uboot/drivers/mtd/ubi/kapi.c
<<
>>
Prefs
   1/*
   2 * Copyright (c) International Business Machines Corp., 2006
   3 *
   4 * This program is free software; you can redistribute it and/or modify
   5 * it under the terms of the GNU General Public License as published by
   6 * the Free Software Foundation; either version 2 of the License, or
   7 * (at your option) any later version.
   8 *
   9 * This program is distributed in the hope that it will be useful,
  10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
  12 * the GNU General Public License for more details.
  13 *
  14 * You should have received a copy of the GNU General Public License
  15 * along with this program; if not, write to the Free Software
  16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  17 *
  18 * Author: Artem Bityutskiy (Битюцкий Артём)
  19 */
  20
  21/* This file mostly implements UBI kernel API functions */
  22
  23#ifdef UBI_LINUX
  24#include <linux/module.h>
  25#include <linux/err.h>
  26#include <asm/div64.h>
  27#endif
  28
  29#include <ubi_uboot.h>
  30#include "ubi.h"
  31
  32/**
  33 * ubi_get_device_info - get information about UBI device.
  34 * @ubi_num: UBI device number
  35 * @di: the information is stored here
  36 *
  37 * This function returns %0 in case of success, %-EINVAL if the UBI device
  38 * number is invalid, and %-ENODEV if there is no such UBI device.
  39 */
  40int ubi_get_device_info(int ubi_num, struct ubi_device_info *di)
  41{
  42        struct ubi_device *ubi;
  43
  44        if (ubi_num < 0 || ubi_num >= UBI_MAX_DEVICES)
  45                return -EINVAL;
  46
  47        ubi = ubi_get_device(ubi_num);
  48        if (!ubi)
  49                return -ENODEV;
  50
  51        di->ubi_num = ubi->ubi_num;
  52        di->leb_size = ubi->leb_size;
  53        di->min_io_size = ubi->min_io_size;
  54        di->ro_mode = ubi->ro_mode;
  55        di->cdev = ubi->cdev.dev;
  56
  57        ubi_put_device(ubi);
  58        return 0;
  59}
  60EXPORT_SYMBOL_GPL(ubi_get_device_info);
  61
  62/**
  63 * ubi_get_volume_info - get information about UBI volume.
  64 * @desc: volume descriptor
  65 * @vi: the information is stored here
  66 */
  67void ubi_get_volume_info(struct ubi_volume_desc *desc,
  68                         struct ubi_volume_info *vi)
  69{
  70        const struct ubi_volume *vol = desc->vol;
  71        const struct ubi_device *ubi = vol->ubi;
  72
  73        vi->vol_id = vol->vol_id;
  74        vi->ubi_num = ubi->ubi_num;
  75        vi->size = vol->reserved_pebs;
  76        vi->used_bytes = vol->used_bytes;
  77        vi->vol_type = vol->vol_type;
  78        vi->corrupted = vol->corrupted;
  79        vi->upd_marker = vol->upd_marker;
  80        vi->alignment = vol->alignment;
  81        vi->usable_leb_size = vol->usable_leb_size;
  82        vi->name_len = vol->name_len;
  83        vi->name = vol->name;
  84        vi->cdev = vol->cdev.dev;
  85}
  86EXPORT_SYMBOL_GPL(ubi_get_volume_info);
  87
  88/**
  89 * ubi_open_volume - open UBI volume.
  90 * @ubi_num: UBI device number
  91 * @vol_id: volume ID
  92 * @mode: open mode
  93 *
  94 * The @mode parameter specifies if the volume should be opened in read-only
  95 * mode, read-write mode, or exclusive mode. The exclusive mode guarantees that
  96 * nobody else will be able to open this volume. UBI allows to have many volume
  97 * readers and one writer at a time.
  98 *
  99 * If a static volume is being opened for the first time since boot, it will be
 100 * checked by this function, which means it will be fully read and the CRC
 101 * checksum of each logical eraseblock will be checked.
 102 *
 103 * This function returns volume descriptor in case of success and a negative
 104 * error code in case of failure.
 105 */
 106struct ubi_volume_desc *ubi_open_volume(int ubi_num, int vol_id, int mode)
 107{
 108        int err;
 109        struct ubi_volume_desc *desc;
 110        struct ubi_device *ubi;
 111        struct ubi_volume *vol;
 112
 113        dbg_msg("open device %d volume %d, mode %d", ubi_num, vol_id, mode);
 114
 115        if (ubi_num < 0 || ubi_num >= UBI_MAX_DEVICES)
 116                return ERR_PTR(-EINVAL);
 117
 118        if (mode != UBI_READONLY && mode != UBI_READWRITE &&
 119            mode != UBI_EXCLUSIVE)
 120                return ERR_PTR(-EINVAL);
 121
 122        /*
 123         * First of all, we have to get the UBI device to prevent its removal.
 124         */
 125        ubi = ubi_get_device(ubi_num);
 126        if (!ubi)
 127                return ERR_PTR(-ENODEV);
 128
 129        if (vol_id < 0 || vol_id >= ubi->vtbl_slots) {
 130                err = -EINVAL;
 131                goto out_put_ubi;
 132        }
 133
 134        desc = kmalloc(sizeof(struct ubi_volume_desc), GFP_KERNEL);
 135        if (!desc) {
 136                err = -ENOMEM;
 137                goto out_put_ubi;
 138        }
 139
 140        err = -ENODEV;
 141        if (!try_module_get(THIS_MODULE))
 142                goto out_free;
 143
 144        spin_lock(&ubi->volumes_lock);
 145        vol = ubi->volumes[vol_id];
 146        if (!vol)
 147                goto out_unlock;
 148
 149        err = -EBUSY;
 150        switch (mode) {
 151        case UBI_READONLY:
 152                if (vol->exclusive)
 153                        goto out_unlock;
 154                vol->readers += 1;
 155                break;
 156
 157        case UBI_READWRITE:
 158                if (vol->exclusive || vol->writers > 0)
 159                        goto out_unlock;
 160                vol->writers += 1;
 161                break;
 162
 163        case UBI_EXCLUSIVE:
 164                if (vol->exclusive || vol->writers || vol->readers)
 165                        goto out_unlock;
 166                vol->exclusive = 1;
 167                break;
 168        }
 169        get_device(&vol->dev);
 170        vol->ref_count += 1;
 171        spin_unlock(&ubi->volumes_lock);
 172
 173        desc->vol = vol;
 174        desc->mode = mode;
 175
 176        mutex_lock(&ubi->ckvol_mutex);
 177        if (!vol->checked) {
 178                /* This is the first open - check the volume */
 179                err = ubi_check_volume(ubi, vol_id);
 180                if (err < 0) {
 181                        mutex_unlock(&ubi->ckvol_mutex);
 182                        ubi_close_volume(desc);
 183                        return ERR_PTR(err);
 184                }
 185                if (err == 1) {
 186                        ubi_warn("volume %d on UBI device %d is corrupted",
 187                                 vol_id, ubi->ubi_num);
 188                        vol->corrupted = 1;
 189                }
 190                vol->checked = 1;
 191        }
 192        mutex_unlock(&ubi->ckvol_mutex);
 193
 194        return desc;
 195
 196out_unlock:
 197        spin_unlock(&ubi->volumes_lock);
 198        module_put(THIS_MODULE);
 199out_free:
 200        kfree(desc);
 201out_put_ubi:
 202        ubi_put_device(ubi);
 203        return ERR_PTR(err);
 204}
 205EXPORT_SYMBOL_GPL(ubi_open_volume);
 206
 207/**
 208 * ubi_open_volume_nm - open UBI volume by name.
 209 * @ubi_num: UBI device number
 210 * @name: volume name
 211 * @mode: open mode
 212 *
 213 * This function is similar to 'ubi_open_volume()', but opens a volume by name.
 214 */
 215struct ubi_volume_desc *ubi_open_volume_nm(int ubi_num, const char *name,
 216                                           int mode)
 217{
 218        int i, vol_id = -1, len;
 219        struct ubi_device *ubi;
 220        struct ubi_volume_desc *ret;
 221
 222        dbg_msg("open volume %s, mode %d", name, mode);
 223
 224        if (!name)
 225                return ERR_PTR(-EINVAL);
 226
 227        len = strnlen(name, UBI_VOL_NAME_MAX + 1);
 228        if (len > UBI_VOL_NAME_MAX)
 229                return ERR_PTR(-EINVAL);
 230
 231        if (ubi_num < 0 || ubi_num >= UBI_MAX_DEVICES)
 232                return ERR_PTR(-EINVAL);
 233
 234        ubi = ubi_get_device(ubi_num);
 235        if (!ubi)
 236                return ERR_PTR(-ENODEV);
 237
 238        spin_lock(&ubi->volumes_lock);
 239        /* Walk all volumes of this UBI device */
 240        for (i = 0; i < ubi->vtbl_slots; i++) {
 241                struct ubi_volume *vol = ubi->volumes[i];
 242
 243                if (vol && len == vol->name_len && !strcmp(name, vol->name)) {
 244                        vol_id = i;
 245                        break;
 246                }
 247        }
 248        spin_unlock(&ubi->volumes_lock);
 249
 250        if (vol_id >= 0)
 251                ret = ubi_open_volume(ubi_num, vol_id, mode);
 252        else
 253                ret = ERR_PTR(-ENODEV);
 254
 255        /*
 256         * We should put the UBI device even in case of success, because
 257         * 'ubi_open_volume()' took a reference as well.
 258         */
 259        ubi_put_device(ubi);
 260        return ret;
 261}
 262EXPORT_SYMBOL_GPL(ubi_open_volume_nm);
 263
 264/**
 265 * ubi_close_volume - close UBI volume.
 266 * @desc: volume descriptor
 267 */
 268void ubi_close_volume(struct ubi_volume_desc *desc)
 269{
 270        struct ubi_volume *vol = desc->vol;
 271        struct ubi_device *ubi = vol->ubi;
 272
 273        dbg_msg("close volume %d, mode %d", vol->vol_id, desc->mode);
 274
 275        spin_lock(&ubi->volumes_lock);
 276        switch (desc->mode) {
 277        case UBI_READONLY:
 278                vol->readers -= 1;
 279                break;
 280        case UBI_READWRITE:
 281                vol->writers -= 1;
 282                break;
 283        case UBI_EXCLUSIVE:
 284                vol->exclusive = 0;
 285        }
 286        vol->ref_count -= 1;
 287        spin_unlock(&ubi->volumes_lock);
 288
 289        kfree(desc);
 290        put_device(&vol->dev);
 291        ubi_put_device(ubi);
 292        module_put(THIS_MODULE);
 293}
 294EXPORT_SYMBOL_GPL(ubi_close_volume);
 295
 296/**
 297 * ubi_leb_read - read data.
 298 * @desc: volume descriptor
 299 * @lnum: logical eraseblock number to read from
 300 * @buf: buffer where to store the read data
 301 * @offset: offset within the logical eraseblock to read from
 302 * @len: how many bytes to read
 303 * @check: whether UBI has to check the read data's CRC or not.
 304 *
 305 * This function reads data from offset @offset of logical eraseblock @lnum and
 306 * stores the data at @buf. When reading from static volumes, @check specifies
 307 * whether the data has to be checked or not. If yes, the whole logical
 308 * eraseblock will be read and its CRC checksum will be checked (i.e., the CRC
 309 * checksum is per-eraseblock). So checking may substantially slow down the
 310 * read speed. The @check argument is ignored for dynamic volumes.
 311 *
 312 * In case of success, this function returns zero. In case of failure, this
 313 * function returns a negative error code.
 314 *
 315 * %-EBADMSG error code is returned:
 316 * o for both static and dynamic volumes if MTD driver has detected a data
 317 *   integrity problem (unrecoverable ECC checksum mismatch in case of NAND);
 318 * o for static volumes in case of data CRC mismatch.
 319 *
 320 * If the volume is damaged because of an interrupted update this function just
 321 * returns immediately with %-EBADF error code.
 322 */
 323int ubi_leb_read(struct ubi_volume_desc *desc, int lnum, char *buf, int offset,
 324                 int len, int check)
 325{
 326        struct ubi_volume *vol = desc->vol;
 327        struct ubi_device *ubi = vol->ubi;
 328        int err, vol_id = vol->vol_id;
 329
 330        dbg_msg("read %d bytes from LEB %d:%d:%d", len, vol_id, lnum, offset);
 331
 332        if (vol_id < 0 || vol_id >= ubi->vtbl_slots || lnum < 0 ||
 333            lnum >= vol->used_ebs || offset < 0 || len < 0 ||
 334            offset + len > vol->usable_leb_size)
 335                return -EINVAL;
 336
 337        if (vol->vol_type == UBI_STATIC_VOLUME) {
 338                if (vol->used_ebs == 0)
 339                        /* Empty static UBI volume */
 340                        return 0;
 341                if (lnum == vol->used_ebs - 1 &&
 342                    offset + len > vol->last_eb_bytes)
 343                        return -EINVAL;
 344        }
 345
 346        if (vol->upd_marker)
 347                return -EBADF;
 348        if (len == 0)
 349                return 0;
 350
 351        err = ubi_eba_read_leb(ubi, vol, lnum, buf, offset, len, check);
 352        if (err && err == -EBADMSG && vol->vol_type == UBI_STATIC_VOLUME) {
 353                ubi_warn("mark volume %d as corrupted", vol_id);
 354                vol->corrupted = 1;
 355        }
 356
 357        return err;
 358}
 359EXPORT_SYMBOL_GPL(ubi_leb_read);
 360
 361/**
 362 * ubi_leb_write - write data.
 363 * @desc: volume descriptor
 364 * @lnum: logical eraseblock number to write to
 365 * @buf: data to write
 366 * @offset: offset within the logical eraseblock where to write
 367 * @len: how many bytes to write
 368 * @dtype: expected data type
 369 *
 370 * This function writes @len bytes of data from @buf to offset @offset of
 371 * logical eraseblock @lnum. The @dtype argument describes expected lifetime of
 372 * the data.
 373 *
 374 * This function takes care of physical eraseblock write failures. If write to
 375 * the physical eraseblock write operation fails, the logical eraseblock is
 376 * re-mapped to another physical eraseblock, the data is recovered, and the
 377 * write finishes. UBI has a pool of reserved physical eraseblocks for this.
 378 *
 379 * If all the data were successfully written, zero is returned. If an error
 380 * occurred and UBI has not been able to recover from it, this function returns
 381 * a negative error code. Note, in case of an error, it is possible that
 382 * something was still written to the flash media, but that may be some
 383 * garbage.
 384 *
 385 * If the volume is damaged because of an interrupted update this function just
 386 * returns immediately with %-EBADF code.
 387 */
 388int ubi_leb_write(struct ubi_volume_desc *desc, int lnum, const void *buf,
 389                  int offset, int len, int dtype)
 390{
 391        struct ubi_volume *vol = desc->vol;
 392        struct ubi_device *ubi = vol->ubi;
 393        int vol_id = vol->vol_id;
 394
 395        dbg_msg("write %d bytes to LEB %d:%d:%d", len, vol_id, lnum, offset);
 396
 397        if (vol_id < 0 || vol_id >= ubi->vtbl_slots)
 398                return -EINVAL;
 399
 400        if (desc->mode == UBI_READONLY || vol->vol_type == UBI_STATIC_VOLUME)
 401                return -EROFS;
 402
 403        if (lnum < 0 || lnum >= vol->reserved_pebs || offset < 0 || len < 0 ||
 404            offset + len > vol->usable_leb_size ||
 405            offset & (ubi->min_io_size - 1) || len & (ubi->min_io_size - 1))
 406                return -EINVAL;
 407
 408        if (dtype != UBI_LONGTERM && dtype != UBI_SHORTTERM &&
 409            dtype != UBI_UNKNOWN)
 410                return -EINVAL;
 411
 412        if (vol->upd_marker)
 413                return -EBADF;
 414
 415        if (len == 0)
 416                return 0;
 417
 418        return ubi_eba_write_leb(ubi, vol, lnum, buf, offset, len, dtype);
 419}
 420EXPORT_SYMBOL_GPL(ubi_leb_write);
 421
 422/*
 423 * ubi_leb_change - change logical eraseblock atomically.
 424 * @desc: volume descriptor
 425 * @lnum: logical eraseblock number to change
 426 * @buf: data to write
 427 * @len: how many bytes to write
 428 * @dtype: expected data type
 429 *
 430 * This function changes the contents of a logical eraseblock atomically. @buf
 431 * has to contain new logical eraseblock data, and @len - the length of the
 432 * data, which has to be aligned. The length may be shorter then the logical
 433 * eraseblock size, ant the logical eraseblock may be appended to more times
 434 * later on. This function guarantees that in case of an unclean reboot the old
 435 * contents is preserved. Returns zero in case of success and a negative error
 436 * code in case of failure.
 437 */
 438int ubi_leb_change(struct ubi_volume_desc *desc, int lnum, const void *buf,
 439                   int len, int dtype)
 440{
 441        struct ubi_volume *vol = desc->vol;
 442        struct ubi_device *ubi = vol->ubi;
 443        int vol_id = vol->vol_id;
 444
 445        dbg_msg("atomically write %d bytes to LEB %d:%d", len, vol_id, lnum);
 446
 447        if (vol_id < 0 || vol_id >= ubi->vtbl_slots)
 448                return -EINVAL;
 449
 450        if (desc->mode == UBI_READONLY || vol->vol_type == UBI_STATIC_VOLUME)
 451                return -EROFS;
 452
 453        if (lnum < 0 || lnum >= vol->reserved_pebs || len < 0 ||
 454            len > vol->usable_leb_size || len & (ubi->min_io_size - 1))
 455                return -EINVAL;
 456
 457        if (dtype != UBI_LONGTERM && dtype != UBI_SHORTTERM &&
 458            dtype != UBI_UNKNOWN)
 459                return -EINVAL;
 460
 461        if (vol->upd_marker)
 462                return -EBADF;
 463
 464        if (len == 0)
 465                return 0;
 466
 467        return ubi_eba_atomic_leb_change(ubi, vol, lnum, buf, len, dtype);
 468}
 469EXPORT_SYMBOL_GPL(ubi_leb_change);
 470
 471/**
 472 * ubi_leb_erase - erase logical eraseblock.
 473 * @desc: volume descriptor
 474 * @lnum: logical eraseblock number
 475 *
 476 * This function un-maps logical eraseblock @lnum and synchronously erases the
 477 * correspondent physical eraseblock. Returns zero in case of success and a
 478 * negative error code in case of failure.
 479 *
 480 * If the volume is damaged because of an interrupted update this function just
 481 * returns immediately with %-EBADF code.
 482 */
 483int ubi_leb_erase(struct ubi_volume_desc *desc, int lnum)
 484{
 485        struct ubi_volume *vol = desc->vol;
 486        struct ubi_device *ubi = vol->ubi;
 487        int err;
 488
 489        dbg_msg("erase LEB %d:%d", vol->vol_id, lnum);
 490
 491        if (desc->mode == UBI_READONLY || vol->vol_type == UBI_STATIC_VOLUME)
 492                return -EROFS;
 493
 494        if (lnum < 0 || lnum >= vol->reserved_pebs)
 495                return -EINVAL;
 496
 497        if (vol->upd_marker)
 498                return -EBADF;
 499
 500        err = ubi_eba_unmap_leb(ubi, vol, lnum);
 501        if (err)
 502                return err;
 503
 504        return ubi_wl_flush(ubi);
 505}
 506EXPORT_SYMBOL_GPL(ubi_leb_erase);
 507
 508/**
 509 * ubi_leb_unmap - un-map logical eraseblock.
 510 * @desc: volume descriptor
 511 * @lnum: logical eraseblock number
 512 *
 513 * This function un-maps logical eraseblock @lnum and schedules the
 514 * corresponding physical eraseblock for erasure, so that it will eventually be
 515 * physically erased in background. This operation is much faster then the
 516 * erase operation.
 517 *
 518 * Unlike erase, the un-map operation does not guarantee that the logical
 519 * eraseblock will contain all 0xFF bytes when UBI is initialized again. For
 520 * example, if several logical eraseblocks are un-mapped, and an unclean reboot
 521 * happens after this, the logical eraseblocks will not necessarily be
 522 * un-mapped again when this MTD device is attached. They may actually be
 523 * mapped to the same physical eraseblocks again. So, this function has to be
 524 * used with care.
 525 *
 526 * In other words, when un-mapping a logical eraseblock, UBI does not store
 527 * any information about this on the flash media, it just marks the logical
 528 * eraseblock as "un-mapped" in RAM. If UBI is detached before the physical
 529 * eraseblock is physically erased, it will be mapped again to the same logical
 530 * eraseblock when the MTD device is attached again.
 531 *
 532 * The main and obvious use-case of this function is when the contents of a
 533 * logical eraseblock has to be re-written. Then it is much more efficient to
 534 * first un-map it, then write new data, rather then first erase it, then write
 535 * new data. Note, once new data has been written to the logical eraseblock,
 536 * UBI guarantees that the old contents has gone forever. In other words, if an
 537 * unclean reboot happens after the logical eraseblock has been un-mapped and
 538 * then written to, it will contain the last written data.
 539 *
 540 * This function returns zero in case of success and a negative error code in
 541 * case of failure. If the volume is damaged because of an interrupted update
 542 * this function just returns immediately with %-EBADF code.
 543 */
 544int ubi_leb_unmap(struct ubi_volume_desc *desc, int lnum)
 545{
 546        struct ubi_volume *vol = desc->vol;
 547        struct ubi_device *ubi = vol->ubi;
 548
 549        dbg_msg("unmap LEB %d:%d", vol->vol_id, lnum);
 550
 551        if (desc->mode == UBI_READONLY || vol->vol_type == UBI_STATIC_VOLUME)
 552                return -EROFS;
 553
 554        if (lnum < 0 || lnum >= vol->reserved_pebs)
 555                return -EINVAL;
 556
 557        if (vol->upd_marker)
 558                return -EBADF;
 559
 560        return ubi_eba_unmap_leb(ubi, vol, lnum);
 561}
 562EXPORT_SYMBOL_GPL(ubi_leb_unmap);
 563
 564/**
 565 * ubi_leb_map - map logical erasblock to a physical eraseblock.
 566 * @desc: volume descriptor
 567 * @lnum: logical eraseblock number
 568 * @dtype: expected data type
 569 *
 570 * This function maps an un-mapped logical eraseblock @lnum to a physical
 571 * eraseblock. This means, that after a successfull invocation of this
 572 * function the logical eraseblock @lnum will be empty (contain only %0xFF
 573 * bytes) and be mapped to a physical eraseblock, even if an unclean reboot
 574 * happens.
 575 *
 576 * This function returns zero in case of success, %-EBADF if the volume is
 577 * damaged because of an interrupted update, %-EBADMSG if the logical
 578 * eraseblock is already mapped, and other negative error codes in case of
 579 * other failures.
 580 */
 581int ubi_leb_map(struct ubi_volume_desc *desc, int lnum, int dtype)
 582{
 583        struct ubi_volume *vol = desc->vol;
 584        struct ubi_device *ubi = vol->ubi;
 585
 586        dbg_msg("unmap LEB %d:%d", vol->vol_id, lnum);
 587
 588        if (desc->mode == UBI_READONLY || vol->vol_type == UBI_STATIC_VOLUME)
 589                return -EROFS;
 590
 591        if (lnum < 0 || lnum >= vol->reserved_pebs)
 592                return -EINVAL;
 593
 594        if (dtype != UBI_LONGTERM && dtype != UBI_SHORTTERM &&
 595            dtype != UBI_UNKNOWN)
 596                return -EINVAL;
 597
 598        if (vol->upd_marker)
 599                return -EBADF;
 600
 601        if (vol->eba_tbl[lnum] >= 0)
 602                return -EBADMSG;
 603
 604        return ubi_eba_write_leb(ubi, vol, lnum, NULL, 0, 0, dtype);
 605}
 606EXPORT_SYMBOL_GPL(ubi_leb_map);
 607
 608/**
 609 * ubi_is_mapped - check if logical eraseblock is mapped.
 610 * @desc: volume descriptor
 611 * @lnum: logical eraseblock number
 612 *
 613 * This function checks if logical eraseblock @lnum is mapped to a physical
 614 * eraseblock. If a logical eraseblock is un-mapped, this does not necessarily
 615 * mean it will still be un-mapped after the UBI device is re-attached. The
 616 * logical eraseblock may become mapped to the physical eraseblock it was last
 617 * mapped to.
 618 *
 619 * This function returns %1 if the LEB is mapped, %0 if not, and a negative
 620 * error code in case of failure. If the volume is damaged because of an
 621 * interrupted update this function just returns immediately with %-EBADF error
 622 * code.
 623 */
 624int ubi_is_mapped(struct ubi_volume_desc *desc, int lnum)
 625{
 626        struct ubi_volume *vol = desc->vol;
 627
 628        dbg_msg("test LEB %d:%d", vol->vol_id, lnum);
 629
 630        if (lnum < 0 || lnum >= vol->reserved_pebs)
 631                return -EINVAL;
 632
 633        if (vol->upd_marker)
 634                return -EBADF;
 635
 636        return vol->eba_tbl[lnum] >= 0;
 637}
 638EXPORT_SYMBOL_GPL(ubi_is_mapped);
 639