uboot/drivers/mtd/nand/diskonchip.c
<<
>>
Prefs
   1/*
   2 * drivers/mtd/nand/diskonchip.c
   3 *
   4 * (C) 2003 Red Hat, Inc.
   5 * (C) 2004 Dan Brown <dan_brown@ieee.org>
   6 * (C) 2004 Kalev Lember <kalev@smartlink.ee>
   7 *
   8 * Author: David Woodhouse <dwmw2@infradead.org>
   9 * Additional Diskonchip 2000 and Millennium support by Dan Brown <dan_brown@ieee.org>
  10 * Diskonchip Millennium Plus support by Kalev Lember <kalev@smartlink.ee>
  11 *
  12 * Error correction code lifted from the old docecc code
  13 * Author: Fabrice Bellard (fabrice.bellard@netgem.com)
  14 * Copyright (C) 2000 Netgem S.A.
  15 * converted to the generic Reed-Solomon library by Thomas Gleixner <tglx@linutronix.de>
  16 *
  17 * Interface to generic NAND code for M-Systems DiskOnChip devices
  18 */
  19
  20#include <common.h>
  21
  22#include <linux/kernel.h>
  23#include <linux/init.h>
  24#include <linux/sched.h>
  25#include <linux/delay.h>
  26#include <linux/rslib.h>
  27#include <linux/moduleparam.h>
  28#include <asm/io.h>
  29
  30#include <linux/mtd/mtd.h>
  31#include <linux/mtd/nand.h>
  32#include <linux/mtd/doc2000.h>
  33#include <linux/mtd/compatmac.h>
  34#include <linux/mtd/partitions.h>
  35#include <linux/mtd/inftl.h>
  36
  37/* Where to look for the devices? */
  38#ifndef CONFIG_MTD_NAND_DISKONCHIP_PROBE_ADDRESS
  39#define CONFIG_MTD_NAND_DISKONCHIP_PROBE_ADDRESS 0
  40#endif
  41
  42static unsigned long __initdata doc_locations[] = {
  43#if defined (__alpha__) || defined(__i386__) || defined(__x86_64__)
  44#ifdef CONFIG_MTD_NAND_DISKONCHIP_PROBE_HIGH
  45        0xfffc8000, 0xfffca000, 0xfffcc000, 0xfffce000,
  46        0xfffd0000, 0xfffd2000, 0xfffd4000, 0xfffd6000,
  47        0xfffd8000, 0xfffda000, 0xfffdc000, 0xfffde000,
  48        0xfffe0000, 0xfffe2000, 0xfffe4000, 0xfffe6000,
  49        0xfffe8000, 0xfffea000, 0xfffec000, 0xfffee000,
  50#else /*  CONFIG_MTD_DOCPROBE_HIGH */
  51        0xc8000, 0xca000, 0xcc000, 0xce000,
  52        0xd0000, 0xd2000, 0xd4000, 0xd6000,
  53        0xd8000, 0xda000, 0xdc000, 0xde000,
  54        0xe0000, 0xe2000, 0xe4000, 0xe6000,
  55        0xe8000, 0xea000, 0xec000, 0xee000,
  56#endif /*  CONFIG_MTD_DOCPROBE_HIGH */
  57#else
  58#warning Unknown architecture for DiskOnChip. No default probe locations defined
  59#endif
  60        0xffffffff };
  61
  62static struct mtd_info *doclist = NULL;
  63
  64struct doc_priv {
  65        void __iomem *virtadr;
  66        unsigned long physadr;
  67        u_char ChipID;
  68        u_char CDSNControl;
  69        int chips_per_floor;    /* The number of chips detected on each floor */
  70        int curfloor;
  71        int curchip;
  72        int mh0_page;
  73        int mh1_page;
  74        struct mtd_info *nextdoc;
  75};
  76
  77/* This is the syndrome computed by the HW ecc generator upon reading an empty
  78   page, one with all 0xff for data and stored ecc code. */
  79static u_char empty_read_syndrome[6] = { 0x26, 0xff, 0x6d, 0x47, 0x73, 0x7a };
  80
  81/* This is the ecc value computed by the HW ecc generator upon writing an empty
  82   page, one with all 0xff for data. */
  83static u_char empty_write_ecc[6] = { 0x4b, 0x00, 0xe2, 0x0e, 0x93, 0xf7 };
  84
  85#define INFTL_BBT_RESERVED_BLOCKS 4
  86
  87#define DoC_is_MillenniumPlus(doc) ((doc)->ChipID == DOC_ChipID_DocMilPlus16 || (doc)->ChipID == DOC_ChipID_DocMilPlus32)
  88#define DoC_is_Millennium(doc) ((doc)->ChipID == DOC_ChipID_DocMil)
  89#define DoC_is_2000(doc) ((doc)->ChipID == DOC_ChipID_Doc2k)
  90
  91static void doc200x_hwcontrol(struct mtd_info *mtd, int cmd,
  92                              unsigned int bitmask);
  93static void doc200x_select_chip(struct mtd_info *mtd, int chip);
  94
  95static int debug = 0;
  96module_param(debug, int, 0);
  97
  98static int try_dword = 1;
  99module_param(try_dword, int, 0);
 100
 101static int no_ecc_failures = 0;
 102module_param(no_ecc_failures, int, 0);
 103
 104static int no_autopart = 0;
 105module_param(no_autopart, int, 0);
 106
 107static int show_firmware_partition = 0;
 108module_param(show_firmware_partition, int, 0);
 109
 110#ifdef CONFIG_MTD_NAND_DISKONCHIP_BBTWRITE
 111static int inftl_bbt_write = 1;
 112#else
 113static int inftl_bbt_write = 0;
 114#endif
 115module_param(inftl_bbt_write, int, 0);
 116
 117static unsigned long doc_config_location = CONFIG_MTD_NAND_DISKONCHIP_PROBE_ADDRESS;
 118module_param(doc_config_location, ulong, 0);
 119MODULE_PARM_DESC(doc_config_location, "Physical memory address at which to probe for DiskOnChip");
 120
 121/* Sector size for HW ECC */
 122#define SECTOR_SIZE 512
 123/* The sector bytes are packed into NB_DATA 10 bit words */
 124#define NB_DATA (((SECTOR_SIZE + 1) * 8 + 6) / 10)
 125/* Number of roots */
 126#define NROOTS 4
 127/* First consective root */
 128#define FCR 510
 129/* Number of symbols */
 130#define NN 1023
 131
 132/* the Reed Solomon control structure */
 133static struct rs_control *rs_decoder;
 134
 135/*
 136 * The HW decoder in the DoC ASIC's provides us a error syndrome,
 137 * which we must convert to a standard syndrome usable by the generic
 138 * Reed-Solomon library code.
 139 *
 140 * Fabrice Bellard figured this out in the old docecc code. I added
 141 * some comments, improved a minor bit and converted it to make use
 142 * of the generic Reed-Solomon libary. tglx
 143 */
 144static int doc_ecc_decode(struct rs_control *rs, uint8_t *data, uint8_t *ecc)
 145{
 146        int i, j, nerr, errpos[8];
 147        uint8_t parity;
 148        uint16_t ds[4], s[5], tmp, errval[8], syn[4];
 149
 150        /* Convert the ecc bytes into words */
 151        ds[0] = ((ecc[4] & 0xff) >> 0) | ((ecc[5] & 0x03) << 8);
 152        ds[1] = ((ecc[5] & 0xfc) >> 2) | ((ecc[2] & 0x0f) << 6);
 153        ds[2] = ((ecc[2] & 0xf0) >> 4) | ((ecc[3] & 0x3f) << 4);
 154        ds[3] = ((ecc[3] & 0xc0) >> 6) | ((ecc[0] & 0xff) << 2);
 155        parity = ecc[1];
 156
 157        /* Initialize the syndrome buffer */
 158        for (i = 0; i < NROOTS; i++)
 159                s[i] = ds[0];
 160        /*
 161         *  Evaluate
 162         *  s[i] = ds[3]x^3 + ds[2]x^2 + ds[1]x^1 + ds[0]
 163         *  where x = alpha^(FCR + i)
 164         */
 165        for (j = 1; j < NROOTS; j++) {
 166                if (ds[j] == 0)
 167                        continue;
 168                tmp = rs->index_of[ds[j]];
 169                for (i = 0; i < NROOTS; i++)
 170                        s[i] ^= rs->alpha_to[rs_modnn(rs, tmp + (FCR + i) * j)];
 171        }
 172
 173        /* Calc s[i] = s[i] / alpha^(v + i) */
 174        for (i = 0; i < NROOTS; i++) {
 175                if (syn[i])
 176                        syn[i] = rs_modnn(rs, rs->index_of[s[i]] + (NN - FCR - i));
 177        }
 178        /* Call the decoder library */
 179        nerr = decode_rs16(rs, NULL, NULL, 1019, syn, 0, errpos, 0, errval);
 180
 181        /* Incorrectable errors ? */
 182        if (nerr < 0)
 183                return nerr;
 184
 185        /*
 186         * Correct the errors. The bitpositions are a bit of magic,
 187         * but they are given by the design of the de/encoder circuit
 188         * in the DoC ASIC's.
 189         */
 190        for (i = 0; i < nerr; i++) {
 191                int index, bitpos, pos = 1015 - errpos[i];
 192                uint8_t val;
 193                if (pos >= NB_DATA && pos < 1019)
 194                        continue;
 195                if (pos < NB_DATA) {
 196                        /* extract bit position (MSB first) */
 197                        pos = 10 * (NB_DATA - 1 - pos) - 6;
 198                        /* now correct the following 10 bits. At most two bytes
 199                           can be modified since pos is even */
 200                        index = (pos >> 3) ^ 1;
 201                        bitpos = pos & 7;
 202                        if ((index >= 0 && index < SECTOR_SIZE) || index == (SECTOR_SIZE + 1)) {
 203                                val = (uint8_t) (errval[i] >> (2 + bitpos));
 204                                parity ^= val;
 205                                if (index < SECTOR_SIZE)
 206                                        data[index] ^= val;
 207                        }
 208                        index = ((pos >> 3) + 1) ^ 1;
 209                        bitpos = (bitpos + 10) & 7;
 210                        if (bitpos == 0)
 211                                bitpos = 8;
 212                        if ((index >= 0 && index < SECTOR_SIZE) || index == (SECTOR_SIZE + 1)) {
 213                                val = (uint8_t) (errval[i] << (8 - bitpos));
 214                                parity ^= val;
 215                                if (index < SECTOR_SIZE)
 216                                        data[index] ^= val;
 217                        }
 218                }
 219        }
 220        /* If the parity is wrong, no rescue possible */
 221        return parity ? -EBADMSG : nerr;
 222}
 223
 224static void DoC_Delay(struct doc_priv *doc, unsigned short cycles)
 225{
 226        volatile char dummy;
 227        int i;
 228
 229        for (i = 0; i < cycles; i++) {
 230                if (DoC_is_Millennium(doc))
 231                        dummy = ReadDOC(doc->virtadr, NOP);
 232                else if (DoC_is_MillenniumPlus(doc))
 233                        dummy = ReadDOC(doc->virtadr, Mplus_NOP);
 234                else
 235                        dummy = ReadDOC(doc->virtadr, DOCStatus);
 236        }
 237
 238}
 239
 240#define CDSN_CTRL_FR_B_MASK     (CDSN_CTRL_FR_B0 | CDSN_CTRL_FR_B1)
 241
 242/* DOC_WaitReady: Wait for RDY line to be asserted by the flash chip */
 243static int _DoC_WaitReady(struct doc_priv *doc)
 244{
 245        void __iomem *docptr = doc->virtadr;
 246        unsigned long timeo = jiffies + (HZ * 10);
 247
 248        if (debug)
 249                printk("_DoC_WaitReady...\n");
 250        /* Out-of-line routine to wait for chip response */
 251        if (DoC_is_MillenniumPlus(doc)) {
 252                while ((ReadDOC(docptr, Mplus_FlashControl) & CDSN_CTRL_FR_B_MASK) != CDSN_CTRL_FR_B_MASK) {
 253                        if (time_after(jiffies, timeo)) {
 254                                printk("_DoC_WaitReady timed out.\n");
 255                                return -EIO;
 256                        }
 257                        udelay(1);
 258                        cond_resched();
 259                }
 260        } else {
 261                while (!(ReadDOC(docptr, CDSNControl) & CDSN_CTRL_FR_B)) {
 262                        if (time_after(jiffies, timeo)) {
 263                                printk("_DoC_WaitReady timed out.\n");
 264                                return -EIO;
 265                        }
 266                        udelay(1);
 267                        cond_resched();
 268                }
 269        }
 270
 271        return 0;
 272}
 273
 274static inline int DoC_WaitReady(struct doc_priv *doc)
 275{
 276        void __iomem *docptr = doc->virtadr;
 277        int ret = 0;
 278
 279        if (DoC_is_MillenniumPlus(doc)) {
 280                DoC_Delay(doc, 4);
 281
 282                if ((ReadDOC(docptr, Mplus_FlashControl) & CDSN_CTRL_FR_B_MASK) != CDSN_CTRL_FR_B_MASK)
 283                        /* Call the out-of-line routine to wait */
 284                        ret = _DoC_WaitReady(doc);
 285        } else {
 286                DoC_Delay(doc, 4);
 287
 288                if (!(ReadDOC(docptr, CDSNControl) & CDSN_CTRL_FR_B))
 289                        /* Call the out-of-line routine to wait */
 290                        ret = _DoC_WaitReady(doc);
 291                DoC_Delay(doc, 2);
 292        }
 293
 294        if (debug)
 295                printk("DoC_WaitReady OK\n");
 296        return ret;
 297}
 298
 299static void doc2000_write_byte(struct mtd_info *mtd, u_char datum)
 300{
 301        struct nand_chip *this = mtd->priv;
 302        struct doc_priv *doc = this->priv;
 303        void __iomem *docptr = doc->virtadr;
 304
 305        if (debug)
 306                printk("write_byte %02x\n", datum);
 307        WriteDOC(datum, docptr, CDSNSlowIO);
 308        WriteDOC(datum, docptr, 2k_CDSN_IO);
 309}
 310
 311static u_char doc2000_read_byte(struct mtd_info *mtd)
 312{
 313        struct nand_chip *this = mtd->priv;
 314        struct doc_priv *doc = this->priv;
 315        void __iomem *docptr = doc->virtadr;
 316        u_char ret;
 317
 318        ReadDOC(docptr, CDSNSlowIO);
 319        DoC_Delay(doc, 2);
 320        ret = ReadDOC(docptr, 2k_CDSN_IO);
 321        if (debug)
 322                printk("read_byte returns %02x\n", ret);
 323        return ret;
 324}
 325
 326static void doc2000_writebuf(struct mtd_info *mtd, const u_char *buf, int len)
 327{
 328        struct nand_chip *this = mtd->priv;
 329        struct doc_priv *doc = this->priv;
 330        void __iomem *docptr = doc->virtadr;
 331        int i;
 332        if (debug)
 333                printk("writebuf of %d bytes: ", len);
 334        for (i = 0; i < len; i++) {
 335                WriteDOC_(buf[i], docptr, DoC_2k_CDSN_IO + i);
 336                if (debug && i < 16)
 337                        printk("%02x ", buf[i]);
 338        }
 339        if (debug)
 340                printk("\n");
 341}
 342
 343static void doc2000_readbuf(struct mtd_info *mtd, u_char *buf, int len)
 344{
 345        struct nand_chip *this = mtd->priv;
 346        struct doc_priv *doc = this->priv;
 347        void __iomem *docptr = doc->virtadr;
 348        int i;
 349
 350        if (debug)
 351                printk("readbuf of %d bytes: ", len);
 352
 353        for (i = 0; i < len; i++) {
 354                buf[i] = ReadDOC(docptr, 2k_CDSN_IO + i);
 355        }
 356}
 357
 358static void doc2000_readbuf_dword(struct mtd_info *mtd,
 359                            u_char *buf, int len)
 360{
 361        struct nand_chip *this = mtd->priv;
 362        struct doc_priv *doc = this->priv;
 363        void __iomem *docptr = doc->virtadr;
 364        int i;
 365
 366        if (debug)
 367                printk("readbuf_dword of %d bytes: ", len);
 368
 369        if (unlikely((((unsigned long)buf) | len) & 3)) {
 370                for (i = 0; i < len; i++) {
 371                        *(uint8_t *) (&buf[i]) = ReadDOC(docptr, 2k_CDSN_IO + i);
 372                }
 373        } else {
 374                for (i = 0; i < len; i += 4) {
 375                        *(uint32_t*) (&buf[i]) = readl(docptr + DoC_2k_CDSN_IO + i);
 376                }
 377        }
 378}
 379
 380static int doc2000_verifybuf(struct mtd_info *mtd, const u_char *buf, int len)
 381{
 382        struct nand_chip *this = mtd->priv;
 383        struct doc_priv *doc = this->priv;
 384        void __iomem *docptr = doc->virtadr;
 385        int i;
 386
 387        for (i = 0; i < len; i++)
 388                if (buf[i] != ReadDOC(docptr, 2k_CDSN_IO))
 389                        return -EFAULT;
 390        return 0;
 391}
 392
 393static uint16_t __init doc200x_ident_chip(struct mtd_info *mtd, int nr)
 394{
 395        struct nand_chip *this = mtd->priv;
 396        struct doc_priv *doc = this->priv;
 397        uint16_t ret;
 398
 399        doc200x_select_chip(mtd, nr);
 400        doc200x_hwcontrol(mtd, NAND_CMD_READID,
 401                          NAND_CTRL_CLE | NAND_CTRL_CHANGE);
 402        doc200x_hwcontrol(mtd, 0, NAND_CTRL_ALE | NAND_CTRL_CHANGE);
 403        doc200x_hwcontrol(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
 404
 405        /* We cant' use dev_ready here, but at least we wait for the
 406         * command to complete
 407         */
 408        udelay(50);
 409
 410        ret = this->read_byte(mtd) << 8;
 411        ret |= this->read_byte(mtd);
 412
 413        if (doc->ChipID == DOC_ChipID_Doc2k && try_dword && !nr) {
 414                /* First chip probe. See if we get same results by 32-bit access */
 415                union {
 416                        uint32_t dword;
 417                        uint8_t byte[4];
 418                } ident;
 419                void __iomem *docptr = doc->virtadr;
 420
 421                doc200x_hwcontrol(mtd, NAND_CMD_READID,
 422                                  NAND_CTRL_CLE | NAND_CTRL_CHANGE);
 423                doc200x_hwcontrol(mtd, 0, NAND_CTRL_ALE | NAND_CTRL_CHANGE);
 424                doc200x_hwcontrol(mtd, NAND_CMD_NONE,
 425                                  NAND_NCE | NAND_CTRL_CHANGE);
 426
 427                udelay(50);
 428
 429                ident.dword = readl(docptr + DoC_2k_CDSN_IO);
 430                if (((ident.byte[0] << 8) | ident.byte[1]) == ret) {
 431                        printk(KERN_INFO "DiskOnChip 2000 responds to DWORD access\n");
 432                        this->read_buf = &doc2000_readbuf_dword;
 433                }
 434        }
 435
 436        return ret;
 437}
 438
 439static void __init doc2000_count_chips(struct mtd_info *mtd)
 440{
 441        struct nand_chip *this = mtd->priv;
 442        struct doc_priv *doc = this->priv;
 443        uint16_t mfrid;
 444        int i;
 445
 446        /* Max 4 chips per floor on DiskOnChip 2000 */
 447        doc->chips_per_floor = 4;
 448
 449        /* Find out what the first chip is */
 450        mfrid = doc200x_ident_chip(mtd, 0);
 451
 452        /* Find how many chips in each floor. */
 453        for (i = 1; i < 4; i++) {
 454                if (doc200x_ident_chip(mtd, i) != mfrid)
 455                        break;
 456        }
 457        doc->chips_per_floor = i;
 458        printk(KERN_DEBUG "Detected %d chips per floor.\n", i);
 459}
 460
 461static int doc200x_wait(struct mtd_info *mtd, struct nand_chip *this)
 462{
 463        struct doc_priv *doc = this->priv;
 464
 465        int status;
 466
 467        DoC_WaitReady(doc);
 468        this->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
 469        DoC_WaitReady(doc);
 470        status = (int)this->read_byte(mtd);
 471
 472        return status;
 473}
 474
 475static void doc2001_write_byte(struct mtd_info *mtd, u_char datum)
 476{
 477        struct nand_chip *this = mtd->priv;
 478        struct doc_priv *doc = this->priv;
 479        void __iomem *docptr = doc->virtadr;
 480
 481        WriteDOC(datum, docptr, CDSNSlowIO);
 482        WriteDOC(datum, docptr, Mil_CDSN_IO);
 483        WriteDOC(datum, docptr, WritePipeTerm);
 484}
 485
 486static u_char doc2001_read_byte(struct mtd_info *mtd)
 487{
 488        struct nand_chip *this = mtd->priv;
 489        struct doc_priv *doc = this->priv;
 490        void __iomem *docptr = doc->virtadr;
 491
 492        /*ReadDOC(docptr, CDSNSlowIO); */
 493        /* 11.4.5 -- delay twice to allow extended length cycle */
 494        DoC_Delay(doc, 2);
 495        ReadDOC(docptr, ReadPipeInit);
 496        /*return ReadDOC(docptr, Mil_CDSN_IO); */
 497        return ReadDOC(docptr, LastDataRead);
 498}
 499
 500static void doc2001_writebuf(struct mtd_info *mtd, const u_char *buf, int len)
 501{
 502        struct nand_chip *this = mtd->priv;
 503        struct doc_priv *doc = this->priv;
 504        void __iomem *docptr = doc->virtadr;
 505        int i;
 506
 507        for (i = 0; i < len; i++)
 508                WriteDOC_(buf[i], docptr, DoC_Mil_CDSN_IO + i);
 509        /* Terminate write pipeline */
 510        WriteDOC(0x00, docptr, WritePipeTerm);
 511}
 512
 513static void doc2001_readbuf(struct mtd_info *mtd, u_char *buf, int len)
 514{
 515        struct nand_chip *this = mtd->priv;
 516        struct doc_priv *doc = this->priv;
 517        void __iomem *docptr = doc->virtadr;
 518        int i;
 519
 520        /* Start read pipeline */
 521        ReadDOC(docptr, ReadPipeInit);
 522
 523        for (i = 0; i < len - 1; i++)
 524                buf[i] = ReadDOC(docptr, Mil_CDSN_IO + (i & 0xff));
 525
 526        /* Terminate read pipeline */
 527        buf[i] = ReadDOC(docptr, LastDataRead);
 528}
 529
 530static int doc2001_verifybuf(struct mtd_info *mtd, const u_char *buf, int len)
 531{
 532        struct nand_chip *this = mtd->priv;
 533        struct doc_priv *doc = this->priv;
 534        void __iomem *docptr = doc->virtadr;
 535        int i;
 536
 537        /* Start read pipeline */
 538        ReadDOC(docptr, ReadPipeInit);
 539
 540        for (i = 0; i < len - 1; i++)
 541                if (buf[i] != ReadDOC(docptr, Mil_CDSN_IO)) {
 542                        ReadDOC(docptr, LastDataRead);
 543                        return i;
 544                }
 545        if (buf[i] != ReadDOC(docptr, LastDataRead))
 546                return i;
 547        return 0;
 548}
 549
 550static u_char doc2001plus_read_byte(struct mtd_info *mtd)
 551{
 552        struct nand_chip *this = mtd->priv;
 553        struct doc_priv *doc = this->priv;
 554        void __iomem *docptr = doc->virtadr;
 555        u_char ret;
 556
 557        ReadDOC(docptr, Mplus_ReadPipeInit);
 558        ReadDOC(docptr, Mplus_ReadPipeInit);
 559        ret = ReadDOC(docptr, Mplus_LastDataRead);
 560        if (debug)
 561                printk("read_byte returns %02x\n", ret);
 562        return ret;
 563}
 564
 565static void doc2001plus_writebuf(struct mtd_info *mtd, const u_char *buf, int len)
 566{
 567        struct nand_chip *this = mtd->priv;
 568        struct doc_priv *doc = this->priv;
 569        void __iomem *docptr = doc->virtadr;
 570        int i;
 571
 572        if (debug)
 573                printk("writebuf of %d bytes: ", len);
 574        for (i = 0; i < len; i++) {
 575                WriteDOC_(buf[i], docptr, DoC_Mil_CDSN_IO + i);
 576                if (debug && i < 16)
 577                        printk("%02x ", buf[i]);
 578        }
 579        if (debug)
 580                printk("\n");
 581}
 582
 583static void doc2001plus_readbuf(struct mtd_info *mtd, u_char *buf, int len)
 584{
 585        struct nand_chip *this = mtd->priv;
 586        struct doc_priv *doc = this->priv;
 587        void __iomem *docptr = doc->virtadr;
 588        int i;
 589
 590        if (debug)
 591                printk("readbuf of %d bytes: ", len);
 592
 593        /* Start read pipeline */
 594        ReadDOC(docptr, Mplus_ReadPipeInit);
 595        ReadDOC(docptr, Mplus_ReadPipeInit);
 596
 597        for (i = 0; i < len - 2; i++) {
 598                buf[i] = ReadDOC(docptr, Mil_CDSN_IO);
 599                if (debug && i < 16)
 600                        printk("%02x ", buf[i]);
 601        }
 602
 603        /* Terminate read pipeline */
 604        buf[len - 2] = ReadDOC(docptr, Mplus_LastDataRead);
 605        if (debug && i < 16)
 606                printk("%02x ", buf[len - 2]);
 607        buf[len - 1] = ReadDOC(docptr, Mplus_LastDataRead);
 608        if (debug && i < 16)
 609                printk("%02x ", buf[len - 1]);
 610        if (debug)
 611                printk("\n");
 612}
 613
 614static int doc2001plus_verifybuf(struct mtd_info *mtd, const u_char *buf, int len)
 615{
 616        struct nand_chip *this = mtd->priv;
 617        struct doc_priv *doc = this->priv;
 618        void __iomem *docptr = doc->virtadr;
 619        int i;
 620
 621        if (debug)
 622                printk("verifybuf of %d bytes: ", len);
 623
 624        /* Start read pipeline */
 625        ReadDOC(docptr, Mplus_ReadPipeInit);
 626        ReadDOC(docptr, Mplus_ReadPipeInit);
 627
 628        for (i = 0; i < len - 2; i++)
 629                if (buf[i] != ReadDOC(docptr, Mil_CDSN_IO)) {
 630                        ReadDOC(docptr, Mplus_LastDataRead);
 631                        ReadDOC(docptr, Mplus_LastDataRead);
 632                        return i;
 633                }
 634        if (buf[len - 2] != ReadDOC(docptr, Mplus_LastDataRead))
 635                return len - 2;
 636        if (buf[len - 1] != ReadDOC(docptr, Mplus_LastDataRead))
 637                return len - 1;
 638        return 0;
 639}
 640
 641static void doc2001plus_select_chip(struct mtd_info *mtd, int chip)
 642{
 643        struct nand_chip *this = mtd->priv;
 644        struct doc_priv *doc = this->priv;
 645        void __iomem *docptr = doc->virtadr;
 646        int floor = 0;
 647
 648        if (debug)
 649                printk("select chip (%d)\n", chip);
 650
 651        if (chip == -1) {
 652                /* Disable flash internally */
 653                WriteDOC(0, docptr, Mplus_FlashSelect);
 654                return;
 655        }
 656
 657        floor = chip / doc->chips_per_floor;
 658        chip -= (floor * doc->chips_per_floor);
 659
 660        /* Assert ChipEnable and deassert WriteProtect */
 661        WriteDOC((DOC_FLASH_CE), docptr, Mplus_FlashSelect);
 662        this->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
 663
 664        doc->curchip = chip;
 665        doc->curfloor = floor;
 666}
 667
 668static void doc200x_select_chip(struct mtd_info *mtd, int chip)
 669{
 670        struct nand_chip *this = mtd->priv;
 671        struct doc_priv *doc = this->priv;
 672        void __iomem *docptr = doc->virtadr;
 673        int floor = 0;
 674
 675        if (debug)
 676                printk("select chip (%d)\n", chip);
 677
 678        if (chip == -1)
 679                return;
 680
 681        floor = chip / doc->chips_per_floor;
 682        chip -= (floor * doc->chips_per_floor);
 683
 684        /* 11.4.4 -- deassert CE before changing chip */
 685        doc200x_hwcontrol(mtd, NAND_CMD_NONE, 0 | NAND_CTRL_CHANGE);
 686
 687        WriteDOC(floor, docptr, FloorSelect);
 688        WriteDOC(chip, docptr, CDSNDeviceSelect);
 689
 690        doc200x_hwcontrol(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
 691
 692        doc->curchip = chip;
 693        doc->curfloor = floor;
 694}
 695
 696#define CDSN_CTRL_MSK (CDSN_CTRL_CE | CDSN_CTRL_CLE | CDSN_CTRL_ALE)
 697
 698static void doc200x_hwcontrol(struct mtd_info *mtd, int cmd,
 699                              unsigned int ctrl)
 700{
 701        struct nand_chip *this = mtd->priv;
 702        struct doc_priv *doc = this->priv;
 703        void __iomem *docptr = doc->virtadr;
 704
 705        if (ctrl & NAND_CTRL_CHANGE) {
 706                doc->CDSNControl &= ~CDSN_CTRL_MSK;
 707                doc->CDSNControl |= ctrl & CDSN_CTRL_MSK;
 708                if (debug)
 709                        printk("hwcontrol(%d): %02x\n", cmd, doc->CDSNControl);
 710                WriteDOC(doc->CDSNControl, docptr, CDSNControl);
 711                /* 11.4.3 -- 4 NOPs after CSDNControl write */
 712                DoC_Delay(doc, 4);
 713        }
 714        if (cmd != NAND_CMD_NONE) {
 715                if (DoC_is_2000(doc))
 716                        doc2000_write_byte(mtd, cmd);
 717                else
 718                        doc2001_write_byte(mtd, cmd);
 719        }
 720}
 721
 722static void doc2001plus_command(struct mtd_info *mtd, unsigned command, int column, int page_addr)
 723{
 724        struct nand_chip *this = mtd->priv;
 725        struct doc_priv *doc = this->priv;
 726        void __iomem *docptr = doc->virtadr;
 727
 728        /*
 729         * Must terminate write pipeline before sending any commands
 730         * to the device.
 731         */
 732        if (command == NAND_CMD_PAGEPROG) {
 733                WriteDOC(0x00, docptr, Mplus_WritePipeTerm);
 734                WriteDOC(0x00, docptr, Mplus_WritePipeTerm);
 735        }
 736
 737        /*
 738         * Write out the command to the device.
 739         */
 740        if (command == NAND_CMD_SEQIN) {
 741                int readcmd;
 742
 743                if (column >= mtd->writesize) {
 744                        /* OOB area */
 745                        column -= mtd->writesize;
 746                        readcmd = NAND_CMD_READOOB;
 747                } else if (column < 256) {
 748                        /* First 256 bytes --> READ0 */
 749                        readcmd = NAND_CMD_READ0;
 750                } else {
 751                        column -= 256;
 752                        readcmd = NAND_CMD_READ1;
 753                }
 754                WriteDOC(readcmd, docptr, Mplus_FlashCmd);
 755        }
 756        WriteDOC(command, docptr, Mplus_FlashCmd);
 757        WriteDOC(0, docptr, Mplus_WritePipeTerm);
 758        WriteDOC(0, docptr, Mplus_WritePipeTerm);
 759
 760        if (column != -1 || page_addr != -1) {
 761                /* Serially input address */
 762                if (column != -1) {
 763                        /* Adjust columns for 16 bit buswidth */
 764                        if (this->options & NAND_BUSWIDTH_16)
 765                                column >>= 1;
 766                        WriteDOC(column, docptr, Mplus_FlashAddress);
 767                }
 768                if (page_addr != -1) {
 769                        WriteDOC((unsigned char)(page_addr & 0xff), docptr, Mplus_FlashAddress);
 770                        WriteDOC((unsigned char)((page_addr >> 8) & 0xff), docptr, Mplus_FlashAddress);
 771                        /* One more address cycle for higher density devices */
 772                        if (this->chipsize & 0x0c000000) {
 773                                WriteDOC((unsigned char)((page_addr >> 16) & 0x0f), docptr, Mplus_FlashAddress);
 774                                printk("high density\n");
 775                        }
 776                }
 777                WriteDOC(0, docptr, Mplus_WritePipeTerm);
 778                WriteDOC(0, docptr, Mplus_WritePipeTerm);
 779                /* deassert ALE */
 780                if (command == NAND_CMD_READ0 || command == NAND_CMD_READ1 ||
 781                    command == NAND_CMD_READOOB || command == NAND_CMD_READID)
 782                        WriteDOC(0, docptr, Mplus_FlashControl);
 783        }
 784
 785        /*
 786         * program and erase have their own busy handlers
 787         * status and sequential in needs no delay
 788         */
 789        switch (command) {
 790
 791        case NAND_CMD_PAGEPROG:
 792        case NAND_CMD_ERASE1:
 793        case NAND_CMD_ERASE2:
 794        case NAND_CMD_SEQIN:
 795        case NAND_CMD_STATUS:
 796                return;
 797
 798        case NAND_CMD_RESET:
 799                if (this->dev_ready)
 800                        break;
 801                udelay(this->chip_delay);
 802                WriteDOC(NAND_CMD_STATUS, docptr, Mplus_FlashCmd);
 803                WriteDOC(0, docptr, Mplus_WritePipeTerm);
 804                WriteDOC(0, docptr, Mplus_WritePipeTerm);
 805                while (!(this->read_byte(mtd) & 0x40)) ;
 806                return;
 807
 808                /* This applies to read commands */
 809        default:
 810                /*
 811                 * If we don't have access to the busy pin, we apply the given
 812                 * command delay
 813                 */
 814                if (!this->dev_ready) {
 815                        udelay(this->chip_delay);
 816                        return;
 817                }
 818        }
 819
 820        /* Apply this short delay always to ensure that we do wait tWB in
 821         * any case on any machine. */
 822        ndelay(100);
 823        /* wait until command is processed */
 824        while (!this->dev_ready(mtd)) ;
 825}
 826
 827static int doc200x_dev_ready(struct mtd_info *mtd)
 828{
 829        struct nand_chip *this = mtd->priv;
 830        struct doc_priv *doc = this->priv;
 831        void __iomem *docptr = doc->virtadr;
 832
 833        if (DoC_is_MillenniumPlus(doc)) {
 834                /* 11.4.2 -- must NOP four times before checking FR/B# */
 835                DoC_Delay(doc, 4);
 836                if ((ReadDOC(docptr, Mplus_FlashControl) & CDSN_CTRL_FR_B_MASK) != CDSN_CTRL_FR_B_MASK) {
 837                        if (debug)
 838                                printk("not ready\n");
 839                        return 0;
 840                }
 841                if (debug)
 842                        printk("was ready\n");
 843                return 1;
 844        } else {
 845                /* 11.4.2 -- must NOP four times before checking FR/B# */
 846                DoC_Delay(doc, 4);
 847                if (!(ReadDOC(docptr, CDSNControl) & CDSN_CTRL_FR_B)) {
 848                        if (debug)
 849                                printk("not ready\n");
 850                        return 0;
 851                }
 852                /* 11.4.2 -- Must NOP twice if it's ready */
 853                DoC_Delay(doc, 2);
 854                if (debug)
 855                        printk("was ready\n");
 856                return 1;
 857        }
 858}
 859
 860static int doc200x_block_bad(struct mtd_info *mtd, loff_t ofs, int getchip)
 861{
 862        /* This is our last resort if we couldn't find or create a BBT.  Just
 863           pretend all blocks are good. */
 864        return 0;
 865}
 866
 867static void doc200x_enable_hwecc(struct mtd_info *mtd, int mode)
 868{
 869        struct nand_chip *this = mtd->priv;
 870        struct doc_priv *doc = this->priv;
 871        void __iomem *docptr = doc->virtadr;
 872
 873        /* Prime the ECC engine */
 874        switch (mode) {
 875        case NAND_ECC_READ:
 876                WriteDOC(DOC_ECC_RESET, docptr, ECCConf);
 877                WriteDOC(DOC_ECC_EN, docptr, ECCConf);
 878                break;
 879        case NAND_ECC_WRITE:
 880                WriteDOC(DOC_ECC_RESET, docptr, ECCConf);
 881                WriteDOC(DOC_ECC_EN | DOC_ECC_RW, docptr, ECCConf);
 882                break;
 883        }
 884}
 885
 886static void doc2001plus_enable_hwecc(struct mtd_info *mtd, int mode)
 887{
 888        struct nand_chip *this = mtd->priv;
 889        struct doc_priv *doc = this->priv;
 890        void __iomem *docptr = doc->virtadr;
 891
 892        /* Prime the ECC engine */
 893        switch (mode) {
 894        case NAND_ECC_READ:
 895                WriteDOC(DOC_ECC_RESET, docptr, Mplus_ECCConf);
 896                WriteDOC(DOC_ECC_EN, docptr, Mplus_ECCConf);
 897                break;
 898        case NAND_ECC_WRITE:
 899                WriteDOC(DOC_ECC_RESET, docptr, Mplus_ECCConf);
 900                WriteDOC(DOC_ECC_EN | DOC_ECC_RW, docptr, Mplus_ECCConf);
 901                break;
 902        }
 903}
 904
 905/* This code is only called on write */
 906static int doc200x_calculate_ecc(struct mtd_info *mtd, const u_char *dat, unsigned char *ecc_code)
 907{
 908        struct nand_chip *this = mtd->priv;
 909        struct doc_priv *doc = this->priv;
 910        void __iomem *docptr = doc->virtadr;
 911        int i;
 912        int emptymatch = 1;
 913
 914        /* flush the pipeline */
 915        if (DoC_is_2000(doc)) {
 916                WriteDOC(doc->CDSNControl & ~CDSN_CTRL_FLASH_IO, docptr, CDSNControl);
 917                WriteDOC(0, docptr, 2k_CDSN_IO);
 918                WriteDOC(0, docptr, 2k_CDSN_IO);
 919                WriteDOC(0, docptr, 2k_CDSN_IO);
 920                WriteDOC(doc->CDSNControl, docptr, CDSNControl);
 921        } else if (DoC_is_MillenniumPlus(doc)) {
 922                WriteDOC(0, docptr, Mplus_NOP);
 923                WriteDOC(0, docptr, Mplus_NOP);
 924                WriteDOC(0, docptr, Mplus_NOP);
 925        } else {
 926                WriteDOC(0, docptr, NOP);
 927                WriteDOC(0, docptr, NOP);
 928                WriteDOC(0, docptr, NOP);
 929        }
 930
 931        for (i = 0; i < 6; i++) {
 932                if (DoC_is_MillenniumPlus(doc))
 933                        ecc_code[i] = ReadDOC_(docptr, DoC_Mplus_ECCSyndrome0 + i);
 934                else
 935                        ecc_code[i] = ReadDOC_(docptr, DoC_ECCSyndrome0 + i);
 936                if (ecc_code[i] != empty_write_ecc[i])
 937                        emptymatch = 0;
 938        }
 939        if (DoC_is_MillenniumPlus(doc))
 940                WriteDOC(DOC_ECC_DIS, docptr, Mplus_ECCConf);
 941        else
 942                WriteDOC(DOC_ECC_DIS, docptr, ECCConf);
 943#if 0
 944        /* If emptymatch=1, we might have an all-0xff data buffer.  Check. */
 945        if (emptymatch) {
 946                /* Note: this somewhat expensive test should not be triggered
 947                   often.  It could be optimized away by examining the data in
 948                   the writebuf routine, and remembering the result. */
 949                for (i = 0; i < 512; i++) {
 950                        if (dat[i] == 0xff)
 951                                continue;
 952                        emptymatch = 0;
 953                        break;
 954                }
 955        }
 956        /* If emptymatch still =1, we do have an all-0xff data buffer.
 957           Return all-0xff ecc value instead of the computed one, so
 958           it'll look just like a freshly-erased page. */
 959        if (emptymatch)
 960                memset(ecc_code, 0xff, 6);
 961#endif
 962        return 0;
 963}
 964
 965static int doc200x_correct_data(struct mtd_info *mtd, u_char *dat,
 966                                u_char *read_ecc, u_char *isnull)
 967{
 968        int i, ret = 0;
 969        struct nand_chip *this = mtd->priv;
 970        struct doc_priv *doc = this->priv;
 971        void __iomem *docptr = doc->virtadr;
 972        uint8_t calc_ecc[6];
 973        volatile u_char dummy;
 974        int emptymatch = 1;
 975
 976        /* flush the pipeline */
 977        if (DoC_is_2000(doc)) {
 978                dummy = ReadDOC(docptr, 2k_ECCStatus);
 979                dummy = ReadDOC(docptr, 2k_ECCStatus);
 980                dummy = ReadDOC(docptr, 2k_ECCStatus);
 981        } else if (DoC_is_MillenniumPlus(doc)) {
 982                dummy = ReadDOC(docptr, Mplus_ECCConf);
 983                dummy = ReadDOC(docptr, Mplus_ECCConf);
 984                dummy = ReadDOC(docptr, Mplus_ECCConf);
 985        } else {
 986                dummy = ReadDOC(docptr, ECCConf);
 987                dummy = ReadDOC(docptr, ECCConf);
 988                dummy = ReadDOC(docptr, ECCConf);
 989        }
 990
 991        /* Error occured ? */
 992        if (dummy & 0x80) {
 993                for (i = 0; i < 6; i++) {
 994                        if (DoC_is_MillenniumPlus(doc))
 995                                calc_ecc[i] = ReadDOC_(docptr, DoC_Mplus_ECCSyndrome0 + i);
 996                        else
 997                                calc_ecc[i] = ReadDOC_(docptr, DoC_ECCSyndrome0 + i);
 998                        if (calc_ecc[i] != empty_read_syndrome[i])
 999                                emptymatch = 0;
1000                }
1001                /* If emptymatch=1, the read syndrome is consistent with an
1002                   all-0xff data and stored ecc block.  Check the stored ecc. */
1003                if (emptymatch) {
1004                        for (i = 0; i < 6; i++) {
1005                                if (read_ecc[i] == 0xff)
1006                                        continue;
1007                                emptymatch = 0;
1008                                break;
1009                        }
1010                }
1011                /* If emptymatch still =1, check the data block. */
1012                if (emptymatch) {
1013                        /* Note: this somewhat expensive test should not be triggered
1014                           often.  It could be optimized away by examining the data in
1015                           the readbuf routine, and remembering the result. */
1016                        for (i = 0; i < 512; i++) {
1017                                if (dat[i] == 0xff)
1018                                        continue;
1019                                emptymatch = 0;
1020                                break;
1021                        }
1022                }
1023                /* If emptymatch still =1, this is almost certainly a freshly-
1024                   erased block, in which case the ECC will not come out right.
1025                   We'll suppress the error and tell the caller everything's
1026                   OK.  Because it is. */
1027                if (!emptymatch)
1028                        ret = doc_ecc_decode(rs_decoder, dat, calc_ecc);
1029                if (ret > 0)
1030                        printk(KERN_ERR "doc200x_correct_data corrected %d errors\n", ret);
1031        }
1032        if (DoC_is_MillenniumPlus(doc))
1033                WriteDOC(DOC_ECC_DIS, docptr, Mplus_ECCConf);
1034        else
1035                WriteDOC(DOC_ECC_DIS, docptr, ECCConf);
1036        if (no_ecc_failures && mtd_is_eccerr(ret)) {
1037                printk(KERN_ERR "suppressing ECC failure\n");
1038                ret = 0;
1039        }
1040        return ret;
1041}
1042
1043/*u_char mydatabuf[528]; */
1044
1045/* The strange out-of-order .oobfree list below is a (possibly unneeded)
1046 * attempt to retain compatibility.  It used to read:
1047 *      .oobfree = { {8, 8} }
1048 * Since that leaves two bytes unusable, it was changed.  But the following
1049 * scheme might affect existing jffs2 installs by moving the cleanmarker:
1050 *      .oobfree = { {6, 10} }
1051 * jffs2 seems to handle the above gracefully, but the current scheme seems
1052 * safer.  The only problem with it is that any code that parses oobfree must
1053 * be able to handle out-of-order segments.
1054 */
1055static struct nand_ecclayout doc200x_oobinfo = {
1056        .eccbytes = 6,
1057        .eccpos = {0, 1, 2, 3, 4, 5},
1058        .oobfree = {{8, 8}, {6, 2}}
1059};
1060
1061/* Find the (I)NFTL Media Header, and optionally also the mirror media header.
1062   On sucessful return, buf will contain a copy of the media header for
1063   further processing.  id is the string to scan for, and will presumably be
1064   either "ANAND" or "BNAND".  If findmirror=1, also look for the mirror media
1065   header.  The page #s of the found media headers are placed in mh0_page and
1066   mh1_page in the DOC private structure. */
1067static int __init find_media_headers(struct mtd_info *mtd, u_char *buf, const char *id, int findmirror)
1068{
1069        struct nand_chip *this = mtd->priv;
1070        struct doc_priv *doc = this->priv;
1071        unsigned offs;
1072        int ret;
1073        size_t retlen;
1074
1075        for (offs = 0; offs < mtd->size; offs += mtd->erasesize) {
1076                ret = mtd_read(mtd, offs, mtd->writesize, &retlen, buf);
1077                if (retlen != mtd->writesize)
1078                        continue;
1079                if (ret) {
1080                        printk(KERN_WARNING "ECC error scanning DOC at 0x%x\n", offs);
1081                }
1082                if (memcmp(buf, id, 6))
1083                        continue;
1084                printk(KERN_INFO "Found DiskOnChip %s Media Header at 0x%x\n", id, offs);
1085                if (doc->mh0_page == -1) {
1086                        doc->mh0_page = offs >> this->page_shift;
1087                        if (!findmirror)
1088                                return 1;
1089                        continue;
1090                }
1091                doc->mh1_page = offs >> this->page_shift;
1092                return 2;
1093        }
1094        if (doc->mh0_page == -1) {
1095                printk(KERN_WARNING "DiskOnChip %s Media Header not found.\n", id);
1096                return 0;
1097        }
1098        /* Only one mediaheader was found.  We want buf to contain a
1099           mediaheader on return, so we'll have to re-read the one we found. */
1100        offs = doc->mh0_page << this->page_shift;
1101        ret = mtd_read(mtd, offs, mtd->writesize, &retlen, buf);
1102        if (retlen != mtd->writesize) {
1103                /* Insanity.  Give up. */
1104                printk(KERN_ERR "Read DiskOnChip Media Header once, but can't reread it???\n");
1105                return 0;
1106        }
1107        return 1;
1108}
1109
1110static inline int __init nftl_partscan(struct mtd_info *mtd, struct mtd_partition *parts)
1111{
1112        struct nand_chip *this = mtd->priv;
1113        struct doc_priv *doc = this->priv;
1114        int ret = 0;
1115        u_char *buf;
1116        struct NFTLMediaHeader *mh;
1117        const unsigned psize = 1 << this->page_shift;
1118        int numparts = 0;
1119        unsigned blocks, maxblocks;
1120        int offs, numheaders;
1121
1122        buf = kmalloc(mtd->writesize, GFP_KERNEL);
1123        if (!buf) {
1124                printk(KERN_ERR "DiskOnChip mediaheader kmalloc failed!\n");
1125                return 0;
1126        }
1127        if (!(numheaders = find_media_headers(mtd, buf, "ANAND", 1)))
1128                goto out;
1129        mh = (struct NFTLMediaHeader *)buf;
1130
1131        le16_to_cpus(&mh->NumEraseUnits);
1132        le16_to_cpus(&mh->FirstPhysicalEUN);
1133        le32_to_cpus(&mh->FormattedSize);
1134
1135        printk(KERN_INFO "    DataOrgID        = %s\n"
1136                         "    NumEraseUnits    = %d\n"
1137                         "    FirstPhysicalEUN = %d\n"
1138                         "    FormattedSize    = %d\n"
1139                         "    UnitSizeFactor   = %d\n",
1140                mh->DataOrgID, mh->NumEraseUnits,
1141                mh->FirstPhysicalEUN, mh->FormattedSize,
1142                mh->UnitSizeFactor);
1143
1144        blocks = mtd->size >> this->phys_erase_shift;
1145        maxblocks = min(32768U, mtd->erasesize - psize);
1146
1147        if (mh->UnitSizeFactor == 0x00) {
1148                /* Auto-determine UnitSizeFactor.  The constraints are:
1149                   - There can be at most 32768 virtual blocks.
1150                   - There can be at most (virtual block size - page size)
1151                   virtual blocks (because MediaHeader+BBT must fit in 1).
1152                 */
1153                mh->UnitSizeFactor = 0xff;
1154                while (blocks > maxblocks) {
1155                        blocks >>= 1;
1156                        maxblocks = min(32768U, (maxblocks << 1) + psize);
1157                        mh->UnitSizeFactor--;
1158                }
1159                printk(KERN_WARNING "UnitSizeFactor=0x00 detected.  Correct value is assumed to be 0x%02x.\n", mh->UnitSizeFactor);
1160        }
1161
1162        /* NOTE: The lines below modify internal variables of the NAND and MTD
1163           layers; variables with have already been configured by nand_scan.
1164           Unfortunately, we didn't know before this point what these values
1165           should be.  Thus, this code is somewhat dependant on the exact
1166           implementation of the NAND layer.  */
1167        if (mh->UnitSizeFactor != 0xff) {
1168                this->bbt_erase_shift += (0xff - mh->UnitSizeFactor);
1169                mtd->erasesize <<= (0xff - mh->UnitSizeFactor);
1170                printk(KERN_INFO "Setting virtual erase size to %d\n", mtd->erasesize);
1171                blocks = mtd->size >> this->bbt_erase_shift;
1172                maxblocks = min(32768U, mtd->erasesize - psize);
1173        }
1174
1175        if (blocks > maxblocks) {
1176                printk(KERN_ERR "UnitSizeFactor of 0x%02x is inconsistent with device size.  Aborting.\n", mh->UnitSizeFactor);
1177                goto out;
1178        }
1179
1180        /* Skip past the media headers. */
1181        offs = max(doc->mh0_page, doc->mh1_page);
1182        offs <<= this->page_shift;
1183        offs += mtd->erasesize;
1184
1185        if (show_firmware_partition == 1) {
1186                parts[0].name = " DiskOnChip Firmware / Media Header partition";
1187                parts[0].offset = 0;
1188                parts[0].size = offs;
1189                numparts = 1;
1190        }
1191
1192        parts[numparts].name = " DiskOnChip BDTL partition";
1193        parts[numparts].offset = offs;
1194        parts[numparts].size = (mh->NumEraseUnits - numheaders) << this->bbt_erase_shift;
1195
1196        offs += parts[numparts].size;
1197        numparts++;
1198
1199        if (offs < mtd->size) {
1200                parts[numparts].name = " DiskOnChip Remainder partition";
1201                parts[numparts].offset = offs;
1202                parts[numparts].size = mtd->size - offs;
1203                numparts++;
1204        }
1205
1206        ret = numparts;
1207 out:
1208        kfree(buf);
1209        return ret;
1210}
1211
1212/* This is a stripped-down copy of the code in inftlmount.c */
1213static inline int __init inftl_partscan(struct mtd_info *mtd, struct mtd_partition *parts)
1214{
1215        struct nand_chip *this = mtd->priv;
1216        struct doc_priv *doc = this->priv;
1217        int ret = 0;
1218        u_char *buf;
1219        struct INFTLMediaHeader *mh;
1220        struct INFTLPartition *ip;
1221        int numparts = 0;
1222        int blocks;
1223        int vshift, lastvunit = 0;
1224        int i;
1225        int end = mtd->size;
1226
1227        if (inftl_bbt_write)
1228                end -= (INFTL_BBT_RESERVED_BLOCKS << this->phys_erase_shift);
1229
1230        buf = kmalloc(mtd->writesize, GFP_KERNEL);
1231        if (!buf) {
1232                printk(KERN_ERR "DiskOnChip mediaheader kmalloc failed!\n");
1233                return 0;
1234        }
1235
1236        if (!find_media_headers(mtd, buf, "BNAND", 0))
1237                goto out;
1238        doc->mh1_page = doc->mh0_page + (4096 >> this->page_shift);
1239        mh = (struct INFTLMediaHeader *)buf;
1240
1241        le32_to_cpus(&mh->NoOfBootImageBlocks);
1242        le32_to_cpus(&mh->NoOfBinaryPartitions);
1243        le32_to_cpus(&mh->NoOfBDTLPartitions);
1244        le32_to_cpus(&mh->BlockMultiplierBits);
1245        le32_to_cpus(&mh->FormatFlags);
1246        le32_to_cpus(&mh->PercentUsed);
1247
1248        printk(KERN_INFO "    bootRecordID          = %s\n"
1249                         "    NoOfBootImageBlocks   = %d\n"
1250                         "    NoOfBinaryPartitions  = %d\n"
1251                         "    NoOfBDTLPartitions    = %d\n"
1252                         "    BlockMultiplerBits    = %d\n"
1253                         "    FormatFlgs            = %d\n"
1254                         "    OsakVersion           = %d.%d.%d.%d\n"
1255                         "    PercentUsed           = %d\n",
1256                mh->bootRecordID, mh->NoOfBootImageBlocks,
1257                mh->NoOfBinaryPartitions,
1258                mh->NoOfBDTLPartitions,
1259                mh->BlockMultiplierBits, mh->FormatFlags,
1260                ((unsigned char *) &mh->OsakVersion)[0] & 0xf,
1261                ((unsigned char *) &mh->OsakVersion)[1] & 0xf,
1262                ((unsigned char *) &mh->OsakVersion)[2] & 0xf,
1263                ((unsigned char *) &mh->OsakVersion)[3] & 0xf,
1264                mh->PercentUsed);
1265
1266        vshift = this->phys_erase_shift + mh->BlockMultiplierBits;
1267
1268        blocks = mtd->size >> vshift;
1269        if (blocks > 32768) {
1270                printk(KERN_ERR "BlockMultiplierBits=%d is inconsistent with device size.  Aborting.\n", mh->BlockMultiplierBits);
1271                goto out;
1272        }
1273
1274        blocks = doc->chips_per_floor << (this->chip_shift - this->phys_erase_shift);
1275        if (inftl_bbt_write && (blocks > mtd->erasesize)) {
1276                printk(KERN_ERR "Writeable BBTs spanning more than one erase block are not yet supported.  FIX ME!\n");
1277                goto out;
1278        }
1279
1280        /* Scan the partitions */
1281        for (i = 0; (i < 4); i++) {
1282                ip = &(mh->Partitions[i]);
1283                le32_to_cpus(&ip->virtualUnits);
1284                le32_to_cpus(&ip->firstUnit);
1285                le32_to_cpus(&ip->lastUnit);
1286                le32_to_cpus(&ip->flags);
1287                le32_to_cpus(&ip->spareUnits);
1288                le32_to_cpus(&ip->Reserved0);
1289
1290                printk(KERN_INFO        "    PARTITION[%d] ->\n"
1291                        "        virtualUnits    = %d\n"
1292                        "        firstUnit       = %d\n"
1293                        "        lastUnit        = %d\n"
1294                        "        flags           = 0x%x\n"
1295                        "        spareUnits      = %d\n",
1296                        i, ip->virtualUnits, ip->firstUnit,
1297                        ip->lastUnit, ip->flags,
1298                        ip->spareUnits);
1299
1300                if ((show_firmware_partition == 1) &&
1301                    (i == 0) && (ip->firstUnit > 0)) {
1302                        parts[0].name = " DiskOnChip IPL / Media Header partition";
1303                        parts[0].offset = 0;
1304                        parts[0].size = mtd->erasesize * ip->firstUnit;
1305                        numparts = 1;
1306                }
1307
1308                if (ip->flags & INFTL_BINARY)
1309                        parts[numparts].name = " DiskOnChip BDK partition";
1310                else
1311                        parts[numparts].name = " DiskOnChip BDTL partition";
1312                parts[numparts].offset = ip->firstUnit << vshift;
1313                parts[numparts].size = (1 + ip->lastUnit - ip->firstUnit) << vshift;
1314                numparts++;
1315                if (ip->lastUnit > lastvunit)
1316                        lastvunit = ip->lastUnit;
1317                if (ip->flags & INFTL_LAST)
1318                        break;
1319        }
1320        lastvunit++;
1321        if ((lastvunit << vshift) < end) {
1322                parts[numparts].name = " DiskOnChip Remainder partition";
1323                parts[numparts].offset = lastvunit << vshift;
1324                parts[numparts].size = end - parts[numparts].offset;
1325                numparts++;
1326        }
1327        ret = numparts;
1328 out:
1329        kfree(buf);
1330        return ret;
1331}
1332
1333static int __init nftl_scan_bbt(struct mtd_info *mtd)
1334{
1335        int ret, numparts;
1336        struct nand_chip *this = mtd->priv;
1337        struct doc_priv *doc = this->priv;
1338        struct mtd_partition parts[2];
1339
1340        memset((char *)parts, 0, sizeof(parts));
1341        /* On NFTL, we have to find the media headers before we can read the
1342           BBTs, since they're stored in the media header eraseblocks. */
1343        numparts = nftl_partscan(mtd, parts);
1344        if (!numparts)
1345                return -EIO;
1346        this->bbt_td->options = NAND_BBT_ABSPAGE | NAND_BBT_8BIT |
1347                                NAND_BBT_SAVECONTENT | NAND_BBT_WRITE |
1348                                NAND_BBT_VERSION;
1349        this->bbt_td->veroffs = 7;
1350        this->bbt_td->pages[0] = doc->mh0_page + 1;
1351        if (doc->mh1_page != -1) {
1352                this->bbt_md->options = NAND_BBT_ABSPAGE | NAND_BBT_8BIT |
1353                                        NAND_BBT_SAVECONTENT | NAND_BBT_WRITE |
1354                                        NAND_BBT_VERSION;
1355                this->bbt_md->veroffs = 7;
1356                this->bbt_md->pages[0] = doc->mh1_page + 1;
1357        } else {
1358                this->bbt_md = NULL;
1359        }
1360
1361        /* It's safe to set bd=NULL below because NAND_BBT_CREATE is not set.
1362           At least as nand_bbt.c is currently written. */
1363        if ((ret = nand_scan_bbt(mtd, NULL)))
1364                return ret;
1365        add_mtd_device(mtd);
1366#ifdef CONFIG_MTD_PARTITIONS
1367        if (!no_autopart)
1368                add_mtd_partitions(mtd, parts, numparts);
1369#endif
1370        return 0;
1371}
1372
1373static int __init inftl_scan_bbt(struct mtd_info *mtd)
1374{
1375        int ret, numparts;
1376        struct nand_chip *this = mtd->priv;
1377        struct doc_priv *doc = this->priv;
1378        struct mtd_partition parts[5];
1379
1380        if (this->numchips > doc->chips_per_floor) {
1381                printk(KERN_ERR "Multi-floor INFTL devices not yet supported.\n");
1382                return -EIO;
1383        }
1384
1385        if (DoC_is_MillenniumPlus(doc)) {
1386                this->bbt_td->options = NAND_BBT_2BIT | NAND_BBT_ABSPAGE;
1387                if (inftl_bbt_write)
1388                        this->bbt_td->options |= NAND_BBT_WRITE;
1389                this->bbt_td->pages[0] = 2;
1390                this->bbt_md = NULL;
1391        } else {
1392                this->bbt_td->options = NAND_BBT_LASTBLOCK | NAND_BBT_8BIT | NAND_BBT_VERSION;
1393                if (inftl_bbt_write)
1394                        this->bbt_td->options |= NAND_BBT_WRITE;
1395                this->bbt_td->offs = 8;
1396                this->bbt_td->len = 8;
1397                this->bbt_td->veroffs = 7;
1398                this->bbt_td->maxblocks = INFTL_BBT_RESERVED_BLOCKS;
1399                this->bbt_td->reserved_block_code = 0x01;
1400                this->bbt_td->pattern = "MSYS_BBT";
1401
1402                this->bbt_md->options = NAND_BBT_LASTBLOCK | NAND_BBT_8BIT | NAND_BBT_VERSION;
1403                if (inftl_bbt_write)
1404                        this->bbt_md->options |= NAND_BBT_WRITE;
1405                this->bbt_md->offs = 8;
1406                this->bbt_md->len = 8;
1407                this->bbt_md->veroffs = 7;
1408                this->bbt_md->maxblocks = INFTL_BBT_RESERVED_BLOCKS;
1409                this->bbt_md->reserved_block_code = 0x01;
1410                this->bbt_md->pattern = "TBB_SYSM";
1411        }
1412
1413        /* It's safe to set bd=NULL below because NAND_BBT_CREATE is not set.
1414           At least as nand_bbt.c is currently written. */
1415        if ((ret = nand_scan_bbt(mtd, NULL)))
1416                return ret;
1417        memset((char *)parts, 0, sizeof(parts));
1418        numparts = inftl_partscan(mtd, parts);
1419        /* At least for now, require the INFTL Media Header.  We could probably
1420           do without it for non-INFTL use, since all it gives us is
1421           autopartitioning, but I want to give it more thought. */
1422        if (!numparts)
1423                return -EIO;
1424        add_mtd_device(mtd);
1425#ifdef CONFIG_MTD_PARTITIONS
1426        if (!no_autopart)
1427                add_mtd_partitions(mtd, parts, numparts);
1428#endif
1429        return 0;
1430}
1431
1432static inline int __init doc2000_init(struct mtd_info *mtd)
1433{
1434        struct nand_chip *this = mtd->priv;
1435        struct doc_priv *doc = this->priv;
1436
1437        this->read_byte = doc2000_read_byte;
1438        this->write_buf = doc2000_writebuf;
1439        this->read_buf = doc2000_readbuf;
1440        this->verify_buf = doc2000_verifybuf;
1441        this->scan_bbt = nftl_scan_bbt;
1442
1443        doc->CDSNControl = CDSN_CTRL_FLASH_IO | CDSN_CTRL_ECC_IO;
1444        doc2000_count_chips(mtd);
1445        mtd->name = "DiskOnChip 2000 (NFTL Model)";
1446        return (4 * doc->chips_per_floor);
1447}
1448
1449static inline int __init doc2001_init(struct mtd_info *mtd)
1450{
1451        struct nand_chip *this = mtd->priv;
1452        struct doc_priv *doc = this->priv;
1453
1454        this->read_byte = doc2001_read_byte;
1455        this->write_buf = doc2001_writebuf;
1456        this->read_buf = doc2001_readbuf;
1457        this->verify_buf = doc2001_verifybuf;
1458
1459        ReadDOC(doc->virtadr, ChipID);
1460        ReadDOC(doc->virtadr, ChipID);
1461        ReadDOC(doc->virtadr, ChipID);
1462        if (ReadDOC(doc->virtadr, ChipID) != DOC_ChipID_DocMil) {
1463                /* It's not a Millennium; it's one of the newer
1464                   DiskOnChip 2000 units with a similar ASIC.
1465                   Treat it like a Millennium, except that it
1466                   can have multiple chips. */
1467                doc2000_count_chips(mtd);
1468                mtd->name = "DiskOnChip 2000 (INFTL Model)";
1469                this->scan_bbt = inftl_scan_bbt;
1470                return (4 * doc->chips_per_floor);
1471        } else {
1472                /* Bog-standard Millennium */
1473                doc->chips_per_floor = 1;
1474                mtd->name = "DiskOnChip Millennium";
1475                this->scan_bbt = nftl_scan_bbt;
1476                return 1;
1477        }
1478}
1479
1480static inline int __init doc2001plus_init(struct mtd_info *mtd)
1481{
1482        struct nand_chip *this = mtd->priv;
1483        struct doc_priv *doc = this->priv;
1484
1485        this->read_byte = doc2001plus_read_byte;
1486        this->write_buf = doc2001plus_writebuf;
1487        this->read_buf = doc2001plus_readbuf;
1488        this->verify_buf = doc2001plus_verifybuf;
1489        this->scan_bbt = inftl_scan_bbt;
1490        this->cmd_ctrl = NULL;
1491        this->select_chip = doc2001plus_select_chip;
1492        this->cmdfunc = doc2001plus_command;
1493        this->ecc.hwctl = doc2001plus_enable_hwecc;
1494
1495        doc->chips_per_floor = 1;
1496        mtd->name = "DiskOnChip Millennium Plus";
1497
1498        return 1;
1499}
1500
1501static int __init doc_probe(unsigned long physadr)
1502{
1503        unsigned char ChipID;
1504        struct mtd_info *mtd;
1505        struct nand_chip *nand;
1506        struct doc_priv *doc;
1507        void __iomem *virtadr;
1508        unsigned char save_control;
1509        unsigned char tmp, tmpb, tmpc;
1510        int reg, len, numchips;
1511        int ret = 0;
1512
1513        virtadr = ioremap(physadr, DOC_IOREMAP_LEN);
1514        if (!virtadr) {
1515                printk(KERN_ERR "Diskonchip ioremap failed: 0x%x bytes at 0x%lx\n", DOC_IOREMAP_LEN, physadr);
1516                return -EIO;
1517        }
1518
1519        /* It's not possible to cleanly detect the DiskOnChip - the
1520         * bootup procedure will put the device into reset mode, and
1521         * it's not possible to talk to it without actually writing
1522         * to the DOCControl register. So we store the current contents
1523         * of the DOCControl register's location, in case we later decide
1524         * that it's not a DiskOnChip, and want to put it back how we
1525         * found it.
1526         */
1527        save_control = ReadDOC(virtadr, DOCControl);
1528
1529        /* Reset the DiskOnChip ASIC */
1530        WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_RESET, virtadr, DOCControl);
1531        WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_RESET, virtadr, DOCControl);
1532
1533        /* Enable the DiskOnChip ASIC */
1534        WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_NORMAL, virtadr, DOCControl);
1535        WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_NORMAL, virtadr, DOCControl);
1536
1537        ChipID = ReadDOC(virtadr, ChipID);
1538
1539        switch (ChipID) {
1540        case DOC_ChipID_Doc2k:
1541                reg = DoC_2k_ECCStatus;
1542                break;
1543        case DOC_ChipID_DocMil:
1544                reg = DoC_ECCConf;
1545                break;
1546        case DOC_ChipID_DocMilPlus16:
1547        case DOC_ChipID_DocMilPlus32:
1548        case 0:
1549                /* Possible Millennium Plus, need to do more checks */
1550                /* Possibly release from power down mode */
1551                for (tmp = 0; (tmp < 4); tmp++)
1552                        ReadDOC(virtadr, Mplus_Power);
1553
1554                /* Reset the Millennium Plus ASIC */
1555                tmp = DOC_MODE_RESET | DOC_MODE_MDWREN | DOC_MODE_RST_LAT | DOC_MODE_BDECT;
1556                WriteDOC(tmp, virtadr, Mplus_DOCControl);
1557                WriteDOC(~tmp, virtadr, Mplus_CtrlConfirm);
1558
1559                mdelay(1);
1560                /* Enable the Millennium Plus ASIC */
1561                tmp = DOC_MODE_NORMAL | DOC_MODE_MDWREN | DOC_MODE_RST_LAT | DOC_MODE_BDECT;
1562                WriteDOC(tmp, virtadr, Mplus_DOCControl);
1563                WriteDOC(~tmp, virtadr, Mplus_CtrlConfirm);
1564                mdelay(1);
1565
1566                ChipID = ReadDOC(virtadr, ChipID);
1567
1568                switch (ChipID) {
1569                case DOC_ChipID_DocMilPlus16:
1570                        reg = DoC_Mplus_Toggle;
1571                        break;
1572                case DOC_ChipID_DocMilPlus32:
1573                        printk(KERN_ERR "DiskOnChip Millennium Plus 32MB is not supported, ignoring.\n");
1574                default:
1575                        ret = -ENODEV;
1576                        goto notfound;
1577                }
1578                break;
1579
1580        default:
1581                ret = -ENODEV;
1582                goto notfound;
1583        }
1584        /* Check the TOGGLE bit in the ECC register */
1585        tmp = ReadDOC_(virtadr, reg) & DOC_TOGGLE_BIT;
1586        tmpb = ReadDOC_(virtadr, reg) & DOC_TOGGLE_BIT;
1587        tmpc = ReadDOC_(virtadr, reg) & DOC_TOGGLE_BIT;
1588        if ((tmp == tmpb) || (tmp != tmpc)) {
1589                printk(KERN_WARNING "Possible DiskOnChip at 0x%lx failed TOGGLE test, dropping.\n", physadr);
1590                ret = -ENODEV;
1591                goto notfound;
1592        }
1593
1594        for (mtd = doclist; mtd; mtd = doc->nextdoc) {
1595                unsigned char oldval;
1596                unsigned char newval;
1597                nand = mtd->priv;
1598                doc = nand->priv;
1599                /* Use the alias resolution register to determine if this is
1600                   in fact the same DOC aliased to a new address.  If writes
1601                   to one chip's alias resolution register change the value on
1602                   the other chip, they're the same chip. */
1603                if (ChipID == DOC_ChipID_DocMilPlus16) {
1604                        oldval = ReadDOC(doc->virtadr, Mplus_AliasResolution);
1605                        newval = ReadDOC(virtadr, Mplus_AliasResolution);
1606                } else {
1607                        oldval = ReadDOC(doc->virtadr, AliasResolution);
1608                        newval = ReadDOC(virtadr, AliasResolution);
1609                }
1610                if (oldval != newval)
1611                        continue;
1612                if (ChipID == DOC_ChipID_DocMilPlus16) {
1613                        WriteDOC(~newval, virtadr, Mplus_AliasResolution);
1614                        oldval = ReadDOC(doc->virtadr, Mplus_AliasResolution);
1615                        WriteDOC(newval, virtadr, Mplus_AliasResolution);       /* restore it */
1616                } else {
1617                        WriteDOC(~newval, virtadr, AliasResolution);
1618                        oldval = ReadDOC(doc->virtadr, AliasResolution);
1619                        WriteDOC(newval, virtadr, AliasResolution);     /* restore it */
1620                }
1621                newval = ~newval;
1622                if (oldval == newval) {
1623                        printk(KERN_DEBUG "Found alias of DOC at 0x%lx to 0x%lx\n", doc->physadr, physadr);
1624                        goto notfound;
1625                }
1626        }
1627
1628        printk(KERN_NOTICE "DiskOnChip found at 0x%lx\n", physadr);
1629
1630        len = sizeof(struct mtd_info) +
1631            sizeof(struct nand_chip) + sizeof(struct doc_priv) + (2 * sizeof(struct nand_bbt_descr));
1632        mtd = kzalloc(len, GFP_KERNEL);
1633        if (!mtd) {
1634                printk(KERN_ERR "DiskOnChip kmalloc (%d bytes) failed!\n", len);
1635                ret = -ENOMEM;
1636                goto fail;
1637        }
1638
1639        nand                    = (struct nand_chip *) (mtd + 1);
1640        doc                     = (struct doc_priv *) (nand + 1);
1641        nand->bbt_td            = (struct nand_bbt_descr *) (doc + 1);
1642        nand->bbt_md            = nand->bbt_td + 1;
1643
1644        mtd->priv               = nand;
1645        mtd->owner              = THIS_MODULE;
1646
1647        nand->priv              = doc;
1648        nand->select_chip       = doc200x_select_chip;
1649        nand->cmd_ctrl          = doc200x_hwcontrol;
1650        nand->dev_ready         = doc200x_dev_ready;
1651        nand->waitfunc          = doc200x_wait;
1652        nand->block_bad         = doc200x_block_bad;
1653        nand->ecc.hwctl         = doc200x_enable_hwecc;
1654        nand->ecc.calculate     = doc200x_calculate_ecc;
1655        nand->ecc.correct       = doc200x_correct_data;
1656
1657        nand->ecc.layout        = &doc200x_oobinfo;
1658        nand->ecc.mode          = NAND_ECC_HW_SYNDROME;
1659        nand->ecc.size          = 512;
1660        nand->ecc.bytes         = 6;
1661        nand->ecc.strength      = 2;
1662        nand->bbt_options       = NAND_BBT_USE_FLASH;
1663
1664        doc->physadr            = physadr;
1665        doc->virtadr            = virtadr;
1666        doc->ChipID             = ChipID;
1667        doc->curfloor           = -1;
1668        doc->curchip            = -1;
1669        doc->mh0_page           = -1;
1670        doc->mh1_page           = -1;
1671        doc->nextdoc            = doclist;
1672
1673        if (ChipID == DOC_ChipID_Doc2k)
1674                numchips = doc2000_init(mtd);
1675        else if (ChipID == DOC_ChipID_DocMilPlus16)
1676                numchips = doc2001plus_init(mtd);
1677        else
1678                numchips = doc2001_init(mtd);
1679
1680        if ((ret = nand_scan(mtd, numchips))) {
1681                /* DBB note: i believe nand_release is necessary here, as
1682                   buffers may have been allocated in nand_base.  Check with
1683                   Thomas. FIX ME! */
1684                /* nand_release will call del_mtd_device, but we haven't yet
1685                   added it.  This is handled without incident by
1686                   del_mtd_device, as far as I can tell. */
1687                nand_release(mtd);
1688                kfree(mtd);
1689                goto fail;
1690        }
1691
1692        /* Success! */
1693        doclist = mtd;
1694        return 0;
1695
1696 notfound:
1697        /* Put back the contents of the DOCControl register, in case it's not
1698           actually a DiskOnChip.  */
1699        WriteDOC(save_control, virtadr, DOCControl);
1700 fail:
1701        iounmap(virtadr);
1702        return ret;
1703}
1704
1705static void release_nanddoc(void)
1706{
1707        struct mtd_info *mtd, *nextmtd;
1708        struct nand_chip *nand;
1709        struct doc_priv *doc;
1710
1711        for (mtd = doclist; mtd; mtd = nextmtd) {
1712                nand = mtd->priv;
1713                doc = nand->priv;
1714
1715                nextmtd = doc->nextdoc;
1716                nand_release(mtd);
1717                iounmap(doc->virtadr);
1718                kfree(mtd);
1719        }
1720}
1721
1722static int __init init_nanddoc(void)
1723{
1724        int i, ret = 0;
1725
1726        /* We could create the decoder on demand, if memory is a concern.
1727         * This way we have it handy, if an error happens
1728         *
1729         * Symbolsize is 10 (bits)
1730         * Primitve polynomial is x^10+x^3+1
1731         * first consecutive root is 510
1732         * primitve element to generate roots = 1
1733         * generator polinomial degree = 4
1734         */
1735        rs_decoder = init_rs(10, 0x409, FCR, 1, NROOTS);
1736        if (!rs_decoder) {
1737                printk(KERN_ERR "DiskOnChip: Could not create a RS decoder\n");
1738                return -ENOMEM;
1739        }
1740
1741        if (doc_config_location) {
1742                printk(KERN_INFO "Using configured DiskOnChip probe address 0x%lx\n", doc_config_location);
1743                ret = doc_probe(doc_config_location);
1744                if (ret < 0)
1745                        goto outerr;
1746        } else {
1747                for (i = 0; (doc_locations[i] != 0xffffffff); i++) {
1748                        doc_probe(doc_locations[i]);
1749                }
1750        }
1751        /* No banner message any more. Print a message if no DiskOnChip
1752           found, so the user knows we at least tried. */
1753        if (!doclist) {
1754                printk(KERN_INFO "No valid DiskOnChip devices found\n");
1755                ret = -ENODEV;
1756                goto outerr;
1757        }
1758        return 0;
1759 outerr:
1760        free_rs(rs_decoder);
1761        return ret;
1762}
1763
1764static void __exit cleanup_nanddoc(void)
1765{
1766        /* Cleanup the nand/DoC resources */
1767        release_nanddoc();
1768
1769        /* Free the reed solomon resources */
1770        if (rs_decoder) {
1771                free_rs(rs_decoder);
1772        }
1773}
1774
1775module_init(init_nanddoc);
1776module_exit(cleanup_nanddoc);
1777
1778MODULE_LICENSE("GPL");
1779MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
1780MODULE_DESCRIPTION("M-Systems DiskOnChip 2000, Millennium and Millennium Plus device driver\n");
1781