uboot/fs/ubifs/tnc.c
<<
>>
Prefs
   1/*
   2 * This file is part of UBIFS.
   3 *
   4 * Copyright (C) 2006-2008 Nokia Corporation.
   5 *
   6 * This program is free software; you can redistribute it and/or modify it
   7 * under the terms of the GNU General Public License version 2 as published by
   8 * the Free Software Foundation.
   9 *
  10 * This program is distributed in the hope that it will be useful, but WITHOUT
  11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  13 * more details.
  14 *
  15 * You should have received a copy of the GNU General Public License along with
  16 * this program; if not, write to the Free Software Foundation, Inc., 51
  17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
  18 *
  19 * Authors: Adrian Hunter
  20 *          Artem Bityutskiy (Битюцкий Артём)
  21 */
  22
  23/*
  24 * This file implements TNC (Tree Node Cache) which caches indexing nodes of
  25 * the UBIFS B-tree.
  26 *
  27 * At the moment the locking rules of the TNC tree are quite simple and
  28 * straightforward. We just have a mutex and lock it when we traverse the
  29 * tree. If a znode is not in memory, we read it from flash while still having
  30 * the mutex locked.
  31 */
  32
  33#include "ubifs.h"
  34
  35/*
  36 * Returned codes of 'matches_name()' and 'fallible_matches_name()' functions.
  37 * @NAME_LESS: name corresponding to the first argument is less than second
  38 * @NAME_MATCHES: names match
  39 * @NAME_GREATER: name corresponding to the second argument is greater than
  40 *                first
  41 * @NOT_ON_MEDIA: node referred by zbranch does not exist on the media
  42 *
  43 * These constants were introduce to improve readability.
  44 */
  45enum {
  46        NAME_LESS    = 0,
  47        NAME_MATCHES = 1,
  48        NAME_GREATER = 2,
  49        NOT_ON_MEDIA = 3,
  50};
  51
  52/**
  53 * insert_old_idx - record an index node obsoleted since the last commit start.
  54 * @c: UBIFS file-system description object
  55 * @lnum: LEB number of obsoleted index node
  56 * @offs: offset of obsoleted index node
  57 *
  58 * Returns %0 on success, and a negative error code on failure.
  59 *
  60 * For recovery, there must always be a complete intact version of the index on
  61 * flash at all times. That is called the "old index". It is the index as at the
  62 * time of the last successful commit. Many of the index nodes in the old index
  63 * may be dirty, but they must not be erased until the next successful commit
  64 * (at which point that index becomes the old index).
  65 *
  66 * That means that the garbage collection and the in-the-gaps method of
  67 * committing must be able to determine if an index node is in the old index.
  68 * Most of the old index nodes can be found by looking up the TNC using the
  69 * 'lookup_znode()' function. However, some of the old index nodes may have
  70 * been deleted from the current index or may have been changed so much that
  71 * they cannot be easily found. In those cases, an entry is added to an RB-tree.
  72 * That is what this function does. The RB-tree is ordered by LEB number and
  73 * offset because they uniquely identify the old index node.
  74 */
  75static int insert_old_idx(struct ubifs_info *c, int lnum, int offs)
  76{
  77        struct ubifs_old_idx *old_idx, *o;
  78        struct rb_node **p, *parent = NULL;
  79
  80        old_idx = kmalloc(sizeof(struct ubifs_old_idx), GFP_NOFS);
  81        if (unlikely(!old_idx))
  82                return -ENOMEM;
  83        old_idx->lnum = lnum;
  84        old_idx->offs = offs;
  85
  86        p = &c->old_idx.rb_node;
  87        while (*p) {
  88                parent = *p;
  89                o = rb_entry(parent, struct ubifs_old_idx, rb);
  90                if (lnum < o->lnum)
  91                        p = &(*p)->rb_left;
  92                else if (lnum > o->lnum)
  93                        p = &(*p)->rb_right;
  94                else if (offs < o->offs)
  95                        p = &(*p)->rb_left;
  96                else if (offs > o->offs)
  97                        p = &(*p)->rb_right;
  98                else {
  99                        ubifs_err("old idx added twice!");
 100                        kfree(old_idx);
 101                        return 0;
 102                }
 103        }
 104        rb_link_node(&old_idx->rb, parent, p);
 105        rb_insert_color(&old_idx->rb, &c->old_idx);
 106        return 0;
 107}
 108
 109/**
 110 * insert_old_idx_znode - record a znode obsoleted since last commit start.
 111 * @c: UBIFS file-system description object
 112 * @znode: znode of obsoleted index node
 113 *
 114 * Returns %0 on success, and a negative error code on failure.
 115 */
 116int insert_old_idx_znode(struct ubifs_info *c, struct ubifs_znode *znode)
 117{
 118        if (znode->parent) {
 119                struct ubifs_zbranch *zbr;
 120
 121                zbr = &znode->parent->zbranch[znode->iip];
 122                if (zbr->len)
 123                        return insert_old_idx(c, zbr->lnum, zbr->offs);
 124        } else
 125                if (c->zroot.len)
 126                        return insert_old_idx(c, c->zroot.lnum,
 127                                              c->zroot.offs);
 128        return 0;
 129}
 130
 131/**
 132 * ins_clr_old_idx_znode - record a znode obsoleted since last commit start.
 133 * @c: UBIFS file-system description object
 134 * @znode: znode of obsoleted index node
 135 *
 136 * Returns %0 on success, and a negative error code on failure.
 137 */
 138static int ins_clr_old_idx_znode(struct ubifs_info *c,
 139                                 struct ubifs_znode *znode)
 140{
 141        int err;
 142
 143        if (znode->parent) {
 144                struct ubifs_zbranch *zbr;
 145
 146                zbr = &znode->parent->zbranch[znode->iip];
 147                if (zbr->len) {
 148                        err = insert_old_idx(c, zbr->lnum, zbr->offs);
 149                        if (err)
 150                                return err;
 151                        zbr->lnum = 0;
 152                        zbr->offs = 0;
 153                        zbr->len = 0;
 154                }
 155        } else
 156                if (c->zroot.len) {
 157                        err = insert_old_idx(c, c->zroot.lnum, c->zroot.offs);
 158                        if (err)
 159                                return err;
 160                        c->zroot.lnum = 0;
 161                        c->zroot.offs = 0;
 162                        c->zroot.len = 0;
 163                }
 164        return 0;
 165}
 166
 167/**
 168 * destroy_old_idx - destroy the old_idx RB-tree.
 169 * @c: UBIFS file-system description object
 170 *
 171 * During start commit, the old_idx RB-tree is used to avoid overwriting index
 172 * nodes that were in the index last commit but have since been deleted.  This
 173 * is necessary for recovery i.e. the old index must be kept intact until the
 174 * new index is successfully written.  The old-idx RB-tree is used for the
 175 * in-the-gaps method of writing index nodes and is destroyed every commit.
 176 */
 177void destroy_old_idx(struct ubifs_info *c)
 178{
 179        struct rb_node *this = c->old_idx.rb_node;
 180        struct ubifs_old_idx *old_idx;
 181
 182        while (this) {
 183                if (this->rb_left) {
 184                        this = this->rb_left;
 185                        continue;
 186                } else if (this->rb_right) {
 187                        this = this->rb_right;
 188                        continue;
 189                }
 190                old_idx = rb_entry(this, struct ubifs_old_idx, rb);
 191                this = rb_parent(this);
 192                if (this) {
 193                        if (this->rb_left == &old_idx->rb)
 194                                this->rb_left = NULL;
 195                        else
 196                                this->rb_right = NULL;
 197                }
 198                kfree(old_idx);
 199        }
 200        c->old_idx = RB_ROOT;
 201}
 202
 203/**
 204 * copy_znode - copy a dirty znode.
 205 * @c: UBIFS file-system description object
 206 * @znode: znode to copy
 207 *
 208 * A dirty znode being committed may not be changed, so it is copied.
 209 */
 210static struct ubifs_znode *copy_znode(struct ubifs_info *c,
 211                                      struct ubifs_znode *znode)
 212{
 213        struct ubifs_znode *zn;
 214
 215        zn = kmalloc(c->max_znode_sz, GFP_NOFS);
 216        if (unlikely(!zn))
 217                return ERR_PTR(-ENOMEM);
 218
 219        memcpy(zn, znode, c->max_znode_sz);
 220        zn->cnext = NULL;
 221        __set_bit(DIRTY_ZNODE, &zn->flags);
 222        __clear_bit(COW_ZNODE, &zn->flags);
 223
 224        ubifs_assert(!test_bit(OBSOLETE_ZNODE, &znode->flags));
 225        __set_bit(OBSOLETE_ZNODE, &znode->flags);
 226
 227        if (znode->level != 0) {
 228                int i;
 229                const int n = zn->child_cnt;
 230
 231                /* The children now have new parent */
 232                for (i = 0; i < n; i++) {
 233                        struct ubifs_zbranch *zbr = &zn->zbranch[i];
 234
 235                        if (zbr->znode)
 236                                zbr->znode->parent = zn;
 237                }
 238        }
 239
 240        atomic_long_inc(&c->dirty_zn_cnt);
 241        return zn;
 242}
 243
 244/**
 245 * add_idx_dirt - add dirt due to a dirty znode.
 246 * @c: UBIFS file-system description object
 247 * @lnum: LEB number of index node
 248 * @dirt: size of index node
 249 *
 250 * This function updates lprops dirty space and the new size of the index.
 251 */
 252static int add_idx_dirt(struct ubifs_info *c, int lnum, int dirt)
 253{
 254        c->calc_idx_sz -= ALIGN(dirt, 8);
 255        return ubifs_add_dirt(c, lnum, dirt);
 256}
 257
 258/**
 259 * dirty_cow_znode - ensure a znode is not being committed.
 260 * @c: UBIFS file-system description object
 261 * @zbr: branch of znode to check
 262 *
 263 * Returns dirtied znode on success or negative error code on failure.
 264 */
 265static struct ubifs_znode *dirty_cow_znode(struct ubifs_info *c,
 266                                           struct ubifs_zbranch *zbr)
 267{
 268        struct ubifs_znode *znode = zbr->znode;
 269        struct ubifs_znode *zn;
 270        int err;
 271
 272        if (!test_bit(COW_ZNODE, &znode->flags)) {
 273                /* znode is not being committed */
 274                if (!test_and_set_bit(DIRTY_ZNODE, &znode->flags)) {
 275                        atomic_long_inc(&c->dirty_zn_cnt);
 276                        atomic_long_dec(&c->clean_zn_cnt);
 277                        atomic_long_dec(&ubifs_clean_zn_cnt);
 278                        err = add_idx_dirt(c, zbr->lnum, zbr->len);
 279                        if (unlikely(err))
 280                                return ERR_PTR(err);
 281                }
 282                return znode;
 283        }
 284
 285        zn = copy_znode(c, znode);
 286        if (IS_ERR(zn))
 287                return zn;
 288
 289        if (zbr->len) {
 290                err = insert_old_idx(c, zbr->lnum, zbr->offs);
 291                if (unlikely(err))
 292                        return ERR_PTR(err);
 293                err = add_idx_dirt(c, zbr->lnum, zbr->len);
 294        } else
 295                err = 0;
 296
 297        zbr->znode = zn;
 298        zbr->lnum = 0;
 299        zbr->offs = 0;
 300        zbr->len = 0;
 301
 302        if (unlikely(err))
 303                return ERR_PTR(err);
 304        return zn;
 305}
 306
 307/**
 308 * lnc_add - add a leaf node to the leaf node cache.
 309 * @c: UBIFS file-system description object
 310 * @zbr: zbranch of leaf node
 311 * @node: leaf node
 312 *
 313 * Leaf nodes are non-index nodes directory entry nodes or data nodes. The
 314 * purpose of the leaf node cache is to save re-reading the same leaf node over
 315 * and over again. Most things are cached by VFS, however the file system must
 316 * cache directory entries for readdir and for resolving hash collisions. The
 317 * present implementation of the leaf node cache is extremely simple, and
 318 * allows for error returns that are not used but that may be needed if a more
 319 * complex implementation is created.
 320 *
 321 * Note, this function does not add the @node object to LNC directly, but
 322 * allocates a copy of the object and adds the copy to LNC. The reason for this
 323 * is that @node has been allocated outside of the TNC subsystem and will be
 324 * used with @c->tnc_mutex unlock upon return from the TNC subsystem. But LNC
 325 * may be changed at any time, e.g. freed by the shrinker.
 326 */
 327static int lnc_add(struct ubifs_info *c, struct ubifs_zbranch *zbr,
 328                   const void *node)
 329{
 330        int err;
 331        void *lnc_node;
 332        const struct ubifs_dent_node *dent = node;
 333
 334        ubifs_assert(!zbr->leaf);
 335        ubifs_assert(zbr->len != 0);
 336        ubifs_assert(is_hash_key(c, &zbr->key));
 337
 338        err = ubifs_validate_entry(c, dent);
 339        if (err) {
 340                dbg_dump_stack();
 341                dbg_dump_node(c, dent);
 342                return err;
 343        }
 344
 345        lnc_node = kmalloc(zbr->len, GFP_NOFS);
 346        if (!lnc_node)
 347                /* We don't have to have the cache, so no error */
 348                return 0;
 349
 350        memcpy(lnc_node, node, zbr->len);
 351        zbr->leaf = lnc_node;
 352        return 0;
 353}
 354
 355 /**
 356 * lnc_add_directly - add a leaf node to the leaf-node-cache.
 357 * @c: UBIFS file-system description object
 358 * @zbr: zbranch of leaf node
 359 * @node: leaf node
 360 *
 361 * This function is similar to 'lnc_add()', but it does not create a copy of
 362 * @node but inserts @node to TNC directly.
 363 */
 364static int lnc_add_directly(struct ubifs_info *c, struct ubifs_zbranch *zbr,
 365                            void *node)
 366{
 367        int err;
 368
 369        ubifs_assert(!zbr->leaf);
 370        ubifs_assert(zbr->len != 0);
 371
 372        err = ubifs_validate_entry(c, node);
 373        if (err) {
 374                dbg_dump_stack();
 375                dbg_dump_node(c, node);
 376                return err;
 377        }
 378
 379        zbr->leaf = node;
 380        return 0;
 381}
 382
 383/**
 384 * lnc_free - remove a leaf node from the leaf node cache.
 385 * @zbr: zbranch of leaf node
 386 * @node: leaf node
 387 */
 388static void lnc_free(struct ubifs_zbranch *zbr)
 389{
 390        if (!zbr->leaf)
 391                return;
 392        kfree(zbr->leaf);
 393        zbr->leaf = NULL;
 394}
 395
 396/**
 397 * tnc_read_node_nm - read a "hashed" leaf node.
 398 * @c: UBIFS file-system description object
 399 * @zbr: key and position of the node
 400 * @node: node is returned here
 401 *
 402 * This function reads a "hashed" node defined by @zbr from the leaf node cache
 403 * (in it is there) or from the hash media, in which case the node is also
 404 * added to LNC. Returns zero in case of success or a negative negative error
 405 * code in case of failure.
 406 */
 407static int tnc_read_node_nm(struct ubifs_info *c, struct ubifs_zbranch *zbr,
 408                            void *node)
 409{
 410        int err;
 411
 412        ubifs_assert(is_hash_key(c, &zbr->key));
 413
 414        if (zbr->leaf) {
 415                /* Read from the leaf node cache */
 416                ubifs_assert(zbr->len != 0);
 417                memcpy(node, zbr->leaf, zbr->len);
 418                return 0;
 419        }
 420
 421        err = ubifs_tnc_read_node(c, zbr, node);
 422        if (err)
 423                return err;
 424
 425        /* Add the node to the leaf node cache */
 426        err = lnc_add(c, zbr, node);
 427        return err;
 428}
 429
 430/**
 431 * try_read_node - read a node if it is a node.
 432 * @c: UBIFS file-system description object
 433 * @buf: buffer to read to
 434 * @type: node type
 435 * @len: node length (not aligned)
 436 * @lnum: LEB number of node to read
 437 * @offs: offset of node to read
 438 *
 439 * This function tries to read a node of known type and length, checks it and
 440 * stores it in @buf. This function returns %1 if a node is present and %0 if
 441 * a node is not present. A negative error code is returned for I/O errors.
 442 * This function performs that same function as ubifs_read_node except that
 443 * it does not require that there is actually a node present and instead
 444 * the return code indicates if a node was read.
 445 *
 446 * Note, this function does not check CRC of data nodes if @c->no_chk_data_crc
 447 * is true (it is controlled by corresponding mount option). However, if
 448 * @c->always_chk_crc is true, @c->no_chk_data_crc is ignored and CRC is always
 449 * checked.
 450 */
 451static int try_read_node(const struct ubifs_info *c, void *buf, int type,
 452                         int len, int lnum, int offs)
 453{
 454        int err, node_len;
 455        struct ubifs_ch *ch = buf;
 456        uint32_t crc, node_crc;
 457
 458        dbg_io("LEB %d:%d, %s, length %d", lnum, offs, dbg_ntype(type), len);
 459
 460        err = ubi_read(c->ubi, lnum, buf, offs, len);
 461        if (err) {
 462                ubifs_err("cannot read node type %d from LEB %d:%d, error %d",
 463                          type, lnum, offs, err);
 464                return err;
 465        }
 466
 467        if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC)
 468                return 0;
 469
 470        if (ch->node_type != type)
 471                return 0;
 472
 473        node_len = le32_to_cpu(ch->len);
 474        if (node_len != len)
 475                return 0;
 476
 477        if (type == UBIFS_DATA_NODE && !c->always_chk_crc && c->no_chk_data_crc)
 478                return 1;
 479
 480        crc = crc32(UBIFS_CRC32_INIT, buf + 8, node_len - 8);
 481        node_crc = le32_to_cpu(ch->crc);
 482        if (crc != node_crc)
 483                return 0;
 484
 485        return 1;
 486}
 487
 488/**
 489 * fallible_read_node - try to read a leaf node.
 490 * @c: UBIFS file-system description object
 491 * @key:  key of node to read
 492 * @zbr:  position of node
 493 * @node: node returned
 494 *
 495 * This function tries to read a node and returns %1 if the node is read, %0
 496 * if the node is not present, and a negative error code in the case of error.
 497 */
 498static int fallible_read_node(struct ubifs_info *c, const union ubifs_key *key,
 499                              struct ubifs_zbranch *zbr, void *node)
 500{
 501        int ret;
 502
 503        dbg_tnc("LEB %d:%d, key %s", zbr->lnum, zbr->offs, DBGKEY(key));
 504
 505        ret = try_read_node(c, node, key_type(c, key), zbr->len, zbr->lnum,
 506                            zbr->offs);
 507        if (ret == 1) {
 508                union ubifs_key node_key;
 509                struct ubifs_dent_node *dent = node;
 510
 511                /* All nodes have key in the same place */
 512                key_read(c, &dent->key, &node_key);
 513                if (keys_cmp(c, key, &node_key) != 0)
 514                        ret = 0;
 515        }
 516        if (ret == 0 && c->replaying)
 517                dbg_mnt("dangling branch LEB %d:%d len %d, key %s",
 518                        zbr->lnum, zbr->offs, zbr->len, DBGKEY(key));
 519        return ret;
 520}
 521
 522/**
 523 * matches_name - determine if a direntry or xattr entry matches a given name.
 524 * @c: UBIFS file-system description object
 525 * @zbr: zbranch of dent
 526 * @nm: name to match
 527 *
 528 * This function checks if xentry/direntry referred by zbranch @zbr matches name
 529 * @nm. Returns %NAME_MATCHES if it does, %NAME_LESS if the name referred by
 530 * @zbr is less than @nm, and %NAME_GREATER if it is greater than @nm. In case
 531 * of failure, a negative error code is returned.
 532 */
 533static int matches_name(struct ubifs_info *c, struct ubifs_zbranch *zbr,
 534                        const struct qstr *nm)
 535{
 536        struct ubifs_dent_node *dent;
 537        int nlen, err;
 538
 539        /* If possible, match against the dent in the leaf node cache */
 540        if (!zbr->leaf) {
 541                dent = kmalloc(zbr->len, GFP_NOFS);
 542                if (!dent)
 543                        return -ENOMEM;
 544
 545                err = ubifs_tnc_read_node(c, zbr, dent);
 546                if (err)
 547                        goto out_free;
 548
 549                /* Add the node to the leaf node cache */
 550                err = lnc_add_directly(c, zbr, dent);
 551                if (err)
 552                        goto out_free;
 553        } else
 554                dent = zbr->leaf;
 555
 556        nlen = le16_to_cpu(dent->nlen);
 557        err = memcmp(dent->name, nm->name, min_t(int, nlen, nm->len));
 558        if (err == 0) {
 559                if (nlen == nm->len)
 560                        return NAME_MATCHES;
 561                else if (nlen < nm->len)
 562                        return NAME_LESS;
 563                else
 564                        return NAME_GREATER;
 565        } else if (err < 0)
 566                return NAME_LESS;
 567        else
 568                return NAME_GREATER;
 569
 570out_free:
 571        kfree(dent);
 572        return err;
 573}
 574
 575/**
 576 * get_znode - get a TNC znode that may not be loaded yet.
 577 * @c: UBIFS file-system description object
 578 * @znode: parent znode
 579 * @n: znode branch slot number
 580 *
 581 * This function returns the znode or a negative error code.
 582 */
 583static struct ubifs_znode *get_znode(struct ubifs_info *c,
 584                                     struct ubifs_znode *znode, int n)
 585{
 586        struct ubifs_zbranch *zbr;
 587
 588        zbr = &znode->zbranch[n];
 589        if (zbr->znode)
 590                znode = zbr->znode;
 591        else
 592                znode = ubifs_load_znode(c, zbr, znode, n);
 593        return znode;
 594}
 595
 596/**
 597 * tnc_next - find next TNC entry.
 598 * @c: UBIFS file-system description object
 599 * @zn: znode is passed and returned here
 600 * @n: znode branch slot number is passed and returned here
 601 *
 602 * This function returns %0 if the next TNC entry is found, %-ENOENT if there is
 603 * no next entry, or a negative error code otherwise.
 604 */
 605static int tnc_next(struct ubifs_info *c, struct ubifs_znode **zn, int *n)
 606{
 607        struct ubifs_znode *znode = *zn;
 608        int nn = *n;
 609
 610        nn += 1;
 611        if (nn < znode->child_cnt) {
 612                *n = nn;
 613                return 0;
 614        }
 615        while (1) {
 616                struct ubifs_znode *zp;
 617
 618                zp = znode->parent;
 619                if (!zp)
 620                        return -ENOENT;
 621                nn = znode->iip + 1;
 622                znode = zp;
 623                if (nn < znode->child_cnt) {
 624                        znode = get_znode(c, znode, nn);
 625                        if (IS_ERR(znode))
 626                                return PTR_ERR(znode);
 627                        while (znode->level != 0) {
 628                                znode = get_znode(c, znode, 0);
 629                                if (IS_ERR(znode))
 630                                        return PTR_ERR(znode);
 631                        }
 632                        nn = 0;
 633                        break;
 634                }
 635        }
 636        *zn = znode;
 637        *n = nn;
 638        return 0;
 639}
 640
 641/**
 642 * tnc_prev - find previous TNC entry.
 643 * @c: UBIFS file-system description object
 644 * @zn: znode is returned here
 645 * @n: znode branch slot number is passed and returned here
 646 *
 647 * This function returns %0 if the previous TNC entry is found, %-ENOENT if
 648 * there is no next entry, or a negative error code otherwise.
 649 */
 650static int tnc_prev(struct ubifs_info *c, struct ubifs_znode **zn, int *n)
 651{
 652        struct ubifs_znode *znode = *zn;
 653        int nn = *n;
 654
 655        if (nn > 0) {
 656                *n = nn - 1;
 657                return 0;
 658        }
 659        while (1) {
 660                struct ubifs_znode *zp;
 661
 662                zp = znode->parent;
 663                if (!zp)
 664                        return -ENOENT;
 665                nn = znode->iip - 1;
 666                znode = zp;
 667                if (nn >= 0) {
 668                        znode = get_znode(c, znode, nn);
 669                        if (IS_ERR(znode))
 670                                return PTR_ERR(znode);
 671                        while (znode->level != 0) {
 672                                nn = znode->child_cnt - 1;
 673                                znode = get_znode(c, znode, nn);
 674                                if (IS_ERR(znode))
 675                                        return PTR_ERR(znode);
 676                        }
 677                        nn = znode->child_cnt - 1;
 678                        break;
 679                }
 680        }
 681        *zn = znode;
 682        *n = nn;
 683        return 0;
 684}
 685
 686/**
 687 * resolve_collision - resolve a collision.
 688 * @c: UBIFS file-system description object
 689 * @key: key of a directory or extended attribute entry
 690 * @zn: znode is returned here
 691 * @n: zbranch number is passed and returned here
 692 * @nm: name of the entry
 693 *
 694 * This function is called for "hashed" keys to make sure that the found key
 695 * really corresponds to the looked up node (directory or extended attribute
 696 * entry). It returns %1 and sets @zn and @n if the collision is resolved.
 697 * %0 is returned if @nm is not found and @zn and @n are set to the previous
 698 * entry, i.e. to the entry after which @nm could follow if it were in TNC.
 699 * This means that @n may be set to %-1 if the leftmost key in @zn is the
 700 * previous one. A negative error code is returned on failures.
 701 */
 702static int resolve_collision(struct ubifs_info *c, const union ubifs_key *key,
 703                             struct ubifs_znode **zn, int *n,
 704                             const struct qstr *nm)
 705{
 706        int err;
 707
 708        err = matches_name(c, &(*zn)->zbranch[*n], nm);
 709        if (unlikely(err < 0))
 710                return err;
 711        if (err == NAME_MATCHES)
 712                return 1;
 713
 714        if (err == NAME_GREATER) {
 715                /* Look left */
 716                while (1) {
 717                        err = tnc_prev(c, zn, n);
 718                        if (err == -ENOENT) {
 719                                ubifs_assert(*n == 0);
 720                                *n = -1;
 721                                return 0;
 722                        }
 723                        if (err < 0)
 724                                return err;
 725                        if (keys_cmp(c, &(*zn)->zbranch[*n].key, key)) {
 726                                /*
 727                                 * We have found the branch after which we would
 728                                 * like to insert, but inserting in this znode
 729                                 * may still be wrong. Consider the following 3
 730                                 * znodes, in the case where we are resolving a
 731                                 * collision with Key2.
 732                                 *
 733                                 *                  znode zp
 734                                 *            ----------------------
 735                                 * level 1     |  Key0  |  Key1  |
 736                                 *            -----------------------
 737                                 *                 |            |
 738                                 *       znode za  |            |  znode zb
 739                                 *          ------------      ------------
 740                                 * level 0  |  Key0  |        |  Key2  |
 741                                 *          ------------      ------------
 742                                 *
 743                                 * The lookup finds Key2 in znode zb. Lets say
 744                                 * there is no match and the name is greater so
 745                                 * we look left. When we find Key0, we end up
 746                                 * here. If we return now, we will insert into
 747                                 * znode za at slot n = 1.  But that is invalid
 748                                 * according to the parent's keys.  Key2 must
 749                                 * be inserted into znode zb.
 750                                 *
 751                                 * Note, this problem is not relevant for the
 752                                 * case when we go right, because
 753                                 * 'tnc_insert()' would correct the parent key.
 754                                 */
 755                                if (*n == (*zn)->child_cnt - 1) {
 756                                        err = tnc_next(c, zn, n);
 757                                        if (err) {
 758                                                /* Should be impossible */
 759                                                ubifs_assert(0);
 760                                                if (err == -ENOENT)
 761                                                        err = -EINVAL;
 762                                                return err;
 763                                        }
 764                                        ubifs_assert(*n == 0);
 765                                        *n = -1;
 766                                }
 767                                return 0;
 768                        }
 769                        err = matches_name(c, &(*zn)->zbranch[*n], nm);
 770                        if (err < 0)
 771                                return err;
 772                        if (err == NAME_LESS)
 773                                return 0;
 774                        if (err == NAME_MATCHES)
 775                                return 1;
 776                        ubifs_assert(err == NAME_GREATER);
 777                }
 778        } else {
 779                int nn = *n;
 780                struct ubifs_znode *znode = *zn;
 781
 782                /* Look right */
 783                while (1) {
 784                        err = tnc_next(c, &znode, &nn);
 785                        if (err == -ENOENT)
 786                                return 0;
 787                        if (err < 0)
 788                                return err;
 789                        if (keys_cmp(c, &znode->zbranch[nn].key, key))
 790                                return 0;
 791                        err = matches_name(c, &znode->zbranch[nn], nm);
 792                        if (err < 0)
 793                                return err;
 794                        if (err == NAME_GREATER)
 795                                return 0;
 796                        *zn = znode;
 797                        *n = nn;
 798                        if (err == NAME_MATCHES)
 799                                return 1;
 800                        ubifs_assert(err == NAME_LESS);
 801                }
 802        }
 803}
 804
 805/**
 806 * fallible_matches_name - determine if a dent matches a given name.
 807 * @c: UBIFS file-system description object
 808 * @zbr: zbranch of dent
 809 * @nm: name to match
 810 *
 811 * This is a "fallible" version of 'matches_name()' function which does not
 812 * panic if the direntry/xentry referred by @zbr does not exist on the media.
 813 *
 814 * This function checks if xentry/direntry referred by zbranch @zbr matches name
 815 * @nm. Returns %NAME_MATCHES it does, %NAME_LESS if the name referred by @zbr
 816 * is less than @nm, %NAME_GREATER if it is greater than @nm, and @NOT_ON_MEDIA
 817 * if xentry/direntry referred by @zbr does not exist on the media. A negative
 818 * error code is returned in case of failure.
 819 */
 820static int fallible_matches_name(struct ubifs_info *c,
 821                                 struct ubifs_zbranch *zbr,
 822                                 const struct qstr *nm)
 823{
 824        struct ubifs_dent_node *dent;
 825        int nlen, err;
 826
 827        /* If possible, match against the dent in the leaf node cache */
 828        if (!zbr->leaf) {
 829                dent = kmalloc(zbr->len, GFP_NOFS);
 830                if (!dent)
 831                        return -ENOMEM;
 832
 833                err = fallible_read_node(c, &zbr->key, zbr, dent);
 834                if (err < 0)
 835                        goto out_free;
 836                if (err == 0) {
 837                        /* The node was not present */
 838                        err = NOT_ON_MEDIA;
 839                        goto out_free;
 840                }
 841                ubifs_assert(err == 1);
 842
 843                err = lnc_add_directly(c, zbr, dent);
 844                if (err)
 845                        goto out_free;
 846        } else
 847                dent = zbr->leaf;
 848
 849        nlen = le16_to_cpu(dent->nlen);
 850        err = memcmp(dent->name, nm->name, min_t(int, nlen, nm->len));
 851        if (err == 0) {
 852                if (nlen == nm->len)
 853                        return NAME_MATCHES;
 854                else if (nlen < nm->len)
 855                        return NAME_LESS;
 856                else
 857                        return NAME_GREATER;
 858        } else if (err < 0)
 859                return NAME_LESS;
 860        else
 861                return NAME_GREATER;
 862
 863out_free:
 864        kfree(dent);
 865        return err;
 866}
 867
 868/**
 869 * fallible_resolve_collision - resolve a collision even if nodes are missing.
 870 * @c: UBIFS file-system description object
 871 * @key: key
 872 * @zn: znode is returned here
 873 * @n: branch number is passed and returned here
 874 * @nm: name of directory entry
 875 * @adding: indicates caller is adding a key to the TNC
 876 *
 877 * This is a "fallible" version of the 'resolve_collision()' function which
 878 * does not panic if one of the nodes referred to by TNC does not exist on the
 879 * media. This may happen when replaying the journal if a deleted node was
 880 * Garbage-collected and the commit was not done. A branch that refers to a node
 881 * that is not present is called a dangling branch. The following are the return
 882 * codes for this function:
 883 *  o if @nm was found, %1 is returned and @zn and @n are set to the found
 884 *    branch;
 885 *  o if we are @adding and @nm was not found, %0 is returned;
 886 *  o if we are not @adding and @nm was not found, but a dangling branch was
 887 *    found, then %1 is returned and @zn and @n are set to the dangling branch;
 888 *  o a negative error code is returned in case of failure.
 889 */
 890static int fallible_resolve_collision(struct ubifs_info *c,
 891                                      const union ubifs_key *key,
 892                                      struct ubifs_znode **zn, int *n,
 893                                      const struct qstr *nm, int adding)
 894{
 895        struct ubifs_znode *o_znode = NULL, *znode = *zn;
 896        int uninitialized_var(o_n), err, cmp, unsure = 0, nn = *n;
 897
 898        cmp = fallible_matches_name(c, &znode->zbranch[nn], nm);
 899        if (unlikely(cmp < 0))
 900                return cmp;
 901        if (cmp == NAME_MATCHES)
 902                return 1;
 903        if (cmp == NOT_ON_MEDIA) {
 904                o_znode = znode;
 905                o_n = nn;
 906                /*
 907                 * We are unlucky and hit a dangling branch straight away.
 908                 * Now we do not really know where to go to find the needed
 909                 * branch - to the left or to the right. Well, let's try left.
 910                 */
 911                unsure = 1;
 912        } else if (!adding)
 913                unsure = 1; /* Remove a dangling branch wherever it is */
 914
 915        if (cmp == NAME_GREATER || unsure) {
 916                /* Look left */
 917                while (1) {
 918                        err = tnc_prev(c, zn, n);
 919                        if (err == -ENOENT) {
 920                                ubifs_assert(*n == 0);
 921                                *n = -1;
 922                                break;
 923                        }
 924                        if (err < 0)
 925                                return err;
 926                        if (keys_cmp(c, &(*zn)->zbranch[*n].key, key)) {
 927                                /* See comments in 'resolve_collision()' */
 928                                if (*n == (*zn)->child_cnt - 1) {
 929                                        err = tnc_next(c, zn, n);
 930                                        if (err) {
 931                                                /* Should be impossible */
 932                                                ubifs_assert(0);
 933                                                if (err == -ENOENT)
 934                                                        err = -EINVAL;
 935                                                return err;
 936                                        }
 937                                        ubifs_assert(*n == 0);
 938                                        *n = -1;
 939                                }
 940                                break;
 941                        }
 942                        err = fallible_matches_name(c, &(*zn)->zbranch[*n], nm);
 943                        if (err < 0)
 944                                return err;
 945                        if (err == NAME_MATCHES)
 946                                return 1;
 947                        if (err == NOT_ON_MEDIA) {
 948                                o_znode = *zn;
 949                                o_n = *n;
 950                                continue;
 951                        }
 952                        if (!adding)
 953                                continue;
 954                        if (err == NAME_LESS)
 955                                break;
 956                        else
 957                                unsure = 0;
 958                }
 959        }
 960
 961        if (cmp == NAME_LESS || unsure) {
 962                /* Look right */
 963                *zn = znode;
 964                *n = nn;
 965                while (1) {
 966                        err = tnc_next(c, &znode, &nn);
 967                        if (err == -ENOENT)
 968                                break;
 969                        if (err < 0)
 970                                return err;
 971                        if (keys_cmp(c, &znode->zbranch[nn].key, key))
 972                                break;
 973                        err = fallible_matches_name(c, &znode->zbranch[nn], nm);
 974                        if (err < 0)
 975                                return err;
 976                        if (err == NAME_GREATER)
 977                                break;
 978                        *zn = znode;
 979                        *n = nn;
 980                        if (err == NAME_MATCHES)
 981                                return 1;
 982                        if (err == NOT_ON_MEDIA) {
 983                                o_znode = znode;
 984                                o_n = nn;
 985                        }
 986                }
 987        }
 988
 989        /* Never match a dangling branch when adding */
 990        if (adding || !o_znode)
 991                return 0;
 992
 993        dbg_mnt("dangling match LEB %d:%d len %d %s",
 994                o_znode->zbranch[o_n].lnum, o_znode->zbranch[o_n].offs,
 995                o_znode->zbranch[o_n].len, DBGKEY(key));
 996        *zn = o_znode;
 997        *n = o_n;
 998        return 1;
 999}
1000
1001/**
1002 * matches_position - determine if a zbranch matches a given position.
1003 * @zbr: zbranch of dent
1004 * @lnum: LEB number of dent to match
1005 * @offs: offset of dent to match
1006 *
1007 * This function returns %1 if @lnum:@offs matches, and %0 otherwise.
1008 */
1009static int matches_position(struct ubifs_zbranch *zbr, int lnum, int offs)
1010{
1011        if (zbr->lnum == lnum && zbr->offs == offs)
1012                return 1;
1013        else
1014                return 0;
1015}
1016
1017/**
1018 * resolve_collision_directly - resolve a collision directly.
1019 * @c: UBIFS file-system description object
1020 * @key: key of directory entry
1021 * @zn: znode is passed and returned here
1022 * @n: zbranch number is passed and returned here
1023 * @lnum: LEB number of dent node to match
1024 * @offs: offset of dent node to match
1025 *
1026 * This function is used for "hashed" keys to make sure the found directory or
1027 * extended attribute entry node is what was looked for. It is used when the
1028 * flash address of the right node is known (@lnum:@offs) which makes it much
1029 * easier to resolve collisions (no need to read entries and match full
1030 * names). This function returns %1 and sets @zn and @n if the collision is
1031 * resolved, %0 if @lnum:@offs is not found and @zn and @n are set to the
1032 * previous directory entry. Otherwise a negative error code is returned.
1033 */
1034static int resolve_collision_directly(struct ubifs_info *c,
1035                                      const union ubifs_key *key,
1036                                      struct ubifs_znode **zn, int *n,
1037                                      int lnum, int offs)
1038{
1039        struct ubifs_znode *znode;
1040        int nn, err;
1041
1042        znode = *zn;
1043        nn = *n;
1044        if (matches_position(&znode->zbranch[nn], lnum, offs))
1045                return 1;
1046
1047        /* Look left */
1048        while (1) {
1049                err = tnc_prev(c, &znode, &nn);
1050                if (err == -ENOENT)
1051                        break;
1052                if (err < 0)
1053                        return err;
1054                if (keys_cmp(c, &znode->zbranch[nn].key, key))
1055                        break;
1056                if (matches_position(&znode->zbranch[nn], lnum, offs)) {
1057                        *zn = znode;
1058                        *n = nn;
1059                        return 1;
1060                }
1061        }
1062
1063        /* Look right */
1064        znode = *zn;
1065        nn = *n;
1066        while (1) {
1067                err = tnc_next(c, &znode, &nn);
1068                if (err == -ENOENT)
1069                        return 0;
1070                if (err < 0)
1071                        return err;
1072                if (keys_cmp(c, &znode->zbranch[nn].key, key))
1073                        return 0;
1074                *zn = znode;
1075                *n = nn;
1076                if (matches_position(&znode->zbranch[nn], lnum, offs))
1077                        return 1;
1078        }
1079}
1080
1081/**
1082 * dirty_cow_bottom_up - dirty a znode and its ancestors.
1083 * @c: UBIFS file-system description object
1084 * @znode: znode to dirty
1085 *
1086 * If we do not have a unique key that resides in a znode, then we cannot
1087 * dirty that znode from the top down (i.e. by using lookup_level0_dirty)
1088 * This function records the path back to the last dirty ancestor, and then
1089 * dirties the znodes on that path.
1090 */
1091static struct ubifs_znode *dirty_cow_bottom_up(struct ubifs_info *c,
1092                                               struct ubifs_znode *znode)
1093{
1094        struct ubifs_znode *zp;
1095        int *path = c->bottom_up_buf, p = 0;
1096
1097        ubifs_assert(c->zroot.znode);
1098        ubifs_assert(znode);
1099        if (c->zroot.znode->level > BOTTOM_UP_HEIGHT) {
1100                kfree(c->bottom_up_buf);
1101                c->bottom_up_buf = kmalloc(c->zroot.znode->level * sizeof(int),
1102                                           GFP_NOFS);
1103                if (!c->bottom_up_buf)
1104                        return ERR_PTR(-ENOMEM);
1105                path = c->bottom_up_buf;
1106        }
1107        if (c->zroot.znode->level) {
1108                /* Go up until parent is dirty */
1109                while (1) {
1110                        int n;
1111
1112                        zp = znode->parent;
1113                        if (!zp)
1114                                break;
1115                        n = znode->iip;
1116                        ubifs_assert(p < c->zroot.znode->level);
1117                        path[p++] = n;
1118                        if (!zp->cnext && ubifs_zn_dirty(znode))
1119                                break;
1120                        znode = zp;
1121                }
1122        }
1123
1124        /* Come back down, dirtying as we go */
1125        while (1) {
1126                struct ubifs_zbranch *zbr;
1127
1128                zp = znode->parent;
1129                if (zp) {
1130                        ubifs_assert(path[p - 1] >= 0);
1131                        ubifs_assert(path[p - 1] < zp->child_cnt);
1132                        zbr = &zp->zbranch[path[--p]];
1133                        znode = dirty_cow_znode(c, zbr);
1134                } else {
1135                        ubifs_assert(znode == c->zroot.znode);
1136                        znode = dirty_cow_znode(c, &c->zroot);
1137                }
1138                if (IS_ERR(znode) || !p)
1139                        break;
1140                ubifs_assert(path[p - 1] >= 0);
1141                ubifs_assert(path[p - 1] < znode->child_cnt);
1142                znode = znode->zbranch[path[p - 1]].znode;
1143        }
1144
1145        return znode;
1146}
1147
1148/**
1149 * ubifs_lookup_level0 - search for zero-level znode.
1150 * @c: UBIFS file-system description object
1151 * @key:  key to lookup
1152 * @zn: znode is returned here
1153 * @n: znode branch slot number is returned here
1154 *
1155 * This function looks up the TNC tree and search for zero-level znode which
1156 * refers key @key. The found zero-level znode is returned in @zn. There are 3
1157 * cases:
1158 *   o exact match, i.e. the found zero-level znode contains key @key, then %1
1159 *     is returned and slot number of the matched branch is stored in @n;
1160 *   o not exact match, which means that zero-level znode does not contain
1161 *     @key, then %0 is returned and slot number of the closed branch is stored
1162 *     in  @n;
1163 *   o @key is so small that it is even less than the lowest key of the
1164 *     leftmost zero-level node, then %0 is returned and %0 is stored in @n.
1165 *
1166 * Note, when the TNC tree is traversed, some znodes may be absent, then this
1167 * function reads corresponding indexing nodes and inserts them to TNC. In
1168 * case of failure, a negative error code is returned.
1169 */
1170int ubifs_lookup_level0(struct ubifs_info *c, const union ubifs_key *key,
1171                        struct ubifs_znode **zn, int *n)
1172{
1173        int err, exact;
1174        struct ubifs_znode *znode;
1175        unsigned long time = get_seconds();
1176
1177        dbg_tnc("search key %s", DBGKEY(key));
1178
1179        znode = c->zroot.znode;
1180        if (unlikely(!znode)) {
1181                znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
1182                if (IS_ERR(znode))
1183                        return PTR_ERR(znode);
1184        }
1185
1186        znode->time = time;
1187
1188        while (1) {
1189                struct ubifs_zbranch *zbr;
1190
1191                exact = ubifs_search_zbranch(c, znode, key, n);
1192
1193                if (znode->level == 0)
1194                        break;
1195
1196                if (*n < 0)
1197                        *n = 0;
1198                zbr = &znode->zbranch[*n];
1199
1200                if (zbr->znode) {
1201                        znode->time = time;
1202                        znode = zbr->znode;
1203                        continue;
1204                }
1205
1206                /* znode is not in TNC cache, load it from the media */
1207                znode = ubifs_load_znode(c, zbr, znode, *n);
1208                if (IS_ERR(znode))
1209                        return PTR_ERR(znode);
1210        }
1211
1212        *zn = znode;
1213        if (exact || !is_hash_key(c, key) || *n != -1) {
1214                dbg_tnc("found %d, lvl %d, n %d", exact, znode->level, *n);
1215                return exact;
1216        }
1217
1218        /*
1219         * Here is a tricky place. We have not found the key and this is a
1220         * "hashed" key, which may collide. The rest of the code deals with
1221         * situations like this:
1222         *
1223         *                  | 3 | 5 |
1224         *                  /       \
1225         *          | 3 | 5 |      | 6 | 7 | (x)
1226         *
1227         * Or more a complex example:
1228         *
1229         *                | 1 | 5 |
1230         *                /       \
1231         *       | 1 | 3 |         | 5 | 8 |
1232         *              \           /
1233         *          | 5 | 5 |   | 6 | 7 | (x)
1234         *
1235         * In the examples, if we are looking for key "5", we may reach nodes
1236         * marked with "(x)". In this case what we have do is to look at the
1237         * left and see if there is "5" key there. If there is, we have to
1238         * return it.
1239         *
1240         * Note, this whole situation is possible because we allow to have
1241         * elements which are equivalent to the next key in the parent in the
1242         * children of current znode. For example, this happens if we split a
1243         * znode like this: | 3 | 5 | 5 | 6 | 7 |, which results in something
1244         * like this:
1245         *                      | 3 | 5 |
1246         *                       /     \
1247         *                | 3 | 5 |   | 5 | 6 | 7 |
1248         *                              ^
1249         * And this becomes what is at the first "picture" after key "5" marked
1250         * with "^" is removed. What could be done is we could prohibit
1251         * splitting in the middle of the colliding sequence. Also, when
1252         * removing the leftmost key, we would have to correct the key of the
1253         * parent node, which would introduce additional complications. Namely,
1254         * if we changed the the leftmost key of the parent znode, the garbage
1255         * collector would be unable to find it (GC is doing this when GC'ing
1256         * indexing LEBs). Although we already have an additional RB-tree where
1257         * we save such changed znodes (see 'ins_clr_old_idx_znode()') until
1258         * after the commit. But anyway, this does not look easy to implement
1259         * so we did not try this.
1260         */
1261        err = tnc_prev(c, &znode, n);
1262        if (err == -ENOENT) {
1263                dbg_tnc("found 0, lvl %d, n -1", znode->level);
1264                *n = -1;
1265                return 0;
1266        }
1267        if (unlikely(err < 0))
1268                return err;
1269        if (keys_cmp(c, key, &znode->zbranch[*n].key)) {
1270                dbg_tnc("found 0, lvl %d, n -1", znode->level);
1271                *n = -1;
1272                return 0;
1273        }
1274
1275        dbg_tnc("found 1, lvl %d, n %d", znode->level, *n);
1276        *zn = znode;
1277        return 1;
1278}
1279
1280/**
1281 * lookup_level0_dirty - search for zero-level znode dirtying.
1282 * @c: UBIFS file-system description object
1283 * @key:  key to lookup
1284 * @zn: znode is returned here
1285 * @n: znode branch slot number is returned here
1286 *
1287 * This function looks up the TNC tree and search for zero-level znode which
1288 * refers key @key. The found zero-level znode is returned in @zn. There are 3
1289 * cases:
1290 *   o exact match, i.e. the found zero-level znode contains key @key, then %1
1291 *     is returned and slot number of the matched branch is stored in @n;
1292 *   o not exact match, which means that zero-level znode does not contain @key
1293 *     then %0 is returned and slot number of the closed branch is stored in
1294 *     @n;
1295 *   o @key is so small that it is even less than the lowest key of the
1296 *     leftmost zero-level node, then %0 is returned and %-1 is stored in @n.
1297 *
1298 * Additionally all znodes in the path from the root to the located zero-level
1299 * znode are marked as dirty.
1300 *
1301 * Note, when the TNC tree is traversed, some znodes may be absent, then this
1302 * function reads corresponding indexing nodes and inserts them to TNC. In
1303 * case of failure, a negative error code is returned.
1304 */
1305static int lookup_level0_dirty(struct ubifs_info *c, const union ubifs_key *key,
1306                               struct ubifs_znode **zn, int *n)
1307{
1308        int err, exact;
1309        struct ubifs_znode *znode;
1310        unsigned long time = get_seconds();
1311
1312        dbg_tnc("search and dirty key %s", DBGKEY(key));
1313
1314        znode = c->zroot.znode;
1315        if (unlikely(!znode)) {
1316                znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
1317                if (IS_ERR(znode))
1318                        return PTR_ERR(znode);
1319        }
1320
1321        znode = dirty_cow_znode(c, &c->zroot);
1322        if (IS_ERR(znode))
1323                return PTR_ERR(znode);
1324
1325        znode->time = time;
1326
1327        while (1) {
1328                struct ubifs_zbranch *zbr;
1329
1330                exact = ubifs_search_zbranch(c, znode, key, n);
1331
1332                if (znode->level == 0)
1333                        break;
1334
1335                if (*n < 0)
1336                        *n = 0;
1337                zbr = &znode->zbranch[*n];
1338
1339                if (zbr->znode) {
1340                        znode->time = time;
1341                        znode = dirty_cow_znode(c, zbr);
1342                        if (IS_ERR(znode))
1343                                return PTR_ERR(znode);
1344                        continue;
1345                }
1346
1347                /* znode is not in TNC cache, load it from the media */
1348                znode = ubifs_load_znode(c, zbr, znode, *n);
1349                if (IS_ERR(znode))
1350                        return PTR_ERR(znode);
1351                znode = dirty_cow_znode(c, zbr);
1352                if (IS_ERR(znode))
1353                        return PTR_ERR(znode);
1354        }
1355
1356        *zn = znode;
1357        if (exact || !is_hash_key(c, key) || *n != -1) {
1358                dbg_tnc("found %d, lvl %d, n %d", exact, znode->level, *n);
1359                return exact;
1360        }
1361
1362        /*
1363         * See huge comment at 'lookup_level0_dirty()' what is the rest of the
1364         * code.
1365         */
1366        err = tnc_prev(c, &znode, n);
1367        if (err == -ENOENT) {
1368                *n = -1;
1369                dbg_tnc("found 0, lvl %d, n -1", znode->level);
1370                return 0;
1371        }
1372        if (unlikely(err < 0))
1373                return err;
1374        if (keys_cmp(c, key, &znode->zbranch[*n].key)) {
1375                *n = -1;
1376                dbg_tnc("found 0, lvl %d, n -1", znode->level);
1377                return 0;
1378        }
1379
1380        if (znode->cnext || !ubifs_zn_dirty(znode)) {
1381                znode = dirty_cow_bottom_up(c, znode);
1382                if (IS_ERR(znode))
1383                        return PTR_ERR(znode);
1384        }
1385
1386        dbg_tnc("found 1, lvl %d, n %d", znode->level, *n);
1387        *zn = znode;
1388        return 1;
1389}
1390
1391/**
1392 * maybe_leb_gced - determine if a LEB may have been garbage collected.
1393 * @c: UBIFS file-system description object
1394 * @lnum: LEB number
1395 * @gc_seq1: garbage collection sequence number
1396 *
1397 * This function determines if @lnum may have been garbage collected since
1398 * sequence number @gc_seq1. If it may have been then %1 is returned, otherwise
1399 * %0 is returned.
1400 */
1401static int maybe_leb_gced(struct ubifs_info *c, int lnum, int gc_seq1)
1402{
1403        /*
1404         * No garbage collection in the read-only U-Boot implementation
1405         */
1406        return 0;
1407}
1408
1409/**
1410 * ubifs_tnc_locate - look up a file-system node and return it and its location.
1411 * @c: UBIFS file-system description object
1412 * @key: node key to lookup
1413 * @node: the node is returned here
1414 * @lnum: LEB number is returned here
1415 * @offs: offset is returned here
1416 *
1417 * This function look up and reads node with key @key. The caller has to make
1418 * sure the @node buffer is large enough to fit the node. Returns zero in case
1419 * of success, %-ENOENT if the node was not found, and a negative error code in
1420 * case of failure. The node location can be returned in @lnum and @offs.
1421 */
1422int ubifs_tnc_locate(struct ubifs_info *c, const union ubifs_key *key,
1423                     void *node, int *lnum, int *offs)
1424{
1425        int found, n, err, safely = 0, gc_seq1;
1426        struct ubifs_znode *znode;
1427        struct ubifs_zbranch zbr, *zt;
1428
1429again:
1430        mutex_lock(&c->tnc_mutex);
1431        found = ubifs_lookup_level0(c, key, &znode, &n);
1432        if (!found) {
1433                err = -ENOENT;
1434                goto out;
1435        } else if (found < 0) {
1436                err = found;
1437                goto out;
1438        }
1439        zt = &znode->zbranch[n];
1440        if (lnum) {
1441                *lnum = zt->lnum;
1442                *offs = zt->offs;
1443        }
1444        if (is_hash_key(c, key)) {
1445                /*
1446                 * In this case the leaf node cache gets used, so we pass the
1447                 * address of the zbranch and keep the mutex locked
1448                 */
1449                err = tnc_read_node_nm(c, zt, node);
1450                goto out;
1451        }
1452        if (safely) {
1453                err = ubifs_tnc_read_node(c, zt, node);
1454                goto out;
1455        }
1456        /* Drop the TNC mutex prematurely and race with garbage collection */
1457        zbr = znode->zbranch[n];
1458        gc_seq1 = c->gc_seq;
1459        mutex_unlock(&c->tnc_mutex);
1460
1461        err = fallible_read_node(c, key, &zbr, node);
1462        if (err <= 0 || maybe_leb_gced(c, zbr.lnum, gc_seq1)) {
1463                /*
1464                 * The node may have been GC'ed out from under us so try again
1465                 * while keeping the TNC mutex locked.
1466                 */
1467                safely = 1;
1468                goto again;
1469        }
1470        return 0;
1471
1472out:
1473        mutex_unlock(&c->tnc_mutex);
1474        return err;
1475}
1476
1477/**
1478 * ubifs_tnc_get_bu_keys - lookup keys for bulk-read.
1479 * @c: UBIFS file-system description object
1480 * @bu: bulk-read parameters and results
1481 *
1482 * Lookup consecutive data node keys for the same inode that reside
1483 * consecutively in the same LEB. This function returns zero in case of success
1484 * and a negative error code in case of failure.
1485 *
1486 * Note, if the bulk-read buffer length (@bu->buf_len) is known, this function
1487 * makes sure bulk-read nodes fit the buffer. Otherwise, this function prepares
1488 * maximum possible amount of nodes for bulk-read.
1489 */
1490int ubifs_tnc_get_bu_keys(struct ubifs_info *c, struct bu_info *bu)
1491{
1492        int n, err = 0, lnum = -1, uninitialized_var(offs);
1493        int uninitialized_var(len);
1494        unsigned int block = key_block(c, &bu->key);
1495        struct ubifs_znode *znode;
1496
1497        bu->cnt = 0;
1498        bu->blk_cnt = 0;
1499        bu->eof = 0;
1500
1501        mutex_lock(&c->tnc_mutex);
1502        /* Find first key */
1503        err = ubifs_lookup_level0(c, &bu->key, &znode, &n);
1504        if (err < 0)
1505                goto out;
1506        if (err) {
1507                /* Key found */
1508                len = znode->zbranch[n].len;
1509                /* The buffer must be big enough for at least 1 node */
1510                if (len > bu->buf_len) {
1511                        err = -EINVAL;
1512                        goto out;
1513                }
1514                /* Add this key */
1515                bu->zbranch[bu->cnt++] = znode->zbranch[n];
1516                bu->blk_cnt += 1;
1517                lnum = znode->zbranch[n].lnum;
1518                offs = ALIGN(znode->zbranch[n].offs + len, 8);
1519        }
1520        while (1) {
1521                struct ubifs_zbranch *zbr;
1522                union ubifs_key *key;
1523                unsigned int next_block;
1524
1525                /* Find next key */
1526                err = tnc_next(c, &znode, &n);
1527                if (err)
1528                        goto out;
1529                zbr = &znode->zbranch[n];
1530                key = &zbr->key;
1531                /* See if there is another data key for this file */
1532                if (key_inum(c, key) != key_inum(c, &bu->key) ||
1533                    key_type(c, key) != UBIFS_DATA_KEY) {
1534                        err = -ENOENT;
1535                        goto out;
1536                }
1537                if (lnum < 0) {
1538                        /* First key found */
1539                        lnum = zbr->lnum;
1540                        offs = ALIGN(zbr->offs + zbr->len, 8);
1541                        len = zbr->len;
1542                        if (len > bu->buf_len) {
1543                                err = -EINVAL;
1544                                goto out;
1545                        }
1546                } else {
1547                        /*
1548                         * The data nodes must be in consecutive positions in
1549                         * the same LEB.
1550                         */
1551                        if (zbr->lnum != lnum || zbr->offs != offs)
1552                                goto out;
1553                        offs += ALIGN(zbr->len, 8);
1554                        len = ALIGN(len, 8) + zbr->len;
1555                        /* Must not exceed buffer length */
1556                        if (len > bu->buf_len)
1557                                goto out;
1558                }
1559                /* Allow for holes */
1560                next_block = key_block(c, key);
1561                bu->blk_cnt += (next_block - block - 1);
1562                if (bu->blk_cnt >= UBIFS_MAX_BULK_READ)
1563                        goto out;
1564                block = next_block;
1565                /* Add this key */
1566                bu->zbranch[bu->cnt++] = *zbr;
1567                bu->blk_cnt += 1;
1568                /* See if we have room for more */
1569                if (bu->cnt >= UBIFS_MAX_BULK_READ)
1570                        goto out;
1571                if (bu->blk_cnt >= UBIFS_MAX_BULK_READ)
1572                        goto out;
1573        }
1574out:
1575        if (err == -ENOENT) {
1576                bu->eof = 1;
1577                err = 0;
1578        }
1579        bu->gc_seq = c->gc_seq;
1580        mutex_unlock(&c->tnc_mutex);
1581        if (err)
1582                return err;
1583        /*
1584         * An enormous hole could cause bulk-read to encompass too many
1585         * page cache pages, so limit the number here.
1586         */
1587        if (bu->blk_cnt > UBIFS_MAX_BULK_READ)
1588                bu->blk_cnt = UBIFS_MAX_BULK_READ;
1589        /*
1590         * Ensure that bulk-read covers a whole number of page cache
1591         * pages.
1592         */
1593        if (UBIFS_BLOCKS_PER_PAGE == 1 ||
1594            !(bu->blk_cnt & (UBIFS_BLOCKS_PER_PAGE - 1)))
1595                return 0;
1596        if (bu->eof) {
1597                /* At the end of file we can round up */
1598                bu->blk_cnt += UBIFS_BLOCKS_PER_PAGE - 1;
1599                return 0;
1600        }
1601        /* Exclude data nodes that do not make up a whole page cache page */
1602        block = key_block(c, &bu->key) + bu->blk_cnt;
1603        block &= ~(UBIFS_BLOCKS_PER_PAGE - 1);
1604        while (bu->cnt) {
1605                if (key_block(c, &bu->zbranch[bu->cnt - 1].key) < block)
1606                        break;
1607                bu->cnt -= 1;
1608        }
1609        return 0;
1610}
1611
1612/**
1613 * validate_data_node - validate data nodes for bulk-read.
1614 * @c: UBIFS file-system description object
1615 * @buf: buffer containing data node to validate
1616 * @zbr: zbranch of data node to validate
1617 *
1618 * This functions returns %0 on success or a negative error code on failure.
1619 */
1620static int validate_data_node(struct ubifs_info *c, void *buf,
1621                              struct ubifs_zbranch *zbr)
1622{
1623        union ubifs_key key1;
1624        struct ubifs_ch *ch = buf;
1625        int err, len;
1626
1627        if (ch->node_type != UBIFS_DATA_NODE) {
1628                ubifs_err("bad node type (%d but expected %d)",
1629                          ch->node_type, UBIFS_DATA_NODE);
1630                goto out_err;
1631        }
1632
1633        err = ubifs_check_node(c, buf, zbr->lnum, zbr->offs, 0, 0);
1634        if (err) {
1635                ubifs_err("expected node type %d", UBIFS_DATA_NODE);
1636                goto out;
1637        }
1638
1639        len = le32_to_cpu(ch->len);
1640        if (len != zbr->len) {
1641                ubifs_err("bad node length %d, expected %d", len, zbr->len);
1642                goto out_err;
1643        }
1644
1645        /* Make sure the key of the read node is correct */
1646        key_read(c, buf + UBIFS_KEY_OFFSET, &key1);
1647        if (!keys_eq(c, &zbr->key, &key1)) {
1648                ubifs_err("bad key in node at LEB %d:%d",
1649                          zbr->lnum, zbr->offs);
1650                dbg_tnc("looked for key %s found node's key %s",
1651                        DBGKEY(&zbr->key), DBGKEY1(&key1));
1652                goto out_err;
1653        }
1654
1655        return 0;
1656
1657out_err:
1658        err = -EINVAL;
1659out:
1660        ubifs_err("bad node at LEB %d:%d", zbr->lnum, zbr->offs);
1661        dbg_dump_node(c, buf);
1662        dbg_dump_stack();
1663        return err;
1664}
1665
1666/**
1667 * ubifs_tnc_bulk_read - read a number of data nodes in one go.
1668 * @c: UBIFS file-system description object
1669 * @bu: bulk-read parameters and results
1670 *
1671 * This functions reads and validates the data nodes that were identified by the
1672 * 'ubifs_tnc_get_bu_keys()' function. This functions returns %0 on success,
1673 * -EAGAIN to indicate a race with GC, or another negative error code on
1674 * failure.
1675 */
1676int ubifs_tnc_bulk_read(struct ubifs_info *c, struct bu_info *bu)
1677{
1678        int lnum = bu->zbranch[0].lnum, offs = bu->zbranch[0].offs, len, err, i;
1679        void *buf;
1680
1681        len = bu->zbranch[bu->cnt - 1].offs;
1682        len += bu->zbranch[bu->cnt - 1].len - offs;
1683        if (len > bu->buf_len) {
1684                ubifs_err("buffer too small %d vs %d", bu->buf_len, len);
1685                return -EINVAL;
1686        }
1687
1688        /* Do the read */
1689        err = ubi_read(c->ubi, lnum, bu->buf, offs, len);
1690
1691        /* Check for a race with GC */
1692        if (maybe_leb_gced(c, lnum, bu->gc_seq))
1693                return -EAGAIN;
1694
1695        if (err && err != -EBADMSG) {
1696                ubifs_err("failed to read from LEB %d:%d, error %d",
1697                          lnum, offs, err);
1698                dbg_dump_stack();
1699                dbg_tnc("key %s", DBGKEY(&bu->key));
1700                return err;
1701        }
1702
1703        /* Validate the nodes read */
1704        buf = bu->buf;
1705        for (i = 0; i < bu->cnt; i++) {
1706                err = validate_data_node(c, buf, &bu->zbranch[i]);
1707                if (err)
1708                        return err;
1709                buf = buf + ALIGN(bu->zbranch[i].len, 8);
1710        }
1711
1712        return 0;
1713}
1714
1715/**
1716 * do_lookup_nm- look up a "hashed" node.
1717 * @c: UBIFS file-system description object
1718 * @key: node key to lookup
1719 * @node: the node is returned here
1720 * @nm: node name
1721 *
1722 * This function look up and reads a node which contains name hash in the key.
1723 * Since the hash may have collisions, there may be many nodes with the same
1724 * key, so we have to sequentially look to all of them until the needed one is
1725 * found. This function returns zero in case of success, %-ENOENT if the node
1726 * was not found, and a negative error code in case of failure.
1727 */
1728static int do_lookup_nm(struct ubifs_info *c, const union ubifs_key *key,
1729                        void *node, const struct qstr *nm)
1730{
1731        int found, n, err;
1732        struct ubifs_znode *znode;
1733
1734        dbg_tnc("name '%.*s' key %s", nm->len, nm->name, DBGKEY(key));
1735        mutex_lock(&c->tnc_mutex);
1736        found = ubifs_lookup_level0(c, key, &znode, &n);
1737        if (!found) {
1738                err = -ENOENT;
1739                goto out_unlock;
1740        } else if (found < 0) {
1741                err = found;
1742                goto out_unlock;
1743        }
1744
1745        ubifs_assert(n >= 0);
1746
1747        err = resolve_collision(c, key, &znode, &n, nm);
1748        dbg_tnc("rc returned %d, znode %p, n %d", err, znode, n);
1749        if (unlikely(err < 0))
1750                goto out_unlock;
1751        if (err == 0) {
1752                err = -ENOENT;
1753                goto out_unlock;
1754        }
1755
1756        err = tnc_read_node_nm(c, &znode->zbranch[n], node);
1757
1758out_unlock:
1759        mutex_unlock(&c->tnc_mutex);
1760        return err;
1761}
1762
1763/**
1764 * ubifs_tnc_lookup_nm - look up a "hashed" node.
1765 * @c: UBIFS file-system description object
1766 * @key: node key to lookup
1767 * @node: the node is returned here
1768 * @nm: node name
1769 *
1770 * This function look up and reads a node which contains name hash in the key.
1771 * Since the hash may have collisions, there may be many nodes with the same
1772 * key, so we have to sequentially look to all of them until the needed one is
1773 * found. This function returns zero in case of success, %-ENOENT if the node
1774 * was not found, and a negative error code in case of failure.
1775 */
1776int ubifs_tnc_lookup_nm(struct ubifs_info *c, const union ubifs_key *key,
1777                        void *node, const struct qstr *nm)
1778{
1779        int err, len;
1780        const struct ubifs_dent_node *dent = node;
1781
1782        /*
1783         * We assume that in most of the cases there are no name collisions and
1784         * 'ubifs_tnc_lookup()' returns us the right direntry.
1785         */
1786        err = ubifs_tnc_lookup(c, key, node);
1787        if (err)
1788                return err;
1789
1790        len = le16_to_cpu(dent->nlen);
1791        if (nm->len == len && !memcmp(dent->name, nm->name, len))
1792                return 0;
1793
1794        /*
1795         * Unluckily, there are hash collisions and we have to iterate over
1796         * them look at each direntry with colliding name hash sequentially.
1797         */
1798        return do_lookup_nm(c, key, node, nm);
1799}
1800
1801/**
1802 * correct_parent_keys - correct parent znodes' keys.
1803 * @c: UBIFS file-system description object
1804 * @znode: znode to correct parent znodes for
1805 *
1806 * This is a helper function for 'tnc_insert()'. When the key of the leftmost
1807 * zbranch changes, keys of parent znodes have to be corrected. This helper
1808 * function is called in such situations and corrects the keys if needed.
1809 */
1810static void correct_parent_keys(const struct ubifs_info *c,
1811                                struct ubifs_znode *znode)
1812{
1813        union ubifs_key *key, *key1;
1814
1815        ubifs_assert(znode->parent);
1816        ubifs_assert(znode->iip == 0);
1817
1818        key = &znode->zbranch[0].key;
1819        key1 = &znode->parent->zbranch[0].key;
1820
1821        while (keys_cmp(c, key, key1) < 0) {
1822                key_copy(c, key, key1);
1823                znode = znode->parent;
1824                znode->alt = 1;
1825                if (!znode->parent || znode->iip)
1826                        break;
1827                key1 = &znode->parent->zbranch[0].key;
1828        }
1829}
1830
1831/**
1832 * insert_zbranch - insert a zbranch into a znode.
1833 * @znode: znode into which to insert
1834 * @zbr: zbranch to insert
1835 * @n: slot number to insert to
1836 *
1837 * This is a helper function for 'tnc_insert()'. UBIFS does not allow "gaps" in
1838 * znode's array of zbranches and keeps zbranches consolidated, so when a new
1839 * zbranch has to be inserted to the @znode->zbranches[]' array at the @n-th
1840 * slot, zbranches starting from @n have to be moved right.
1841 */
1842static void insert_zbranch(struct ubifs_znode *znode,
1843                           const struct ubifs_zbranch *zbr, int n)
1844{
1845        int i;
1846
1847        ubifs_assert(ubifs_zn_dirty(znode));
1848
1849        if (znode->level) {
1850                for (i = znode->child_cnt; i > n; i--) {
1851                        znode->zbranch[i] = znode->zbranch[i - 1];
1852                        if (znode->zbranch[i].znode)
1853                                znode->zbranch[i].znode->iip = i;
1854                }
1855                if (zbr->znode)
1856                        zbr->znode->iip = n;
1857        } else
1858                for (i = znode->child_cnt; i > n; i--)
1859                        znode->zbranch[i] = znode->zbranch[i - 1];
1860
1861        znode->zbranch[n] = *zbr;
1862        znode->child_cnt += 1;
1863
1864        /*
1865         * After inserting at slot zero, the lower bound of the key range of
1866         * this znode may have changed. If this znode is subsequently split
1867         * then the upper bound of the key range may change, and furthermore
1868         * it could change to be lower than the original lower bound. If that
1869         * happens, then it will no longer be possible to find this znode in the
1870         * TNC using the key from the index node on flash. That is bad because
1871         * if it is not found, we will assume it is obsolete and may overwrite
1872         * it. Then if there is an unclean unmount, we will start using the
1873         * old index which will be broken.
1874         *
1875         * So we first mark znodes that have insertions at slot zero, and then
1876         * if they are split we add their lnum/offs to the old_idx tree.
1877         */
1878        if (n == 0)
1879                znode->alt = 1;
1880}
1881
1882/**
1883 * tnc_insert - insert a node into TNC.
1884 * @c: UBIFS file-system description object
1885 * @znode: znode to insert into
1886 * @zbr: branch to insert
1887 * @n: slot number to insert new zbranch to
1888 *
1889 * This function inserts a new node described by @zbr into znode @znode. If
1890 * znode does not have a free slot for new zbranch, it is split. Parent znodes
1891 * are splat as well if needed. Returns zero in case of success or a negative
1892 * error code in case of failure.
1893 */
1894static int tnc_insert(struct ubifs_info *c, struct ubifs_znode *znode,
1895                      struct ubifs_zbranch *zbr, int n)
1896{
1897        struct ubifs_znode *zn, *zi, *zp;
1898        int i, keep, move, appending = 0;
1899        union ubifs_key *key = &zbr->key, *key1;
1900
1901        ubifs_assert(n >= 0 && n <= c->fanout);
1902
1903        /* Implement naive insert for now */
1904again:
1905        zp = znode->parent;
1906        if (znode->child_cnt < c->fanout) {
1907                ubifs_assert(n != c->fanout);
1908                dbg_tnc("inserted at %d level %d, key %s", n, znode->level,
1909                        DBGKEY(key));
1910
1911                insert_zbranch(znode, zbr, n);
1912
1913                /* Ensure parent's key is correct */
1914                if (n == 0 && zp && znode->iip == 0)
1915                        correct_parent_keys(c, znode);
1916
1917                return 0;
1918        }
1919
1920        /*
1921         * Unfortunately, @znode does not have more empty slots and we have to
1922         * split it.
1923         */
1924        dbg_tnc("splitting level %d, key %s", znode->level, DBGKEY(key));
1925
1926        if (znode->alt)
1927                /*
1928                 * We can no longer be sure of finding this znode by key, so we
1929                 * record it in the old_idx tree.
1930                 */
1931                ins_clr_old_idx_znode(c, znode);
1932
1933        zn = kzalloc(c->max_znode_sz, GFP_NOFS);
1934        if (!zn)
1935                return -ENOMEM;
1936        zn->parent = zp;
1937        zn->level = znode->level;
1938
1939        /* Decide where to split */
1940        if (znode->level == 0 && key_type(c, key) == UBIFS_DATA_KEY) {
1941                /* Try not to split consecutive data keys */
1942                if (n == c->fanout) {
1943                        key1 = &znode->zbranch[n - 1].key;
1944                        if (key_inum(c, key1) == key_inum(c, key) &&
1945                            key_type(c, key1) == UBIFS_DATA_KEY)
1946                                appending = 1;
1947                } else
1948                        goto check_split;
1949        } else if (appending && n != c->fanout) {
1950                /* Try not to split consecutive data keys */
1951                appending = 0;
1952check_split:
1953                if (n >= (c->fanout + 1) / 2) {
1954                        key1 = &znode->zbranch[0].key;
1955                        if (key_inum(c, key1) == key_inum(c, key) &&
1956                            key_type(c, key1) == UBIFS_DATA_KEY) {
1957                                key1 = &znode->zbranch[n].key;
1958                                if (key_inum(c, key1) != key_inum(c, key) ||
1959                                    key_type(c, key1) != UBIFS_DATA_KEY) {
1960                                        keep = n;
1961                                        move = c->fanout - keep;
1962                                        zi = znode;
1963                                        goto do_split;
1964                                }
1965                        }
1966                }
1967        }
1968
1969        if (appending) {
1970                keep = c->fanout;
1971                move = 0;
1972        } else {
1973                keep = (c->fanout + 1) / 2;
1974                move = c->fanout - keep;
1975        }
1976
1977        /*
1978         * Although we don't at present, we could look at the neighbors and see
1979         * if we can move some zbranches there.
1980         */
1981
1982        if (n < keep) {
1983                /* Insert into existing znode */
1984                zi = znode;
1985                move += 1;
1986                keep -= 1;
1987        } else {
1988                /* Insert into new znode */
1989                zi = zn;
1990                n -= keep;
1991                /* Re-parent */
1992                if (zn->level != 0)
1993                        zbr->znode->parent = zn;
1994        }
1995
1996do_split:
1997
1998        __set_bit(DIRTY_ZNODE, &zn->flags);
1999        atomic_long_inc(&c->dirty_zn_cnt);
2000
2001        zn->child_cnt = move;
2002        znode->child_cnt = keep;
2003
2004        dbg_tnc("moving %d, keeping %d", move, keep);
2005
2006        /* Move zbranch */
2007        for (i = 0; i < move; i++) {
2008                zn->zbranch[i] = znode->zbranch[keep + i];
2009                /* Re-parent */
2010                if (zn->level != 0)
2011                        if (zn->zbranch[i].znode) {
2012                                zn->zbranch[i].znode->parent = zn;
2013                                zn->zbranch[i].znode->iip = i;
2014                        }
2015        }
2016
2017        /* Insert new key and branch */
2018        dbg_tnc("inserting at %d level %d, key %s", n, zn->level, DBGKEY(key));
2019
2020        insert_zbranch(zi, zbr, n);
2021
2022        /* Insert new znode (produced by spitting) into the parent */
2023        if (zp) {
2024                if (n == 0 && zi == znode && znode->iip == 0)
2025                        correct_parent_keys(c, znode);
2026
2027                /* Locate insertion point */
2028                n = znode->iip + 1;
2029
2030                /* Tail recursion */
2031                zbr->key = zn->zbranch[0].key;
2032                zbr->znode = zn;
2033                zbr->lnum = 0;
2034                zbr->offs = 0;
2035                zbr->len = 0;
2036                znode = zp;
2037
2038                goto again;
2039        }
2040
2041        /* We have to split root znode */
2042        dbg_tnc("creating new zroot at level %d", znode->level + 1);
2043
2044        zi = kzalloc(c->max_znode_sz, GFP_NOFS);
2045        if (!zi)
2046                return -ENOMEM;
2047
2048        zi->child_cnt = 2;
2049        zi->level = znode->level + 1;
2050
2051        __set_bit(DIRTY_ZNODE, &zi->flags);
2052        atomic_long_inc(&c->dirty_zn_cnt);
2053
2054        zi->zbranch[0].key = znode->zbranch[0].key;
2055        zi->zbranch[0].znode = znode;
2056        zi->zbranch[0].lnum = c->zroot.lnum;
2057        zi->zbranch[0].offs = c->zroot.offs;
2058        zi->zbranch[0].len = c->zroot.len;
2059        zi->zbranch[1].key = zn->zbranch[0].key;
2060        zi->zbranch[1].znode = zn;
2061
2062        c->zroot.lnum = 0;
2063        c->zroot.offs = 0;
2064        c->zroot.len = 0;
2065        c->zroot.znode = zi;
2066
2067        zn->parent = zi;
2068        zn->iip = 1;
2069        znode->parent = zi;
2070        znode->iip = 0;
2071
2072        return 0;
2073}
2074
2075/**
2076 * ubifs_tnc_add - add a node to TNC.
2077 * @c: UBIFS file-system description object
2078 * @key: key to add
2079 * @lnum: LEB number of node
2080 * @offs: node offset
2081 * @len: node length
2082 *
2083 * This function adds a node with key @key to TNC. The node may be new or it may
2084 * obsolete some existing one. Returns %0 on success or negative error code on
2085 * failure.
2086 */
2087int ubifs_tnc_add(struct ubifs_info *c, const union ubifs_key *key, int lnum,
2088                  int offs, int len)
2089{
2090        int found, n, err = 0;
2091        struct ubifs_znode *znode;
2092
2093        mutex_lock(&c->tnc_mutex);
2094        dbg_tnc("%d:%d, len %d, key %s", lnum, offs, len, DBGKEY(key));
2095        found = lookup_level0_dirty(c, key, &znode, &n);
2096        if (!found) {
2097                struct ubifs_zbranch zbr;
2098
2099                zbr.znode = NULL;
2100                zbr.lnum = lnum;
2101                zbr.offs = offs;
2102                zbr.len = len;
2103                key_copy(c, key, &zbr.key);
2104                err = tnc_insert(c, znode, &zbr, n + 1);
2105        } else if (found == 1) {
2106                struct ubifs_zbranch *zbr = &znode->zbranch[n];
2107
2108                lnc_free(zbr);
2109                err = ubifs_add_dirt(c, zbr->lnum, zbr->len);
2110                zbr->lnum = lnum;
2111                zbr->offs = offs;
2112                zbr->len = len;
2113        } else
2114                err = found;
2115        if (!err)
2116                err = dbg_check_tnc(c, 0);
2117        mutex_unlock(&c->tnc_mutex);
2118
2119        return err;
2120}
2121
2122/**
2123 * ubifs_tnc_replace - replace a node in the TNC only if the old node is found.
2124 * @c: UBIFS file-system description object
2125 * @key: key to add
2126 * @old_lnum: LEB number of old node
2127 * @old_offs: old node offset
2128 * @lnum: LEB number of node
2129 * @offs: node offset
2130 * @len: node length
2131 *
2132 * This function replaces a node with key @key in the TNC only if the old node
2133 * is found.  This function is called by garbage collection when node are moved.
2134 * Returns %0 on success or negative error code on failure.
2135 */
2136int ubifs_tnc_replace(struct ubifs_info *c, const union ubifs_key *key,
2137                      int old_lnum, int old_offs, int lnum, int offs, int len)
2138{
2139        int found, n, err = 0;
2140        struct ubifs_znode *znode;
2141
2142        mutex_lock(&c->tnc_mutex);
2143        dbg_tnc("old LEB %d:%d, new LEB %d:%d, len %d, key %s", old_lnum,
2144                old_offs, lnum, offs, len, DBGKEY(key));
2145        found = lookup_level0_dirty(c, key, &znode, &n);
2146        if (found < 0) {
2147                err = found;
2148                goto out_unlock;
2149        }
2150
2151        if (found == 1) {
2152                struct ubifs_zbranch *zbr = &znode->zbranch[n];
2153
2154                found = 0;
2155                if (zbr->lnum == old_lnum && zbr->offs == old_offs) {
2156                        lnc_free(zbr);
2157                        err = ubifs_add_dirt(c, zbr->lnum, zbr->len);
2158                        if (err)
2159                                goto out_unlock;
2160                        zbr->lnum = lnum;
2161                        zbr->offs = offs;
2162                        zbr->len = len;
2163                        found = 1;
2164                } else if (is_hash_key(c, key)) {
2165                        found = resolve_collision_directly(c, key, &znode, &n,
2166                                                           old_lnum, old_offs);
2167                        dbg_tnc("rc returned %d, znode %p, n %d, LEB %d:%d",
2168                                found, znode, n, old_lnum, old_offs);
2169                        if (found < 0) {
2170                                err = found;
2171                                goto out_unlock;
2172                        }
2173
2174                        if (found) {
2175                                /* Ensure the znode is dirtied */
2176                                if (znode->cnext || !ubifs_zn_dirty(znode)) {
2177                                        znode = dirty_cow_bottom_up(c, znode);
2178                                        if (IS_ERR(znode)) {
2179                                                err = PTR_ERR(znode);
2180                                                goto out_unlock;
2181                                        }
2182                                }
2183                                zbr = &znode->zbranch[n];
2184                                lnc_free(zbr);
2185                                err = ubifs_add_dirt(c, zbr->lnum,
2186                                                     zbr->len);
2187                                if (err)
2188                                        goto out_unlock;
2189                                zbr->lnum = lnum;
2190                                zbr->offs = offs;
2191                                zbr->len = len;
2192                        }
2193                }
2194        }
2195
2196        if (!found)
2197                err = ubifs_add_dirt(c, lnum, len);
2198
2199        if (!err)
2200                err = dbg_check_tnc(c, 0);
2201
2202out_unlock:
2203        mutex_unlock(&c->tnc_mutex);
2204        return err;
2205}
2206
2207/**
2208 * ubifs_tnc_add_nm - add a "hashed" node to TNC.
2209 * @c: UBIFS file-system description object
2210 * @key: key to add
2211 * @lnum: LEB number of node
2212 * @offs: node offset
2213 * @len: node length
2214 * @nm: node name
2215 *
2216 * This is the same as 'ubifs_tnc_add()' but it should be used with keys which
2217 * may have collisions, like directory entry keys.
2218 */
2219int ubifs_tnc_add_nm(struct ubifs_info *c, const union ubifs_key *key,
2220                     int lnum, int offs, int len, const struct qstr *nm)
2221{
2222        int found, n, err = 0;
2223        struct ubifs_znode *znode;
2224
2225        mutex_lock(&c->tnc_mutex);
2226        dbg_tnc("LEB %d:%d, name '%.*s', key %s", lnum, offs, nm->len, nm->name,
2227                DBGKEY(key));
2228        found = lookup_level0_dirty(c, key, &znode, &n);
2229        if (found < 0) {
2230                err = found;
2231                goto out_unlock;
2232        }
2233
2234        if (found == 1) {
2235                if (c->replaying)
2236                        found = fallible_resolve_collision(c, key, &znode, &n,
2237                                                           nm, 1);
2238                else
2239                        found = resolve_collision(c, key, &znode, &n, nm);
2240                dbg_tnc("rc returned %d, znode %p, n %d", found, znode, n);
2241                if (found < 0) {
2242                        err = found;
2243                        goto out_unlock;
2244                }
2245
2246                /* Ensure the znode is dirtied */
2247                if (znode->cnext || !ubifs_zn_dirty(znode)) {
2248                        znode = dirty_cow_bottom_up(c, znode);
2249                        if (IS_ERR(znode)) {
2250                                err = PTR_ERR(znode);
2251                                goto out_unlock;
2252                        }
2253                }
2254
2255                if (found == 1) {
2256                        struct ubifs_zbranch *zbr = &znode->zbranch[n];
2257
2258                        lnc_free(zbr);
2259                        err = ubifs_add_dirt(c, zbr->lnum, zbr->len);
2260                        zbr->lnum = lnum;
2261                        zbr->offs = offs;
2262                        zbr->len = len;
2263                        goto out_unlock;
2264                }
2265        }
2266
2267        if (!found) {
2268                struct ubifs_zbranch zbr;
2269
2270                zbr.znode = NULL;
2271                zbr.lnum = lnum;
2272                zbr.offs = offs;
2273                zbr.len = len;
2274                key_copy(c, key, &zbr.key);
2275                err = tnc_insert(c, znode, &zbr, n + 1);
2276                if (err)
2277                        goto out_unlock;
2278                if (c->replaying) {
2279                        /*
2280                         * We did not find it in the index so there may be a
2281                         * dangling branch still in the index. So we remove it
2282                         * by passing 'ubifs_tnc_remove_nm()' the same key but
2283                         * an unmatchable name.
2284                         */
2285                        struct qstr noname = { .len = 0, .name = "" };
2286
2287                        err = dbg_check_tnc(c, 0);
2288                        mutex_unlock(&c->tnc_mutex);
2289                        if (err)
2290                                return err;
2291                        return ubifs_tnc_remove_nm(c, key, &noname);
2292                }
2293        }
2294
2295out_unlock:
2296        if (!err)
2297                err = dbg_check_tnc(c, 0);
2298        mutex_unlock(&c->tnc_mutex);
2299        return err;
2300}
2301
2302/**
2303 * tnc_delete - delete a znode form TNC.
2304 * @c: UBIFS file-system description object
2305 * @znode: znode to delete from
2306 * @n: zbranch slot number to delete
2307 *
2308 * This function deletes a leaf node from @n-th slot of @znode. Returns zero in
2309 * case of success and a negative error code in case of failure.
2310 */
2311static int tnc_delete(struct ubifs_info *c, struct ubifs_znode *znode, int n)
2312{
2313        struct ubifs_zbranch *zbr;
2314        struct ubifs_znode *zp;
2315        int i, err;
2316
2317        /* Delete without merge for now */
2318        ubifs_assert(znode->level == 0);
2319        ubifs_assert(n >= 0 && n < c->fanout);
2320        dbg_tnc("deleting %s", DBGKEY(&znode->zbranch[n].key));
2321
2322        zbr = &znode->zbranch[n];
2323        lnc_free(zbr);
2324
2325        err = ubifs_add_dirt(c, zbr->lnum, zbr->len);
2326        if (err) {
2327                dbg_dump_znode(c, znode);
2328                return err;
2329        }
2330
2331        /* We do not "gap" zbranch slots */
2332        for (i = n; i < znode->child_cnt - 1; i++)
2333                znode->zbranch[i] = znode->zbranch[i + 1];
2334        znode->child_cnt -= 1;
2335
2336        if (znode->child_cnt > 0)
2337                return 0;
2338
2339        /*
2340         * This was the last zbranch, we have to delete this znode from the
2341         * parent.
2342         */
2343
2344        do {
2345                ubifs_assert(!test_bit(OBSOLETE_ZNODE, &znode->flags));
2346                ubifs_assert(ubifs_zn_dirty(znode));
2347
2348                zp = znode->parent;
2349                n = znode->iip;
2350
2351                atomic_long_dec(&c->dirty_zn_cnt);
2352
2353                err = insert_old_idx_znode(c, znode);
2354                if (err)
2355                        return err;
2356
2357                if (znode->cnext) {
2358                        __set_bit(OBSOLETE_ZNODE, &znode->flags);
2359                        atomic_long_inc(&c->clean_zn_cnt);
2360                        atomic_long_inc(&ubifs_clean_zn_cnt);
2361                } else
2362                        kfree(znode);
2363                znode = zp;
2364        } while (znode->child_cnt == 1); /* while removing last child */
2365
2366        /* Remove from znode, entry n - 1 */
2367        znode->child_cnt -= 1;
2368        ubifs_assert(znode->level != 0);
2369        for (i = n; i < znode->child_cnt; i++) {
2370                znode->zbranch[i] = znode->zbranch[i + 1];
2371                if (znode->zbranch[i].znode)
2372                        znode->zbranch[i].znode->iip = i;
2373        }
2374
2375        /*
2376         * If this is the root and it has only 1 child then
2377         * collapse the tree.
2378         */
2379        if (!znode->parent) {
2380                while (znode->child_cnt == 1 && znode->level != 0) {
2381                        zp = znode;
2382                        zbr = &znode->zbranch[0];
2383                        znode = get_znode(c, znode, 0);
2384                        if (IS_ERR(znode))
2385                                return PTR_ERR(znode);
2386                        znode = dirty_cow_znode(c, zbr);
2387                        if (IS_ERR(znode))
2388                                return PTR_ERR(znode);
2389                        znode->parent = NULL;
2390                        znode->iip = 0;
2391                        if (c->zroot.len) {
2392                                err = insert_old_idx(c, c->zroot.lnum,
2393                                                     c->zroot.offs);
2394                                if (err)
2395                                        return err;
2396                        }
2397                        c->zroot.lnum = zbr->lnum;
2398                        c->zroot.offs = zbr->offs;
2399                        c->zroot.len = zbr->len;
2400                        c->zroot.znode = znode;
2401                        ubifs_assert(!test_bit(OBSOLETE_ZNODE,
2402                                     &zp->flags));
2403                        ubifs_assert(test_bit(DIRTY_ZNODE, &zp->flags));
2404                        atomic_long_dec(&c->dirty_zn_cnt);
2405
2406                        if (zp->cnext) {
2407                                __set_bit(OBSOLETE_ZNODE, &zp->flags);
2408                                atomic_long_inc(&c->clean_zn_cnt);
2409                                atomic_long_inc(&ubifs_clean_zn_cnt);
2410                        } else
2411                                kfree(zp);
2412                }
2413        }
2414
2415        return 0;
2416}
2417
2418/**
2419 * ubifs_tnc_remove - remove an index entry of a node.
2420 * @c: UBIFS file-system description object
2421 * @key: key of node
2422 *
2423 * Returns %0 on success or negative error code on failure.
2424 */
2425int ubifs_tnc_remove(struct ubifs_info *c, const union ubifs_key *key)
2426{
2427        int found, n, err = 0;
2428        struct ubifs_znode *znode;
2429
2430        mutex_lock(&c->tnc_mutex);
2431        dbg_tnc("key %s", DBGKEY(key));
2432        found = lookup_level0_dirty(c, key, &znode, &n);
2433        if (found < 0) {
2434                err = found;
2435                goto out_unlock;
2436        }
2437        if (found == 1)
2438                err = tnc_delete(c, znode, n);
2439        if (!err)
2440                err = dbg_check_tnc(c, 0);
2441
2442out_unlock:
2443        mutex_unlock(&c->tnc_mutex);
2444        return err;
2445}
2446
2447/**
2448 * ubifs_tnc_remove_nm - remove an index entry for a "hashed" node.
2449 * @c: UBIFS file-system description object
2450 * @key: key of node
2451 * @nm: directory entry name
2452 *
2453 * Returns %0 on success or negative error code on failure.
2454 */
2455int ubifs_tnc_remove_nm(struct ubifs_info *c, const union ubifs_key *key,
2456                        const struct qstr *nm)
2457{
2458        int n, err;
2459        struct ubifs_znode *znode;
2460
2461        mutex_lock(&c->tnc_mutex);
2462        dbg_tnc("%.*s, key %s", nm->len, nm->name, DBGKEY(key));
2463        err = lookup_level0_dirty(c, key, &znode, &n);
2464        if (err < 0)
2465                goto out_unlock;
2466
2467        if (err) {
2468                if (c->replaying)
2469                        err = fallible_resolve_collision(c, key, &znode, &n,
2470                                                         nm, 0);
2471                else
2472                        err = resolve_collision(c, key, &znode, &n, nm);
2473                dbg_tnc("rc returned %d, znode %p, n %d", err, znode, n);
2474                if (err < 0)
2475                        goto out_unlock;
2476                if (err) {
2477                        /* Ensure the znode is dirtied */
2478                        if (znode->cnext || !ubifs_zn_dirty(znode)) {
2479                                    znode = dirty_cow_bottom_up(c, znode);
2480                                    if (IS_ERR(znode)) {
2481                                            err = PTR_ERR(znode);
2482                                            goto out_unlock;
2483                                    }
2484                        }
2485                        err = tnc_delete(c, znode, n);
2486                }
2487        }
2488
2489out_unlock:
2490        if (!err)
2491                err = dbg_check_tnc(c, 0);
2492        mutex_unlock(&c->tnc_mutex);
2493        return err;
2494}
2495
2496/**
2497 * key_in_range - determine if a key falls within a range of keys.
2498 * @c: UBIFS file-system description object
2499 * @key: key to check
2500 * @from_key: lowest key in range
2501 * @to_key: highest key in range
2502 *
2503 * This function returns %1 if the key is in range and %0 otherwise.
2504 */
2505static int key_in_range(struct ubifs_info *c, union ubifs_key *key,
2506                        union ubifs_key *from_key, union ubifs_key *to_key)
2507{
2508        if (keys_cmp(c, key, from_key) < 0)
2509                return 0;
2510        if (keys_cmp(c, key, to_key) > 0)
2511                return 0;
2512        return 1;
2513}
2514
2515/**
2516 * ubifs_tnc_remove_range - remove index entries in range.
2517 * @c: UBIFS file-system description object
2518 * @from_key: lowest key to remove
2519 * @to_key: highest key to remove
2520 *
2521 * This function removes index entries starting at @from_key and ending at
2522 * @to_key.  This function returns zero in case of success and a negative error
2523 * code in case of failure.
2524 */
2525int ubifs_tnc_remove_range(struct ubifs_info *c, union ubifs_key *from_key,
2526                           union ubifs_key *to_key)
2527{
2528        int i, n, k, err = 0;
2529        struct ubifs_znode *znode;
2530        union ubifs_key *key;
2531
2532        mutex_lock(&c->tnc_mutex);
2533        while (1) {
2534                /* Find first level 0 znode that contains keys to remove */
2535                err = ubifs_lookup_level0(c, from_key, &znode, &n);
2536                if (err < 0)
2537                        goto out_unlock;
2538
2539                if (err)
2540                        key = from_key;
2541                else {
2542                        err = tnc_next(c, &znode, &n);
2543                        if (err == -ENOENT) {
2544                                err = 0;
2545                                goto out_unlock;
2546                        }
2547                        if (err < 0)
2548                                goto out_unlock;
2549                        key = &znode->zbranch[n].key;
2550                        if (!key_in_range(c, key, from_key, to_key)) {
2551                                err = 0;
2552                                goto out_unlock;
2553                        }
2554                }
2555
2556                /* Ensure the znode is dirtied */
2557                if (znode->cnext || !ubifs_zn_dirty(znode)) {
2558                        znode = dirty_cow_bottom_up(c, znode);
2559                        if (IS_ERR(znode)) {
2560                                err = PTR_ERR(znode);
2561                                goto out_unlock;
2562                        }
2563                }
2564
2565                /* Remove all keys in range except the first */
2566                for (i = n + 1, k = 0; i < znode->child_cnt; i++, k++) {
2567                        key = &znode->zbranch[i].key;
2568                        if (!key_in_range(c, key, from_key, to_key))
2569                                break;
2570                        lnc_free(&znode->zbranch[i]);
2571                        err = ubifs_add_dirt(c, znode->zbranch[i].lnum,
2572                                             znode->zbranch[i].len);
2573                        if (err) {
2574                                dbg_dump_znode(c, znode);
2575                                goto out_unlock;
2576                        }
2577                        dbg_tnc("removing %s", DBGKEY(key));
2578                }
2579                if (k) {
2580                        for (i = n + 1 + k; i < znode->child_cnt; i++)
2581                                znode->zbranch[i - k] = znode->zbranch[i];
2582                        znode->child_cnt -= k;
2583                }
2584
2585                /* Now delete the first */
2586                err = tnc_delete(c, znode, n);
2587                if (err)
2588                        goto out_unlock;
2589        }
2590
2591out_unlock:
2592        if (!err)
2593                err = dbg_check_tnc(c, 0);
2594        mutex_unlock(&c->tnc_mutex);
2595        return err;
2596}
2597
2598/**
2599 * ubifs_tnc_remove_ino - remove an inode from TNC.
2600 * @c: UBIFS file-system description object
2601 * @inum: inode number to remove
2602 *
2603 * This function remove inode @inum and all the extended attributes associated
2604 * with the anode from TNC and returns zero in case of success or a negative
2605 * error code in case of failure.
2606 */
2607int ubifs_tnc_remove_ino(struct ubifs_info *c, ino_t inum)
2608{
2609        union ubifs_key key1, key2;
2610        struct ubifs_dent_node *xent, *pxent = NULL;
2611        struct qstr nm = { .name = NULL };
2612
2613        dbg_tnc("ino %lu", (unsigned long)inum);
2614
2615        /*
2616         * Walk all extended attribute entries and remove them together with
2617         * corresponding extended attribute inodes.
2618         */
2619        lowest_xent_key(c, &key1, inum);
2620        while (1) {
2621                ino_t xattr_inum;
2622                int err;
2623
2624                xent = ubifs_tnc_next_ent(c, &key1, &nm);
2625                if (IS_ERR(xent)) {
2626                        err = PTR_ERR(xent);
2627                        if (err == -ENOENT)
2628                                break;
2629                        return err;
2630                }
2631
2632                xattr_inum = le64_to_cpu(xent->inum);
2633                dbg_tnc("xent '%s', ino %lu", xent->name,
2634                        (unsigned long)xattr_inum);
2635
2636                nm.name = (char *)xent->name;
2637                nm.len = le16_to_cpu(xent->nlen);
2638                err = ubifs_tnc_remove_nm(c, &key1, &nm);
2639                if (err) {
2640                        kfree(xent);
2641                        return err;
2642                }
2643
2644                lowest_ino_key(c, &key1, xattr_inum);
2645                highest_ino_key(c, &key2, xattr_inum);
2646                err = ubifs_tnc_remove_range(c, &key1, &key2);
2647                if (err) {
2648                        kfree(xent);
2649                        return err;
2650                }
2651
2652                kfree(pxent);
2653                pxent = xent;
2654                key_read(c, &xent->key, &key1);
2655        }
2656
2657        kfree(pxent);
2658        lowest_ino_key(c, &key1, inum);
2659        highest_ino_key(c, &key2, inum);
2660
2661        return ubifs_tnc_remove_range(c, &key1, &key2);
2662}
2663
2664/**
2665 * ubifs_tnc_next_ent - walk directory or extended attribute entries.
2666 * @c: UBIFS file-system description object
2667 * @key: key of last entry
2668 * @nm: name of last entry found or %NULL
2669 *
2670 * This function finds and reads the next directory or extended attribute entry
2671 * after the given key (@key) if there is one. @nm is used to resolve
2672 * collisions.
2673 *
2674 * If the name of the current entry is not known and only the key is known,
2675 * @nm->name has to be %NULL. In this case the semantics of this function is a
2676 * little bit different and it returns the entry corresponding to this key, not
2677 * the next one. If the key was not found, the closest "right" entry is
2678 * returned.
2679 *
2680 * If the fist entry has to be found, @key has to contain the lowest possible
2681 * key value for this inode and @name has to be %NULL.
2682 *
2683 * This function returns the found directory or extended attribute entry node
2684 * in case of success, %-ENOENT is returned if no entry was found, and a
2685 * negative error code is returned in case of failure.
2686 */
2687struct ubifs_dent_node *ubifs_tnc_next_ent(struct ubifs_info *c,
2688                                           union ubifs_key *key,
2689                                           const struct qstr *nm)
2690{
2691        int n, err, type = key_type(c, key);
2692        struct ubifs_znode *znode;
2693        struct ubifs_dent_node *dent;
2694        struct ubifs_zbranch *zbr;
2695        union ubifs_key *dkey;
2696
2697        dbg_tnc("%s %s", nm->name ? (char *)nm->name : "(lowest)", DBGKEY(key));
2698        ubifs_assert(is_hash_key(c, key));
2699
2700        mutex_lock(&c->tnc_mutex);
2701        err = ubifs_lookup_level0(c, key, &znode, &n);
2702        if (unlikely(err < 0))
2703                goto out_unlock;
2704
2705        if (nm->name) {
2706                if (err) {
2707                        /* Handle collisions */
2708                        err = resolve_collision(c, key, &znode, &n, nm);
2709                        dbg_tnc("rc returned %d, znode %p, n %d",
2710                                err, znode, n);
2711                        if (unlikely(err < 0))
2712                                goto out_unlock;
2713                }
2714
2715                /* Now find next entry */
2716                err = tnc_next(c, &znode, &n);
2717                if (unlikely(err))
2718                        goto out_unlock;
2719        } else {
2720                /*
2721                 * The full name of the entry was not given, in which case the
2722                 * behavior of this function is a little different and it
2723                 * returns current entry, not the next one.
2724                 */
2725                if (!err) {
2726                        /*
2727                         * However, the given key does not exist in the TNC
2728                         * tree and @znode/@n variables contain the closest
2729                         * "preceding" element. Switch to the next one.
2730                         */
2731                        err = tnc_next(c, &znode, &n);
2732                        if (err)
2733                                goto out_unlock;
2734                }
2735        }
2736
2737        zbr = &znode->zbranch[n];
2738        dent = kmalloc(zbr->len, GFP_NOFS);
2739        if (unlikely(!dent)) {
2740                err = -ENOMEM;
2741                goto out_unlock;
2742        }
2743
2744        /*
2745         * The above 'tnc_next()' call could lead us to the next inode, check
2746         * this.
2747         */
2748        dkey = &zbr->key;
2749        if (key_inum(c, dkey) != key_inum(c, key) ||
2750            key_type(c, dkey) != type) {
2751                err = -ENOENT;
2752                goto out_free;
2753        }
2754
2755        err = tnc_read_node_nm(c, zbr, dent);
2756        if (unlikely(err))
2757                goto out_free;
2758
2759        mutex_unlock(&c->tnc_mutex);
2760        return dent;
2761
2762out_free:
2763        kfree(dent);
2764out_unlock:
2765        mutex_unlock(&c->tnc_mutex);
2766        return ERR_PTR(err);
2767}
2768