MASK   0x06
  91#define BRDCFG1_EMI2_SEL_SLOT1  0x00
  92#define BRDCFG1_EMI2_SEL_SLOT2  0x02
  93
  94#define BRDCFG2_REG_GPIO_SEL    0x20
  95
  96/*
  97 * BRDCFG1 mask and value for each MAC
  98 *
  99 * This array contains the BRDCFG1 values (in mask/val format) that route the
 100 * MDIO bus to a particular RGMII or SGMII PHY.
 101 */
 102static struct {
 103        u8 mask;
 104        u8 val;
 105} mdio_mux[NUM_FM_PORTS];
 106
 107/*
 108 * Mapping of all 18 SERDES lanes to board slots. A value of '0' here means
 109 * that the mapping must be determined dynamically, or that the lane maps to
 110 * something other than a board slot
 111 */
 112static u8 lane_to_slot[] = {
 113        7, 7, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 2, 2, 1, 1, 0, 0, 0, 0
 114};
 115
 116/*
 117 * Set the board muxing for a given MAC
 118 *
 119 * The MDIO layer calls this function every time it wants to talk to a PHY.
 120 */
 121void super_hydra_mux_mdio(u8 mask, u8 val)
 122{
 123        clrsetbits_8(&pixis->brdcfg1, mask, val);
 124}
 125
 126struct super_hydra_mdio {
 127        u8 mask;
 128        u8 val;
 129        struct mii_dev *realbus;
 130};
 131
 132static int super_hydra_mdio_read(struct mii_dev *bus, int addr, int devad,
 133                                int regnum)
 134{
 135        struct super_hydra_mdio *priv = bus->priv;
 136
 137        super_hydra_mux_mdio(priv->mask, priv->val);
 138
 139        return priv->realbus->read(priv->realbus, addr, devad, regnum);
 140}
 141
 142static int super_hydra_mdio_write(struct mii_dev *bus, int addr, int devad,
 143                                int regnum, u16 value)
 144{
 145        struct super_hydra_mdio *priv = bus->priv;
 146
 147        super_hydra_mux_mdio(priv->mask, priv->val);
 148
 149        return priv->realbus->write(priv->realbus, addr, devad, regnum, value);
 150}
 151
 152static int super_hydra_mdio_reset(struct mii_dev *bus)
 153{
 154        struct super_hydra_mdio *priv = bus->priv;
 155
 156        return priv->realbus->reset(priv->realbus);
 157}
 158
 159static void super_hydra_mdio_set_mux(char *name, u8 mask, u8 val)
 160{
 161        struct mii_dev *bus = miiphy_get_dev_by_name(name);
 162        struct super_hydra_mdio *priv = bus->priv;
 163
 164        priv->mask = mask;
 165        priv->val = val;
 166}
 167
 168static int super_hydra_mdio_init(char *realbusname, char *fakebusname)
 169{
 170        struct super_hydra_mdio *hmdio;
 171        struct mii_dev *bus = mdio_alloc();
 172
 173        if (!bus) {
 174                printf("Failed to allocate Hydra MDIO bus\n");
 175                return -1;
 176        }
 177
 178        hmdio = malloc(sizeof(*hmdio));
 179        if (!hmdio) {
 180                printf("Failed to allocate Hydra private data\n");
 181                free(bus);
 182                return -1;
 183        }
 184
 185        bus->read = super_hydra_mdio_read;
 186        bus->write = super_hydra_mdio_write;
 187        bus->reset = super_hydra_mdio_reset;
 188        sprintf(bus->name, fakebusname);
 189
 190        hmdio->realbus = miiphy_get_dev_by_name(realbusname);
 191
 192        if (!hmdio->realbus) {
 193                printf("No bus with name %s\n", realbusname);
 194                free(bus);
 195                free(hmdio);
 196                return -1;
 197        }
 198
 199        bus->priv = hmdio;
 200
 201        return mdio_register(bus);
 202}
 203
 204/*
 205 * Given the following ...
 206 *
 207 * 1) A pointer to an Fman Ethernet node (as identified by the 'compat'
 208 * compatible string and 'addr' physical address)
 209 *
 210 * 2) An Fman port
 211 *
 212 * ... update the phy-handle property of the Ethernet node to point to the
 213 * right PHY.  This assumes that we already know the PHY for each port.  That
 214 * information is stored in mdio_mux[].
 215 *
 216 * The offset of the Fman Ethernet node is also passed in for convenience, but
 217 * it is not used.
 218 *
 219 * Note that what we call "Fman ports" (enum fm_port) is really an Fman MAC.
 220 * Inside the Fman, "ports" are things that connect to MACs.  We only call them
 221 * ports in U-Boot because on previous Ethernet devices (e.g. Gianfar), MACs
 222 * and ports are the same thing.
 223 */
 224void board_ft_fman_fixup_port(void *fdt, char *compat, phys_addr_t addr,
 225                              enum fm_port port, int offset)
 226{
 227        enum srds_prtcl device;
 228        int lane, slot, phy;
 229        char alias[32];
 230
 231        /* RGMII and XGMII are already mapped correctly in the DTS */
 232
 233        if (fm_info_get_enet_if(port) == PHY_INTERFACE_MODE_SGMII) {
 234                device = serdes_device_from_fm_port(port);
 235                lane = serdes_get_first_lane(device);
 236                slot = lane_to_slot[lane];
 237                phy = fm_info_get_phy_address(port);
 238
 239                sprintf(alias, "phy_sgmii_slot%u_%x", slot, phy);
 240                fdt_set_phy_handle(fdt, compat, addr, alias);
 241        }
 242}
 243
 244#define PIXIS_SW2_LANE_23_SEL           0x80
 245#define PIXIS_SW2_LANE_45_SEL           0x40
 246#define PIXIS_SW2_LANE_67_SEL_MASK      0x30
 247#define PIXIS_SW2_LANE_67_SEL_5         0x00
 248#define PIXIS_SW2_LANE_67_SEL_6         0x20
 249#define PIXIS_SW2_LANE_67_SEL_7         0x10
 250#define PIXIS_SW2_LANE_8_SEL            0x08
 251#define PIXIS_SW2_LANE_1617_SEL         0x04
 252#define PIXIS_SW11_LANE_9_SEL           0x04
 253/*
 254 * Initialize the lane_to_slot[] array.
 255 *
 256 * On the P4080DS "Expedition" board, the mapping of SERDES lanes to board
 257 * slots is hard-coded.  On the Hydra board, however, the mapping is controlled
 258 * by board switch SW2, so the lane_to_slot[] array needs to be dynamically
 259 * initialized.
 260 */
 261static void initialize_lane_to_slot(void)
 262{
 263        u8 sw2 = in_8(&PIXIS_SW(2));
 264        /* SW11 appears in the programming model as SW9 */
 265        u8 sw11 = in_8(&PIXIS_SW(9));
 266
 267        lane_to_slot[2] = (sw2 & PIXIS_SW2_LANE_23_SEL) ? 7 : 4;
 268        lane_to_slot[3] = lane_to_slot[2];
 269
 270        lane_to_slot[4] = (sw2 & PIXIS_SW2_LANE_45_SEL) ? 7 : 6;
 271        lane_to_slot[5] = lane_to_slot[4];
 272
 273        switch (sw2 & PIXIS_SW2_LANE_67_SEL_MASK) {
 274        case PIXIS_SW2_LANE_67_SEL_5:
 275                lane_to_slot[6] = 5;
 276                break;
 277        case PIXIS_SW2_LANE_67_SEL_6:
 278                lane_to_slot[6] = 6;
 279                break;
 280        case PIXIS_SW2_LANE_67_SEL_7:
 281                lane_to_slot[6] = 7;
 282                break;
 283        }
 284        lane_to_slot[7] = lane_to_slot[6];
 285
 286        lane_to_slot[8] = (sw2 & PIXIS_SW2_LANE_8_SEL) ? 3 : 0;
 287        lane_to_slot[9] = (sw11 & PIXIS_SW11_LANE_9_SEL) ? 0 : 3;
 288
 289        lane_to_slot[16] = (sw2 & PIXIS_SW2_LANE_1617_SEL) ? 1 : 0;
 290        lane_to_slot[17] = lane_to_slot[16];
 291}
 292
 293#endif /* #ifdef CONFIG_FMAN_ENET */
 294
 295/*
 296 * Configure the status for the virtual MDIO nodes
 297 *
 298 * Rather than create the virtual MDIO nodes from scratch for each active
 299 * virtual MDIO, we expect the DTS to have the nodes defined already, and we
 300 * only enable the ones that are actually active.
 301 *
 302 * We assume that the DTS already hard-codes the status for all the
 303 * virtual MDIO nodes to "disabled", so all we need to do is enable the
 304 * active ones.
 305 */
 306void fdt_fixup_board_enet(void *fdt)
 307{
 308#ifdef CONFIG_FMAN_ENET
 309        enum fm_port i;
 310        int lane, slot;
 311
 312        for (i = FM1_DTSEC1; i < FM1_DTSEC1 + CONFIG_SYS_NUM_FM1_DTSEC; i++) {
 313                int idx = i - FM1_DTSEC1;
 314
 315                switch (fm_info_get_enet_if(i)) {
 316                case PHY_INTERFACE_MODE_SGMII:
 317                        lane = serdes_get_first_lane(SGMII_FM1_DTSEC1 + idx);
 318                        if (lane >= 0) {
 319                                char alias[32];
 320
 321                                slot = lane_to_slot[lane];
 322                                sprintf(alias, "hydra_sg_slot%u", slot);
 323                                fdt_status_okay_by_alias(fdt, alias);
 324                                debug("Enabled MDIO node %s (slot %i)\n",
 325                                      alias, slot);
 326                        }
 327                        break;
 328                case PHY_INTERFACE_MODE_RGMII:
 329                        fdt_status_okay_by_alias(fdt, "hydra_rg");
 330                        debug("Enabled MDIO node hydra_rg\n");
 331                        break;
 332                default:
 333                        break;
 334                }
 335        }
 336
 337        lane = serdes_get_first_lane(XAUI_FM1);
 338        if (lane >= 0) {
 339                char alias[32];
 340
 341                slot = lane_to_slot[lane];
 342                sprintf(alias, "hydra_xg_slot%u", slot);
 343                fdt_status_okay_by_alias(fdt, alias);
 344                debug("Enabled MDIO node %s (slot %i)\n", alias, slot);
 345        }
 346
 347#if CONFIG_SYS_NUM_FMAN == 2
 348        for (i = FM2_DTSEC1; i < FM2_DTSEC1 + CONFIG_SYS_NUM_FM2_DTSEC; i++) {
 349                int idx = i - FM2_DTSEC1;
 350
 351                switch (fm_info_get_enet_if(i)) {
 352                case PHY_INTERFACE_MODE_SGMII:
 353                        lane = serdes_get_first_lane(SGMII_FM2_DTSEC1 + idx);
 354                        if (lane >= 0) {
 355                                char alias[32];
 356
 357                                slot = lane_to_slot[lane];
 358                                sprintf(alias, "hydra_sg_slot%u", slot);
 359                                fdt_status_okay_by_alias(fdt, alias);
 360                                debug("Enabled MDIO node %s (slot %i)\n",
 361                                      alias, slot);
 362                        }
 363                        break;
 364                case PHY_INTERFACE_MODE_RGMII:
 365                        fdt_status_okay_by_alias(fdt, "hydra_rg");
 366                        debug("Enabled MDIO node hydra_rg\n");
 367                        break;
 368                default:
 369                        break;
 370                }
 371        }
 372
 373        lane = serdes_get_first_lane(XAUI_FM2);
 374        if (lane >= 0) {
 375                char alias[32];
 376
 377                slot = lane_to_slot[lane];
 378                sprintf(alias, "hydra_xg_slot%u", slot);
 379                fdt_status_okay_by_alias(fdt, alias);
 380                debug("Enabled MDIO node %s (slot %i)\n", alias, slot);
 381        }
 382#endif /* CONFIG_SYS_NUM_FMAN == 2 */
 383#endif /* CONFIG_FMAN_ENET */
 384}
 385
 386/*
 387 * Mapping of SerDes Protocol to MDIO MUX value and PHY address.
 388 *
 389 * Fman 1:
 390 *       DTSEC1        |   DTSEC2        |   DTSEC3        |   DTSEC4
 391 *       Mux     Phy   |   Mux     Phy   |   Mux     Phy   |   Mux     Phy
 392 *       Value   Addr  |   Value   Addr  |   Value   Addr  |   Value   Addr
 393 * 0x00  2       1c    |   2       1d    |   2       1e    |   2       1f
 394 * 0x01                |                 |   6       1c    |
 395 * 0x02                |                 |   3       1c    |   3       1d
 396 * 0x03  2       1c    |   2       1d    |   2       1e    |   2       1f
 397 * 0x04  2       1c    |   2       1d    |   2       1e    |   2       1f
 398 * 0x05                |                 |   3       1c    |   3       1d
 399 * 0x06  2       1c    |   2       1d    |   2       1e    |   2       1f
 400 * 0x07                |                 |   6       1c    |
 401 * 0x11  2       1c    |   2       1d    |   2       1e    |   2       1f
 402 * 0x2a  2             |                 |   2       1e    |   2       1f
 403 * 0x34  6       1c    |   6       1d    |   4       1e    |   4       1f
 404 * 0x35                |                 |   3       1c    |   3       1d
 405 * 0x36  6       1c    |   6       1d    |   4       1e    |   4       1f
 406 *                     |                 |                 |
 407 * Fman  2:            |                 |                 |
 408 *       DTSEC1        |   DTSEC2        |   DTSEC3        |   DTSEC4
 409 *       EMI1          |   EMI1          |   EMI1          |   EMI1
 410 *       Mux     Phy   |   Mux     Phy   |   Mux     Phy   |   Mux     Phy
 411 *       Value   Addr  |   Value   Addr  |   Value   Addr  |   Value   Addr
 412 * 0x00                |                 |   6       1c    |   6       1d
 413 * 0x01                |                 |                 |
 414 * 0x02                |                 |   6       1c    |   6       1d
 415 * 0x03  3       1c    |   3       1d    |   6       1c    |   6       1d
 416 * 0x04  3       1c    |   3       1d    |   6       1c    |   6       1d
 417 * 0x05                |                 |   6       1c    |   6       1d
 418 * 0x06                |                 |   6       1c    |   6       1d
 419 * 0x07                |                 |                 |
 420 * 0x11                |                 |                 |
 421 * 0x2a                |                 |                 |
 422 * 0x34                |                 |                 |
 423 * 0x35                |                 |                 |
 424 * 0x36                |                 |                 |
 425 */
 426
 427int board_eth_init(bd_t *bis)
 428{
 429#ifdef CONFIG_FMAN_ENET
 430        struct fsl_pq_mdio_info dtsec_mdio_info;
 431        struct tgec_mdio_info tgec_mdio_info;
 432        unsigned int i, slot;
 433        int lane;
 434        ccsr_gur_t *gur = (void *)(CONFIG_SYS_MPC85xx_GUTS_ADDR);
 435        int srds_prtcl = (in_be32(&gur->rcwsr[4]) &
 436                                FSL_CORENET_RCWSR4_SRDS_PRTCL) >> 26;
 437
 438        printf("Initializing Fman\n");
 439
 440        initialize_lane_to_slot();
 441
 442        /* We want to use the PIXIS to configure MUX routing, not GPIOs. */
 443        setbits_8(&pixis->brdcfg2, BRDCFG2_REG_GPIO_SEL);
 444
 445        memset(mdio_mux, 0, sizeof(mdio_mux));
 446
 447        dtsec_mdio_info.regs =
 448                (struct tsec_mii_mng *)CONFIG_SYS_FM1_DTSEC1_MDIO_ADDR;
 449        dtsec_mdio_info.name = DEFAULT_FM_MDIO_NAME;
 450
 451        /* Register the real 1G MDIO bus */
 452        fsl_pq_mdio_init(bis, &dtsec_mdio_info);
 453
 454        tgec_mdio_info.regs =
 455                (struct tgec_mdio_controller *)CONFIG_SYS_FM1_TGEC_MDIO_ADDR;
 456        tgec_mdio_info.name = DEFAULT_FM_TGEC_MDIO_NAME;
 457
 458        /* Register the real 10G MDIO bus */
 459        fm_tgec_mdio_init(bis, &tgec_mdio_info);
 460
 461        /* Register the three virtual MDIO front-ends */
 462        super_hydra_mdio_init(DEFAULT_FM_MDIO_NAME,
 463                                "SUPER_HYDRA_RGMII_MDIO");
 464        super_hydra_mdio_init(DEFAULT_FM_MDIO_NAME,
 465                                "SUPER_HYDRA_FM1_SGMII_MDIO");
 466        super_hydra_mdio_init(DEFAULT_FM_MDIO_NAME,
 467                                "SUPER_HYDRA_FM2_SGMII_MDIO");
 468        super_hydra_mdio_init(DEFAULT_FM_TGEC_MDIO_NAME,
 469                                "SUPER_HYDRA_FM1_TGEC_MDIO");
 470        super_hydra_mdio_init(DEFAULT_FM_TGEC_MDIO_NAME,
 471                                "SUPER_HYDRA_FM2_TGEC_MDIO");
 472
 473        /*
 474         * Program the DTSEC PHY addresses assuming that they are all SGMII.
 475         * For any DTSEC that's RGMII, we'll override its PHY address later.
 476         * We assume that DTSEC5 is only used for RGMII.
 477         */
 478        fm_info_set_phy_address(FM1_DTSEC1, CONFIG_SYS_FM1_DTSEC1_PHY_ADDR);
 479        fm_info_set_phy_address(FM1_DTSEC2, CONFIG_SYS_FM1_DTSEC2_PHY_ADDR);
 480        fm_info_set_phy_address(FM1_10GEC1, CONFIG_SYS_FM2_10GEC1_PHY_ADDR);
 481
 482#if (CONFIG_SYS_NUM_FMAN == 2)
 483        fm_info_set_phy_address(FM2_DTSEC1, CONFIG_SYS_FM2_DTSEC1_PHY_ADDR);
 484        fm_info_set_phy_address(FM2_DTSEC2, CONFIG_SYS_FM2_DTSEC2_PHY_ADDR);
 485        fm_info_set_phy_address(FM2_DTSEC3, CONFIG_SYS_FM2_DTSEC1_PHY_ADDR);
 486        fm_info_set_phy_address(FM2_DTSEC4, CONFIG_SYS_FM2_DTSEC2_PHY_ADDR);
 487        fm_info_set_phy_address(FM2_10GEC1, CONFIG_SYS_FM1_10GEC1_PHY_ADDR);
 488#endif
 489
 490        switch (srds_prtcl) {
 491        case 0:
 492        case 3:
 493        case 4:
 494        case 6:
 495        case 0x11:
 496        case 0x2a:
 497        case 0x34:
 498        case 0x36:
 499                fm_info_set_phy_address(FM1_DTSEC3,
 500                                        CONFIG_SYS_FM1_DTSEC3_PHY_ADDR);
 501                fm_info_set_phy_address(FM1_DTSEC4,
 502                                        CONFIG_SYS_FM1_DTSEC4_PHY_ADDR);
 503                break;
 504        case 1:
 505        case 2:
 506        case 5:
 507        case 7:
 508        case 0x35:
 509                fm_info_set_phy_address(FM1_DTSEC3,
 510                                        CONFIG_SYS_FM1_DTSEC1_PHY_ADDR);
 511                fm_info_set_phy_address(FM1_DTSEC4,
 512                                        CONFIG_SYS_FM1_DTSEC2_PHY_ADDR);
 513                break;
 514        default:
 515                printf("Fman:  Unsupport SerDes Protocol 0x%02x\n", srds_prtcl);
 516                break;
 517        }
 518
 519        for (i = FM1_DTSEC1; i < FM1_DTSEC1 + CONFIG_SYS_NUM_FM1_DTSEC; i++) {
 520                int idx = i - FM1_DTSEC1;
 521
 522                switch (fm_info_get_enet_if(i)) {
 523                case PHY_INTERFACE_MODE_SGMII:
 524                        lane = serdes_get_first_lane(SGMII_FM1_DTSEC1 + idx);
 525                        if (lane < 0)
 526                                break;
 527                        slot = lane_to_slot[lane];
 528                        mdio_mux[i].mask = BRDCFG1_EMI1_SEL_MASK;
 529                        debug("FM1@DTSEC%u expects SGMII in slot %u\n",
 530                              idx + 1, slot);
 531                        switch (slot) {
 532                        case 1:
 533                                mdio_mux[i].val = BRDCFG1_EMI1_SEL_SLOT1 |
 534                                                BRDCFG1_EMI1_EN;
 535                                break;
 536                        case 2:
 537                                mdio_mux[i].val = BRDCFG1_EMI1_SEL_SLOT2 |
 538                                                BRDCFG1_EMI1_EN;
 539                                break;
 540                        case 3:
 541                                mdio_mux[i].val = BRDCFG1_EMI1_SEL_SLOT3 |
 542                                                BRDCFG1_EMI1_EN;
 543                                break;
 544                        case 5:
 545                                mdio_mux[i].val = BRDCFG1_EMI1_SEL_SLOT5 |
 546                                                BRDCFG1_EMI1_EN;
 547                                break;
 548                        case 6:
 549                                mdio_mux[i].val = BRDCFG1_EMI1_SEL_SLOT6 |
 550                                                BRDCFG1_EMI1_EN;
 551                                break;
 552                        case 7:
 553                                mdio_mux[i].val = BRDCFG1_EMI1_SEL_SLOT7 |
 554                                                BRDCFG1_EMI1_EN;
 555                                break;
 556                        };
 557
 558                        super_hydra_mdio_set_mux("SUPER_HYDRA_FM1_SGMII_MDIO",
 559                                        mdio_mux[i].mask, mdio_mux[i].val);
 560                        fm_info_set_mdio(i,
 561                        miiphy_get_dev_by_name("SUPER_HYDRA_FM1_SGMII_MDIO"));
 562                        break;
 563                case PHY_INTERFACE_MODE_RGMII:
 564                        /*
 565                         * FM1 DTSEC5 is routed via EC1 to the first on-board
 566                         * RGMII port. FM2 DTSEC5 is routed via EC2 to the
 567                         * second on-board RGMII port. The other DTSECs cannot
 568                         * be routed to RGMII.
 569                         */
 570                        debug("FM1@DTSEC%u is RGMII at address %u\n",
 571                              idx + 1, 0);
 572                        fm_info_set_phy_address(i, 0);
 573                        mdio_mux[i].mask = BRDCFG1_EMI1_SEL_MASK;
 574                        mdio_mux[i].val  = BRDCFG1_EMI1_SEL_RGMII |
 575                                           BRDCFG1_EMI1_EN;
 576                        super_hydra_mdio_set_mux("SUPER_HYDRA_RGMII_MDIO",
 577                                        mdio_mux[i].mask, mdio_mux[i].val);
 578                        fm_info_set_mdio(i,
 579                                miiphy_get_dev_by_name("SUPER_HYDRA_RGMII_MDIO"));
 580                        break;
 581                case PHY_INTERFACE_MODE_NONE:
 582                        fm_info_set_phy_address(i, 0);
 583                        break;
 584                default:
 585                        printf("Fman1: DTSEC%u set to unknown interface %i\n",
 586                               idx + 1, fm_info_get_enet_if(i));
 587                        fm_info_set_phy_address(i, 0);
 588                        break;
 589                }
 590        }
 591
 592        /*
 593         * For 10G, we only support one XAUI card per Fman.  If present, then we
 594         * force its routing and never touch those bits again, which removes the
 595         * need for Linux to do any muxing.  This works because of the way
 596         * BRDCFG1 is defined, but it's a bit hackish.
 597         *
 598         * The PHY address for the XAUI card depends on which slot it's in. The
 599         * macros we use imply that the PHY address is based on which FM, but
 600         * that's not true.  On the P4080DS, FM1 could only use XAUI in slot 5,
 601         * and FM2 could only use a XAUI in slot 4.  On the Hydra board, we
 602         * check the actual slot and just use the macros as-is, even though
 603         * the P3041 and P5020 only have one Fman.
 604         */
 605        lane = serdes_get_first_lane(XAUI_FM1);
 606        if (lane >= 0) {
 607                debug("FM1@TGEC1 expects XAUI in slot %u\n", lane_to_slot[lane]);
 608                mdio_mux[FM1_10GEC1].mask = BRDCFG1_EMI2_SEL_MASK;
 609                mdio_mux[FM1_10GEC1].val = BRDCFG1_EMI2_SEL_SLOT2;
 610                super_hydra_mdio_set_mux("SUPER_HYDRA_FM1_TGEC_MDIO",
 611                                        mdio_mux[i].mask, mdio_mux[i].val);
 612        }
 613
 614        fm_info_set_mdio(FM1_10GEC1,
 615                        miiphy_get_dev_by_name("SUPER_HYDRA_FM1_TGEC_MDIO"));
 616
 617#if (CONFIG_SYS_NUM_FMAN == 2)
 618        for (i = FM2_DTSEC1; i < FM2_DTSEC1 + CONFIG_SYS_NUM_FM2_DTSEC; i++) {
 619                int idx = i - FM2_DTSEC1;
 620
 621                switch (fm_info_get_enet_if(i)) {
 622                case PHY_INTERFACE_MODE_SGMII:
 623                        lane = serdes_get_first_lane(SGMII_FM2_DTSEC1 + idx);
 624                        if (lane < 0)
 625                                break;
 626                        slot = lane_to_slot[lane];
 627                        mdio_mux[i].mask = BRDCFG1_EMI1_SEL_MASK;
 628                        debug("FM2@DTSEC%u expects SGMII in slot %u\n",
 629                              idx + 1, slot);
 630                        switch (slot) {
 631                        case 1:
 632                                mdio_mux[i].val = BRDCFG1_EMI1_SEL_SLOT1 |
 633                                                BRDCFG1_EMI1_EN;
 634                                break;
 635                        case 2:
 636                                mdio_mux[i].val = BRDCFG1_EMI1_SEL_SLOT2 |
 637                                                BRDCFG1_EMI1_EN;
 638                                break;
 639                        case 3:
 640                                mdio_mux[i].val = BRDCFG1_EMI1_SEL_SLOT3 |
 641                                                BRDCFG1_EMI1_EN;
 642                                break;
 643                        case 5:
 644                                mdio_mux[i].val = BRDCFG1_EMI1_SEL_SLOT5 |
 645                                                BRDCFG1_EMI1_EN;
 646                                break;
 647                        case 6:
 648                                mdio_mux[i].val = BRDCFG1_EMI1_SEL_SLOT6 |
 649                                                BRDCFG1_EMI1_EN;
 650                                break;
 651                        case 7:
 652                                mdio_mux[i].val = BRDCFG1_EMI1_SEL_SLOT7 |
 653                                                BRDCFG1_EMI1_EN;
 654                                break;
 655                        };
 656
 657                        super_hydra_mdio_set_mux("SUPER_HYDRA_FM2_SGMII_MDIO",
 658                                        mdio_mux[i].mask, mdio_mux[i].val);
 659                        fm_info_set_mdio(i,
 660                        miiphy_get_dev_by_name("SUPER_HYDRA_FM2_SGMII_MDIO"));
 661                        break;
 662                case PHY_INTERFACE_MODE_RGMII:
 663                        /*
 664                         * FM1 DTSEC5 is routed via EC1 to the first on-board
 665                         * RGMII port. FM2 DTSEC5 is routed via EC2 to the
 666                         * second on-board RGMII port. The other DTSECs cannot
 667                         * be routed to RGMII.
 668                         */
 669                        debug("FM2@DTSEC%u is RGMII at address %u\n",
 670                              idx + 1, 1);
 671                        fm_info_set_phy_address(i, 1);
 672                        mdio_mux[i].mask = BRDCFG1_EMI1_SEL_MASK;
 673                        mdio_mux[i].val  = BRDCFG1_EMI1_SEL_RGMII |
 674                                        BRDCFG1_EMI1_EN;
 675                        super_hydra_mdio_set_mux("SUPER_HYDRA_RGMII_MDIO",
 676                                        mdio_mux[i].mask, mdio_mux[i].val);
 677                        fm_info_set_mdio(i,
 678                        miiphy_get_dev_by_name("SUPER_HYDRA_RGMII_MDIO"));
 679                        break;
 680                case PHY_INTERFACE_MODE_NONE:
 681                        fm_info_set_phy_address(i, 0);
 682                        break;
 683                default:
 684                        printf("Fman2: DTSEC%u set to unknown interface %i\n",
 685                                idx + 1, fm_info_get_enet_if(i));
 686                        fm_info_set_phy_address(i, 0);
 687                        break;
 688                }
 689        }
 690
 691        /*
 692         * For 10G, we only support one XAUI card per Fman.  If present, then we
 693         * force its routing and never touch those bits again, which removes the
 694         * need for Linux to do any muxing.  This works because of the way
 695         * BRDCFG1 is defined, but it's a bit hackish.
 696         *
 697         * The PHY address for the XAUI card depends on which slot it's in. The
 698         * macros we use imply that the PHY address is based on which FM, but
 699         * that's not true.  On the P4080DS, FM1 could only use XAUI in slot 5,
 700         * and FM2 could only use a XAUI in slot 4.  On the Hydra board, we
 701         * check the actual slot and just use the macros as-is, even though
 702         * the P3041 and P5020 only have one Fman.
 703         */
 704        lane = serdes_get_first_lane(XAUI_FM2);
 705        if (lane >= 0) {
 706                debug("FM2@TGEC1 expects XAUI in slot %u\n", lane_to_slot[lane]);
 707                mdio_mux[FM2_10GEC1].mask = BRDCFG1_EMI2_SEL_MASK;
 708                mdio_mux[FM2_10GEC1].val = BRDCFG1_EMI2_SEL_SLOT1;
 709                super_hydra_mdio_set_mux("SUPER_HYDRA_FM2_TGEC_MDIO",
 710                                        mdio_mux[i].mask, mdio_mux[i].val);
 711        }
 712
 713        fm_info_set_mdio(FM2_10GEC1,
 714                        miiphy_get_dev_by_name("SUPER_HYDRA_FM2_TGEC_MDIO"));
 715
 716#endif
 717
 718        cpu_eth_init(bis);
 719#endif
 720
 721        return pci_eth_init(bis);
 722}
 723