uboot/drivers/mtd/onenand/onenand_base.c
<<
>>
Prefs
   1/*
   2 *  linux/drivers/mtd/onenand/onenand_base.c
   3 *
   4 *  Copyright (C) 2005-2007 Samsung Electronics
   5 *  Kyungmin Park <kyungmin.park@samsung.com>
   6 *
   7 *  Credits:
   8 *      Adrian Hunter <ext-adrian.hunter@nokia.com>:
   9 *      auto-placement support, read-while load support, various fixes
  10 *      Copyright (C) Nokia Corporation, 2007
  11 *
  12 *      Rohit Hagargundgi <h.rohit at samsung.com>,
  13 *      Amul Kumar Saha <amul.saha@samsung.com>:
  14 *      Flex-OneNAND support
  15 *      Copyright (C) Samsung Electronics, 2009
  16 *
  17 * This program is free software; you can redistribute it and/or modify
  18 * it under the terms of the GNU General Public License version 2 as
  19 * published by the Free Software Foundation.
  20 */
  21
  22#include <common.h>
  23#include <linux/compat.h>
  24#include <linux/mtd/mtd.h>
  25#include <linux/mtd/onenand.h>
  26
  27#include <asm/io.h>
  28#include <asm/errno.h>
  29#include <malloc.h>
  30
  31/* It should access 16-bit instead of 8-bit */
  32static void *memcpy_16(void *dst, const void *src, unsigned int len)
  33{
  34        void *ret = dst;
  35        short *d = dst;
  36        const short *s = src;
  37
  38        len >>= 1;
  39        while (len-- > 0)
  40                *d++ = *s++;
  41        return ret;
  42}
  43
  44/**
  45 *  onenand_oob_128 - oob info for Flex-Onenand with 4KB page
  46 *  For now, we expose only 64 out of 80 ecc bytes
  47 */
  48static struct nand_ecclayout onenand_oob_128 = {
  49        .eccbytes       = 64,
  50        .eccpos         = {
  51                6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
  52                22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
  53                38, 39, 40, 41, 42, 43, 44, 45, 46, 47,
  54                54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
  55                70, 71, 72, 73, 74, 75, 76, 77, 78, 79,
  56                86, 87, 88, 89, 90, 91, 92, 93, 94, 95,
  57                102, 103, 104, 105
  58                },
  59        .oobfree        = {
  60                {2, 4}, {18, 4}, {34, 4}, {50, 4},
  61                {66, 4}, {82, 4}, {98, 4}, {114, 4}
  62        }
  63};
  64
  65/**
  66 * onenand_oob_64 - oob info for large (2KB) page
  67 */
  68static struct nand_ecclayout onenand_oob_64 = {
  69        .eccbytes       = 20,
  70        .eccpos         = {
  71                8, 9, 10, 11, 12,
  72                24, 25, 26, 27, 28,
  73                40, 41, 42, 43, 44,
  74                56, 57, 58, 59, 60,
  75                },
  76        .oobfree        = {
  77                {2, 3}, {14, 2}, {18, 3}, {30, 2},
  78                {34, 3}, {46, 2}, {50, 3}, {62, 2}
  79        }
  80};
  81
  82/**
  83 * onenand_oob_32 - oob info for middle (1KB) page
  84 */
  85static struct nand_ecclayout onenand_oob_32 = {
  86        .eccbytes       = 10,
  87        .eccpos         = {
  88                8, 9, 10, 11, 12,
  89                24, 25, 26, 27, 28,
  90                },
  91        .oobfree        = { {2, 3}, {14, 2}, {18, 3}, {30, 2} }
  92};
  93
  94static const unsigned char ffchars[] = {
  95        0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
  96        0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 16 */
  97        0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
  98        0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 32 */
  99        0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
 100        0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 48 */
 101        0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
 102        0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 64 */
 103        0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
 104        0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 80 */
 105        0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
 106        0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 96 */
 107        0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
 108        0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 112 */
 109        0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
 110        0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 128 */
 111};
 112
 113/**
 114 * onenand_readw - [OneNAND Interface] Read OneNAND register
 115 * @param addr          address to read
 116 *
 117 * Read OneNAND register
 118 */
 119static unsigned short onenand_readw(void __iomem * addr)
 120{
 121        return readw(addr);
 122}
 123
 124/**
 125 * onenand_writew - [OneNAND Interface] Write OneNAND register with value
 126 * @param value         value to write
 127 * @param addr          address to write
 128 *
 129 * Write OneNAND register with value
 130 */
 131static void onenand_writew(unsigned short value, void __iomem * addr)
 132{
 133        writew(value, addr);
 134}
 135
 136/**
 137 * onenand_block_address - [DEFAULT] Get block address
 138 * @param device        the device id
 139 * @param block         the block
 140 * @return              translated block address if DDP, otherwise same
 141 *
 142 * Setup Start Address 1 Register (F100h)
 143 */
 144static int onenand_block_address(struct onenand_chip *this, int block)
 145{
 146        /* Device Flash Core select, NAND Flash Block Address */
 147        if (block & this->density_mask)
 148                return ONENAND_DDP_CHIP1 | (block ^ this->density_mask);
 149
 150        return block;
 151}
 152
 153/**
 154 * onenand_bufferram_address - [DEFAULT] Get bufferram address
 155 * @param device        the device id
 156 * @param block         the block
 157 * @return              set DBS value if DDP, otherwise 0
 158 *
 159 * Setup Start Address 2 Register (F101h) for DDP
 160 */
 161static int onenand_bufferram_address(struct onenand_chip *this, int block)
 162{
 163        /* Device BufferRAM Select */
 164        if (block & this->density_mask)
 165                return ONENAND_DDP_CHIP1;
 166
 167        return ONENAND_DDP_CHIP0;
 168}
 169
 170/**
 171 * onenand_page_address - [DEFAULT] Get page address
 172 * @param page          the page address
 173 * @param sector        the sector address
 174 * @return              combined page and sector address
 175 *
 176 * Setup Start Address 8 Register (F107h)
 177 */
 178static int onenand_page_address(int page, int sector)
 179{
 180        /* Flash Page Address, Flash Sector Address */
 181        int fpa, fsa;
 182
 183        fpa = page & ONENAND_FPA_MASK;
 184        fsa = sector & ONENAND_FSA_MASK;
 185
 186        return ((fpa << ONENAND_FPA_SHIFT) | fsa);
 187}
 188
 189/**
 190 * onenand_buffer_address - [DEFAULT] Get buffer address
 191 * @param dataram1      DataRAM index
 192 * @param sectors       the sector address
 193 * @param count         the number of sectors
 194 * @return              the start buffer value
 195 *
 196 * Setup Start Buffer Register (F200h)
 197 */
 198static int onenand_buffer_address(int dataram1, int sectors, int count)
 199{
 200        int bsa, bsc;
 201
 202        /* BufferRAM Sector Address */
 203        bsa = sectors & ONENAND_BSA_MASK;
 204
 205        if (dataram1)
 206                bsa |= ONENAND_BSA_DATARAM1;    /* DataRAM1 */
 207        else
 208                bsa |= ONENAND_BSA_DATARAM0;    /* DataRAM0 */
 209
 210        /* BufferRAM Sector Count */
 211        bsc = count & ONENAND_BSC_MASK;
 212
 213        return ((bsa << ONENAND_BSA_SHIFT) | bsc);
 214}
 215
 216/**
 217 * flexonenand_block - Return block number for flash address
 218 * @param this          - OneNAND device structure
 219 * @param addr          - Address for which block number is needed
 220 */
 221static unsigned int flexonenand_block(struct onenand_chip *this, loff_t addr)
 222{
 223        unsigned int boundary, blk, die = 0;
 224
 225        if (ONENAND_IS_DDP(this) && addr >= this->diesize[0]) {
 226                die = 1;
 227                addr -= this->diesize[0];
 228        }
 229
 230        boundary = this->boundary[die];
 231
 232        blk = addr >> (this->erase_shift - 1);
 233        if (blk > boundary)
 234                blk = (blk + boundary + 1) >> 1;
 235
 236        blk += die ? this->density_mask : 0;
 237        return blk;
 238}
 239
 240unsigned int onenand_block(struct onenand_chip *this, loff_t addr)
 241{
 242        if (!FLEXONENAND(this))
 243                return addr >> this->erase_shift;
 244        return flexonenand_block(this, addr);
 245}
 246
 247/**
 248 * flexonenand_addr - Return address of the block
 249 * @this:               OneNAND device structure
 250 * @block:              Block number on Flex-OneNAND
 251 *
 252 * Return address of the block
 253 */
 254static loff_t flexonenand_addr(struct onenand_chip *this, int block)
 255{
 256        loff_t ofs = 0;
 257        int die = 0, boundary;
 258
 259        if (ONENAND_IS_DDP(this) && block >= this->density_mask) {
 260                block -= this->density_mask;
 261                die = 1;
 262                ofs = this->diesize[0];
 263        }
 264
 265        boundary = this->boundary[die];
 266        ofs += (loff_t) block << (this->erase_shift - 1);
 267        if (block > (boundary + 1))
 268                ofs += (loff_t) (block - boundary - 1)
 269                        << (this->erase_shift - 1);
 270        return ofs;
 271}
 272
 273loff_t onenand_addr(struct onenand_chip *this, int block)
 274{
 275        if (!FLEXONENAND(this))
 276                return (loff_t) block << this->erase_shift;
 277        return flexonenand_addr(this, block);
 278}
 279
 280/**
 281 * flexonenand_region - [Flex-OneNAND] Return erase region of addr
 282 * @param mtd           MTD device structure
 283 * @param addr          address whose erase region needs to be identified
 284 */
 285int flexonenand_region(struct mtd_info *mtd, loff_t addr)
 286{
 287        int i;
 288
 289        for (i = 0; i < mtd->numeraseregions; i++)
 290                if (addr < mtd->eraseregions[i].offset)
 291                        break;
 292        return i - 1;
 293}
 294
 295/**
 296 * onenand_get_density - [DEFAULT] Get OneNAND density
 297 * @param dev_id        OneNAND device ID
 298 *
 299 * Get OneNAND density from device ID
 300 */
 301static inline int onenand_get_density(int dev_id)
 302{
 303        int density = dev_id >> ONENAND_DEVICE_DENSITY_SHIFT;
 304        return (density & ONENAND_DEVICE_DENSITY_MASK);
 305}
 306
 307/**
 308 * onenand_command - [DEFAULT] Send command to OneNAND device
 309 * @param mtd           MTD device structure
 310 * @param cmd           the command to be sent
 311 * @param addr          offset to read from or write to
 312 * @param len           number of bytes to read or write
 313 *
 314 * Send command to OneNAND device. This function is used for middle/large page
 315 * devices (1KB/2KB Bytes per page)
 316 */
 317static int onenand_command(struct mtd_info *mtd, int cmd, loff_t addr,
 318                           size_t len)
 319{
 320        struct onenand_chip *this = mtd->priv;
 321        int value;
 322        int block, page;
 323
 324        /* Now we use page size operation */
 325        int sectors = 0, count = 0;
 326
 327        /* Address translation */
 328        switch (cmd) {
 329        case ONENAND_CMD_UNLOCK:
 330        case ONENAND_CMD_LOCK:
 331        case ONENAND_CMD_LOCK_TIGHT:
 332        case ONENAND_CMD_UNLOCK_ALL:
 333                block = -1;
 334                page = -1;
 335                break;
 336
 337        case FLEXONENAND_CMD_PI_ACCESS:
 338                /* addr contains die index */
 339                block = addr * this->density_mask;
 340                page = -1;
 341                break;
 342
 343        case ONENAND_CMD_ERASE:
 344        case ONENAND_CMD_BUFFERRAM:
 345                block = onenand_block(this, addr);
 346                page = -1;
 347                break;
 348
 349        case FLEXONENAND_CMD_READ_PI:
 350                cmd = ONENAND_CMD_READ;
 351                block = addr * this->density_mask;
 352                page = 0;
 353                break;
 354
 355        default:
 356                block = onenand_block(this, addr);
 357                page = (int) (addr
 358                        - onenand_addr(this, block)) >> this->page_shift;
 359                page &= this->page_mask;
 360                break;
 361        }
 362
 363        /* NOTE: The setting order of the registers is very important! */
 364        if (cmd == ONENAND_CMD_BUFFERRAM) {
 365                /* Select DataRAM for DDP */
 366                value = onenand_bufferram_address(this, block);
 367                this->write_word(value,
 368                                 this->base + ONENAND_REG_START_ADDRESS2);
 369
 370                if (ONENAND_IS_4KB_PAGE(this))
 371                        ONENAND_SET_BUFFERRAM0(this);
 372                else
 373                        /* Switch to the next data buffer */
 374                        ONENAND_SET_NEXT_BUFFERRAM(this);
 375
 376                return 0;
 377        }
 378
 379        if (block != -1) {
 380                /* Write 'DFS, FBA' of Flash */
 381                value = onenand_block_address(this, block);
 382                this->write_word(value,
 383                                 this->base + ONENAND_REG_START_ADDRESS1);
 384
 385                /* Select DataRAM for DDP */
 386                value = onenand_bufferram_address(this, block);
 387                this->write_word(value,
 388                                 this->base + ONENAND_REG_START_ADDRESS2);
 389        }
 390
 391        if (page != -1) {
 392                int dataram;
 393
 394                switch (cmd) {
 395                case FLEXONENAND_CMD_RECOVER_LSB:
 396                case ONENAND_CMD_READ:
 397                case ONENAND_CMD_READOOB:
 398                        if (ONENAND_IS_4KB_PAGE(this))
 399                                dataram = ONENAND_SET_BUFFERRAM0(this);
 400                        else
 401                                dataram = ONENAND_SET_NEXT_BUFFERRAM(this);
 402
 403                        break;
 404
 405                default:
 406                        dataram = ONENAND_CURRENT_BUFFERRAM(this);
 407                        break;
 408                }
 409
 410                /* Write 'FPA, FSA' of Flash */
 411                value = onenand_page_address(page, sectors);
 412                this->write_word(value,
 413                                 this->base + ONENAND_REG_START_ADDRESS8);
 414
 415                /* Write 'BSA, BSC' of DataRAM */
 416                value = onenand_buffer_address(dataram, sectors, count);
 417                this->write_word(value, this->base + ONENAND_REG_START_BUFFER);
 418        }
 419
 420        /* Interrupt clear */
 421        this->write_word(ONENAND_INT_CLEAR, this->base + ONENAND_REG_INTERRUPT);
 422        /* Write command */
 423        this->write_word(cmd, this->base + ONENAND_REG_COMMAND);
 424
 425        return 0;
 426}
 427
 428/**
 429 * onenand_read_ecc - return ecc status
 430 * @param this          onenand chip structure
 431 */
 432static int onenand_read_ecc(struct onenand_chip *this)
 433{
 434        int ecc, i;
 435
 436        if (!FLEXONENAND(this))
 437                return this->read_word(this->base + ONENAND_REG_ECC_STATUS);
 438
 439        for (i = 0; i < 4; i++) {
 440                ecc = this->read_word(this->base
 441                                + ((ONENAND_REG_ECC_STATUS + i) << 1));
 442                if (likely(!ecc))
 443                        continue;
 444                if (ecc & FLEXONENAND_UNCORRECTABLE_ERROR)
 445                        return ONENAND_ECC_2BIT_ALL;
 446        }
 447
 448        return 0;
 449}
 450
 451/**
 452 * onenand_wait - [DEFAULT] wait until the command is done
 453 * @param mtd           MTD device structure
 454 * @param state         state to select the max. timeout value
 455 *
 456 * Wait for command done. This applies to all OneNAND command
 457 * Read can take up to 30us, erase up to 2ms and program up to 350us
 458 * according to general OneNAND specs
 459 */
 460static int onenand_wait(struct mtd_info *mtd, int state)
 461{
 462        struct onenand_chip *this = mtd->priv;
 463        unsigned int flags = ONENAND_INT_MASTER;
 464        unsigned int interrupt = 0;
 465        unsigned int ctrl;
 466
 467        while (1) {
 468                interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
 469                if (interrupt & flags)
 470                        break;
 471        }
 472
 473        ctrl = this->read_word(this->base + ONENAND_REG_CTRL_STATUS);
 474
 475        if (interrupt & ONENAND_INT_READ) {
 476                int ecc = onenand_read_ecc(this);
 477                if (ecc & ONENAND_ECC_2BIT_ALL) {
 478                        printk("onenand_wait: ECC error = 0x%04x\n", ecc);
 479                        return -EBADMSG;
 480                }
 481        }
 482
 483        if (ctrl & ONENAND_CTRL_ERROR) {
 484                printk("onenand_wait: controller error = 0x%04x\n", ctrl);
 485                if (ctrl & ONENAND_CTRL_LOCK)
 486                        printk("onenand_wait: it's locked error = 0x%04x\n",
 487                                ctrl);
 488
 489                return -EIO;
 490        }
 491
 492
 493        return 0;
 494}
 495
 496/**
 497 * onenand_bufferram_offset - [DEFAULT] BufferRAM offset
 498 * @param mtd           MTD data structure
 499 * @param area          BufferRAM area
 500 * @return              offset given area
 501 *
 502 * Return BufferRAM offset given area
 503 */
 504static inline int onenand_bufferram_offset(struct mtd_info *mtd, int area)
 505{
 506        struct onenand_chip *this = mtd->priv;
 507
 508        if (ONENAND_CURRENT_BUFFERRAM(this)) {
 509                if (area == ONENAND_DATARAM)
 510                        return mtd->writesize;
 511                if (area == ONENAND_SPARERAM)
 512                        return mtd->oobsize;
 513        }
 514
 515        return 0;
 516}
 517
 518/**
 519 * onenand_read_bufferram - [OneNAND Interface] Read the bufferram area
 520 * @param mtd           MTD data structure
 521 * @param area          BufferRAM area
 522 * @param buffer        the databuffer to put/get data
 523 * @param offset        offset to read from or write to
 524 * @param count         number of bytes to read/write
 525 *
 526 * Read the BufferRAM area
 527 */
 528static int onenand_read_bufferram(struct mtd_info *mtd, loff_t addr, int area,
 529                                  unsigned char *buffer, int offset,
 530                                  size_t count)
 531{
 532        struct onenand_chip *this = mtd->priv;
 533        void __iomem *bufferram;
 534
 535        bufferram = this->base + area;
 536        bufferram += onenand_bufferram_offset(mtd, area);
 537
 538        memcpy_16(buffer, bufferram + offset, count);
 539
 540        return 0;
 541}
 542
 543/**
 544 * onenand_sync_read_bufferram - [OneNAND Interface] Read the bufferram area with Sync. Burst mode
 545 * @param mtd           MTD data structure
 546 * @param area          BufferRAM area
 547 * @param buffer        the databuffer to put/get data
 548 * @param offset        offset to read from or write to
 549 * @param count         number of bytes to read/write
 550 *
 551 * Read the BufferRAM area with Sync. Burst Mode
 552 */
 553static int onenand_sync_read_bufferram(struct mtd_info *mtd, loff_t addr, int area,
 554                                       unsigned char *buffer, int offset,
 555                                       size_t count)
 556{
 557        struct onenand_chip *this = mtd->priv;
 558        void __iomem *bufferram;
 559
 560        bufferram = this->base + area;
 561        bufferram += onenand_bufferram_offset(mtd, area);
 562
 563        this->mmcontrol(mtd, ONENAND_SYS_CFG1_SYNC_READ);
 564
 565        memcpy_16(buffer, bufferram + offset, count);
 566
 567        this->mmcontrol(mtd, 0);
 568
 569        return 0;
 570}
 571
 572/**
 573 * onenand_write_bufferram - [OneNAND Interface] Write the bufferram area
 574 * @param mtd           MTD data structure
 575 * @param area          BufferRAM area
 576 * @param buffer        the databuffer to put/get data
 577 * @param offset        offset to read from or write to
 578 * @param count         number of bytes to read/write
 579 *
 580 * Write the BufferRAM area
 581 */
 582static int onenand_write_bufferram(struct mtd_info *mtd, loff_t addr, int area,
 583                                   const unsigned char *buffer, int offset,
 584                                   size_t count)
 585{
 586        struct onenand_chip *this = mtd->priv;
 587        void __iomem *bufferram;
 588
 589        bufferram = this->base + area;
 590        bufferram += onenand_bufferram_offset(mtd, area);
 591
 592        memcpy_16(bufferram + offset, buffer, count);
 593
 594        return 0;
 595}
 596
 597/**
 598 * onenand_get_2x_blockpage - [GENERIC] Get blockpage at 2x program mode
 599 * @param mtd           MTD data structure
 600 * @param addr          address to check
 601 * @return              blockpage address
 602 *
 603 * Get blockpage address at 2x program mode
 604 */
 605static int onenand_get_2x_blockpage(struct mtd_info *mtd, loff_t addr)
 606{
 607        struct onenand_chip *this = mtd->priv;
 608        int blockpage, block, page;
 609
 610        /* Calculate the even block number */
 611        block = (int) (addr >> this->erase_shift) & ~1;
 612        /* Is it the odd plane? */
 613        if (addr & this->writesize)
 614                block++;
 615        page = (int) (addr >> (this->page_shift + 1)) & this->page_mask;
 616        blockpage = (block << 7) | page;
 617
 618        return blockpage;
 619}
 620
 621/**
 622 * onenand_check_bufferram - [GENERIC] Check BufferRAM information
 623 * @param mtd           MTD data structure
 624 * @param addr          address to check
 625 * @return              1 if there are valid data, otherwise 0
 626 *
 627 * Check bufferram if there is data we required
 628 */
 629static int onenand_check_bufferram(struct mtd_info *mtd, loff_t addr)
 630{
 631        struct onenand_chip *this = mtd->priv;
 632        int blockpage, found = 0;
 633        unsigned int i;
 634
 635        if (ONENAND_IS_2PLANE(this))
 636                blockpage = onenand_get_2x_blockpage(mtd, addr);
 637        else
 638                blockpage = (int) (addr >> this->page_shift);
 639
 640        /* Is there valid data? */
 641        i = ONENAND_CURRENT_BUFFERRAM(this);
 642        if (this->bufferram[i].blockpage == blockpage)
 643                found = 1;
 644        else {
 645                /* Check another BufferRAM */
 646                i = ONENAND_NEXT_BUFFERRAM(this);
 647                if (this->bufferram[i].blockpage == blockpage) {
 648                        ONENAND_SET_NEXT_BUFFERRAM(this);
 649                        found = 1;
 650                }
 651        }
 652
 653        if (found && ONENAND_IS_DDP(this)) {
 654                /* Select DataRAM for DDP */
 655                int block = onenand_block(this, addr);
 656                int value = onenand_bufferram_address(this, block);
 657                this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
 658        }
 659
 660        return found;
 661}
 662
 663/**
 664 * onenand_update_bufferram - [GENERIC] Update BufferRAM information
 665 * @param mtd           MTD data structure
 666 * @param addr          address to update
 667 * @param valid         valid flag
 668 *
 669 * Update BufferRAM information
 670 */
 671static int onenand_update_bufferram(struct mtd_info *mtd, loff_t addr,
 672                                    int valid)
 673{
 674        struct onenand_chip *this = mtd->priv;
 675        int blockpage;
 676        unsigned int i;
 677
 678        if (ONENAND_IS_2PLANE(this))
 679                blockpage = onenand_get_2x_blockpage(mtd, addr);
 680        else
 681                blockpage = (int)(addr >> this->page_shift);
 682
 683        /* Invalidate another BufferRAM */
 684        i = ONENAND_NEXT_BUFFERRAM(this);
 685        if (this->bufferram[i].blockpage == blockpage)
 686                this->bufferram[i].blockpage = -1;
 687
 688        /* Update BufferRAM */
 689        i = ONENAND_CURRENT_BUFFERRAM(this);
 690        if (valid)
 691                this->bufferram[i].blockpage = blockpage;
 692        else
 693                this->bufferram[i].blockpage = -1;
 694
 695        return 0;
 696}
 697
 698/**
 699 * onenand_invalidate_bufferram - [GENERIC] Invalidate BufferRAM information
 700 * @param mtd           MTD data structure
 701 * @param addr          start address to invalidate
 702 * @param len           length to invalidate
 703 *
 704 * Invalidate BufferRAM information
 705 */
 706static void onenand_invalidate_bufferram(struct mtd_info *mtd, loff_t addr,
 707                                         unsigned int len)
 708{
 709        struct onenand_chip *this = mtd->priv;
 710        int i;
 711        loff_t end_addr = addr + len;
 712
 713        /* Invalidate BufferRAM */
 714        for (i = 0; i < MAX_BUFFERRAM; i++) {
 715                loff_t buf_addr = this->bufferram[i].blockpage << this->page_shift;
 716
 717                if (buf_addr >= addr && buf_addr < end_addr)
 718                        this->bufferram[i].blockpage = -1;
 719        }
 720}
 721
 722/**
 723 * onenand_get_device - [GENERIC] Get chip for selected access
 724 * @param mtd           MTD device structure
 725 * @param new_state     the state which is requested
 726 *
 727 * Get the device and lock it for exclusive access
 728 */
 729static void onenand_get_device(struct mtd_info *mtd, int new_state)
 730{
 731        /* Do nothing */
 732}
 733
 734/**
 735 * onenand_release_device - [GENERIC] release chip
 736 * @param mtd           MTD device structure
 737 *
 738 * Deselect, release chip lock and wake up anyone waiting on the device
 739 */
 740static void onenand_release_device(struct mtd_info *mtd)
 741{
 742        /* Do nothing */
 743}
 744
 745/**
 746 * onenand_transfer_auto_oob - [INTERN] oob auto-placement transfer
 747 * @param mtd           MTD device structure
 748 * @param buf           destination address
 749 * @param column        oob offset to read from
 750 * @param thislen       oob length to read
 751 */
 752static int onenand_transfer_auto_oob(struct mtd_info *mtd, uint8_t *buf,
 753                                        int column, int thislen)
 754{
 755        struct onenand_chip *this = mtd->priv;
 756        struct nand_oobfree *free;
 757        int readcol = column;
 758        int readend = column + thislen;
 759        int lastgap = 0;
 760        unsigned int i;
 761        uint8_t *oob_buf = this->oob_buf;
 762
 763        free = this->ecclayout->oobfree;
 764        for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES && free->length; i++, free++) {
 765                if (readcol >= lastgap)
 766                        readcol += free->offset - lastgap;
 767                if (readend >= lastgap)
 768                        readend += free->offset - lastgap;
 769                lastgap = free->offset + free->length;
 770        }
 771        this->read_bufferram(mtd, 0, ONENAND_SPARERAM, oob_buf, 0, mtd->oobsize);
 772        free = this->ecclayout->oobfree;
 773        for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES && free->length; i++, free++) {
 774                int free_end = free->offset + free->length;
 775                if (free->offset < readend && free_end > readcol) {
 776                        int st = max_t(int,free->offset,readcol);
 777                        int ed = min_t(int,free_end,readend);
 778                        int n = ed - st;
 779                        memcpy(buf, oob_buf + st, n);
 780                        buf += n;
 781                } else if (column == 0)
 782                        break;
 783        }
 784        return 0;
 785}
 786
 787/**
 788 * onenand_recover_lsb - [Flex-OneNAND] Recover LSB page data
 789 * @param mtd           MTD device structure
 790 * @param addr          address to recover
 791 * @param status        return value from onenand_wait
 792 *
 793 * MLC NAND Flash cell has paired pages - LSB page and MSB page. LSB page has
 794 * lower page address and MSB page has higher page address in paired pages.
 795 * If power off occurs during MSB page program, the paired LSB page data can
 796 * become corrupt. LSB page recovery read is a way to read LSB page though page
 797 * data are corrupted. When uncorrectable error occurs as a result of LSB page
 798 * read after power up, issue LSB page recovery read.
 799 */
 800static int onenand_recover_lsb(struct mtd_info *mtd, loff_t addr, int status)
 801{
 802        struct onenand_chip *this = mtd->priv;
 803        int i;
 804
 805        /* Recovery is only for Flex-OneNAND */
 806        if (!FLEXONENAND(this))
 807                return status;
 808
 809        /* check if we failed due to uncorrectable error */
 810        if (!mtd_is_eccerr(status) && status != ONENAND_BBT_READ_ECC_ERROR)
 811                return status;
 812
 813        /* check if address lies in MLC region */
 814        i = flexonenand_region(mtd, addr);
 815        if (mtd->eraseregions[i].erasesize < (1 << this->erase_shift))
 816                return status;
 817
 818        printk("onenand_recover_lsb:"
 819                "Attempting to recover from uncorrectable read\n");
 820
 821        /* Issue the LSB page recovery command */
 822        this->command(mtd, FLEXONENAND_CMD_RECOVER_LSB, addr, this->writesize);
 823        return this->wait(mtd, FL_READING);
 824}
 825
 826/**
 827 * onenand_read_ops_nolock - [OneNAND Interface] OneNAND read main and/or out-of-band
 828 * @param mtd           MTD device structure
 829 * @param from          offset to read from
 830 * @param ops           oob operation description structure
 831 *
 832 * OneNAND read main and/or out-of-band data
 833 */
 834static int onenand_read_ops_nolock(struct mtd_info *mtd, loff_t from,
 835                struct mtd_oob_ops *ops)
 836{
 837        struct onenand_chip *this = mtd->priv;
 838        struct mtd_ecc_stats stats;
 839        size_t len = ops->len;
 840        size_t ooblen = ops->ooblen;
 841        u_char *buf = ops->datbuf;
 842        u_char *oobbuf = ops->oobbuf;
 843        int read = 0, column, thislen;
 844        int oobread = 0, oobcolumn, thisooblen, oobsize;
 845        int ret = 0, boundary = 0;
 846        int writesize = this->writesize;
 847
 848        MTDDEBUG(MTD_DEBUG_LEVEL3, "onenand_read_ops_nolock: from = 0x%08x, len = %i\n", (unsigned int) from, (int) len);
 849
 850        if (ops->mode == MTD_OPS_AUTO_OOB)
 851                oobsize = this->ecclayout->oobavail;
 852        else
 853                oobsize = mtd->oobsize;
 854
 855        oobcolumn = from & (mtd->oobsize - 1);
 856
 857        /* Do not allow reads past end of device */
 858        if ((from + len) > mtd->size) {
 859                printk(KERN_ERR "onenand_read_ops_nolock: Attempt read beyond end of device\n");
 860                ops->retlen = 0;
 861                ops->oobretlen = 0;
 862                return -EINVAL;
 863        }
 864
 865        stats = mtd->ecc_stats;
 866
 867        /* Read-while-load method */
 868        /* Note: We can't use this feature in MLC */
 869
 870        /* Do first load to bufferRAM */
 871        if (read < len) {
 872                if (!onenand_check_bufferram(mtd, from)) {
 873                        this->main_buf = buf;
 874                        this->command(mtd, ONENAND_CMD_READ, from, writesize);
 875                        ret = this->wait(mtd, FL_READING);
 876                        if (unlikely(ret))
 877                                ret = onenand_recover_lsb(mtd, from, ret);
 878                        onenand_update_bufferram(mtd, from, !ret);
 879                        if (ret == -EBADMSG)
 880                                ret = 0;
 881                }
 882        }
 883
 884        thislen = min_t(int, writesize, len - read);
 885        column = from & (writesize - 1);
 886        if (column + thislen > writesize)
 887                thislen = writesize - column;
 888
 889        while (!ret) {
 890                /* If there is more to load then start next load */
 891                from += thislen;
 892                if (!ONENAND_IS_4KB_PAGE(this) && read + thislen < len) {
 893                        this->main_buf = buf + thislen;
 894                        this->command(mtd, ONENAND_CMD_READ, from, writesize);
 895                        /*
 896                         * Chip boundary handling in DDP
 897                         * Now we issued chip 1 read and pointed chip 1
 898                         * bufferam so we have to point chip 0 bufferam.
 899                         */
 900                        if (ONENAND_IS_DDP(this) &&
 901                                        unlikely(from == (this->chipsize >> 1))) {
 902                                this->write_word(ONENAND_DDP_CHIP0, this->base + ONENAND_REG_START_ADDRESS2);
 903                                boundary = 1;
 904                        } else
 905                                boundary = 0;
 906                        ONENAND_SET_PREV_BUFFERRAM(this);
 907                }
 908
 909                /* While load is going, read from last bufferRAM */
 910                this->read_bufferram(mtd, from - thislen, ONENAND_DATARAM, buf, column, thislen);
 911
 912                /* Read oob area if needed */
 913                if (oobbuf) {
 914                        thisooblen = oobsize - oobcolumn;
 915                        thisooblen = min_t(int, thisooblen, ooblen - oobread);
 916
 917                        if (ops->mode == MTD_OPS_AUTO_OOB)
 918                                onenand_transfer_auto_oob(mtd, oobbuf, oobcolumn, thisooblen);
 919                        else
 920                                this->read_bufferram(mtd, 0, ONENAND_SPARERAM, oobbuf, oobcolumn, thisooblen);
 921                        oobread += thisooblen;
 922                        oobbuf += thisooblen;
 923                        oobcolumn = 0;
 924                }
 925
 926                if (ONENAND_IS_4KB_PAGE(this) && (read + thislen < len)) {
 927                        this->command(mtd, ONENAND_CMD_READ, from, writesize);
 928                        ret = this->wait(mtd, FL_READING);
 929                        if (unlikely(ret))
 930                                ret = onenand_recover_lsb(mtd, from, ret);
 931                        onenand_update_bufferram(mtd, from, !ret);
 932                        if (mtd_is_eccerr(ret))
 933                                ret = 0;
 934                }
 935
 936                /* See if we are done */
 937                read += thislen;
 938                if (read == len)
 939                        break;
 940                /* Set up for next read from bufferRAM */
 941                if (unlikely(boundary))
 942                        this->write_word(ONENAND_DDP_CHIP1, this->base + ONENAND_REG_START_ADDRESS2);
 943                if (!ONENAND_IS_4KB_PAGE(this))
 944                        ONENAND_SET_NEXT_BUFFERRAM(this);
 945                buf += thislen;
 946                thislen = min_t(int, writesize, len - read);
 947                column = 0;
 948
 949                if (!ONENAND_IS_4KB_PAGE(this)) {
 950                        /* Now wait for load */
 951                        ret = this->wait(mtd, FL_READING);
 952                        onenand_update_bufferram(mtd, from, !ret);
 953                        if (mtd_is_eccerr(ret))
 954                                ret = 0;
 955                }
 956        }
 957
 958        /*
 959         * Return success, if no ECC failures, else -EBADMSG
 960         * fs driver will take care of that, because
 961         * retlen == desired len and result == -EBADMSG
 962         */
 963        ops->retlen = read;
 964        ops->oobretlen = oobread;
 965
 966        if (ret)
 967                return ret;
 968
 969        if (mtd->ecc_stats.failed - stats.failed)
 970                return -EBADMSG;
 971
 972        return mtd->ecc_stats.corrected - stats.corrected ? -EUCLEAN : 0;
 973}
 974
 975/**
 976 * onenand_read_oob_nolock - [MTD Interface] OneNAND read out-of-band
 977 * @param mtd           MTD device structure
 978 * @param from          offset to read from
 979 * @param ops           oob operation description structure
 980 *
 981 * OneNAND read out-of-band data from the spare area
 982 */
 983static int onenand_read_oob_nolock(struct mtd_info *mtd, loff_t from,
 984                struct mtd_oob_ops *ops)
 985{
 986        struct onenand_chip *this = mtd->priv;
 987        struct mtd_ecc_stats stats;
 988        int read = 0, thislen, column, oobsize;
 989        size_t len = ops->ooblen;
 990        unsigned int mode = ops->mode;
 991        u_char *buf = ops->oobbuf;
 992        int ret = 0, readcmd;
 993
 994        from += ops->ooboffs;
 995
 996        MTDDEBUG(MTD_DEBUG_LEVEL3, "onenand_read_oob_nolock: from = 0x%08x, len = %i\n", (unsigned int) from, (int) len);
 997
 998        /* Initialize return length value */
 999        ops->oobretlen = 0;
1000
1001        if (mode == MTD_OPS_AUTO_OOB)
1002                oobsize = this->ecclayout->oobavail;
1003        else
1004                oobsize = mtd->oobsize;
1005
1006        column = from & (mtd->oobsize - 1);
1007
1008        if (unlikely(column >= oobsize)) {
1009                printk(KERN_ERR "onenand_read_oob_nolock: Attempted to start read outside oob\n");
1010                return -EINVAL;
1011        }
1012
1013        /* Do not allow reads past end of device */
1014        if (unlikely(from >= mtd->size ||
1015                column + len > ((mtd->size >> this->page_shift) -
1016                                (from >> this->page_shift)) * oobsize)) {
1017                printk(KERN_ERR "onenand_read_oob_nolock: Attempted to read beyond end of device\n");
1018                return -EINVAL;
1019        }
1020
1021        stats = mtd->ecc_stats;
1022
1023        readcmd = ONENAND_IS_4KB_PAGE(this) ?
1024                ONENAND_CMD_READ : ONENAND_CMD_READOOB;
1025
1026        while (read < len) {
1027                thislen = oobsize - column;
1028                thislen = min_t(int, thislen, len);
1029
1030                this->spare_buf = buf;
1031                this->command(mtd, readcmd, from, mtd->oobsize);
1032
1033                onenand_update_bufferram(mtd, from, 0);
1034
1035                ret = this->wait(mtd, FL_READING);
1036                if (unlikely(ret))
1037                        ret = onenand_recover_lsb(mtd, from, ret);
1038
1039                if (ret && ret != -EBADMSG) {
1040                        printk(KERN_ERR "onenand_read_oob_nolock: read failed = 0x%x\n", ret);
1041                        break;
1042                }
1043
1044                if (mode == MTD_OPS_AUTO_OOB)
1045                        onenand_transfer_auto_oob(mtd, buf, column, thislen);
1046                else
1047                        this->read_bufferram(mtd, 0, ONENAND_SPARERAM, buf, column, thislen);
1048
1049                read += thislen;
1050
1051                if (read == len)
1052                        break;
1053
1054                buf += thislen;
1055
1056                /* Read more? */
1057                if (read < len) {
1058                        /* Page size */
1059                        from += mtd->writesize;
1060                        column = 0;
1061                }
1062        }
1063
1064        ops->oobretlen = read;
1065
1066        if (ret)
1067                return ret;
1068
1069        if (mtd->ecc_stats.failed - stats.failed)
1070                return -EBADMSG;
1071
1072        return 0;
1073}
1074
1075/**
1076 * onenand_read - [MTD Interface] MTD compability function for onenand_read_ecc
1077 * @param mtd           MTD device structure
1078 * @param from          offset to read from
1079 * @param len           number of bytes to read
1080 * @param retlen        pointer to variable to store the number of read bytes
1081 * @param buf           the databuffer to put data
1082 *
1083 * This function simply calls onenand_read_ecc with oob buffer and oobsel = NULL
1084*/
1085int onenand_read(struct mtd_info *mtd, loff_t from, size_t len,
1086                 size_t * retlen, u_char * buf)
1087{
1088        struct mtd_oob_ops ops = {
1089                .len    = len,
1090                .ooblen = 0,
1091                .datbuf = buf,
1092                .oobbuf = NULL,
1093        };
1094        int ret;
1095
1096        onenand_get_device(mtd, FL_READING);
1097        ret = onenand_read_ops_nolock(mtd, from, &ops);
1098        onenand_release_device(mtd);
1099
1100        *retlen = ops.retlen;
1101        return ret;
1102}
1103
1104/**
1105 * onenand_read_oob - [MTD Interface] OneNAND read out-of-band
1106 * @param mtd           MTD device structure
1107 * @param from          offset to read from
1108 * @param ops           oob operations description structure
1109 *
1110 * OneNAND main and/or out-of-band
1111 */
1112int onenand_read_oob(struct mtd_info *mtd, loff_t from,
1113                        struct mtd_oob_ops *ops)
1114{
1115        int ret;
1116
1117        switch (ops->mode) {
1118        case MTD_OPS_PLACE_OOB:
1119        case MTD_OPS_AUTO_OOB:
1120                break;
1121        case MTD_OPS_RAW:
1122                /* Not implemented yet */
1123        default:
1124                return -EINVAL;
1125        }
1126
1127        onenand_get_device(mtd, FL_READING);
1128        if (ops->datbuf)
1129                ret = onenand_read_ops_nolock(mtd, from, ops);
1130        else
1131                ret = onenand_read_oob_nolock(mtd, from, ops);
1132        onenand_release_device(mtd);
1133
1134        return ret;
1135}
1136
1137/**
1138 * onenand_bbt_wait - [DEFAULT] wait until the command is done
1139 * @param mtd           MTD device structure
1140 * @param state         state to select the max. timeout value
1141 *
1142 * Wait for command done.
1143 */
1144static int onenand_bbt_wait(struct mtd_info *mtd, int state)
1145{
1146        struct onenand_chip *this = mtd->priv;
1147        unsigned int flags = ONENAND_INT_MASTER;
1148        unsigned int interrupt;
1149        unsigned int ctrl;
1150
1151        while (1) {
1152                interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
1153                if (interrupt & flags)
1154                        break;
1155        }
1156
1157        /* To get correct interrupt status in timeout case */
1158        interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
1159        ctrl = this->read_word(this->base + ONENAND_REG_CTRL_STATUS);
1160
1161        if (interrupt & ONENAND_INT_READ) {
1162                int ecc = onenand_read_ecc(this);
1163                if (ecc & ONENAND_ECC_2BIT_ALL) {
1164                        printk(KERN_INFO "onenand_bbt_wait: ecc error = 0x%04x"
1165                                ", controller = 0x%04x\n", ecc, ctrl);
1166                        return ONENAND_BBT_READ_ERROR;
1167                }
1168        } else {
1169                printk(KERN_ERR "onenand_bbt_wait: read timeout!"
1170                                "ctrl=0x%04x intr=0x%04x\n", ctrl, interrupt);
1171                return ONENAND_BBT_READ_FATAL_ERROR;
1172        }
1173
1174        /* Initial bad block case: 0x2400 or 0x0400 */
1175        if (ctrl & ONENAND_CTRL_ERROR) {
1176                printk(KERN_DEBUG "onenand_bbt_wait: controller error = 0x%04x\n", ctrl);
1177                return ONENAND_BBT_READ_ERROR;
1178        }
1179
1180        return 0;
1181}
1182
1183/**
1184 * onenand_bbt_read_oob - [MTD Interface] OneNAND read out-of-band for bbt scan
1185 * @param mtd           MTD device structure
1186 * @param from          offset to read from
1187 * @param ops           oob operation description structure
1188 *
1189 * OneNAND read out-of-band data from the spare area for bbt scan
1190 */
1191int onenand_bbt_read_oob(struct mtd_info *mtd, loff_t from,
1192                struct mtd_oob_ops *ops)
1193{
1194        struct onenand_chip *this = mtd->priv;
1195        int read = 0, thislen, column;
1196        int ret = 0, readcmd;
1197        size_t len = ops->ooblen;
1198        u_char *buf = ops->oobbuf;
1199
1200        MTDDEBUG(MTD_DEBUG_LEVEL3, "onenand_bbt_read_oob: from = 0x%08x, len = %zi\n", (unsigned int) from, len);
1201
1202        readcmd = ONENAND_IS_4KB_PAGE(this) ?
1203                ONENAND_CMD_READ : ONENAND_CMD_READOOB;
1204
1205        /* Initialize return value */
1206        ops->oobretlen = 0;
1207
1208        /* Do not allow reads past end of device */
1209        if (unlikely((from + len) > mtd->size)) {
1210                printk(KERN_ERR "onenand_bbt_read_oob: Attempt read beyond end of device\n");
1211                return ONENAND_BBT_READ_FATAL_ERROR;
1212        }
1213
1214        /* Grab the lock and see if the device is available */
1215        onenand_get_device(mtd, FL_READING);
1216
1217        column = from & (mtd->oobsize - 1);
1218
1219        while (read < len) {
1220
1221                thislen = mtd->oobsize - column;
1222                thislen = min_t(int, thislen, len);
1223
1224                this->spare_buf = buf;
1225                this->command(mtd, readcmd, from, mtd->oobsize);
1226
1227                onenand_update_bufferram(mtd, from, 0);
1228
1229                ret = this->bbt_wait(mtd, FL_READING);
1230                if (unlikely(ret))
1231                        ret = onenand_recover_lsb(mtd, from, ret);
1232
1233                if (ret)
1234                        break;
1235
1236                this->read_bufferram(mtd, 0, ONENAND_SPARERAM, buf, column, thislen);
1237                read += thislen;
1238                if (read == len)
1239                        break;
1240
1241                buf += thislen;
1242
1243                /* Read more? */
1244                if (read < len) {
1245                        /* Update Page size */
1246                        from += this->writesize;
1247                        column = 0;
1248                }
1249        }
1250
1251        /* Deselect and wake up anyone waiting on the device */
1252        onenand_release_device(mtd);
1253
1254        ops->oobretlen = read;
1255        return ret;
1256}
1257
1258
1259#ifdef CONFIG_MTD_ONENAND_VERIFY_WRITE
1260/**
1261 * onenand_verify_oob - [GENERIC] verify the oob contents after a write
1262 * @param mtd           MTD device structure
1263 * @param buf           the databuffer to verify
1264 * @param to            offset to read from
1265 */
1266static int onenand_verify_oob(struct mtd_info *mtd, const u_char *buf, loff_t to)
1267{
1268        struct onenand_chip *this = mtd->priv;
1269        u_char *oob_buf = this->oob_buf;
1270        int status, i, readcmd;
1271
1272        readcmd = ONENAND_IS_4KB_PAGE(this) ?
1273                ONENAND_CMD_READ : ONENAND_CMD_READOOB;
1274
1275        this->command(mtd, readcmd, to, mtd->oobsize);
1276        onenand_update_bufferram(mtd, to, 0);
1277        status = this->wait(mtd, FL_READING);
1278        if (status)
1279                return status;
1280
1281        this->read_bufferram(mtd, 0, ONENAND_SPARERAM, oob_buf, 0, mtd->oobsize);
1282        for (i = 0; i < mtd->oobsize; i++)
1283                if (buf[i] != 0xFF && buf[i] != oob_buf[i])
1284                        return -EBADMSG;
1285
1286        return 0;
1287}
1288
1289/**
1290 * onenand_verify - [GENERIC] verify the chip contents after a write
1291 * @param mtd          MTD device structure
1292 * @param buf          the databuffer to verify
1293 * @param addr         offset to read from
1294 * @param len          number of bytes to read and compare
1295 */
1296static int onenand_verify(struct mtd_info *mtd, const u_char *buf, loff_t addr, size_t len)
1297{
1298        struct onenand_chip *this = mtd->priv;
1299        void __iomem *dataram;
1300        int ret = 0;
1301        int thislen, column;
1302
1303        while (len != 0) {
1304                thislen = min_t(int, this->writesize, len);
1305                column = addr & (this->writesize - 1);
1306                if (column + thislen > this->writesize)
1307                        thislen = this->writesize - column;
1308
1309                this->command(mtd, ONENAND_CMD_READ, addr, this->writesize);
1310
1311                onenand_update_bufferram(mtd, addr, 0);
1312
1313                ret = this->wait(mtd, FL_READING);
1314                if (ret)
1315                        return ret;
1316
1317                onenand_update_bufferram(mtd, addr, 1);
1318
1319                dataram = this->base + ONENAND_DATARAM;
1320                dataram += onenand_bufferram_offset(mtd, ONENAND_DATARAM);
1321
1322                if (memcmp(buf, dataram + column, thislen))
1323                        return -EBADMSG;
1324
1325                len -= thislen;
1326                buf += thislen;
1327                addr += thislen;
1328        }
1329
1330        return 0;
1331}
1332#else
1333#define onenand_verify(...)             (0)
1334#define onenand_verify_oob(...)         (0)
1335#endif
1336
1337#define NOTALIGNED(x)   ((x & (this->subpagesize - 1)) != 0)
1338
1339/**
1340 * onenand_fill_auto_oob - [INTERN] oob auto-placement transfer
1341 * @param mtd           MTD device structure
1342 * @param oob_buf       oob buffer
1343 * @param buf           source address
1344 * @param column        oob offset to write to
1345 * @param thislen       oob length to write
1346 */
1347static int onenand_fill_auto_oob(struct mtd_info *mtd, u_char *oob_buf,
1348                const u_char *buf, int column, int thislen)
1349{
1350        struct onenand_chip *this = mtd->priv;
1351        struct nand_oobfree *free;
1352        int writecol = column;
1353        int writeend = column + thislen;
1354        int lastgap = 0;
1355        unsigned int i;
1356
1357        free = this->ecclayout->oobfree;
1358        for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES && free->length; i++, free++) {
1359                if (writecol >= lastgap)
1360                        writecol += free->offset - lastgap;
1361                if (writeend >= lastgap)
1362                        writeend += free->offset - lastgap;
1363                lastgap = free->offset + free->length;
1364        }
1365        free = this->ecclayout->oobfree;
1366        for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES && free->length; i++, free++) {
1367                int free_end = free->offset + free->length;
1368                if (free->offset < writeend && free_end > writecol) {
1369                        int st = max_t(int,free->offset,writecol);
1370                        int ed = min_t(int,free_end,writeend);
1371                        int n = ed - st;
1372                        memcpy(oob_buf + st, buf, n);
1373                        buf += n;
1374                } else if (column == 0)
1375                        break;
1376        }
1377        return 0;
1378}
1379
1380/**
1381 * onenand_write_ops_nolock - [OneNAND Interface] write main and/or out-of-band
1382 * @param mtd           MTD device structure
1383 * @param to            offset to write to
1384 * @param ops           oob operation description structure
1385 *
1386 * Write main and/or oob with ECC
1387 */
1388static int onenand_write_ops_nolock(struct mtd_info *mtd, loff_t to,
1389                struct mtd_oob_ops *ops)
1390{
1391        struct onenand_chip *this = mtd->priv;
1392        int written = 0, column, thislen, subpage;
1393        int oobwritten = 0, oobcolumn, thisooblen, oobsize;
1394        size_t len = ops->len;
1395        size_t ooblen = ops->ooblen;
1396        const u_char *buf = ops->datbuf;
1397        const u_char *oob = ops->oobbuf;
1398        u_char *oobbuf;
1399        int ret = 0;
1400
1401        MTDDEBUG(MTD_DEBUG_LEVEL3, "onenand_write_ops_nolock: to = 0x%08x, len = %i\n", (unsigned int) to, (int) len);
1402
1403        /* Initialize retlen, in case of early exit */
1404        ops->retlen = 0;
1405        ops->oobretlen = 0;
1406
1407        /* Reject writes, which are not page aligned */
1408        if (unlikely(NOTALIGNED(to) || NOTALIGNED(len))) {
1409                printk(KERN_ERR "onenand_write_ops_nolock: Attempt to write not page aligned data\n");
1410                return -EINVAL;
1411        }
1412
1413        if (ops->mode == MTD_OPS_AUTO_OOB)
1414                oobsize = this->ecclayout->oobavail;
1415        else
1416                oobsize = mtd->oobsize;
1417
1418        oobcolumn = to & (mtd->oobsize - 1);
1419
1420        column = to & (mtd->writesize - 1);
1421
1422        /* Loop until all data write */
1423        while (written < len) {
1424                u_char *wbuf = (u_char *) buf;
1425
1426                thislen = min_t(int, mtd->writesize - column, len - written);
1427                thisooblen = min_t(int, oobsize - oobcolumn, ooblen - oobwritten);
1428
1429                this->command(mtd, ONENAND_CMD_BUFFERRAM, to, thislen);
1430
1431                /* Partial page write */
1432                subpage = thislen < mtd->writesize;
1433                if (subpage) {
1434                        memset(this->page_buf, 0xff, mtd->writesize);
1435                        memcpy(this->page_buf + column, buf, thislen);
1436                        wbuf = this->page_buf;
1437                }
1438
1439                this->write_bufferram(mtd, to, ONENAND_DATARAM, wbuf, 0, mtd->writesize);
1440
1441                if (oob) {
1442                        oobbuf = this->oob_buf;
1443
1444                        /* We send data to spare ram with oobsize
1445                         *                          * to prevent byte access */
1446                        memset(oobbuf, 0xff, mtd->oobsize);
1447                        if (ops->mode == MTD_OPS_AUTO_OOB)
1448                                onenand_fill_auto_oob(mtd, oobbuf, oob, oobcolumn, thisooblen);
1449                        else
1450                                memcpy(oobbuf + oobcolumn, oob, thisooblen);
1451
1452                        oobwritten += thisooblen;
1453                        oob += thisooblen;
1454                        oobcolumn = 0;
1455                } else
1456                        oobbuf = (u_char *) ffchars;
1457
1458                this->write_bufferram(mtd, 0, ONENAND_SPARERAM, oobbuf, 0, mtd->oobsize);
1459
1460                this->command(mtd, ONENAND_CMD_PROG, to, mtd->writesize);
1461
1462                ret = this->wait(mtd, FL_WRITING);
1463
1464                /* In partial page write we don't update bufferram */
1465                onenand_update_bufferram(mtd, to, !ret && !subpage);
1466                if (ONENAND_IS_2PLANE(this)) {
1467                        ONENAND_SET_BUFFERRAM1(this);
1468                        onenand_update_bufferram(mtd, to + this->writesize, !ret && !subpage);
1469                }
1470
1471                if (ret) {
1472                        printk(KERN_ERR "onenand_write_ops_nolock: write filaed %d\n", ret);
1473                        break;
1474                }
1475
1476                /* Only check verify write turn on */
1477                ret = onenand_verify(mtd, buf, to, thislen);
1478                if (ret) {
1479                        printk(KERN_ERR "onenand_write_ops_nolock: verify failed %d\n", ret);
1480                        break;
1481                }
1482
1483                written += thislen;
1484
1485                if (written == len)
1486                        break;
1487
1488                column = 0;
1489                to += thislen;
1490                buf += thislen;
1491        }
1492
1493        ops->retlen = written;
1494
1495        return ret;
1496}
1497
1498/**
1499 * onenand_write_oob_nolock - [INTERN] OneNAND write out-of-band
1500 * @param mtd           MTD device structure
1501 * @param to            offset to write to
1502 * @param len           number of bytes to write
1503 * @param retlen        pointer to variable to store the number of written bytes
1504 * @param buf           the data to write
1505 * @param mode          operation mode
1506 *
1507 * OneNAND write out-of-band
1508 */
1509static int onenand_write_oob_nolock(struct mtd_info *mtd, loff_t to,
1510                struct mtd_oob_ops *ops)
1511{
1512        struct onenand_chip *this = mtd->priv;
1513        int column, ret = 0, oobsize;
1514        int written = 0, oobcmd;
1515        u_char *oobbuf;
1516        size_t len = ops->ooblen;
1517        const u_char *buf = ops->oobbuf;
1518        unsigned int mode = ops->mode;
1519
1520        to += ops->ooboffs;
1521
1522        MTDDEBUG(MTD_DEBUG_LEVEL3, "onenand_write_oob_nolock: to = 0x%08x, len = %i\n", (unsigned int) to, (int) len);
1523
1524        /* Initialize retlen, in case of early exit */
1525        ops->oobretlen = 0;
1526
1527        if (mode == MTD_OPS_AUTO_OOB)
1528                oobsize = this->ecclayout->oobavail;
1529        else
1530                oobsize = mtd->oobsize;
1531
1532        column = to & (mtd->oobsize - 1);
1533
1534        if (unlikely(column >= oobsize)) {
1535                printk(KERN_ERR "onenand_write_oob_nolock: Attempted to start write outside oob\n");
1536                return -EINVAL;
1537        }
1538
1539        /* For compatibility with NAND: Do not allow write past end of page */
1540        if (unlikely(column + len > oobsize)) {
1541                printk(KERN_ERR "onenand_write_oob_nolock: "
1542                                "Attempt to write past end of page\n");
1543                return -EINVAL;
1544        }
1545
1546        /* Do not allow reads past end of device */
1547        if (unlikely(to >= mtd->size ||
1548                                column + len > ((mtd->size >> this->page_shift) -
1549                                        (to >> this->page_shift)) * oobsize)) {
1550                printk(KERN_ERR "onenand_write_oob_nolock: Attempted to write past end of device\n");
1551                return -EINVAL;
1552        }
1553
1554        oobbuf = this->oob_buf;
1555
1556        oobcmd = ONENAND_IS_4KB_PAGE(this) ?
1557                ONENAND_CMD_PROG : ONENAND_CMD_PROGOOB;
1558
1559        /* Loop until all data write */
1560        while (written < len) {
1561                int thislen = min_t(int, oobsize, len - written);
1562
1563                this->command(mtd, ONENAND_CMD_BUFFERRAM, to, mtd->oobsize);
1564
1565                /* We send data to spare ram with oobsize
1566                 * to prevent byte access */
1567                memset(oobbuf, 0xff, mtd->oobsize);
1568                if (mode == MTD_OPS_AUTO_OOB)
1569                        onenand_fill_auto_oob(mtd, oobbuf, buf, column, thislen);
1570                else
1571                        memcpy(oobbuf + column, buf, thislen);
1572                this->write_bufferram(mtd, 0, ONENAND_SPARERAM, oobbuf, 0, mtd->oobsize);
1573
1574                if (ONENAND_IS_4KB_PAGE(this)) {
1575                        /* Set main area of DataRAM to 0xff*/
1576                        memset(this->page_buf, 0xff, mtd->writesize);
1577                        this->write_bufferram(mtd, 0, ONENAND_DATARAM,
1578                                this->page_buf, 0, mtd->writesize);
1579                }
1580
1581                this->command(mtd, oobcmd, to, mtd->oobsize);
1582
1583                onenand_update_bufferram(mtd, to, 0);
1584                if (ONENAND_IS_2PLANE(this)) {
1585                        ONENAND_SET_BUFFERRAM1(this);
1586                        onenand_update_bufferram(mtd, to + this->writesize, 0);
1587                }
1588
1589                ret = this->wait(mtd, FL_WRITING);
1590                if (ret) {
1591                        printk(KERN_ERR "onenand_write_oob_nolock: write failed %d\n", ret);
1592                        break;
1593                }
1594
1595                ret = onenand_verify_oob(mtd, oobbuf, to);
1596                if (ret) {
1597                        printk(KERN_ERR "onenand_write_oob_nolock: verify failed %d\n", ret);
1598                        break;
1599                }
1600
1601                written += thislen;
1602                if (written == len)
1603                        break;
1604
1605                to += mtd->writesize;
1606                buf += thislen;
1607                column = 0;
1608        }
1609
1610        ops->oobretlen = written;
1611
1612        return ret;
1613}
1614
1615/**
1616 * onenand_write - [MTD Interface] compability function for onenand_write_ecc
1617 * @param mtd           MTD device structure
1618 * @param to            offset to write to
1619 * @param len           number of bytes to write
1620 * @param retlen        pointer to variable to store the number of written bytes
1621 * @param buf           the data to write
1622 *
1623 * Write with ECC
1624 */
1625int onenand_write(struct mtd_info *mtd, loff_t to, size_t len,
1626                  size_t * retlen, const u_char * buf)
1627{
1628        struct mtd_oob_ops ops = {
1629                .len    = len,
1630                .ooblen = 0,
1631                .datbuf = (u_char *) buf,
1632                .oobbuf = NULL,
1633        };
1634        int ret;
1635
1636        onenand_get_device(mtd, FL_WRITING);
1637        ret = onenand_write_ops_nolock(mtd, to, &ops);
1638        onenand_release_device(mtd);
1639
1640        *retlen = ops.retlen;
1641        return ret;
1642}
1643
1644/**
1645 * onenand_write_oob - [MTD Interface] OneNAND write out-of-band
1646 * @param mtd           MTD device structure
1647 * @param to            offset to write to
1648 * @param ops           oob operation description structure
1649 *
1650 * OneNAND write main and/or out-of-band
1651 */
1652int onenand_write_oob(struct mtd_info *mtd, loff_t to,
1653                        struct mtd_oob_ops *ops)
1654{
1655        int ret;
1656
1657        switch (ops->mode) {
1658        case MTD_OPS_PLACE_OOB:
1659        case MTD_OPS_AUTO_OOB:
1660                break;
1661        case MTD_OPS_RAW:
1662                /* Not implemented yet */
1663        default:
1664                return -EINVAL;
1665        }
1666
1667        onenand_get_device(mtd, FL_WRITING);
1668        if (ops->datbuf)
1669                ret = onenand_write_ops_nolock(mtd, to, ops);
1670        else
1671                ret = onenand_write_oob_nolock(mtd, to, ops);
1672        onenand_release_device(mtd);
1673
1674        return ret;
1675
1676}
1677
1678/**
1679 * onenand_block_isbad_nolock - [GENERIC] Check if a block is marked bad
1680 * @param mtd           MTD device structure
1681 * @param ofs           offset from device start
1682 * @param allowbbt      1, if its allowed to access the bbt area
1683 *
1684 * Check, if the block is bad, Either by reading the bad block table or
1685 * calling of the scan function.
1686 */
1687static int onenand_block_isbad_nolock(struct mtd_info *mtd, loff_t ofs, int allowbbt)
1688{
1689        struct onenand_chip *this = mtd->priv;
1690        struct bbm_info *bbm = this->bbm;
1691
1692        /* Return info from the table */
1693        return bbm->isbad_bbt(mtd, ofs, allowbbt);
1694}
1695
1696
1697/**
1698 * onenand_erase - [MTD Interface] erase block(s)
1699 * @param mtd           MTD device structure
1700 * @param instr         erase instruction
1701 *
1702 * Erase one ore more blocks
1703 */
1704int onenand_erase(struct mtd_info *mtd, struct erase_info *instr)
1705{
1706        struct onenand_chip *this = mtd->priv;
1707        unsigned int block_size;
1708        loff_t addr = instr->addr;
1709        unsigned int len = instr->len;
1710        int ret = 0, i;
1711        struct mtd_erase_region_info *region = NULL;
1712        unsigned int region_end = 0;
1713
1714        MTDDEBUG(MTD_DEBUG_LEVEL3, "onenand_erase: start = 0x%08x, len = %i\n",
1715                        (unsigned int) addr, len);
1716
1717        if (FLEXONENAND(this)) {
1718                /* Find the eraseregion of this address */
1719                i = flexonenand_region(mtd, addr);
1720                region = &mtd->eraseregions[i];
1721
1722                block_size = region->erasesize;
1723                region_end = region->offset
1724                        + region->erasesize * region->numblocks;
1725
1726                /* Start address within region must align on block boundary.
1727                 * Erase region's start offset is always block start address.
1728                 */
1729                if (unlikely((addr - region->offset) & (block_size - 1))) {
1730                        MTDDEBUG(MTD_DEBUG_LEVEL0, "onenand_erase:"
1731                                " Unaligned address\n");
1732                        return -EINVAL;
1733                }
1734        } else {
1735                block_size = 1 << this->erase_shift;
1736
1737                /* Start address must align on block boundary */
1738                if (unlikely(addr & (block_size - 1))) {
1739                        MTDDEBUG(MTD_DEBUG_LEVEL0, "onenand_erase:"
1740                                                "Unaligned address\n");
1741                        return -EINVAL;
1742                }
1743        }
1744
1745        /* Length must align on block boundary */
1746        if (unlikely(len & (block_size - 1))) {
1747                MTDDEBUG (MTD_DEBUG_LEVEL0,
1748                         "onenand_erase: Length not block aligned\n");
1749                return -EINVAL;
1750        }
1751
1752        /* Grab the lock and see if the device is available */
1753        onenand_get_device(mtd, FL_ERASING);
1754
1755        /* Loop throught the pages */
1756        instr->state = MTD_ERASING;
1757
1758        while (len) {
1759
1760                /* Check if we have a bad block, we do not erase bad blocks */
1761                if (instr->priv == 0 && onenand_block_isbad_nolock(mtd, addr, 0)) {
1762                        printk(KERN_WARNING "onenand_erase: attempt to erase"
1763                                " a bad block at addr 0x%08x\n",
1764                                (unsigned int) addr);
1765                        instr->state = MTD_ERASE_FAILED;
1766                        goto erase_exit;
1767                }
1768
1769                this->command(mtd, ONENAND_CMD_ERASE, addr, block_size);
1770
1771                onenand_invalidate_bufferram(mtd, addr, block_size);
1772
1773                ret = this->wait(mtd, FL_ERASING);
1774                /* Check, if it is write protected */
1775                if (ret) {
1776                        if (ret == -EPERM)
1777                                MTDDEBUG (MTD_DEBUG_LEVEL0, "onenand_erase: "
1778                                          "Device is write protected!!!\n");
1779                        else
1780                                MTDDEBUG (MTD_DEBUG_LEVEL0, "onenand_erase: "
1781                                          "Failed erase, block %d\n",
1782                                        onenand_block(this, addr));
1783                        instr->state = MTD_ERASE_FAILED;
1784                        instr->fail_addr = addr;
1785
1786                        goto erase_exit;
1787                }
1788
1789                len -= block_size;
1790                addr += block_size;
1791
1792                if (addr == region_end) {
1793                        if (!len)
1794                                break;
1795                        region++;
1796
1797                        block_size = region->erasesize;
1798                        region_end = region->offset
1799                                + region->erasesize * region->numblocks;
1800
1801                        if (len & (block_size - 1)) {
1802                                /* This has been checked at MTD
1803                                 * partitioning level. */
1804                                printk("onenand_erase: Unaligned address\n");
1805                                goto erase_exit;
1806                        }
1807                }
1808        }
1809
1810        instr->state = MTD_ERASE_DONE;
1811
1812erase_exit:
1813
1814        ret = instr->state == MTD_ERASE_DONE ? 0 : -EIO;
1815        /* Do call back function */
1816        if (!ret)
1817                mtd_erase_callback(instr);
1818
1819        /* Deselect and wake up anyone waiting on the device */
1820        onenand_release_device(mtd);
1821
1822        return ret;
1823}
1824
1825/**
1826 * onenand_sync - [MTD Interface] sync
1827 * @param mtd           MTD device structure
1828 *
1829 * Sync is actually a wait for chip ready function
1830 */
1831void onenand_sync(struct mtd_info *mtd)
1832{
1833        MTDDEBUG (MTD_DEBUG_LEVEL3, "onenand_sync: called\n");
1834
1835        /* Grab the lock and see if the device is available */
1836        onenand_get_device(mtd, FL_SYNCING);
1837
1838        /* Release it and go back */
1839        onenand_release_device(mtd);
1840}
1841
1842/**
1843 * onenand_block_isbad - [MTD Interface] Check whether the block at the given offset is bad
1844 * @param mtd           MTD device structure
1845 * @param ofs           offset relative to mtd start
1846 *
1847 * Check whether the block is bad
1848 */
1849int onenand_block_isbad(struct mtd_info *mtd, loff_t ofs)
1850{
1851        int ret;
1852
1853        /* Check for invalid offset */
1854        if (ofs > mtd->size)
1855                return -EINVAL;
1856
1857        onenand_get_device(mtd, FL_READING);
1858        ret = onenand_block_isbad_nolock(mtd,ofs, 0);
1859        onenand_release_device(mtd);
1860        return ret;
1861}
1862
1863/**
1864 * onenand_default_block_markbad - [DEFAULT] mark a block bad
1865 * @param mtd           MTD device structure
1866 * @param ofs           offset from device start
1867 *
1868 * This is the default implementation, which can be overridden by
1869 * a hardware specific driver.
1870 */
1871static int onenand_default_block_markbad(struct mtd_info *mtd, loff_t ofs)
1872{
1873        struct onenand_chip *this = mtd->priv;
1874        struct bbm_info *bbm = this->bbm;
1875        u_char buf[2] = {0, 0};
1876        struct mtd_oob_ops ops = {
1877                .mode = MTD_OPS_PLACE_OOB,
1878                .ooblen = 2,
1879                .oobbuf = buf,
1880                .ooboffs = 0,
1881        };
1882        int block;
1883
1884        /* Get block number */
1885        block = onenand_block(this, ofs);
1886        if (bbm->bbt)
1887                bbm->bbt[block >> 2] |= 0x01 << ((block & 0x03) << 1);
1888
1889        /* We write two bytes, so we dont have to mess with 16 bit access */
1890        ofs += mtd->oobsize + (bbm->badblockpos & ~0x01);
1891        return onenand_write_oob_nolock(mtd, ofs, &ops);
1892}
1893
1894/**
1895 * onenand_block_markbad - [MTD Interface] Mark the block at the given offset as bad
1896 * @param mtd           MTD device structure
1897 * @param ofs           offset relative to mtd start
1898 *
1899 * Mark the block as bad
1900 */
1901int onenand_block_markbad(struct mtd_info *mtd, loff_t ofs)
1902{
1903        int ret;
1904
1905        ret = onenand_block_isbad(mtd, ofs);
1906        if (ret) {
1907                /* If it was bad already, return success and do nothing */
1908                if (ret > 0)
1909                        return 0;
1910                return ret;
1911        }
1912
1913        ret = mtd_block_markbad(mtd, ofs);
1914        return ret;
1915}
1916
1917/**
1918 * onenand_do_lock_cmd - [OneNAND Interface] Lock or unlock block(s)
1919 * @param mtd           MTD device structure
1920 * @param ofs           offset relative to mtd start
1921 * @param len           number of bytes to lock or unlock
1922 * @param cmd           lock or unlock command
1923 *
1924 * Lock or unlock one or more blocks
1925 */
1926static int onenand_do_lock_cmd(struct mtd_info *mtd, loff_t ofs, size_t len, int cmd)
1927{
1928        struct onenand_chip *this = mtd->priv;
1929        int start, end, block, value, status;
1930
1931        start = onenand_block(this, ofs);
1932        end = onenand_block(this, ofs + len);
1933
1934        /* Continuous lock scheme */
1935        if (this->options & ONENAND_HAS_CONT_LOCK) {
1936                /* Set start block address */
1937                this->write_word(start,
1938                                 this->base + ONENAND_REG_START_BLOCK_ADDRESS);
1939                /* Set end block address */
1940                this->write_word(end - 1,
1941                                 this->base + ONENAND_REG_END_BLOCK_ADDRESS);
1942                /* Write unlock command */
1943                this->command(mtd, cmd, 0, 0);
1944
1945                /* There's no return value */
1946                this->wait(mtd, FL_UNLOCKING);
1947
1948                /* Sanity check */
1949                while (this->read_word(this->base + ONENAND_REG_CTRL_STATUS)
1950                       & ONENAND_CTRL_ONGO)
1951                        continue;
1952
1953                /* Check lock status */
1954                status = this->read_word(this->base + ONENAND_REG_WP_STATUS);
1955                if (!(status & ONENAND_WP_US))
1956                        printk(KERN_ERR "wp status = 0x%x\n", status);
1957
1958                return 0;
1959        }
1960
1961        /* Block lock scheme */
1962        for (block = start; block < end; block++) {
1963                /* Set block address */
1964                value = onenand_block_address(this, block);
1965                this->write_word(value, this->base + ONENAND_REG_START_ADDRESS1);
1966                /* Select DataRAM for DDP */
1967                value = onenand_bufferram_address(this, block);
1968                this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
1969
1970                /* Set start block address */
1971                this->write_word(block,
1972                                 this->base + ONENAND_REG_START_BLOCK_ADDRESS);
1973                /* Write unlock command */
1974                this->command(mtd, ONENAND_CMD_UNLOCK, 0, 0);
1975
1976                /* There's no return value */
1977                this->wait(mtd, FL_UNLOCKING);
1978
1979                /* Sanity check */
1980                while (this->read_word(this->base + ONENAND_REG_CTRL_STATUS)
1981                       & ONENAND_CTRL_ONGO)
1982                        continue;
1983
1984                /* Check lock status */
1985                status = this->read_word(this->base + ONENAND_REG_WP_STATUS);
1986                if (!(status & ONENAND_WP_US))
1987                        printk(KERN_ERR "block = %d, wp status = 0x%x\n",
1988                               block, status);
1989        }
1990
1991        return 0;
1992}
1993
1994#ifdef ONENAND_LINUX
1995/**
1996 * onenand_lock - [MTD Interface] Lock block(s)
1997 * @param mtd           MTD device structure
1998 * @param ofs           offset relative to mtd start
1999 * @param len           number of bytes to unlock
2000 *
2001 * Lock one or more blocks
2002 */
2003static int onenand_lock(struct mtd_info *mtd, loff_t ofs, size_t len)
2004{
2005        int ret;
2006
2007        onenand_get_device(mtd, FL_LOCKING);
2008        ret = onenand_do_lock_cmd(mtd, ofs, len, ONENAND_CMD_LOCK);
2009        onenand_release_device(mtd);
2010        return ret;
2011}
2012
2013/**
2014 * onenand_unlock - [MTD Interface] Unlock block(s)
2015 * @param mtd           MTD device structure
2016 * @param ofs           offset relative to mtd start
2017 * @param len           number of bytes to unlock
2018 *
2019 * Unlock one or more blocks
2020 */
2021static int onenand_unlock(struct mtd_info *mtd, loff_t ofs, size_t len)
2022{
2023        int ret;
2024
2025        onenand_get_device(mtd, FL_LOCKING);
2026        ret = onenand_do_lock_cmd(mtd, ofs, len, ONENAND_CMD_UNLOCK);
2027        onenand_release_device(mtd);
2028        return ret;
2029}
2030#endif
2031
2032/**
2033 * onenand_check_lock_status - [OneNAND Interface] Check lock status
2034 * @param this          onenand chip data structure
2035 *
2036 * Check lock status
2037 */
2038static int onenand_check_lock_status(struct onenand_chip *this)
2039{
2040        unsigned int value, block, status;
2041        unsigned int end;
2042
2043        end = this->chipsize >> this->erase_shift;
2044        for (block = 0; block < end; block++) {
2045                /* Set block address */
2046                value = onenand_block_address(this, block);
2047                this->write_word(value, this->base + ONENAND_REG_START_ADDRESS1);
2048                /* Select DataRAM for DDP */
2049                value = onenand_bufferram_address(this, block);
2050                this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
2051                /* Set start block address */
2052                this->write_word(block, this->base + ONENAND_REG_START_BLOCK_ADDRESS);
2053
2054                /* Check lock status */
2055                status = this->read_word(this->base + ONENAND_REG_WP_STATUS);
2056                if (!(status & ONENAND_WP_US)) {
2057                        printk(KERN_ERR "block = %d, wp status = 0x%x\n", block, status);
2058                        return 0;
2059                }
2060        }
2061
2062        return 1;
2063}
2064
2065/**
2066 * onenand_unlock_all - [OneNAND Interface] unlock all blocks
2067 * @param mtd           MTD device structure
2068 *
2069 * Unlock all blocks
2070 */
2071static void onenand_unlock_all(struct mtd_info *mtd)
2072{
2073        struct onenand_chip *this = mtd->priv;
2074        loff_t ofs = 0;
2075        size_t len = mtd->size;
2076
2077        if (this->options & ONENAND_HAS_UNLOCK_ALL) {
2078                /* Set start block address */
2079                this->write_word(0, this->base + ONENAND_REG_START_BLOCK_ADDRESS);
2080                /* Write unlock command */
2081                this->command(mtd, ONENAND_CMD_UNLOCK_ALL, 0, 0);
2082
2083                /* There's no return value */
2084                this->wait(mtd, FL_LOCKING);
2085
2086                /* Sanity check */
2087                while (this->read_word(this->base + ONENAND_REG_CTRL_STATUS)
2088                                & ONENAND_CTRL_ONGO)
2089                        continue;
2090
2091                /* Check lock status */
2092                if (onenand_check_lock_status(this))
2093                        return;
2094
2095                /* Workaround for all block unlock in DDP */
2096                if (ONENAND_IS_DDP(this) && !FLEXONENAND(this)) {
2097                        /* All blocks on another chip */
2098                        ofs = this->chipsize >> 1;
2099                        len = this->chipsize >> 1;
2100                }
2101        }
2102
2103        onenand_do_lock_cmd(mtd, ofs, len, ONENAND_CMD_UNLOCK);
2104}
2105
2106
2107/**
2108 * onenand_check_features - Check and set OneNAND features
2109 * @param mtd           MTD data structure
2110 *
2111 * Check and set OneNAND features
2112 * - lock scheme
2113 * - two plane
2114 */
2115static void onenand_check_features(struct mtd_info *mtd)
2116{
2117        struct onenand_chip *this = mtd->priv;
2118        unsigned int density, process;
2119
2120        /* Lock scheme depends on density and process */
2121        density = onenand_get_density(this->device_id);
2122        process = this->version_id >> ONENAND_VERSION_PROCESS_SHIFT;
2123
2124        /* Lock scheme */
2125        switch (density) {
2126        case ONENAND_DEVICE_DENSITY_4Gb:
2127                if (ONENAND_IS_DDP(this))
2128                        this->options |= ONENAND_HAS_2PLANE;
2129                else
2130                        this->options |= ONENAND_HAS_4KB_PAGE;
2131
2132        case ONENAND_DEVICE_DENSITY_2Gb:
2133                /* 2Gb DDP don't have 2 plane */
2134                if (!ONENAND_IS_DDP(this))
2135                        this->options |= ONENAND_HAS_2PLANE;
2136                this->options |= ONENAND_HAS_UNLOCK_ALL;
2137
2138        case ONENAND_DEVICE_DENSITY_1Gb:
2139                /* A-Die has all block unlock */
2140                if (process)
2141                        this->options |= ONENAND_HAS_UNLOCK_ALL;
2142                break;
2143
2144        default:
2145                /* Some OneNAND has continuous lock scheme */
2146                if (!process)
2147                        this->options |= ONENAND_HAS_CONT_LOCK;
2148                break;
2149        }
2150
2151        if (ONENAND_IS_MLC(this))
2152                this->options |= ONENAND_HAS_4KB_PAGE;
2153
2154        if (ONENAND_IS_4KB_PAGE(this))
2155                this->options &= ~ONENAND_HAS_2PLANE;
2156
2157        if (FLEXONENAND(this)) {
2158                this->options &= ~ONENAND_HAS_CONT_LOCK;
2159                this->options |= ONENAND_HAS_UNLOCK_ALL;
2160        }
2161
2162        if (this->options & ONENAND_HAS_CONT_LOCK)
2163                printk(KERN_DEBUG "Lock scheme is Continuous Lock\n");
2164        if (this->options & ONENAND_HAS_UNLOCK_ALL)
2165                printk(KERN_DEBUG "Chip support all block unlock\n");
2166        if (this->options & ONENAND_HAS_2PLANE)
2167                printk(KERN_DEBUG "Chip has 2 plane\n");
2168        if (this->options & ONENAND_HAS_4KB_PAGE)
2169                printk(KERN_DEBUG "Chip has 4KiB pagesize\n");
2170
2171}
2172
2173/**
2174 * onenand_print_device_info - Print device ID
2175 * @param device        device ID
2176 *
2177 * Print device ID
2178 */
2179char *onenand_print_device_info(int device, int version)
2180{
2181        int vcc, demuxed, ddp, density, flexonenand;
2182        char *dev_info = malloc(80);
2183        char *p = dev_info;
2184
2185        vcc = device & ONENAND_DEVICE_VCC_MASK;
2186        demuxed = device & ONENAND_DEVICE_IS_DEMUX;
2187        ddp = device & ONENAND_DEVICE_IS_DDP;
2188        density = onenand_get_density(device);
2189        flexonenand = device & DEVICE_IS_FLEXONENAND;
2190        p += sprintf(dev_info, "%s%sOneNAND%s %dMB %sV 16-bit (0x%02x)",
2191               demuxed ? "" : "Muxed ",
2192               flexonenand ? "Flex-" : "",
2193               ddp ? "(DDP)" : "",
2194               (16 << density), vcc ? "2.65/3.3" : "1.8", device);
2195
2196        sprintf(p, "\nOneNAND version = 0x%04x", version);
2197        printk("%s\n", dev_info);
2198
2199        return dev_info;
2200}
2201
2202static const struct onenand_manufacturers onenand_manuf_ids[] = {
2203        {ONENAND_MFR_NUMONYX, "Numonyx"},
2204        {ONENAND_MFR_SAMSUNG, "Samsung"},
2205};
2206
2207/**
2208 * onenand_check_maf - Check manufacturer ID
2209 * @param manuf         manufacturer ID
2210 *
2211 * Check manufacturer ID
2212 */
2213static int onenand_check_maf(int manuf)
2214{
2215        int size = ARRAY_SIZE(onenand_manuf_ids);
2216        int i;
2217#ifdef ONENAND_DEBUG
2218        char *name;
2219#endif
2220
2221        for (i = 0; i < size; i++)
2222                if (manuf == onenand_manuf_ids[i].id)
2223                        break;
2224
2225#ifdef ONENAND_DEBUG
2226        if (i < size)
2227                name = onenand_manuf_ids[i].name;
2228        else
2229                name = "Unknown";
2230
2231        printk(KERN_DEBUG "OneNAND Manufacturer: %s (0x%0x)\n", name, manuf);
2232#endif
2233
2234        return i == size;
2235}
2236
2237/**
2238* flexonenand_get_boundary      - Reads the SLC boundary
2239* @param onenand_info           - onenand info structure
2240*
2241* Fill up boundary[] field in onenand_chip
2242**/
2243static int flexonenand_get_boundary(struct mtd_info *mtd)
2244{
2245        struct onenand_chip *this = mtd->priv;
2246        unsigned int die, bdry;
2247        int syscfg, locked;
2248
2249        /* Disable ECC */
2250        syscfg = this->read_word(this->base + ONENAND_REG_SYS_CFG1);
2251        this->write_word((syscfg | 0x0100), this->base + ONENAND_REG_SYS_CFG1);
2252
2253        for (die = 0; die < this->dies; die++) {
2254                this->command(mtd, FLEXONENAND_CMD_PI_ACCESS, die, 0);
2255                this->wait(mtd, FL_SYNCING);
2256
2257                this->command(mtd, FLEXONENAND_CMD_READ_PI, die, 0);
2258                this->wait(mtd, FL_READING);
2259
2260                bdry = this->read_word(this->base + ONENAND_DATARAM);
2261                if ((bdry >> FLEXONENAND_PI_UNLOCK_SHIFT) == 3)
2262                        locked = 0;
2263                else
2264                        locked = 1;
2265                this->boundary[die] = bdry & FLEXONENAND_PI_MASK;
2266
2267                this->command(mtd, ONENAND_CMD_RESET, 0, 0);
2268                this->wait(mtd, FL_RESETING);
2269
2270                printk(KERN_INFO "Die %d boundary: %d%s\n", die,
2271                       this->boundary[die], locked ? "(Locked)" : "(Unlocked)");
2272        }
2273
2274        /* Enable ECC */
2275        this->write_word(syscfg, this->base + ONENAND_REG_SYS_CFG1);
2276        return 0;
2277}
2278
2279/**
2280 * flexonenand_get_size - Fill up fields in onenand_chip and mtd_info
2281 *                        boundary[], diesize[], mtd->size, mtd->erasesize,
2282 *                        mtd->eraseregions
2283 * @param mtd           - MTD device structure
2284 */
2285static void flexonenand_get_size(struct mtd_info *mtd)
2286{
2287        struct onenand_chip *this = mtd->priv;
2288        int die, i, eraseshift, density;
2289        int blksperdie, maxbdry;
2290        loff_t ofs;
2291
2292        density = onenand_get_density(this->device_id);
2293        blksperdie = ((loff_t)(16 << density) << 20) >> (this->erase_shift);
2294        blksperdie >>= ONENAND_IS_DDP(this) ? 1 : 0;
2295        maxbdry = blksperdie - 1;
2296        eraseshift = this->erase_shift - 1;
2297
2298        mtd->numeraseregions = this->dies << 1;
2299
2300        /* This fills up the device boundary */
2301        flexonenand_get_boundary(mtd);
2302        die = 0;
2303        ofs = 0;
2304        i = -1;
2305        for (; die < this->dies; die++) {
2306                if (!die || this->boundary[die-1] != maxbdry) {
2307                        i++;
2308                        mtd->eraseregions[i].offset = ofs;
2309                        mtd->eraseregions[i].erasesize = 1 << eraseshift;
2310                        mtd->eraseregions[i].numblocks =
2311                                                        this->boundary[die] + 1;
2312                        ofs += mtd->eraseregions[i].numblocks << eraseshift;
2313                        eraseshift++;
2314                } else {
2315                        mtd->numeraseregions -= 1;
2316                        mtd->eraseregions[i].numblocks +=
2317                                                        this->boundary[die] + 1;
2318                        ofs += (this->boundary[die] + 1) << (eraseshift - 1);
2319                }
2320                if (this->boundary[die] != maxbdry) {
2321                        i++;
2322                        mtd->eraseregions[i].offset = ofs;
2323                        mtd->eraseregions[i].erasesize = 1 << eraseshift;
2324                        mtd->eraseregions[i].numblocks = maxbdry ^
2325                                                         this->boundary[die];
2326                        ofs += mtd->eraseregions[i].numblocks << eraseshift;
2327                        eraseshift--;
2328                } else
2329                        mtd->numeraseregions -= 1;
2330        }
2331
2332        /* Expose MLC erase size except when all blocks are SLC */
2333        mtd->erasesize = 1 << this->erase_shift;
2334        if (mtd->numeraseregions == 1)
2335                mtd->erasesize >>= 1;
2336
2337        printk(KERN_INFO "Device has %d eraseregions\n", mtd->numeraseregions);
2338        for (i = 0; i < mtd->numeraseregions; i++)
2339                printk(KERN_INFO "[offset: 0x%08llx, erasesize: 0x%05x,"
2340                        " numblocks: %04u]\n", mtd->eraseregions[i].offset,
2341                        mtd->eraseregions[i].erasesize,
2342                        mtd->eraseregions[i].numblocks);
2343
2344        for (die = 0, mtd->size = 0; die < this->dies; die++) {
2345                this->diesize[die] = (loff_t) (blksperdie << this->erase_shift);
2346                this->diesize[die] -= (loff_t) (this->boundary[die] + 1)
2347                                                 << (this->erase_shift - 1);
2348                mtd->size += this->diesize[die];
2349        }
2350}
2351
2352/**
2353 * flexonenand_check_blocks_erased - Check if blocks are erased
2354 * @param mtd_info      - mtd info structure
2355 * @param start         - first erase block to check
2356 * @param end           - last erase block to check
2357 *
2358 * Converting an unerased block from MLC to SLC
2359 * causes byte values to change. Since both data and its ECC
2360 * have changed, reads on the block give uncorrectable error.
2361 * This might lead to the block being detected as bad.
2362 *
2363 * Avoid this by ensuring that the block to be converted is
2364 * erased.
2365 */
2366static int flexonenand_check_blocks_erased(struct mtd_info *mtd,
2367                                        int start, int end)
2368{
2369        struct onenand_chip *this = mtd->priv;
2370        int i, ret;
2371        int block;
2372        struct mtd_oob_ops ops = {
2373                .mode = MTD_OPS_PLACE_OOB,
2374                .ooboffs = 0,
2375                .ooblen = mtd->oobsize,
2376                .datbuf = NULL,
2377                .oobbuf = this->oob_buf,
2378        };
2379        loff_t addr;
2380
2381        printk(KERN_DEBUG "Check blocks from %d to %d\n", start, end);
2382
2383        for (block = start; block <= end; block++) {
2384                addr = flexonenand_addr(this, block);
2385                if (onenand_block_isbad_nolock(mtd, addr, 0))
2386                        continue;
2387
2388                /*
2389                 * Since main area write results in ECC write to spare,
2390                 * it is sufficient to check only ECC bytes for change.
2391                 */
2392                ret = onenand_read_oob_nolock(mtd, addr, &ops);
2393                if (ret)
2394                        return ret;
2395
2396                for (i = 0; i < mtd->oobsize; i++)
2397                        if (this->oob_buf[i] != 0xff)
2398                                break;
2399
2400                if (i != mtd->oobsize) {
2401                        printk(KERN_WARNING "Block %d not erased.\n", block);
2402                        return 1;
2403                }
2404        }
2405
2406        return 0;
2407}
2408
2409/**
2410 * flexonenand_set_boundary     - Writes the SLC boundary
2411 * @param mtd                   - mtd info structure
2412 */
2413int flexonenand_set_boundary(struct mtd_info *mtd, int die,
2414                                    int boundary, int lock)
2415{
2416        struct onenand_chip *this = mtd->priv;
2417        int ret, density, blksperdie, old, new, thisboundary;
2418        loff_t addr;
2419
2420        if (die >= this->dies)
2421                return -EINVAL;
2422
2423        if (boundary == this->boundary[die])
2424                return 0;
2425
2426        density = onenand_get_density(this->device_id);
2427        blksperdie = ((16 << density) << 20) >> this->erase_shift;
2428        blksperdie >>= ONENAND_IS_DDP(this) ? 1 : 0;
2429
2430        if (boundary >= blksperdie) {
2431                printk("flexonenand_set_boundary:"
2432                        "Invalid boundary value. "
2433                        "Boundary not changed.\n");
2434                return -EINVAL;
2435        }
2436
2437        /* Check if converting blocks are erased */
2438        old = this->boundary[die] + (die * this->density_mask);
2439        new = boundary + (die * this->density_mask);
2440        ret = flexonenand_check_blocks_erased(mtd, min(old, new)
2441                                                + 1, max(old, new));
2442        if (ret) {
2443                printk(KERN_ERR "flexonenand_set_boundary: Please erase blocks before boundary change\n");
2444                return ret;
2445        }
2446
2447        this->command(mtd, FLEXONENAND_CMD_PI_ACCESS, die, 0);
2448        this->wait(mtd, FL_SYNCING);
2449
2450        /* Check is boundary is locked */
2451        this->command(mtd, FLEXONENAND_CMD_READ_PI, die, 0);
2452        ret = this->wait(mtd, FL_READING);
2453
2454        thisboundary = this->read_word(this->base + ONENAND_DATARAM);
2455        if ((thisboundary >> FLEXONENAND_PI_UNLOCK_SHIFT) != 3) {
2456                printk(KERN_ERR "flexonenand_set_boundary: boundary locked\n");
2457                goto out;
2458        }
2459
2460        printk(KERN_INFO "flexonenand_set_boundary: Changing die %d boundary: %d%s\n",
2461                        die, boundary, lock ? "(Locked)" : "(Unlocked)");
2462
2463        boundary &= FLEXONENAND_PI_MASK;
2464        boundary |= lock ? 0 : (3 << FLEXONENAND_PI_UNLOCK_SHIFT);
2465
2466        addr = die ? this->diesize[0] : 0;
2467        this->command(mtd, ONENAND_CMD_ERASE, addr, 0);
2468        ret = this->wait(mtd, FL_ERASING);
2469        if (ret) {
2470                printk("flexonenand_set_boundary:"
2471                        "Failed PI erase for Die %d\n", die);
2472                goto out;
2473        }
2474
2475        this->write_word(boundary, this->base + ONENAND_DATARAM);
2476        this->command(mtd, ONENAND_CMD_PROG, addr, 0);
2477        ret = this->wait(mtd, FL_WRITING);
2478        if (ret) {
2479                printk("flexonenand_set_boundary:"
2480                        "Failed PI write for Die %d\n", die);
2481                goto out;
2482        }
2483
2484        this->command(mtd, FLEXONENAND_CMD_PI_UPDATE, die, 0);
2485        ret = this->wait(mtd, FL_WRITING);
2486out:
2487        this->write_word(ONENAND_CMD_RESET, this->base + ONENAND_REG_COMMAND);
2488        this->wait(mtd, FL_RESETING);
2489        if (!ret)
2490                /* Recalculate device size on boundary change*/
2491                flexonenand_get_size(mtd);
2492
2493        return ret;
2494}
2495
2496/**
2497 * onenand_chip_probe - [OneNAND Interface] Probe the OneNAND chip
2498 * @param mtd           MTD device structure
2499 *
2500 * OneNAND detection method:
2501 *   Compare the the values from command with ones from register
2502 */
2503static int onenand_chip_probe(struct mtd_info *mtd)
2504{
2505        struct onenand_chip *this = mtd->priv;
2506        int bram_maf_id, bram_dev_id, maf_id, dev_id;
2507        int syscfg;
2508
2509        /* Save system configuration 1 */
2510        syscfg = this->read_word(this->base + ONENAND_REG_SYS_CFG1);
2511
2512        /* Clear Sync. Burst Read mode to read BootRAM */
2513        this->write_word((syscfg & ~ONENAND_SYS_CFG1_SYNC_READ),
2514                         this->base + ONENAND_REG_SYS_CFG1);
2515
2516        /* Send the command for reading device ID from BootRAM */
2517        this->write_word(ONENAND_CMD_READID, this->base + ONENAND_BOOTRAM);
2518
2519        /* Read manufacturer and device IDs from BootRAM */
2520        bram_maf_id = this->read_word(this->base + ONENAND_BOOTRAM + 0x0);
2521        bram_dev_id = this->read_word(this->base + ONENAND_BOOTRAM + 0x2);
2522
2523        /* Reset OneNAND to read default register values */
2524        this->write_word(ONENAND_CMD_RESET, this->base + ONENAND_BOOTRAM);
2525
2526        /* Wait reset */
2527        this->wait(mtd, FL_RESETING);
2528
2529        /* Restore system configuration 1 */
2530        this->write_word(syscfg, this->base + ONENAND_REG_SYS_CFG1);
2531
2532        /* Check manufacturer ID */
2533        if (onenand_check_maf(bram_maf_id))
2534                return -ENXIO;
2535
2536        /* Read manufacturer and device IDs from Register */
2537        maf_id = this->read_word(this->base + ONENAND_REG_MANUFACTURER_ID);
2538        dev_id = this->read_word(this->base + ONENAND_REG_DEVICE_ID);
2539
2540        /* Check OneNAND device */
2541        if (maf_id != bram_maf_id || dev_id != bram_dev_id)
2542                return -ENXIO;
2543
2544        return 0;
2545}
2546
2547/**
2548 * onenand_probe - [OneNAND Interface] Probe the OneNAND device
2549 * @param mtd           MTD device structure
2550 *
2551 * OneNAND detection method:
2552 *   Compare the the values from command with ones from register
2553 */
2554int onenand_probe(struct mtd_info *mtd)
2555{
2556        struct onenand_chip *this = mtd->priv;
2557        int dev_id, ver_id;
2558        int density;
2559        int ret;
2560
2561        ret = this->chip_probe(mtd);
2562        if (ret)
2563                return ret;
2564
2565        /* Read device IDs from Register */
2566        dev_id = this->read_word(this->base + ONENAND_REG_DEVICE_ID);
2567        ver_id = this->read_word(this->base + ONENAND_REG_VERSION_ID);
2568        this->technology = this->read_word(this->base + ONENAND_REG_TECHNOLOGY);
2569
2570        /* Flash device information */
2571        mtd->name = onenand_print_device_info(dev_id, ver_id);
2572        this->device_id = dev_id;
2573        this->version_id = ver_id;
2574
2575        /* Check OneNAND features */
2576        onenand_check_features(mtd);
2577
2578        density = onenand_get_density(dev_id);
2579        if (FLEXONENAND(this)) {
2580                this->dies = ONENAND_IS_DDP(this) ? 2 : 1;
2581                /* Maximum possible erase regions */
2582                mtd->numeraseregions = this->dies << 1;
2583                mtd->eraseregions = malloc(sizeof(struct mtd_erase_region_info)
2584                                        * (this->dies << 1));
2585                if (!mtd->eraseregions)
2586                        return -ENOMEM;
2587        }
2588
2589        /*
2590         * For Flex-OneNAND, chipsize represents maximum possible device size.
2591         * mtd->size represents the actual device size.
2592         */
2593        this->chipsize = (16 << density) << 20;
2594
2595        /* OneNAND page size & block size */
2596        /* The data buffer size is equal to page size */
2597        mtd->writesize =
2598            this->read_word(this->base + ONENAND_REG_DATA_BUFFER_SIZE);
2599        /* We use the full BufferRAM */
2600        if (ONENAND_IS_4KB_PAGE(this))
2601                mtd->writesize <<= 1;
2602
2603        mtd->oobsize = mtd->writesize >> 5;
2604        /* Pagers per block is always 64 in OneNAND */
2605        mtd->erasesize = mtd->writesize << 6;
2606        /*
2607         * Flex-OneNAND SLC area has 64 pages per block.
2608         * Flex-OneNAND MLC area has 128 pages per block.
2609         * Expose MLC erase size to find erase_shift and page_mask.
2610         */
2611        if (FLEXONENAND(this))
2612                mtd->erasesize <<= 1;
2613
2614        this->erase_shift = ffs(mtd->erasesize) - 1;
2615        this->page_shift = ffs(mtd->writesize) - 1;
2616        this->ppb_shift = (this->erase_shift - this->page_shift);
2617        this->page_mask = (mtd->erasesize / mtd->writesize) - 1;
2618        /* Set density mask. it is used for DDP */
2619        if (ONENAND_IS_DDP(this))
2620                this->density_mask = this->chipsize >> (this->erase_shift + 1);
2621        /* It's real page size */
2622        this->writesize = mtd->writesize;
2623
2624        /* REVIST: Multichip handling */
2625
2626        if (FLEXONENAND(this))
2627                flexonenand_get_size(mtd);
2628        else
2629                mtd->size = this->chipsize;
2630
2631        mtd->flags = MTD_CAP_NANDFLASH;
2632        mtd->_erase = onenand_erase;
2633        mtd->_read = onenand_read;
2634        mtd->_write = onenand_write;
2635        mtd->_read_oob = onenand_read_oob;
2636        mtd->_write_oob = onenand_write_oob;
2637        mtd->_sync = onenand_sync;
2638        mtd->_block_isbad = onenand_block_isbad;
2639        mtd->_block_markbad = onenand_block_markbad;
2640
2641        return 0;
2642}
2643
2644/**
2645 * onenand_scan - [OneNAND Interface] Scan for the OneNAND device
2646 * @param mtd           MTD device structure
2647 * @param maxchips      Number of chips to scan for
2648 *
2649 * This fills out all the not initialized function pointers
2650 * with the defaults.
2651 * The flash ID is read and the mtd/chip structures are
2652 * filled with the appropriate values.
2653 */
2654int onenand_scan(struct mtd_info *mtd, int maxchips)
2655{
2656        int i;
2657        struct onenand_chip *this = mtd->priv;
2658
2659        if (!this->read_word)
2660                this->read_word = onenand_readw;
2661        if (!this->write_word)
2662                this->write_word = onenand_writew;
2663
2664        if (!this->command)
2665                this->command = onenand_command;
2666        if (!this->wait)
2667                this->wait = onenand_wait;
2668        if (!this->bbt_wait)
2669                this->bbt_wait = onenand_bbt_wait;
2670
2671        if (!this->read_bufferram)
2672                this->read_bufferram = onenand_read_bufferram;
2673        if (!this->write_bufferram)
2674                this->write_bufferram = onenand_write_bufferram;
2675
2676        if (!this->chip_probe)
2677                this->chip_probe = onenand_chip_probe;
2678
2679        if (!this->block_markbad)
2680                this->block_markbad = onenand_default_block_markbad;
2681        if (!this->scan_bbt)
2682                this->scan_bbt = onenand_default_bbt;
2683
2684        if (onenand_probe(mtd))
2685                return -ENXIO;
2686
2687        /* Set Sync. Burst Read after probing */
2688        if (this->mmcontrol) {
2689                printk(KERN_INFO "OneNAND Sync. Burst Read support\n");
2690                this->read_bufferram = onenand_sync_read_bufferram;
2691        }
2692
2693        /* Allocate buffers, if necessary */
2694        if (!this->page_buf) {
2695                this->page_buf = kzalloc(mtd->writesize, GFP_KERNEL);
2696                if (!this->page_buf) {
2697                        printk(KERN_ERR "onenand_scan(): Can't allocate page_buf\n");
2698                        return -ENOMEM;
2699                }
2700                this->options |= ONENAND_PAGEBUF_ALLOC;
2701        }
2702        if (!this->oob_buf) {
2703                this->oob_buf = kzalloc(mtd->oobsize, GFP_KERNEL);
2704                if (!this->oob_buf) {
2705                        printk(KERN_ERR "onenand_scan: Can't allocate oob_buf\n");
2706                        if (this->options & ONENAND_PAGEBUF_ALLOC) {
2707                                this->options &= ~ONENAND_PAGEBUF_ALLOC;
2708                                kfree(this->page_buf);
2709                        }
2710                        return -ENOMEM;
2711                }
2712                this->options |= ONENAND_OOBBUF_ALLOC;
2713        }
2714
2715        this->state = FL_READY;
2716
2717        /*
2718         * Allow subpage writes up to oobsize.
2719         */
2720        switch (mtd->oobsize) {
2721        case 128:
2722                this->ecclayout = &onenand_oob_128;
2723                mtd->subpage_sft = 0;
2724                break;
2725
2726        case 64:
2727                this->ecclayout = &onenand_oob_64;
2728                mtd->subpage_sft = 2;
2729                break;
2730
2731        case 32:
2732                this->ecclayout = &onenand_oob_32;
2733                mtd->subpage_sft = 1;
2734                break;
2735
2736        default:
2737                printk(KERN_WARNING "No OOB scheme defined for oobsize %d\n",
2738                        mtd->oobsize);
2739                mtd->subpage_sft = 0;
2740                /* To prevent kernel oops */
2741                this->ecclayout = &onenand_oob_32;
2742                break;
2743        }
2744
2745        this->subpagesize = mtd->writesize >> mtd->subpage_sft;
2746
2747        /*
2748         * The number of bytes available for a client to place data into
2749         * the out of band area
2750         */
2751        this->ecclayout->oobavail = 0;
2752        for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES &&
2753            this->ecclayout->oobfree[i].length; i++)
2754                this->ecclayout->oobavail +=
2755                        this->ecclayout->oobfree[i].length;
2756        mtd->oobavail = this->ecclayout->oobavail;
2757
2758        mtd->ecclayout = this->ecclayout;
2759
2760        /* Unlock whole block */
2761        onenand_unlock_all(mtd);
2762
2763        return this->scan_bbt(mtd);
2764}
2765
2766/**
2767 * onenand_release - [OneNAND Interface] Free resources held by the OneNAND device
2768 * @param mtd           MTD device structure
2769 */
2770void onenand_release(struct mtd_info *mtd)
2771{
2772}
2773