uboot/arch/powerpc/cpu/mpc8xxx/ddr/lc_common_dimm_params.c
<<
>>
Prefs
   1/*
   2 * Copyright 2008-2012 Freescale Semiconductor, Inc.
   3 *
   4 * This program is free software; you can redistribute it and/or
   5 * modify it under the terms of the GNU General Public License
   6 * Version 2 as published by the Free Software Foundation.
   7 */
   8
   9#include <common.h>
  10#include <asm/fsl_ddr_sdram.h>
  11
  12#include "ddr.h"
  13
  14#if defined(CONFIG_FSL_DDR3)
  15static unsigned int
  16compute_cas_latency_ddr3(const dimm_params_t *dimm_params,
  17                         common_timing_params_t *outpdimm,
  18                         unsigned int number_of_dimms)
  19{
  20        unsigned int i;
  21        unsigned int tAAmin_ps = 0;
  22        unsigned int tCKmin_X_ps = 0;
  23        unsigned int common_caslat;
  24        unsigned int caslat_actual;
  25        unsigned int retry = 16;
  26        unsigned int tmp;
  27        const unsigned int mclk_ps = get_memory_clk_period_ps();
  28
  29        /* compute the common CAS latency supported between slots */
  30        tmp = dimm_params[0].caslat_X;
  31        for (i = 1; i < number_of_dimms; i++) {
  32                if (dimm_params[i].n_ranks)
  33                        tmp &= dimm_params[i].caslat_X;
  34        }
  35        common_caslat = tmp;
  36
  37        /* compute the max tAAmin tCKmin between slots */
  38        for (i = 0; i < number_of_dimms; i++) {
  39                tAAmin_ps = max(tAAmin_ps, dimm_params[i].tAA_ps);
  40                tCKmin_X_ps = max(tCKmin_X_ps, dimm_params[i].tCKmin_X_ps);
  41        }
  42        /* validate if the memory clk is in the range of dimms */
  43        if (mclk_ps < tCKmin_X_ps) {
  44                printf("DDR clock (MCLK cycle %u ps) is faster than "
  45                        "the slowest DIMM(s) (tCKmin %u ps) can support.\n",
  46                        mclk_ps, tCKmin_X_ps);
  47                return 1;
  48        }
  49        /* determine the acutal cas latency */
  50        caslat_actual = (tAAmin_ps + mclk_ps - 1) / mclk_ps;
  51        /* check if the dimms support the CAS latency */
  52        while (!(common_caslat & (1 << caslat_actual)) && retry > 0) {
  53                caslat_actual++;
  54                retry--;
  55        }
  56        /* once the caculation of caslat_actual is completed
  57         * we must verify that this CAS latency value does not
  58         * exceed tAAmax, which is 20 ns for all DDR3 speed grades
  59         */
  60        if (caslat_actual * mclk_ps > 20000) {
  61                printf("The choosen cas latency %d is too large\n",
  62                        caslat_actual);
  63                return 1;
  64        }
  65        outpdimm->lowest_common_SPD_caslat = caslat_actual;
  66
  67        return 0;
  68}
  69#endif
  70
  71/*
  72 * compute_lowest_common_dimm_parameters()
  73 *
  74 * Determine the worst-case DIMM timing parameters from the set of DIMMs
  75 * whose parameters have been computed into the array pointed to
  76 * by dimm_params.
  77 */
  78unsigned int
  79compute_lowest_common_dimm_parameters(const dimm_params_t *dimm_params,
  80                                      common_timing_params_t *outpdimm,
  81                                      const unsigned int number_of_dimms)
  82{
  83        unsigned int i, j;
  84
  85        unsigned int tCKmin_X_ps = 0;
  86        unsigned int tCKmax_ps = 0xFFFFFFFF;
  87        unsigned int tCKmax_max_ps = 0;
  88        unsigned int tRCD_ps = 0;
  89        unsigned int tRP_ps = 0;
  90        unsigned int tRAS_ps = 0;
  91        unsigned int tWR_ps = 0;
  92        unsigned int tWTR_ps = 0;
  93        unsigned int tRFC_ps = 0;
  94        unsigned int tRRD_ps = 0;
  95        unsigned int tRC_ps = 0;
  96        unsigned int refresh_rate_ps = 0;
  97        unsigned int tIS_ps = 0;
  98        unsigned int tIH_ps = 0;
  99        unsigned int tDS_ps = 0;
 100        unsigned int tDH_ps = 0;
 101        unsigned int tRTP_ps = 0;
 102        unsigned int tDQSQ_max_ps = 0;
 103        unsigned int tQHS_ps = 0;
 104
 105        unsigned int temp1, temp2;
 106        unsigned int additive_latency = 0;
 107#if !defined(CONFIG_FSL_DDR3)
 108        const unsigned int mclk_ps = get_memory_clk_period_ps();
 109        unsigned int lowest_good_caslat;
 110        unsigned int not_ok;
 111
 112        debug("using mclk_ps = %u\n", mclk_ps);
 113#endif
 114
 115        temp1 = 0;
 116        for (i = 0; i < number_of_dimms; i++) {
 117                /*
 118                 * If there are no ranks on this DIMM,
 119                 * it probably doesn't exist, so skip it.
 120                 */
 121                if (dimm_params[i].n_ranks == 0) {
 122                        temp1++;
 123                        continue;
 124                }
 125                if (dimm_params[i].n_ranks == 4 && i != 0) {
 126                        printf("Found Quad-rank DIMM in wrong bank, ignored."
 127                                " Software may not run as expected.\n");
 128                        temp1++;
 129                        continue;
 130                }
 131
 132                /*
 133                 * check if quad-rank DIMM is plugged if
 134                 * CONFIG_CHIP_SELECT_QUAD_CAPABLE is not defined
 135                 * Only the board with proper design is capable
 136                 */
 137#ifndef CONFIG_FSL_DDR_FIRST_SLOT_QUAD_CAPABLE
 138                if (dimm_params[i].n_ranks == 4 && \
 139                  CONFIG_CHIP_SELECTS_PER_CTRL/CONFIG_DIMM_SLOTS_PER_CTLR < 4) {
 140                        printf("Found Quad-rank DIMM, not able to support.");
 141                        temp1++;
 142                        continue;
 143                }
 144#endif
 145                /*
 146                 * Find minimum tCKmax_ps to find fastest slow speed,
 147                 * i.e., this is the slowest the whole system can go.
 148                 */
 149                tCKmax_ps = min(tCKmax_ps, dimm_params[i].tCKmax_ps);
 150
 151                /* Either find maximum value to determine slowest
 152                 * speed, delay, time, period, etc */
 153                tCKmin_X_ps = max(tCKmin_X_ps, dimm_params[i].tCKmin_X_ps);
 154                tCKmax_max_ps = max(tCKmax_max_ps, dimm_params[i].tCKmax_ps);
 155                tRCD_ps = max(tRCD_ps, dimm_params[i].tRCD_ps);
 156                tRP_ps = max(tRP_ps, dimm_params[i].tRP_ps);
 157                tRAS_ps = max(tRAS_ps, dimm_params[i].tRAS_ps);
 158                tWR_ps = max(tWR_ps, dimm_params[i].tWR_ps);
 159                tWTR_ps = max(tWTR_ps, dimm_params[i].tWTR_ps);
 160                tRFC_ps = max(tRFC_ps, dimm_params[i].tRFC_ps);
 161                tRRD_ps = max(tRRD_ps, dimm_params[i].tRRD_ps);
 162                tRC_ps = max(tRC_ps, dimm_params[i].tRC_ps);
 163                tIS_ps = max(tIS_ps, dimm_params[i].tIS_ps);
 164                tIH_ps = max(tIH_ps, dimm_params[i].tIH_ps);
 165                tDS_ps = max(tDS_ps, dimm_params[i].tDS_ps);
 166                tDH_ps = max(tDH_ps, dimm_params[i].tDH_ps);
 167                tRTP_ps = max(tRTP_ps, dimm_params[i].tRTP_ps);
 168                tQHS_ps = max(tQHS_ps, dimm_params[i].tQHS_ps);
 169                refresh_rate_ps = max(refresh_rate_ps,
 170                                      dimm_params[i].refresh_rate_ps);
 171
 172                /*
 173                 * Find maximum tDQSQ_max_ps to find slowest.
 174                 *
 175                 * FIXME: is finding the slowest value the correct
 176                 * strategy for this parameter?
 177                 */
 178                tDQSQ_max_ps = max(tDQSQ_max_ps, dimm_params[i].tDQSQ_max_ps);
 179        }
 180
 181        outpdimm->ndimms_present = number_of_dimms - temp1;
 182
 183        if (temp1 == number_of_dimms) {
 184                debug("no dimms this memory controller\n");
 185                return 0;
 186        }
 187
 188        outpdimm->tCKmin_X_ps = tCKmin_X_ps;
 189        outpdimm->tCKmax_ps = tCKmax_ps;
 190        outpdimm->tCKmax_max_ps = tCKmax_max_ps;
 191        outpdimm->tRCD_ps = tRCD_ps;
 192        outpdimm->tRP_ps = tRP_ps;
 193        outpdimm->tRAS_ps = tRAS_ps;
 194        outpdimm->tWR_ps = tWR_ps;
 195        outpdimm->tWTR_ps = tWTR_ps;
 196        outpdimm->tRFC_ps = tRFC_ps;
 197        outpdimm->tRRD_ps = tRRD_ps;
 198        outpdimm->tRC_ps = tRC_ps;
 199        outpdimm->refresh_rate_ps = refresh_rate_ps;
 200        outpdimm->tIS_ps = tIS_ps;
 201        outpdimm->tIH_ps = tIH_ps;
 202        outpdimm->tDS_ps = tDS_ps;
 203        outpdimm->tDH_ps = tDH_ps;
 204        outpdimm->tRTP_ps = tRTP_ps;
 205        outpdimm->tDQSQ_max_ps = tDQSQ_max_ps;
 206        outpdimm->tQHS_ps = tQHS_ps;
 207
 208        /* Determine common burst length for all DIMMs. */
 209        temp1 = 0xff;
 210        for (i = 0; i < number_of_dimms; i++) {
 211                if (dimm_params[i].n_ranks) {
 212                        temp1 &= dimm_params[i].burst_lengths_bitmask;
 213                }
 214        }
 215        outpdimm->all_DIMMs_burst_lengths_bitmask = temp1;
 216
 217        /* Determine if all DIMMs registered buffered. */
 218        temp1 = temp2 = 0;
 219        for (i = 0; i < number_of_dimms; i++) {
 220                if (dimm_params[i].n_ranks) {
 221                        if (dimm_params[i].registered_dimm) {
 222                                temp1 = 1;
 223                                printf("Detected RDIMM %s\n",
 224                                        dimm_params[i].mpart);
 225                        } else {
 226                                temp2 = 1;
 227                                printf("Detected UDIMM %s\n",
 228                                        dimm_params[i].mpart);
 229                        }
 230                }
 231        }
 232
 233        outpdimm->all_DIMMs_registered = 0;
 234        outpdimm->all_DIMMs_unbuffered = 0;
 235        if (temp1 && !temp2) {
 236                outpdimm->all_DIMMs_registered = 1;
 237        } else if (!temp1 && temp2) {
 238                outpdimm->all_DIMMs_unbuffered = 1;
 239        } else {
 240                printf("ERROR:  Mix of registered buffered and unbuffered "
 241                                "DIMMs detected!\n");
 242        }
 243
 244        temp1 = 0;
 245        if (outpdimm->all_DIMMs_registered)
 246                for (j = 0; j < 16; j++) {
 247                        outpdimm->rcw[j] = dimm_params[0].rcw[j];
 248                        for (i = 1; i < number_of_dimms; i++) {
 249                                if (!dimm_params[i].n_ranks)
 250                                        continue;
 251                                if (dimm_params[i].rcw[j] != dimm_params[0].rcw[j]) {
 252                                        temp1 = 1;
 253                                        break;
 254                                }
 255                        }
 256                }
 257
 258        if (temp1 != 0)
 259                printf("ERROR: Mix different RDIMM detected!\n");
 260
 261#if defined(CONFIG_FSL_DDR3)
 262        if (compute_cas_latency_ddr3(dimm_params, outpdimm, number_of_dimms))
 263                return 1;
 264#else
 265        /*
 266         * Compute a CAS latency suitable for all DIMMs
 267         *
 268         * Strategy for SPD-defined latencies: compute only
 269         * CAS latency defined by all DIMMs.
 270         */
 271
 272        /*
 273         * Step 1: find CAS latency common to all DIMMs using bitwise
 274         * operation.
 275         */
 276        temp1 = 0xFF;
 277        for (i = 0; i < number_of_dimms; i++) {
 278                if (dimm_params[i].n_ranks) {
 279                        temp2 = 0;
 280                        temp2 |= 1 << dimm_params[i].caslat_X;
 281                        temp2 |= 1 << dimm_params[i].caslat_X_minus_1;
 282                        temp2 |= 1 << dimm_params[i].caslat_X_minus_2;
 283                        /*
 284                         * FIXME: If there was no entry for X-2 (X-1) in
 285                         * the SPD, then caslat_X_minus_2
 286                         * (caslat_X_minus_1) contains either 255 or
 287                         * 0xFFFFFFFF because that's what the glorious
 288                         * __ilog2 function returns for an input of 0.
 289                         * On 32-bit PowerPC, left shift counts with bit
 290                         * 26 set (that the value of 255 or 0xFFFFFFFF
 291                         * will have), cause the destination register to
 292                         * be 0.  That is why this works.
 293                         */
 294                        temp1 &= temp2;
 295                }
 296        }
 297
 298        /*
 299         * Step 2: check each common CAS latency against tCK of each
 300         * DIMM's SPD.
 301         */
 302        lowest_good_caslat = 0;
 303        temp2 = 0;
 304        while (temp1) {
 305                not_ok = 0;
 306                temp2 =  __ilog2(temp1);
 307                debug("checking common caslat = %u\n", temp2);
 308
 309                /* Check if this CAS latency will work on all DIMMs at tCK. */
 310                for (i = 0; i < number_of_dimms; i++) {
 311                        if (!dimm_params[i].n_ranks) {
 312                                continue;
 313                        }
 314                        if (dimm_params[i].caslat_X == temp2) {
 315                                if (mclk_ps >= dimm_params[i].tCKmin_X_ps) {
 316                                        debug("CL = %u ok on DIMM %u at tCK=%u"
 317                                            " ps with its tCKmin_X_ps of %u\n",
 318                                               temp2, i, mclk_ps,
 319                                               dimm_params[i].tCKmin_X_ps);
 320                                        continue;
 321                                } else {
 322                                        not_ok++;
 323                                }
 324                        }
 325
 326                        if (dimm_params[i].caslat_X_minus_1 == temp2) {
 327                                unsigned int tCKmin_X_minus_1_ps
 328                                        = dimm_params[i].tCKmin_X_minus_1_ps;
 329                                if (mclk_ps >= tCKmin_X_minus_1_ps) {
 330                                        debug("CL = %u ok on DIMM %u at "
 331                                                "tCK=%u ps with its "
 332                                                "tCKmin_X_minus_1_ps of %u\n",
 333                                               temp2, i, mclk_ps,
 334                                               tCKmin_X_minus_1_ps);
 335                                        continue;
 336                                } else {
 337                                        not_ok++;
 338                                }
 339                        }
 340
 341                        if (dimm_params[i].caslat_X_minus_2 == temp2) {
 342                                unsigned int tCKmin_X_minus_2_ps
 343                                        = dimm_params[i].tCKmin_X_minus_2_ps;
 344                                if (mclk_ps >= tCKmin_X_minus_2_ps) {
 345                                        debug("CL = %u ok on DIMM %u at "
 346                                                "tCK=%u ps with its "
 347                                                "tCKmin_X_minus_2_ps of %u\n",
 348                                               temp2, i, mclk_ps,
 349                                               tCKmin_X_minus_2_ps);
 350                                        continue;
 351                                } else {
 352                                        not_ok++;
 353                                }
 354                        }
 355                }
 356
 357                if (!not_ok) {
 358                        lowest_good_caslat = temp2;
 359                }
 360
 361                temp1 &= ~(1 << temp2);
 362        }
 363
 364        debug("lowest common SPD-defined CAS latency = %u\n",
 365               lowest_good_caslat);
 366        outpdimm->lowest_common_SPD_caslat = lowest_good_caslat;
 367
 368
 369        /*
 370         * Compute a common 'de-rated' CAS latency.
 371         *
 372         * The strategy here is to find the *highest* dereated cas latency
 373         * with the assumption that all of the DIMMs will support a dereated
 374         * CAS latency higher than or equal to their lowest dereated value.
 375         */
 376        temp1 = 0;
 377        for (i = 0; i < number_of_dimms; i++) {
 378                temp1 = max(temp1, dimm_params[i].caslat_lowest_derated);
 379        }
 380        outpdimm->highest_common_derated_caslat = temp1;
 381        debug("highest common dereated CAS latency = %u\n", temp1);
 382#endif /* #if defined(CONFIG_FSL_DDR3) */
 383
 384        /* Determine if all DIMMs ECC capable. */
 385        temp1 = 1;
 386        for (i = 0; i < number_of_dimms; i++) {
 387                if (dimm_params[i].n_ranks &&
 388                        !(dimm_params[i].edc_config & EDC_ECC)) {
 389                        temp1 = 0;
 390                        break;
 391                }
 392        }
 393        if (temp1) {
 394                debug("all DIMMs ECC capable\n");
 395        } else {
 396                debug("Warning: not all DIMMs ECC capable, cant enable ECC\n");
 397        }
 398        outpdimm->all_DIMMs_ECC_capable = temp1;
 399
 400#ifndef CONFIG_FSL_DDR3
 401        /* FIXME: move to somewhere else to validate. */
 402        if (mclk_ps > tCKmax_max_ps) {
 403                printf("Warning: some of the installed DIMMs "
 404                                "can not operate this slowly.\n");
 405                return 1;
 406        }
 407#endif
 408        /*
 409         * Compute additive latency.
 410         *
 411         * For DDR1, additive latency should be 0.
 412         *
 413         * For DDR2, with ODT enabled, use "a value" less than ACTTORW,
 414         *      which comes from Trcd, and also note that:
 415         *          add_lat + caslat must be >= 4
 416         *
 417         * For DDR3, we use the AL=0
 418         *
 419         * When to use additive latency for DDR2:
 420         *
 421         * I. Because you are using CL=3 and need to do ODT on writes and
 422         *    want functionality.
 423         *    1. Are you going to use ODT? (Does your board not have
 424         *      additional termination circuitry for DQ, DQS, DQS_,
 425         *      DM, RDQS, RDQS_ for x4/x8 configs?)
 426         *    2. If so, is your lowest supported CL going to be 3?
 427         *    3. If so, then you must set AL=1 because
 428         *
 429         *       WL >= 3 for ODT on writes
 430         *       RL = AL + CL
 431         *       WL = RL - 1
 432         *       ->
 433         *       WL = AL + CL - 1
 434         *       AL + CL - 1 >= 3
 435         *       AL + CL >= 4
 436         *  QED
 437         *
 438         *  RL >= 3 for ODT on reads
 439         *  RL = AL + CL
 440         *
 441         *  Since CL aren't usually less than 2, AL=0 is a minimum,
 442         *  so the WL-derived AL should be the  -- FIXME?
 443         *
 444         * II. Because you are using auto-precharge globally and want to
 445         *     use additive latency (posted CAS) to get more bandwidth.
 446         *     1. Are you going to use auto-precharge mode globally?
 447         *
 448         *        Use addtivie latency and compute AL to be 1 cycle less than
 449         *        tRCD, i.e. the READ or WRITE command is in the cycle
 450         *        immediately following the ACTIVATE command..
 451         *
 452         * III. Because you feel like it or want to do some sort of
 453         *      degraded-performance experiment.
 454         *     1.  Do you just want to use additive latency because you feel
 455         *         like it?
 456         *
 457         * Validation:  AL is less than tRCD, and within the other
 458         * read-to-precharge constraints.
 459         */
 460
 461        additive_latency = 0;
 462
 463#if defined(CONFIG_FSL_DDR2)
 464        if (lowest_good_caslat < 4) {
 465                additive_latency = (picos_to_mclk(tRCD_ps) > lowest_good_caslat)
 466                        ? picos_to_mclk(tRCD_ps) - lowest_good_caslat : 0;
 467                if (mclk_to_picos(additive_latency) > tRCD_ps) {
 468                        additive_latency = picos_to_mclk(tRCD_ps);
 469                        debug("setting additive_latency to %u because it was "
 470                                " greater than tRCD_ps\n", additive_latency);
 471                }
 472        }
 473
 474#elif defined(CONFIG_FSL_DDR3)
 475        /*
 476         * The system will not use the global auto-precharge mode.
 477         * However, it uses the page mode, so we set AL=0
 478         */
 479        additive_latency = 0;
 480#endif
 481
 482        /*
 483         * Validate additive latency
 484         * FIXME: move to somewhere else to validate
 485         *
 486         * AL <= tRCD(min)
 487         */
 488        if (mclk_to_picos(additive_latency) > tRCD_ps) {
 489                printf("Error: invalid additive latency exceeds tRCD(min).\n");
 490                return 1;
 491        }
 492
 493        /*
 494         * RL = CL + AL;  RL >= 3 for ODT_RD_CFG to be enabled
 495         * WL = RL - 1;  WL >= 3 for ODT_WL_CFG to be enabled
 496         * ADD_LAT (the register) must be set to a value less
 497         * than ACTTORW if WL = 1, then AL must be set to 1
 498         * RD_TO_PRE (the register) must be set to a minimum
 499         * tRTP + AL if AL is nonzero
 500         */
 501
 502        /*
 503         * Additive latency will be applied only if the memctl option to
 504         * use it.
 505         */
 506        outpdimm->additive_latency = additive_latency;
 507
 508        debug("tCKmin_ps = %u\n", outpdimm->tCKmin_X_ps);
 509        debug("tRCD_ps   = %u\n", outpdimm->tRCD_ps);
 510        debug("tRP_ps    = %u\n", outpdimm->tRP_ps);
 511        debug("tRAS_ps   = %u\n", outpdimm->tRAS_ps);
 512        debug("tWR_ps    = %u\n", outpdimm->tWR_ps);
 513        debug("tWTR_ps   = %u\n", outpdimm->tWTR_ps);
 514        debug("tRFC_ps   = %u\n", outpdimm->tRFC_ps);
 515        debug("tRRD_ps   = %u\n", outpdimm->tRRD_ps);
 516        debug("tRC_ps    = %u\n", outpdimm->tRC_ps);
 517
 518        return 0;
 519}
 520