uboot/lib/bch.c
<<
>>
Prefs
   1/*
   2 * Generic binary BCH encoding/decoding library
   3 *
   4 * This program is free software; you can redistribute it and/or modify it
   5 * under the terms of the GNU General Public License version 2 as published by
   6 * the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope that it will be useful, but WITHOUT
   9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  10 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  11 * more details.
  12 *
  13 * You should have received a copy of the GNU General Public License along with
  14 * this program; if not, write to the Free Software Foundation, Inc., 51
  15 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  16 *
  17 * Copyright © 2011 Parrot S.A.
  18 *
  19 * Author: Ivan Djelic <ivan.djelic@parrot.com>
  20 *
  21 * Description:
  22 *
  23 * This library provides runtime configurable encoding/decoding of binary
  24 * Bose-Chaudhuri-Hocquenghem (BCH) codes.
  25 *
  26 * Call init_bch to get a pointer to a newly allocated bch_control structure for
  27 * the given m (Galois field order), t (error correction capability) and
  28 * (optional) primitive polynomial parameters.
  29 *
  30 * Call encode_bch to compute and store ecc parity bytes to a given buffer.
  31 * Call decode_bch to detect and locate errors in received data.
  32 *
  33 * On systems supporting hw BCH features, intermediate results may be provided
  34 * to decode_bch in order to skip certain steps. See decode_bch() documentation
  35 * for details.
  36 *
  37 * Option CONFIG_BCH_CONST_PARAMS can be used to force fixed values of
  38 * parameters m and t; thus allowing extra compiler optimizations and providing
  39 * better (up to 2x) encoding performance. Using this option makes sense when
  40 * (m,t) are fixed and known in advance, e.g. when using BCH error correction
  41 * on a particular NAND flash device.
  42 *
  43 * Algorithmic details:
  44 *
  45 * Encoding is performed by processing 32 input bits in parallel, using 4
  46 * remainder lookup tables.
  47 *
  48 * The final stage of decoding involves the following internal steps:
  49 * a. Syndrome computation
  50 * b. Error locator polynomial computation using Berlekamp-Massey algorithm
  51 * c. Error locator root finding (by far the most expensive step)
  52 *
  53 * In this implementation, step c is not performed using the usual Chien search.
  54 * Instead, an alternative approach described in [1] is used. It consists in
  55 * factoring the error locator polynomial using the Berlekamp Trace algorithm
  56 * (BTA) down to a certain degree (4), after which ad hoc low-degree polynomial
  57 * solving techniques [2] are used. The resulting algorithm, called BTZ, yields
  58 * much better performance than Chien search for usual (m,t) values (typically
  59 * m >= 13, t < 32, see [1]).
  60 *
  61 * [1] B. Biswas, V. Herbert. Efficient root finding of polynomials over fields
  62 * of characteristic 2, in: Western European Workshop on Research in Cryptology
  63 * - WEWoRC 2009, Graz, Austria, LNCS, Springer, July 2009, to appear.
  64 * [2] [Zin96] V.A. Zinoviev. On the solution of equations of degree 10 over
  65 * finite fields GF(2^q). In Rapport de recherche INRIA no 2829, 1996.
  66 */
  67
  68#include <common.h>
  69#include <ubi_uboot.h>
  70
  71#include <linux/bitops.h>
  72#include <asm/byteorder.h>
  73#include <linux/bch.h>
  74
  75#if defined(CONFIG_BCH_CONST_PARAMS)
  76#define GF_M(_p)               (CONFIG_BCH_CONST_M)
  77#define GF_T(_p)               (CONFIG_BCH_CONST_T)
  78#define GF_N(_p)               ((1 << (CONFIG_BCH_CONST_M))-1)
  79#else
  80#define GF_M(_p)               ((_p)->m)
  81#define GF_T(_p)               ((_p)->t)
  82#define GF_N(_p)               ((_p)->n)
  83#endif
  84
  85#define BCH_ECC_WORDS(_p)      DIV_ROUND_UP(GF_M(_p)*GF_T(_p), 32)
  86#define BCH_ECC_BYTES(_p)      DIV_ROUND_UP(GF_M(_p)*GF_T(_p), 8)
  87
  88#ifndef dbg
  89#define dbg(_fmt, args...)     do {} while (0)
  90#endif
  91
  92/*
  93 * represent a polynomial over GF(2^m)
  94 */
  95struct gf_poly {
  96        unsigned int deg;    /* polynomial degree */
  97        unsigned int c[0];   /* polynomial terms */
  98};
  99
 100/* given its degree, compute a polynomial size in bytes */
 101#define GF_POLY_SZ(_d) (sizeof(struct gf_poly)+((_d)+1)*sizeof(unsigned int))
 102
 103/* polynomial of degree 1 */
 104struct gf_poly_deg1 {
 105        struct gf_poly poly;
 106        unsigned int   c[2];
 107};
 108
 109/*
 110 * same as encode_bch(), but process input data one byte at a time
 111 */
 112static void encode_bch_unaligned(struct bch_control *bch,
 113                                 const unsigned char *data, unsigned int len,
 114                                 uint32_t *ecc)
 115{
 116        int i;
 117        const uint32_t *p;
 118        const int l = BCH_ECC_WORDS(bch)-1;
 119
 120        while (len--) {
 121                p = bch->mod8_tab + (l+1)*(((ecc[0] >> 24)^(*data++)) & 0xff);
 122
 123                for (i = 0; i < l; i++)
 124                        ecc[i] = ((ecc[i] << 8)|(ecc[i+1] >> 24))^(*p++);
 125
 126                ecc[l] = (ecc[l] << 8)^(*p);
 127        }
 128}
 129
 130/*
 131 * convert ecc bytes to aligned, zero-padded 32-bit ecc words
 132 */
 133static void load_ecc8(struct bch_control *bch, uint32_t *dst,
 134                      const uint8_t *src)
 135{
 136        uint8_t pad[4] = {0, 0, 0, 0};
 137        unsigned int i, nwords = BCH_ECC_WORDS(bch)-1;
 138
 139        for (i = 0; i < nwords; i++, src += 4)
 140                dst[i] = (src[0] << 24)|(src[1] << 16)|(src[2] << 8)|src[3];
 141
 142        memcpy(pad, src, BCH_ECC_BYTES(bch)-4*nwords);
 143        dst[nwords] = (pad[0] << 24)|(pad[1] << 16)|(pad[2] << 8)|pad[3];
 144}
 145
 146/*
 147 * convert 32-bit ecc words to ecc bytes
 148 */
 149static void store_ecc8(struct bch_control *bch, uint8_t *dst,
 150                       const uint32_t *src)
 151{
 152        uint8_t pad[4];
 153        unsigned int i, nwords = BCH_ECC_WORDS(bch)-1;
 154
 155        for (i = 0; i < nwords; i++) {
 156                *dst++ = (src[i] >> 24);
 157                *dst++ = (src[i] >> 16) & 0xff;
 158                *dst++ = (src[i] >>  8) & 0xff;
 159                *dst++ = (src[i] >>  0) & 0xff;
 160        }
 161        pad[0] = (src[nwords] >> 24);
 162        pad[1] = (src[nwords] >> 16) & 0xff;
 163        pad[2] = (src[nwords] >>  8) & 0xff;
 164        pad[3] = (src[nwords] >>  0) & 0xff;
 165        memcpy(dst, pad, BCH_ECC_BYTES(bch)-4*nwords);
 166}
 167
 168/**
 169 * encode_bch - calculate BCH ecc parity of data
 170 * @bch:   BCH control structure
 171 * @data:  data to encode
 172 * @len:   data length in bytes
 173 * @ecc:   ecc parity data, must be initialized by caller
 174 *
 175 * The @ecc parity array is used both as input and output parameter, in order to
 176 * allow incremental computations. It should be of the size indicated by member
 177 * @ecc_bytes of @bch, and should be initialized to 0 before the first call.
 178 *
 179 * The exact number of computed ecc parity bits is given by member @ecc_bits of
 180 * @bch; it may be less than m*t for large values of t.
 181 */
 182void encode_bch(struct bch_control *bch, const uint8_t *data,
 183                unsigned int len, uint8_t *ecc)
 184{
 185        const unsigned int l = BCH_ECC_WORDS(bch)-1;
 186        unsigned int i, mlen;
 187        unsigned long m;
 188        uint32_t w, r[l+1];
 189        const uint32_t * const tab0 = bch->mod8_tab;
 190        const uint32_t * const tab1 = tab0 + 256*(l+1);
 191        const uint32_t * const tab2 = tab1 + 256*(l+1);
 192        const uint32_t * const tab3 = tab2 + 256*(l+1);
 193        const uint32_t *pdata, *p0, *p1, *p2, *p3;
 194
 195        if (ecc) {
 196                /* load ecc parity bytes into internal 32-bit buffer */
 197                load_ecc8(bch, bch->ecc_buf, ecc);
 198        } else {
 199                memset(bch->ecc_buf, 0, sizeof(r));
 200        }
 201
 202        /* process first unaligned data bytes */
 203        m = ((unsigned long)data) & 3;
 204        if (m) {
 205                mlen = (len < (4-m)) ? len : 4-m;
 206                encode_bch_unaligned(bch, data, mlen, bch->ecc_buf);
 207                data += mlen;
 208                len  -= mlen;
 209        }
 210
 211        /* process 32-bit aligned data words */
 212        pdata = (uint32_t *)data;
 213        mlen  = len/4;
 214        data += 4*mlen;
 215        len  -= 4*mlen;
 216        memcpy(r, bch->ecc_buf, sizeof(r));
 217
 218        /*
 219         * split each 32-bit word into 4 polynomials of weight 8 as follows:
 220         *
 221         * 31 ...24  23 ...16  15 ... 8  7 ... 0
 222         * xxxxxxxx  yyyyyyyy  zzzzzzzz  tttttttt
 223         *                               tttttttt  mod g = r0 (precomputed)
 224         *                     zzzzzzzz  00000000  mod g = r1 (precomputed)
 225         *           yyyyyyyy  00000000  00000000  mod g = r2 (precomputed)
 226         * xxxxxxxx  00000000  00000000  00000000  mod g = r3 (precomputed)
 227         * xxxxxxxx  yyyyyyyy  zzzzzzzz  tttttttt  mod g = r0^r1^r2^r3
 228         */
 229        while (mlen--) {
 230                /* input data is read in big-endian format */
 231                w = r[0]^cpu_to_be32(*pdata++);
 232                p0 = tab0 + (l+1)*((w >>  0) & 0xff);
 233                p1 = tab1 + (l+1)*((w >>  8) & 0xff);
 234                p2 = tab2 + (l+1)*((w >> 16) & 0xff);
 235                p3 = tab3 + (l+1)*((w >> 24) & 0xff);
 236
 237                for (i = 0; i < l; i++)
 238                        r[i] = r[i+1]^p0[i]^p1[i]^p2[i]^p3[i];
 239
 240                r[l] = p0[l]^p1[l]^p2[l]^p3[l];
 241        }
 242        memcpy(bch->ecc_buf, r, sizeof(r));
 243
 244        /* process last unaligned bytes */
 245        if (len)
 246                encode_bch_unaligned(bch, data, len, bch->ecc_buf);
 247
 248        /* store ecc parity bytes into original parity buffer */
 249        if (ecc)
 250                store_ecc8(bch, ecc, bch->ecc_buf);
 251}
 252
 253static inline int modulo(struct bch_control *bch, unsigned int v)
 254{
 255        const unsigned int n = GF_N(bch);
 256        while (v >= n) {
 257                v -= n;
 258                v = (v & n) + (v >> GF_M(bch));
 259        }
 260        return v;
 261}
 262
 263/*
 264 * shorter and faster modulo function, only works when v < 2N.
 265 */
 266static inline int mod_s(struct bch_control *bch, unsigned int v)
 267{
 268        const unsigned int n = GF_N(bch);
 269        return (v < n) ? v : v-n;
 270}
 271
 272static inline int deg(unsigned int poly)
 273{
 274        /* polynomial degree is the most-significant bit index */
 275        return fls(poly)-1;
 276}
 277
 278static inline int parity(unsigned int x)
 279{
 280        /*
 281         * public domain code snippet, lifted from
 282         * http://www-graphics.stanford.edu/~seander/bithacks.html
 283         */
 284        x ^= x >> 1;
 285        x ^= x >> 2;
 286        x = (x & 0x11111111U) * 0x11111111U;
 287        return (x >> 28) & 1;
 288}
 289
 290/* Galois field basic operations: multiply, divide, inverse, etc. */
 291
 292static inline unsigned int gf_mul(struct bch_control *bch, unsigned int a,
 293                                  unsigned int b)
 294{
 295        return (a && b) ? bch->a_pow_tab[mod_s(bch, bch->a_log_tab[a]+
 296                                               bch->a_log_tab[b])] : 0;
 297}
 298
 299static inline unsigned int gf_sqr(struct bch_control *bch, unsigned int a)
 300{
 301        return a ? bch->a_pow_tab[mod_s(bch, 2*bch->a_log_tab[a])] : 0;
 302}
 303
 304static inline unsigned int gf_div(struct bch_control *bch, unsigned int a,
 305                                  unsigned int b)
 306{
 307        return a ? bch->a_pow_tab[mod_s(bch, bch->a_log_tab[a]+
 308                                        GF_N(bch)-bch->a_log_tab[b])] : 0;
 309}
 310
 311static inline unsigned int gf_inv(struct bch_control *bch, unsigned int a)
 312{
 313        return bch->a_pow_tab[GF_N(bch)-bch->a_log_tab[a]];
 314}
 315
 316static inline unsigned int a_pow(struct bch_control *bch, int i)
 317{
 318        return bch->a_pow_tab[modulo(bch, i)];
 319}
 320
 321static inline int a_log(struct bch_control *bch, unsigned int x)
 322{
 323        return bch->a_log_tab[x];
 324}
 325
 326static inline int a_ilog(struct bch_control *bch, unsigned int x)
 327{
 328        return mod_s(bch, GF_N(bch)-bch->a_log_tab[x]);
 329}
 330
 331/*
 332 * compute 2t syndromes of ecc polynomial, i.e. ecc(a^j) for j=1..2t
 333 */
 334static void compute_syndromes(struct bch_control *bch, uint32_t *ecc,
 335                              unsigned int *syn)
 336{
 337        int i, j, s;
 338        unsigned int m;
 339        uint32_t poly;
 340        const int t = GF_T(bch);
 341
 342        s = bch->ecc_bits;
 343
 344        /* make sure extra bits in last ecc word are cleared */
 345        m = ((unsigned int)s) & 31;
 346        if (m)
 347                ecc[s/32] &= ~((1u << (32-m))-1);
 348        memset(syn, 0, 2*t*sizeof(*syn));
 349
 350        /* compute v(a^j) for j=1 .. 2t-1 */
 351        do {
 352                poly = *ecc++;
 353                s -= 32;
 354                while (poly) {
 355                        i = deg(poly);
 356                        for (j = 0; j < 2*t; j += 2)
 357                                syn[j] ^= a_pow(bch, (j+1)*(i+s));
 358
 359                        poly ^= (1 << i);
 360                }
 361        } while (s > 0);
 362
 363        /* v(a^(2j)) = v(a^j)^2 */
 364        for (j = 0; j < t; j++)
 365                syn[2*j+1] = gf_sqr(bch, syn[j]);
 366}
 367
 368static void gf_poly_copy(struct gf_poly *dst, struct gf_poly *src)
 369{
 370        memcpy(dst, src, GF_POLY_SZ(src->deg));
 371}
 372
 373static int compute_error_locator_polynomial(struct bch_control *bch,
 374                                            const unsigned int *syn)
 375{
 376        const unsigned int t = GF_T(bch);
 377        const unsigned int n = GF_N(bch);
 378        unsigned int i, j, tmp, l, pd = 1, d = syn[0];
 379        struct gf_poly *elp = bch->elp;
 380        struct gf_poly *pelp = bch->poly_2t[0];
 381        struct gf_poly *elp_copy = bch->poly_2t[1];
 382        int k, pp = -1;
 383
 384        memset(pelp, 0, GF_POLY_SZ(2*t));
 385        memset(elp, 0, GF_POLY_SZ(2*t));
 386
 387        pelp->deg = 0;
 388        pelp->c[0] = 1;
 389        elp->deg = 0;
 390        elp->c[0] = 1;
 391
 392        /* use simplified binary Berlekamp-Massey algorithm */
 393        for (i = 0; (i < t) && (elp->deg <= t); i++) {
 394                if (d) {
 395                        k = 2*i-pp;
 396                        gf_poly_copy(elp_copy, elp);
 397                        /* e[i+1](X) = e[i](X)+di*dp^-1*X^2(i-p)*e[p](X) */
 398                        tmp = a_log(bch, d)+n-a_log(bch, pd);
 399                        for (j = 0; j <= pelp->deg; j++) {
 400                                if (pelp->c[j]) {
 401                                        l = a_log(bch, pelp->c[j]);
 402                                        elp->c[j+k] ^= a_pow(bch, tmp+l);
 403                                }
 404                        }
 405                        /* compute l[i+1] = max(l[i]->c[l[p]+2*(i-p]) */
 406                        tmp = pelp->deg+k;
 407                        if (tmp > elp->deg) {
 408                                elp->deg = tmp;
 409                                gf_poly_copy(pelp, elp_copy);
 410                                pd = d;
 411                                pp = 2*i;
 412                        }
 413                }
 414                /* di+1 = S(2i+3)+elp[i+1].1*S(2i+2)+...+elp[i+1].lS(2i+3-l) */
 415                if (i < t-1) {
 416                        d = syn[2*i+2];
 417                        for (j = 1; j <= elp->deg; j++)
 418                                d ^= gf_mul(bch, elp->c[j], syn[2*i+2-j]);
 419                }
 420        }
 421        dbg("elp=%s\n", gf_poly_str(elp));
 422        return (elp->deg > t) ? -1 : (int)elp->deg;
 423}
 424
 425/*
 426 * solve a m x m linear system in GF(2) with an expected number of solutions,
 427 * and return the number of found solutions
 428 */
 429static int solve_linear_system(struct bch_control *bch, unsigned int *rows,
 430                               unsigned int *sol, int nsol)
 431{
 432        const int m = GF_M(bch);
 433        unsigned int tmp, mask;
 434        int rem, c, r, p, k, param[m];
 435
 436        k = 0;
 437        mask = 1 << m;
 438
 439        /* Gaussian elimination */
 440        for (c = 0; c < m; c++) {
 441                rem = 0;
 442                p = c-k;
 443                /* find suitable row for elimination */
 444                for (r = p; r < m; r++) {
 445                        if (rows[r] & mask) {
 446                                if (r != p) {
 447                                        tmp = rows[r];
 448                                        rows[r] = rows[p];
 449                                        rows[p] = tmp;
 450                                }
 451                                rem = r+1;
 452                                break;
 453                        }
 454                }
 455                if (rem) {
 456                        /* perform elimination on remaining rows */
 457                        tmp = rows[p];
 458                        for (r = rem; r < m; r++) {
 459                                if (rows[r] & mask)
 460                                        rows[r] ^= tmp;
 461                        }
 462                } else {
 463                        /* elimination not needed, store defective row index */
 464                        param[k++] = c;
 465                }
 466                mask >>= 1;
 467        }
 468        /* rewrite system, inserting fake parameter rows */
 469        if (k > 0) {
 470                p = k;
 471                for (r = m-1; r >= 0; r--) {
 472                        if ((r > m-1-k) && rows[r])
 473                                /* system has no solution */
 474                                return 0;
 475
 476                        rows[r] = (p && (r == param[p-1])) ?
 477                                p--, 1u << (m-r) : rows[r-p];
 478                }
 479        }
 480
 481        if (nsol != (1 << k))
 482                /* unexpected number of solutions */
 483                return 0;
 484
 485        for (p = 0; p < nsol; p++) {
 486                /* set parameters for p-th solution */
 487                for (c = 0; c < k; c++)
 488                        rows[param[c]] = (rows[param[c]] & ~1)|((p >> c) & 1);
 489
 490                /* compute unique solution */
 491                tmp = 0;
 492                for (r = m-1; r >= 0; r--) {
 493                        mask = rows[r] & (tmp|1);
 494                        tmp |= parity(mask) << (m-r);
 495                }
 496                sol[p] = tmp >> 1;
 497        }
 498        return nsol;
 499}
 500
 501/*
 502 * this function builds and solves a linear system for finding roots of a degree
 503 * 4 affine monic polynomial X^4+aX^2+bX+c over GF(2^m).
 504 */
 505static int find_affine4_roots(struct bch_control *bch, unsigned int a,
 506                              unsigned int b, unsigned int c,
 507                              unsigned int *roots)
 508{
 509        int i, j, k;
 510        const int m = GF_M(bch);
 511        unsigned int mask = 0xff, t, rows[16] = {0,};
 512
 513        j = a_log(bch, b);
 514        k = a_log(bch, a);
 515        rows[0] = c;
 516
 517        /* buid linear system to solve X^4+aX^2+bX+c = 0 */
 518        for (i = 0; i < m; i++) {
 519                rows[i+1] = bch->a_pow_tab[4*i]^
 520                        (a ? bch->a_pow_tab[mod_s(bch, k)] : 0)^
 521                        (b ? bch->a_pow_tab[mod_s(bch, j)] : 0);
 522                j++;
 523                k += 2;
 524        }
 525        /*
 526         * transpose 16x16 matrix before passing it to linear solver
 527         * warning: this code assumes m < 16
 528         */
 529        for (j = 8; j != 0; j >>= 1, mask ^= (mask << j)) {
 530                for (k = 0; k < 16; k = (k+j+1) & ~j) {
 531                        t = ((rows[k] >> j)^rows[k+j]) & mask;
 532                        rows[k] ^= (t << j);
 533                        rows[k+j] ^= t;
 534                }
 535        }
 536        return solve_linear_system(bch, rows, roots, 4);
 537}
 538
 539/*
 540 * compute root r of a degree 1 polynomial over GF(2^m) (returned as log(1/r))
 541 */
 542static int find_poly_deg1_roots(struct bch_control *bch, struct gf_poly *poly,
 543                                unsigned int *roots)
 544{
 545        int n = 0;
 546
 547        if (poly->c[0])
 548                /* poly[X] = bX+c with c!=0, root=c/b */
 549                roots[n++] = mod_s(bch, GF_N(bch)-bch->a_log_tab[poly->c[0]]+
 550                                   bch->a_log_tab[poly->c[1]]);
 551        return n;
 552}
 553
 554/*
 555 * compute roots of a degree 2 polynomial over GF(2^m)
 556 */
 557static int find_poly_deg2_roots(struct bch_control *bch, struct gf_poly *poly,
 558                                unsigned int *roots)
 559{
 560        int n = 0, i, l0, l1, l2;
 561        unsigned int u, v, r;
 562
 563        if (poly->c[0] && poly->c[1]) {
 564
 565                l0 = bch->a_log_tab[poly->c[0]];
 566                l1 = bch->a_log_tab[poly->c[1]];
 567                l2 = bch->a_log_tab[poly->c[2]];
 568
 569                /* using z=a/bX, transform aX^2+bX+c into z^2+z+u (u=ac/b^2) */
 570                u = a_pow(bch, l0+l2+2*(GF_N(bch)-l1));
 571                /*
 572                 * let u = sum(li.a^i) i=0..m-1; then compute r = sum(li.xi):
 573                 * r^2+r = sum(li.(xi^2+xi)) = sum(li.(a^i+Tr(a^i).a^k)) =
 574                 * u + sum(li.Tr(a^i).a^k) = u+a^k.Tr(sum(li.a^i)) = u+a^k.Tr(u)
 575                 * i.e. r and r+1 are roots iff Tr(u)=0
 576                 */
 577                r = 0;
 578                v = u;
 579                while (v) {
 580                        i = deg(v);
 581                        r ^= bch->xi_tab[i];
 582                        v ^= (1 << i);
 583                }
 584                /* verify root */
 585                if ((gf_sqr(bch, r)^r) == u) {
 586                        /* reverse z=a/bX transformation and compute log(1/r) */
 587                        roots[n++] = modulo(bch, 2*GF_N(bch)-l1-
 588                                            bch->a_log_tab[r]+l2);
 589                        roots[n++] = modulo(bch, 2*GF_N(bch)-l1-
 590                                            bch->a_log_tab[r^1]+l2);
 591                }
 592        }
 593        return n;
 594}
 595
 596/*
 597 * compute roots of a degree 3 polynomial over GF(2^m)
 598 */
 599static int find_poly_deg3_roots(struct bch_control *bch, struct gf_poly *poly,
 600                                unsigned int *roots)
 601{
 602        int i, n = 0;
 603        unsigned int a, b, c, a2, b2, c2, e3, tmp[4];
 604
 605        if (poly->c[0]) {
 606                /* transform polynomial into monic X^3 + a2X^2 + b2X + c2 */
 607                e3 = poly->c[3];
 608                c2 = gf_div(bch, poly->c[0], e3);
 609                b2 = gf_div(bch, poly->c[1], e3);
 610                a2 = gf_div(bch, poly->c[2], e3);
 611
 612                /* (X+a2)(X^3+a2X^2+b2X+c2) = X^4+aX^2+bX+c (affine) */
 613                c = gf_mul(bch, a2, c2);           /* c = a2c2      */
 614                b = gf_mul(bch, a2, b2)^c2;        /* b = a2b2 + c2 */
 615                a = gf_sqr(bch, a2)^b2;            /* a = a2^2 + b2 */
 616
 617                /* find the 4 roots of this affine polynomial */
 618                if (find_affine4_roots(bch, a, b, c, tmp) == 4) {
 619                        /* remove a2 from final list of roots */
 620                        for (i = 0; i < 4; i++) {
 621                                if (tmp[i] != a2)
 622                                        roots[n++] = a_ilog(bch, tmp[i]);
 623                        }
 624                }
 625        }
 626        return n;
 627}
 628
 629/*
 630 * compute roots of a degree 4 polynomial over GF(2^m)
 631 */
 632static int find_poly_deg4_roots(struct bch_control *bch, struct gf_poly *poly,
 633                                unsigned int *roots)
 634{
 635        int i, l, n = 0;
 636        unsigned int a, b, c, d, e = 0, f, a2, b2, c2, e4;
 637
 638        if (poly->c[0] == 0)
 639                return 0;
 640
 641        /* transform polynomial into monic X^4 + aX^3 + bX^2 + cX + d */
 642        e4 = poly->c[4];
 643        d = gf_div(bch, poly->c[0], e4);
 644        c = gf_div(bch, poly->c[1], e4);
 645        b = gf_div(bch, poly->c[2], e4);
 646        a = gf_div(bch, poly->c[3], e4);
 647
 648        /* use Y=1/X transformation to get an affine polynomial */
 649        if (a) {
 650                /* first, eliminate cX by using z=X+e with ae^2+c=0 */
 651                if (c) {
 652                        /* compute e such that e^2 = c/a */
 653                        f = gf_div(bch, c, a);
 654                        l = a_log(bch, f);
 655                        l += (l & 1) ? GF_N(bch) : 0;
 656                        e = a_pow(bch, l/2);
 657                        /*
 658                         * use transformation z=X+e:
 659                         * z^4+e^4 + a(z^3+ez^2+e^2z+e^3) + b(z^2+e^2) +cz+ce+d
 660                         * z^4 + az^3 + (ae+b)z^2 + (ae^2+c)z+e^4+be^2+ae^3+ce+d
 661                         * z^4 + az^3 + (ae+b)z^2 + e^4+be^2+d
 662                         * z^4 + az^3 +     b'z^2 + d'
 663                         */
 664                        d = a_pow(bch, 2*l)^gf_mul(bch, b, f)^d;
 665                        b = gf_mul(bch, a, e)^b;
 666                }
 667                /* now, use Y=1/X to get Y^4 + b/dY^2 + a/dY + 1/d */
 668                if (d == 0)
 669                        /* assume all roots have multiplicity 1 */
 670                        return 0;
 671
 672                c2 = gf_inv(bch, d);
 673                b2 = gf_div(bch, a, d);
 674                a2 = gf_div(bch, b, d);
 675        } else {
 676                /* polynomial is already affine */
 677                c2 = d;
 678                b2 = c;
 679                a2 = b;
 680        }
 681        /* find the 4 roots of this affine polynomial */
 682        if (find_affine4_roots(bch, a2, b2, c2, roots) == 4) {
 683                for (i = 0; i < 4; i++) {
 684                        /* post-process roots (reverse transformations) */
 685                        f = a ? gf_inv(bch, roots[i]) : roots[i];
 686                        roots[i] = a_ilog(bch, f^e);
 687                }
 688                n = 4;
 689        }
 690        return n;
 691}
 692
 693/*
 694 * build monic, log-based representation of a polynomial
 695 */
 696static void gf_poly_logrep(struct bch_control *bch,
 697                           const struct gf_poly *a, int *rep)
 698{
 699        int i, d = a->deg, l = GF_N(bch)-a_log(bch, a->c[a->deg]);
 700
 701        /* represent 0 values with -1; warning, rep[d] is not set to 1 */
 702        for (i = 0; i < d; i++)
 703                rep[i] = a->c[i] ? mod_s(bch, a_log(bch, a->c[i])+l) : -1;
 704}
 705
 706/*
 707 * compute polynomial Euclidean division remainder in GF(2^m)[X]
 708 */
 709static void gf_poly_mod(struct bch_control *bch, struct gf_poly *a,
 710                        const struct gf_poly *b, int *rep)
 711{
 712        int la, p, m;
 713        unsigned int i, j, *c = a->c;
 714        const unsigned int d = b->deg;
 715
 716        if (a->deg < d)
 717                return;
 718
 719        /* reuse or compute log representation of denominator */
 720        if (!rep) {
 721                rep = bch->cache;
 722                gf_poly_logrep(bch, b, rep);
 723        }
 724
 725        for (j = a->deg; j >= d; j--) {
 726                if (c[j]) {
 727                        la = a_log(bch, c[j]);
 728                        p = j-d;
 729                        for (i = 0; i < d; i++, p++) {
 730                                m = rep[i];
 731                                if (m >= 0)
 732                                        c[p] ^= bch->a_pow_tab[mod_s(bch,
 733                                                                     m+la)];
 734                        }
 735                }
 736        }
 737        a->deg = d-1;
 738        while (!c[a->deg] && a->deg)
 739                a->deg--;
 740}
 741
 742/*
 743 * compute polynomial Euclidean division quotient in GF(2^m)[X]
 744 */
 745static void gf_poly_div(struct bch_control *bch, struct gf_poly *a,
 746                        const struct gf_poly *b, struct gf_poly *q)
 747{
 748        if (a->deg >= b->deg) {
 749                q->deg = a->deg-b->deg;
 750                /* compute a mod b (modifies a) */
 751                gf_poly_mod(bch, a, b, NULL);
 752                /* quotient is stored in upper part of polynomial a */
 753                memcpy(q->c, &a->c[b->deg], (1+q->deg)*sizeof(unsigned int));
 754        } else {
 755                q->deg = 0;
 756                q->c[0] = 0;
 757        }
 758}
 759
 760/*
 761 * compute polynomial GCD (Greatest Common Divisor) in GF(2^m)[X]
 762 */
 763static struct gf_poly *gf_poly_gcd(struct bch_control *bch, struct gf_poly *a,
 764                                   struct gf_poly *b)
 765{
 766        struct gf_poly *tmp;
 767
 768        dbg("gcd(%s,%s)=", gf_poly_str(a), gf_poly_str(b));
 769
 770        if (a->deg < b->deg) {
 771                tmp = b;
 772                b = a;
 773                a = tmp;
 774        }
 775
 776        while (b->deg > 0) {
 777                gf_poly_mod(bch, a, b, NULL);
 778                tmp = b;
 779                b = a;
 780                a = tmp;
 781        }
 782
 783        dbg("%s\n", gf_poly_str(a));
 784
 785        return a;
 786}
 787
 788/*
 789 * Given a polynomial f and an integer k, compute Tr(a^kX) mod f
 790 * This is used in Berlekamp Trace algorithm for splitting polynomials
 791 */
 792static void compute_trace_bk_mod(struct bch_control *bch, int k,
 793                                 const struct gf_poly *f, struct gf_poly *z,
 794                                 struct gf_poly *out)
 795{
 796        const int m = GF_M(bch);
 797        int i, j;
 798
 799        /* z contains z^2j mod f */
 800        z->deg = 1;
 801        z->c[0] = 0;
 802        z->c[1] = bch->a_pow_tab[k];
 803
 804        out->deg = 0;
 805        memset(out, 0, GF_POLY_SZ(f->deg));
 806
 807        /* compute f log representation only once */
 808        gf_poly_logrep(bch, f, bch->cache);
 809
 810        for (i = 0; i < m; i++) {
 811                /* add a^(k*2^i)(z^(2^i) mod f) and compute (z^(2^i) mod f)^2 */
 812                for (j = z->deg; j >= 0; j--) {
 813                        out->c[j] ^= z->c[j];
 814                        z->c[2*j] = gf_sqr(bch, z->c[j]);
 815                        z->c[2*j+1] = 0;
 816                }
 817                if (z->deg > out->deg)
 818                        out->deg = z->deg;
 819
 820                if (i < m-1) {
 821                        z->deg *= 2;
 822                        /* z^(2(i+1)) mod f = (z^(2^i) mod f)^2 mod f */
 823                        gf_poly_mod(bch, z, f, bch->cache);
 824                }
 825        }
 826        while (!out->c[out->deg] && out->deg)
 827                out->deg--;
 828
 829        dbg("Tr(a^%d.X) mod f = %s\n", k, gf_poly_str(out));
 830}
 831
 832/*
 833 * factor a polynomial using Berlekamp Trace algorithm (BTA)
 834 */
 835static void factor_polynomial(struct bch_control *bch, int k, struct gf_poly *f,
 836                              struct gf_poly **g, struct gf_poly **h)
 837{
 838        struct gf_poly *f2 = bch->poly_2t[0];
 839        struct gf_poly *q  = bch->poly_2t[1];
 840        struct gf_poly *tk = bch->poly_2t[2];
 841        struct gf_poly *z  = bch->poly_2t[3];
 842        struct gf_poly *gcd;
 843
 844        dbg("factoring %s...\n", gf_poly_str(f));
 845
 846        *g = f;
 847        *h = NULL;
 848
 849        /* tk = Tr(a^k.X) mod f */
 850        compute_trace_bk_mod(bch, k, f, z, tk);
 851
 852        if (tk->deg > 0) {
 853                /* compute g = gcd(f, tk) (destructive operation) */
 854                gf_poly_copy(f2, f);
 855                gcd = gf_poly_gcd(bch, f2, tk);
 856                if (gcd->deg < f->deg) {
 857                        /* compute h=f/gcd(f,tk); this will modify f and q */
 858                        gf_poly_div(bch, f, gcd, q);
 859                        /* store g and h in-place (clobbering f) */
 860                        *h = &((struct gf_poly_deg1 *)f)[gcd->deg].poly;
 861                        gf_poly_copy(*g, gcd);
 862                        gf_poly_copy(*h, q);
 863                }
 864        }
 865}
 866
 867/*
 868 * find roots of a polynomial, using BTZ algorithm; see the beginning of this
 869 * file for details
 870 */
 871static int find_poly_roots(struct bch_control *bch, unsigned int k,
 872                           struct gf_poly *poly, unsigned int *roots)
 873{
 874        int cnt;
 875        struct gf_poly *f1, *f2;
 876
 877        switch (poly->deg) {
 878                /* handle low degree polynomials with ad hoc techniques */
 879        case 1:
 880                cnt = find_poly_deg1_roots(bch, poly, roots);
 881                break;
 882        case 2:
 883                cnt = find_poly_deg2_roots(bch, poly, roots);
 884                break;
 885        case 3:
 886                cnt = find_poly_deg3_roots(bch, poly, roots);
 887                break;
 888        case 4:
 889                cnt = find_poly_deg4_roots(bch, poly, roots);
 890                break;
 891        default:
 892                /* factor polynomial using Berlekamp Trace Algorithm (BTA) */
 893                cnt = 0;
 894                if (poly->deg && (k <= GF_M(bch))) {
 895                        factor_polynomial(bch, k, poly, &f1, &f2);
 896                        if (f1)
 897                                cnt += find_poly_roots(bch, k+1, f1, roots);
 898                        if (f2)
 899                                cnt += find_poly_roots(bch, k+1, f2, roots+cnt);
 900                }
 901                break;
 902        }
 903        return cnt;
 904}
 905
 906#if defined(USE_CHIEN_SEARCH)
 907/*
 908 * exhaustive root search (Chien) implementation - not used, included only for
 909 * reference/comparison tests
 910 */
 911static int chien_search(struct bch_control *bch, unsigned int len,
 912                        struct gf_poly *p, unsigned int *roots)
 913{
 914        int m;
 915        unsigned int i, j, syn, syn0, count = 0;
 916        const unsigned int k = 8*len+bch->ecc_bits;
 917
 918        /* use a log-based representation of polynomial */
 919        gf_poly_logrep(bch, p, bch->cache);
 920        bch->cache[p->deg] = 0;
 921        syn0 = gf_div(bch, p->c[0], p->c[p->deg]);
 922
 923        for (i = GF_N(bch)-k+1; i <= GF_N(bch); i++) {
 924                /* compute elp(a^i) */
 925                for (j = 1, syn = syn0; j <= p->deg; j++) {
 926                        m = bch->cache[j];
 927                        if (m >= 0)
 928                                syn ^= a_pow(bch, m+j*i);
 929                }
 930                if (syn == 0) {
 931                        roots[count++] = GF_N(bch)-i;
 932                        if (count == p->deg)
 933                                break;
 934                }
 935        }
 936        return (count == p->deg) ? count : 0;
 937}
 938#define find_poly_roots(_p, _k, _elp, _loc) chien_search(_p, len, _elp, _loc)
 939#endif /* USE_CHIEN_SEARCH */
 940
 941/**
 942 * decode_bch - decode received codeword and find bit error locations
 943 * @bch:      BCH control structure
 944 * @data:     received data, ignored if @calc_ecc is provided
 945 * @len:      data length in bytes, must always be provided
 946 * @recv_ecc: received ecc, if NULL then assume it was XORed in @calc_ecc
 947 * @calc_ecc: calculated ecc, if NULL then calc_ecc is computed from @data
 948 * @syn:      hw computed syndrome data (if NULL, syndrome is calculated)
 949 * @errloc:   output array of error locations
 950 *
 951 * Returns:
 952 *  The number of errors found, or -EBADMSG if decoding failed, or -EINVAL if
 953 *  invalid parameters were provided
 954 *
 955 * Depending on the available hw BCH support and the need to compute @calc_ecc
 956 * separately (using encode_bch()), this function should be called with one of
 957 * the following parameter configurations -
 958 *
 959 * by providing @data and @recv_ecc only:
 960 *   decode_bch(@bch, @data, @len, @recv_ecc, NULL, NULL, @errloc)
 961 *
 962 * by providing @recv_ecc and @calc_ecc:
 963 *   decode_bch(@bch, NULL, @len, @recv_ecc, @calc_ecc, NULL, @errloc)
 964 *
 965 * by providing ecc = recv_ecc XOR calc_ecc:
 966 *   decode_bch(@bch, NULL, @len, NULL, ecc, NULL, @errloc)
 967 *
 968 * by providing syndrome results @syn:
 969 *   decode_bch(@bch, NULL, @len, NULL, NULL, @syn, @errloc)
 970 *
 971 * Once decode_bch() has successfully returned with a positive value, error
 972 * locations returned in array @errloc should be interpreted as follows -
 973 *
 974 * if (errloc[n] >= 8*len), then n-th error is located in ecc (no need for
 975 * data correction)
 976 *
 977 * if (errloc[n] < 8*len), then n-th error is located in data and can be
 978 * corrected with statement data[errloc[n]/8] ^= 1 << (errloc[n] % 8);
 979 *
 980 * Note that this function does not perform any data correction by itself, it
 981 * merely indicates error locations.
 982 */
 983int decode_bch(struct bch_control *bch, const uint8_t *data, unsigned int len,
 984               const uint8_t *recv_ecc, const uint8_t *calc_ecc,
 985               const unsigned int *syn, unsigned int *errloc)
 986{
 987        const unsigned int ecc_words = BCH_ECC_WORDS(bch);
 988        unsigned int nbits;
 989        int i, err, nroots;
 990        uint32_t sum;
 991
 992        /* sanity check: make sure data length can be handled */
 993        if (8*len > (bch->n-bch->ecc_bits))
 994                return -EINVAL;
 995
 996        /* if caller does not provide syndromes, compute them */
 997        if (!syn) {
 998                if (!calc_ecc) {
 999                        /* compute received data ecc into an internal buffer */
1000                        if (!data || !recv_ecc)
1001                                return -EINVAL;
1002                        encode_bch(bch, data, len, NULL);
1003                } else {
1004                        /* load provided calculated ecc */
1005                        load_ecc8(bch, bch->ecc_buf, calc_ecc);
1006                }
1007                /* load received ecc or assume it was XORed in calc_ecc */
1008                if (recv_ecc) {
1009                        load_ecc8(bch, bch->ecc_buf2, recv_ecc);
1010                        /* XOR received and calculated ecc */
1011                        for (i = 0, sum = 0; i < (int)ecc_words; i++) {
1012                                bch->ecc_buf[i] ^= bch->ecc_buf2[i];
1013                                sum |= bch->ecc_buf[i];
1014                        }
1015                        if (!sum)
1016                                /* no error found */
1017                                return 0;
1018                }
1019                compute_syndromes(bch, bch->ecc_buf, bch->syn);
1020                syn = bch->syn;
1021        }
1022
1023        err = compute_error_locator_polynomial(bch, syn);
1024        if (err > 0) {
1025                nroots = find_poly_roots(bch, 1, bch->elp, errloc);
1026                if (err != nroots)
1027                        err = -1;
1028        }
1029        if (err > 0) {
1030                /* post-process raw error locations for easier correction */
1031                nbits = (len*8)+bch->ecc_bits;
1032                for (i = 0; i < err; i++) {
1033                        if (errloc[i] >= nbits) {
1034                                err = -1;
1035                                break;
1036                        }
1037                        errloc[i] = nbits-1-errloc[i];
1038                        errloc[i] = (errloc[i] & ~7)|(7-(errloc[i] & 7));
1039                }
1040        }
1041        return (err >= 0) ? err : -EBADMSG;
1042}
1043
1044/*
1045 * generate Galois field lookup tables
1046 */
1047static int build_gf_tables(struct bch_control *bch, unsigned int poly)
1048{
1049        unsigned int i, x = 1;
1050        const unsigned int k = 1 << deg(poly);
1051
1052        /* primitive polynomial must be of degree m */
1053        if (k != (1u << GF_M(bch)))
1054                return -1;
1055
1056        for (i = 0; i < GF_N(bch); i++) {
1057                bch->a_pow_tab[i] = x;
1058                bch->a_log_tab[x] = i;
1059                if (i && (x == 1))
1060                        /* polynomial is not primitive (a^i=1 with 0<i<2^m-1) */
1061                        return -1;
1062                x <<= 1;
1063                if (x & k)
1064                        x ^= poly;
1065        }
1066        bch->a_pow_tab[GF_N(bch)] = 1;
1067        bch->a_log_tab[0] = 0;
1068
1069        return 0;
1070}
1071
1072/*
1073 * compute generator polynomial remainder tables for fast encoding
1074 */
1075static void build_mod8_tables(struct bch_control *bch, const uint32_t *g)
1076{
1077        int i, j, b, d;
1078        uint32_t data, hi, lo, *tab;
1079        const int l = BCH_ECC_WORDS(bch);
1080        const int plen = DIV_ROUND_UP(bch->ecc_bits+1, 32);
1081        const int ecclen = DIV_ROUND_UP(bch->ecc_bits, 32);
1082
1083        memset(bch->mod8_tab, 0, 4*256*l*sizeof(*bch->mod8_tab));
1084
1085        for (i = 0; i < 256; i++) {
1086                /* p(X)=i is a small polynomial of weight <= 8 */
1087                for (b = 0; b < 4; b++) {
1088                        /* we want to compute (p(X).X^(8*b+deg(g))) mod g(X) */
1089                        tab = bch->mod8_tab + (b*256+i)*l;
1090                        data = i << (8*b);
1091                        while (data) {
1092                                d = deg(data);
1093                                /* subtract X^d.g(X) from p(X).X^(8*b+deg(g)) */
1094                                data ^= g[0] >> (31-d);
1095                                for (j = 0; j < ecclen; j++) {
1096                                        hi = (d < 31) ? g[j] << (d+1) : 0;
1097                                        lo = (j+1 < plen) ?
1098                                                g[j+1] >> (31-d) : 0;
1099                                        tab[j] ^= hi|lo;
1100                                }
1101                        }
1102                }
1103        }
1104}
1105
1106/*
1107 * build a base for factoring degree 2 polynomials
1108 */
1109static int build_deg2_base(struct bch_control *bch)
1110{
1111        const int m = GF_M(bch);
1112        int i, j, r;
1113        unsigned int sum, x, y, remaining, ak = 0, xi[m];
1114
1115        /* find k s.t. Tr(a^k) = 1 and 0 <= k < m */
1116        for (i = 0; i < m; i++) {
1117                for (j = 0, sum = 0; j < m; j++)
1118                        sum ^= a_pow(bch, i*(1 << j));
1119
1120                if (sum) {
1121                        ak = bch->a_pow_tab[i];
1122                        break;
1123                }
1124        }
1125        /* find xi, i=0..m-1 such that xi^2+xi = a^i+Tr(a^i).a^k */
1126        remaining = m;
1127        memset(xi, 0, sizeof(xi));
1128
1129        for (x = 0; (x <= GF_N(bch)) && remaining; x++) {
1130                y = gf_sqr(bch, x)^x;
1131                for (i = 0; i < 2; i++) {
1132                        r = a_log(bch, y);
1133                        if (y && (r < m) && !xi[r]) {
1134                                bch->xi_tab[r] = x;
1135                                xi[r] = 1;
1136                                remaining--;
1137                                dbg("x%d = %x\n", r, x);
1138                                break;
1139                        }
1140                        y ^= ak;
1141                }
1142        }
1143        /* should not happen but check anyway */
1144        return remaining ? -1 : 0;
1145}
1146
1147static void *bch_alloc(size_t size, int *err)
1148{
1149        void *ptr;
1150
1151        ptr = kmalloc(size, GFP_KERNEL);
1152        if (ptr == NULL)
1153                *err = 1;
1154        return ptr;
1155}
1156
1157/*
1158 * compute generator polynomial for given (m,t) parameters.
1159 */
1160static uint32_t *compute_generator_polynomial(struct bch_control *bch)
1161{
1162        const unsigned int m = GF_M(bch);
1163        const unsigned int t = GF_T(bch);
1164        int n, err = 0;
1165        unsigned int i, j, nbits, r, word, *roots;
1166        struct gf_poly *g;
1167        uint32_t *genpoly;
1168
1169        g = bch_alloc(GF_POLY_SZ(m*t), &err);
1170        roots = bch_alloc((bch->n+1)*sizeof(*roots), &err);
1171        genpoly = bch_alloc(DIV_ROUND_UP(m*t+1, 32)*sizeof(*genpoly), &err);
1172
1173        if (err) {
1174                kfree(genpoly);
1175                genpoly = NULL;
1176                goto finish;
1177        }
1178
1179        /* enumerate all roots of g(X) */
1180        memset(roots , 0, (bch->n+1)*sizeof(*roots));
1181        for (i = 0; i < t; i++) {
1182                for (j = 0, r = 2*i+1; j < m; j++) {
1183                        roots[r] = 1;
1184                        r = mod_s(bch, 2*r);
1185                }
1186        }
1187        /* build generator polynomial g(X) */
1188        g->deg = 0;
1189        g->c[0] = 1;
1190        for (i = 0; i < GF_N(bch); i++) {
1191                if (roots[i]) {
1192                        /* multiply g(X) by (X+root) */
1193                        r = bch->a_pow_tab[i];
1194                        g->c[g->deg+1] = 1;
1195                        for (j = g->deg; j > 0; j--)
1196                                g->c[j] = gf_mul(bch, g->c[j], r)^g->c[j-1];
1197
1198                        g->c[0] = gf_mul(bch, g->c[0], r);
1199                        g->deg++;
1200                }
1201        }
1202        /* store left-justified binary representation of g(X) */
1203        n = g->deg+1;
1204        i = 0;
1205
1206        while (n > 0) {
1207                nbits = (n > 32) ? 32 : n;
1208                for (j = 0, word = 0; j < nbits; j++) {
1209                        if (g->c[n-1-j])
1210                                word |= 1u << (31-j);
1211                }
1212                genpoly[i++] = word;
1213                n -= nbits;
1214        }
1215        bch->ecc_bits = g->deg;
1216
1217finish:
1218        kfree(g);
1219        kfree(roots);
1220
1221        return genpoly;
1222}
1223
1224/**
1225 * init_bch - initialize a BCH encoder/decoder
1226 * @m:          Galois field order, should be in the range 5-15
1227 * @t:          maximum error correction capability, in bits
1228 * @prim_poly:  user-provided primitive polynomial (or 0 to use default)
1229 *
1230 * Returns:
1231 *  a newly allocated BCH control structure if successful, NULL otherwise
1232 *
1233 * This initialization can take some time, as lookup tables are built for fast
1234 * encoding/decoding; make sure not to call this function from a time critical
1235 * path. Usually, init_bch() should be called on module/driver init and
1236 * free_bch() should be called to release memory on exit.
1237 *
1238 * You may provide your own primitive polynomial of degree @m in argument
1239 * @prim_poly, or let init_bch() use its default polynomial.
1240 *
1241 * Once init_bch() has successfully returned a pointer to a newly allocated
1242 * BCH control structure, ecc length in bytes is given by member @ecc_bytes of
1243 * the structure.
1244 */
1245struct bch_control *init_bch(int m, int t, unsigned int prim_poly)
1246{
1247        int err = 0;
1248        unsigned int i, words;
1249        uint32_t *genpoly;
1250        struct bch_control *bch = NULL;
1251
1252        const int min_m = 5;
1253        const int max_m = 15;
1254
1255        /* default primitive polynomials */
1256        static const unsigned int prim_poly_tab[] = {
1257                0x25, 0x43, 0x83, 0x11d, 0x211, 0x409, 0x805, 0x1053, 0x201b,
1258                0x402b, 0x8003,
1259        };
1260
1261#if defined(CONFIG_BCH_CONST_PARAMS)
1262        if ((m != (CONFIG_BCH_CONST_M)) || (t != (CONFIG_BCH_CONST_T))) {
1263                printk(KERN_ERR "bch encoder/decoder was configured to support "
1264                       "parameters m=%d, t=%d only!\n",
1265                       CONFIG_BCH_CONST_M, CONFIG_BCH_CONST_T);
1266                goto fail;
1267        }
1268#endif
1269        if ((m < min_m) || (m > max_m))
1270                /*
1271                 * values of m greater than 15 are not currently supported;
1272                 * supporting m > 15 would require changing table base type
1273                 * (uint16_t) and a small patch in matrix transposition
1274                 */
1275                goto fail;
1276
1277        /* sanity checks */
1278        if ((t < 1) || (m*t >= ((1 << m)-1)))
1279                /* invalid t value */
1280                goto fail;
1281
1282        /* select a primitive polynomial for generating GF(2^m) */
1283        if (prim_poly == 0)
1284                prim_poly = prim_poly_tab[m-min_m];
1285
1286        bch = kzalloc(sizeof(*bch), GFP_KERNEL);
1287        if (bch == NULL)
1288                goto fail;
1289
1290        bch->m = m;
1291        bch->t = t;
1292        bch->n = (1 << m)-1;
1293        words  = DIV_ROUND_UP(m*t, 32);
1294        bch->ecc_bytes = DIV_ROUND_UP(m*t, 8);
1295        bch->a_pow_tab = bch_alloc((1+bch->n)*sizeof(*bch->a_pow_tab), &err);
1296        bch->a_log_tab = bch_alloc((1+bch->n)*sizeof(*bch->a_log_tab), &err);
1297        bch->mod8_tab  = bch_alloc(words*1024*sizeof(*bch->mod8_tab), &err);
1298        bch->ecc_buf   = bch_alloc(words*sizeof(*bch->ecc_buf), &err);
1299        bch->ecc_buf2  = bch_alloc(words*sizeof(*bch->ecc_buf2), &err);
1300        bch->xi_tab    = bch_alloc(m*sizeof(*bch->xi_tab), &err);
1301        bch->syn       = bch_alloc(2*t*sizeof(*bch->syn), &err);
1302        bch->cache     = bch_alloc(2*t*sizeof(*bch->cache), &err);
1303        bch->elp       = bch_alloc((t+1)*sizeof(struct gf_poly_deg1), &err);
1304
1305        for (i = 0; i < ARRAY_SIZE(bch->poly_2t); i++)
1306                bch->poly_2t[i] = bch_alloc(GF_POLY_SZ(2*t), &err);
1307
1308        if (err)
1309                goto fail;
1310
1311        err = build_gf_tables(bch, prim_poly);
1312        if (err)
1313                goto fail;
1314
1315        /* use generator polynomial for computing encoding tables */
1316        genpoly = compute_generator_polynomial(bch);
1317        if (genpoly == NULL)
1318                goto fail;
1319
1320        build_mod8_tables(bch, genpoly);
1321        kfree(genpoly);
1322
1323        err = build_deg2_base(bch);
1324        if (err)
1325                goto fail;
1326
1327        return bch;
1328
1329fail:
1330        free_bch(bch);
1331        return NULL;
1332}
1333
1334/**
1335 *  free_bch - free the BCH control structure
1336 *  @bch:    BCH control structure to release
1337 */
1338void free_bch(struct bch_control *bch)
1339{
1340        unsigned int i;
1341
1342        if (bch) {
1343                kfree(bch->a_pow_tab);
1344                kfree(bch->a_log_tab);
1345                kfree(bch->mod8_tab);
1346                kfree(bch->ecc_buf);
1347                kfree(bch->ecc_buf2);
1348                kfree(bch->xi_tab);
1349                kfree(bch->syn);
1350                kfree(bch->cache);
1351                kfree(bch->elp);
1352
1353                for (i = 0; i < ARRAY_SIZE(bch->poly_2t); i++)
1354                        kfree(bch->poly_2t[i]);
1355
1356                kfree(bch);
1357        }
1358}
1359