uboot/drivers/mtd/nand/davinci_nand.c
<<
>>
Prefs
   1/*
   2 * NAND driver for TI DaVinci based boards.
   3 *
   4 * Copyright (C) 2007 Sergey Kubushyn <ksi@koi8.net>
   5 *
   6 * Based on Linux DaVinci NAND driver by TI. Original copyright follows:
   7 */
   8
   9/*
  10 *
  11 * linux/drivers/mtd/nand/nand_davinci.c
  12 *
  13 * NAND Flash Driver
  14 *
  15 * Copyright (C) 2006 Texas Instruments.
  16 *
  17 * ----------------------------------------------------------------------------
  18 *
  19 * SPDX-License-Identifier:     GPL-2.0+
  20 *
  21 * ----------------------------------------------------------------------------
  22 *
  23 *  Overview:
  24 *   This is a device driver for the NAND flash device found on the
  25 *   DaVinci board which utilizes the Samsung k9k2g08 part.
  26 *
  27 Modifications:
  28 ver. 1.0: Feb 2005, Vinod/Sudhakar
  29 -
  30 */
  31
  32#include <common.h>
  33#include <asm/io.h>
  34#include <nand.h>
  35#include <asm/arch/nand_defs.h>
  36#include <asm/arch/emif_defs.h>
  37
  38/* Definitions for 4-bit hardware ECC */
  39#define NAND_TIMEOUT                    10240
  40#define NAND_ECC_BUSY                   0xC
  41#define NAND_4BITECC_MASK               0x03FF03FF
  42#define EMIF_NANDFSR_ECC_STATE_MASK     0x00000F00
  43#define ECC_STATE_NO_ERR                0x0
  44#define ECC_STATE_TOO_MANY_ERRS         0x1
  45#define ECC_STATE_ERR_CORR_COMP_P       0x2
  46#define ECC_STATE_ERR_CORR_COMP_N       0x3
  47
  48/*
  49 * Exploit the little endianness of the ARM to do multi-byte transfers
  50 * per device read. This can perform over twice as quickly as individual
  51 * byte transfers when buffer alignment is conducive.
  52 *
  53 * NOTE: This only works if the NAND is not connected to the 2 LSBs of
  54 * the address bus. On Davinci EVM platforms this has always been true.
  55 */
  56static void nand_davinci_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
  57{
  58        struct nand_chip *chip = mtd->priv;
  59        const u32 *nand = chip->IO_ADDR_R;
  60
  61        /* Make sure that buf is 32 bit aligned */
  62        if (((int)buf & 0x3) != 0) {
  63                if (((int)buf & 0x1) != 0) {
  64                        if (len) {
  65                                *buf = readb(nand);
  66                                buf += 1;
  67                                len--;
  68                        }
  69                }
  70
  71                if (((int)buf & 0x3) != 0) {
  72                        if (len >= 2) {
  73                                *(u16 *)buf = readw(nand);
  74                                buf += 2;
  75                                len -= 2;
  76                        }
  77                }
  78        }
  79
  80        /* copy aligned data */
  81        while (len >= 4) {
  82                *(u32 *)buf = __raw_readl(nand);
  83                buf += 4;
  84                len -= 4;
  85        }
  86
  87        /* mop up any remaining bytes */
  88        if (len) {
  89                if (len >= 2) {
  90                        *(u16 *)buf = readw(nand);
  91                        buf += 2;
  92                        len -= 2;
  93                }
  94
  95                if (len)
  96                        *buf = readb(nand);
  97        }
  98}
  99
 100static void nand_davinci_write_buf(struct mtd_info *mtd, const uint8_t *buf,
 101                                   int len)
 102{
 103        struct nand_chip *chip = mtd->priv;
 104        const u32 *nand = chip->IO_ADDR_W;
 105
 106        /* Make sure that buf is 32 bit aligned */
 107        if (((int)buf & 0x3) != 0) {
 108                if (((int)buf & 0x1) != 0) {
 109                        if (len) {
 110                                writeb(*buf, nand);
 111                                buf += 1;
 112                                len--;
 113                        }
 114                }
 115
 116                if (((int)buf & 0x3) != 0) {
 117                        if (len >= 2) {
 118                                writew(*(u16 *)buf, nand);
 119                                buf += 2;
 120                                len -= 2;
 121                        }
 122                }
 123        }
 124
 125        /* copy aligned data */
 126        while (len >= 4) {
 127                __raw_writel(*(u32 *)buf, nand);
 128                buf += 4;
 129                len -= 4;
 130        }
 131
 132        /* mop up any remaining bytes */
 133        if (len) {
 134                if (len >= 2) {
 135                        writew(*(u16 *)buf, nand);
 136                        buf += 2;
 137                        len -= 2;
 138                }
 139
 140                if (len)
 141                        writeb(*buf, nand);
 142        }
 143}
 144
 145static void nand_davinci_hwcontrol(struct mtd_info *mtd, int cmd,
 146                unsigned int ctrl)
 147{
 148        struct          nand_chip *this = mtd->priv;
 149        u_int32_t       IO_ADDR_W = (u_int32_t)this->IO_ADDR_W;
 150
 151        if (ctrl & NAND_CTRL_CHANGE) {
 152                IO_ADDR_W &= ~(MASK_ALE|MASK_CLE);
 153
 154                if (ctrl & NAND_CLE)
 155                        IO_ADDR_W |= MASK_CLE;
 156                if (ctrl & NAND_ALE)
 157                        IO_ADDR_W |= MASK_ALE;
 158                this->IO_ADDR_W = (void __iomem *) IO_ADDR_W;
 159        }
 160
 161        if (cmd != NAND_CMD_NONE)
 162                writeb(cmd, IO_ADDR_W);
 163}
 164
 165#ifdef CONFIG_SYS_NAND_HW_ECC
 166
 167static u_int32_t nand_davinci_readecc(struct mtd_info *mtd)
 168{
 169        u_int32_t       ecc = 0;
 170
 171        ecc = __raw_readl(&(davinci_emif_regs->nandfecc[
 172                                CONFIG_SYS_NAND_CS - 2]));
 173
 174        return ecc;
 175}
 176
 177static void nand_davinci_enable_hwecc(struct mtd_info *mtd, int mode)
 178{
 179        u_int32_t       val;
 180
 181        /* reading the ECC result register resets the ECC calculation */
 182        nand_davinci_readecc(mtd);
 183
 184        val = __raw_readl(&davinci_emif_regs->nandfcr);
 185        val |= DAVINCI_NANDFCR_NAND_ENABLE(CONFIG_SYS_NAND_CS);
 186        val |= DAVINCI_NANDFCR_1BIT_ECC_START(CONFIG_SYS_NAND_CS);
 187        __raw_writel(val, &davinci_emif_regs->nandfcr);
 188}
 189
 190static int nand_davinci_calculate_ecc(struct mtd_info *mtd, const u_char *dat,
 191                u_char *ecc_code)
 192{
 193        u_int32_t               tmp;
 194
 195        tmp = nand_davinci_readecc(mtd);
 196
 197        /* Squeeze 4 bytes ECC into 3 bytes by removing RESERVED bits
 198         * and shifting. RESERVED bits are 31 to 28 and 15 to 12. */
 199        tmp = (tmp & 0x00000fff) | ((tmp & 0x0fff0000) >> 4);
 200
 201        /* Invert so that erased block ECC is correct */
 202        tmp = ~tmp;
 203
 204        *ecc_code++ = tmp;
 205        *ecc_code++ = tmp >>  8;
 206        *ecc_code++ = tmp >> 16;
 207
 208        /* NOTE:  the above code matches mainline Linux:
 209         *      .PQR.stu ==> ~PQRstu
 210         *
 211         * MontaVista/TI kernels encode those bytes differently, use
 212         * complicated (and allegedly sometimes-wrong) correction code,
 213         * and usually shipped with U-Boot that uses software ECC:
 214         *      .PQR.stu ==> PsQRtu
 215         *
 216         * If you need MV/TI compatible NAND I/O in U-Boot, it should
 217         * be possible to (a) change the mangling above, (b) reverse
 218         * that mangling in nand_davinci_correct_data() below.
 219         */
 220
 221        return 0;
 222}
 223
 224static int nand_davinci_correct_data(struct mtd_info *mtd, u_char *dat,
 225                u_char *read_ecc, u_char *calc_ecc)
 226{
 227        struct nand_chip *this = mtd->priv;
 228        u_int32_t ecc_nand = read_ecc[0] | (read_ecc[1] << 8) |
 229                                          (read_ecc[2] << 16);
 230        u_int32_t ecc_calc = calc_ecc[0] | (calc_ecc[1] << 8) |
 231                                          (calc_ecc[2] << 16);
 232        u_int32_t diff = ecc_calc ^ ecc_nand;
 233
 234        if (diff) {
 235                if ((((diff >> 12) ^ diff) & 0xfff) == 0xfff) {
 236                        /* Correctable error */
 237                        if ((diff >> (12 + 3)) < this->ecc.size) {
 238                                uint8_t find_bit = 1 << ((diff >> 12) & 7);
 239                                uint32_t find_byte = diff >> (12 + 3);
 240
 241                                dat[find_byte] ^= find_bit;
 242                                MTDDEBUG(MTD_DEBUG_LEVEL0, "Correcting single "
 243                                         "bit ECC error at offset: %d, bit: "
 244                                         "%d\n", find_byte, find_bit);
 245                                return 1;
 246                        } else {
 247                                return -1;
 248                        }
 249                } else if (!(diff & (diff - 1))) {
 250                        /* Single bit ECC error in the ECC itself,
 251                           nothing to fix */
 252                        MTDDEBUG(MTD_DEBUG_LEVEL0, "Single bit ECC error in "
 253                                 "ECC.\n");
 254                        return 1;
 255                } else {
 256                        /* Uncorrectable error */
 257                        MTDDEBUG(MTD_DEBUG_LEVEL0, "ECC UNCORRECTED_ERROR 1\n");
 258                        return -1;
 259                }
 260        }
 261        return 0;
 262}
 263#endif /* CONFIG_SYS_NAND_HW_ECC */
 264
 265#ifdef CONFIG_SYS_NAND_4BIT_HW_ECC_OOBFIRST
 266static struct nand_ecclayout nand_davinci_4bit_layout_oobfirst = {
 267#if defined(CONFIG_SYS_NAND_PAGE_2K)
 268        .eccbytes = 40,
 269        .eccpos = {
 270                24, 25, 26, 27, 28,
 271                29, 30, 31, 32, 33, 34, 35, 36, 37, 38,
 272                39, 40, 41, 42, 43, 44, 45, 46, 47, 48,
 273                49, 50, 51, 52, 53, 54, 55, 56, 57, 58,
 274                59, 60, 61, 62, 63,
 275                },
 276        .oobfree = {
 277                {.offset = 2, .length = 22, },
 278        },
 279#elif defined(CONFIG_SYS_NAND_PAGE_4K)
 280        .eccbytes = 80,
 281        .eccpos = {
 282                48, 49, 50, 51, 52, 53, 54, 55, 56, 57,
 283                58, 59, 60, 61, 62, 63, 64, 65, 66, 67,
 284                68, 69, 70, 71, 72, 73, 74, 75, 76, 77,
 285                78, 79, 80, 81, 82, 83, 84, 85, 86, 87,
 286                88, 89, 90, 91, 92, 93, 94, 95, 96, 97,
 287                98, 99, 100, 101, 102, 103, 104, 105, 106, 107,
 288                108, 109, 110, 111, 112, 113, 114, 115, 116, 117,
 289                118, 119, 120, 121, 122, 123, 124, 125, 126, 127,
 290                },
 291        .oobfree = {
 292                {.offset = 2, .length = 46, },
 293        },
 294#endif
 295};
 296
 297static void nand_davinci_4bit_enable_hwecc(struct mtd_info *mtd, int mode)
 298{
 299        u32 val;
 300
 301        switch (mode) {
 302        case NAND_ECC_WRITE:
 303        case NAND_ECC_READ:
 304                /*
 305                 * Start a new ECC calculation for reading or writing 512 bytes
 306                 * of data.
 307                 */
 308                val = __raw_readl(&davinci_emif_regs->nandfcr);
 309                val &= ~DAVINCI_NANDFCR_4BIT_ECC_SEL_MASK;
 310                val |= DAVINCI_NANDFCR_NAND_ENABLE(CONFIG_SYS_NAND_CS);
 311                val |= DAVINCI_NANDFCR_4BIT_ECC_SEL(CONFIG_SYS_NAND_CS);
 312                val |= DAVINCI_NANDFCR_4BIT_ECC_START;
 313                __raw_writel(val, &davinci_emif_regs->nandfcr);
 314                break;
 315        case NAND_ECC_READSYN:
 316                val = __raw_readl(&davinci_emif_regs->nand4bitecc[0]);
 317                break;
 318        default:
 319                break;
 320        }
 321}
 322
 323static u32 nand_davinci_4bit_readecc(struct mtd_info *mtd, unsigned int ecc[4])
 324{
 325        int i;
 326
 327        for (i = 0; i < 4; i++) {
 328                ecc[i] = __raw_readl(&davinci_emif_regs->nand4bitecc[i]) &
 329                        NAND_4BITECC_MASK;
 330        }
 331
 332        return 0;
 333}
 334
 335static int nand_davinci_4bit_calculate_ecc(struct mtd_info *mtd,
 336                                           const uint8_t *dat,
 337                                           uint8_t *ecc_code)
 338{
 339        unsigned int hw_4ecc[4];
 340        unsigned int i;
 341
 342        nand_davinci_4bit_readecc(mtd, hw_4ecc);
 343
 344        /*Convert 10 bit ecc value to 8 bit */
 345        for (i = 0; i < 2; i++) {
 346                unsigned int hw_ecc_low = hw_4ecc[i * 2];
 347                unsigned int hw_ecc_hi = hw_4ecc[(i * 2) + 1];
 348
 349                /* Take first 8 bits from val1 (count1=0) or val5 (count1=1) */
 350                *ecc_code++ = hw_ecc_low & 0xFF;
 351
 352                /*
 353                 * Take 2 bits as LSB bits from val1 (count1=0) or val5
 354                 * (count1=1) and 6 bits from val2 (count1=0) or
 355                 * val5 (count1=1)
 356                 */
 357                *ecc_code++ =
 358                    ((hw_ecc_low >> 8) & 0x3) | ((hw_ecc_low >> 14) & 0xFC);
 359
 360                /*
 361                 * Take 4 bits from val2 (count1=0) or val5 (count1=1) and
 362                 * 4 bits from val3 (count1=0) or val6 (count1=1)
 363                 */
 364                *ecc_code++ =
 365                    ((hw_ecc_low >> 22) & 0xF) | ((hw_ecc_hi << 4) & 0xF0);
 366
 367                /*
 368                 * Take 6 bits from val3(count1=0) or val6 (count1=1) and
 369                 * 2 bits from val4 (count1=0) or  val7 (count1=1)
 370                 */
 371                *ecc_code++ =
 372                    ((hw_ecc_hi >> 4) & 0x3F) | ((hw_ecc_hi >> 10) & 0xC0);
 373
 374                /* Take 8 bits from val4 (count1=0) or val7 (count1=1) */
 375                *ecc_code++ = (hw_ecc_hi >> 18) & 0xFF;
 376        }
 377
 378        return 0;
 379}
 380
 381static int nand_davinci_4bit_correct_data(struct mtd_info *mtd, uint8_t *dat,
 382                                          uint8_t *read_ecc, uint8_t *calc_ecc)
 383{
 384        int i;
 385        unsigned int hw_4ecc[4];
 386        unsigned int iserror;
 387        unsigned short *ecc16;
 388        unsigned int numerrors, erroraddress, errorvalue;
 389        u32 val;
 390
 391        /*
 392         * Check for an ECC where all bytes are 0xFF.  If this is the case, we
 393         * will assume we are looking at an erased page and we should ignore
 394         * the ECC.
 395         */
 396        for (i = 0; i < 10; i++) {
 397                if (read_ecc[i] != 0xFF)
 398                        break;
 399        }
 400        if (i == 10)
 401                return 0;
 402
 403        /* Convert 8 bit in to 10 bit */
 404        ecc16 = (unsigned short *)&read_ecc[0];
 405
 406        /*
 407         * Write the parity values in the NAND Flash 4-bit ECC Load register.
 408         * Write each parity value one at a time starting from 4bit_ecc_val8
 409         * to 4bit_ecc_val1.
 410         */
 411
 412        /*Take 2 bits from 8th byte and 8 bits from 9th byte */
 413        __raw_writel(((ecc16[4]) >> 6) & 0x3FF,
 414                        &davinci_emif_regs->nand4biteccload);
 415
 416        /* Take 4 bits from 7th byte and 6 bits from 8th byte */
 417        __raw_writel((((ecc16[3]) >> 12) & 0xF) | ((((ecc16[4])) << 4) & 0x3F0),
 418                        &davinci_emif_regs->nand4biteccload);
 419
 420        /* Take 6 bits from 6th byte and 4 bits from 7th byte */
 421        __raw_writel((ecc16[3] >> 2) & 0x3FF,
 422                        &davinci_emif_regs->nand4biteccload);
 423
 424        /* Take 8 bits from 5th byte and 2 bits from 6th byte */
 425        __raw_writel(((ecc16[2]) >> 8) | ((((ecc16[3])) << 8) & 0x300),
 426                        &davinci_emif_regs->nand4biteccload);
 427
 428        /*Take 2 bits from 3rd byte and 8 bits from 4th byte */
 429        __raw_writel((((ecc16[1]) >> 14) & 0x3) | ((((ecc16[2])) << 2) & 0x3FC),
 430                        &davinci_emif_regs->nand4biteccload);
 431
 432        /* Take 4 bits form 2nd bytes and 6 bits from 3rd bytes */
 433        __raw_writel(((ecc16[1]) >> 4) & 0x3FF,
 434                        &davinci_emif_regs->nand4biteccload);
 435
 436        /* Take 6 bits from 1st byte and 4 bits from 2nd byte */
 437        __raw_writel((((ecc16[0]) >> 10) & 0x3F) | (((ecc16[1]) << 6) & 0x3C0),
 438                        &davinci_emif_regs->nand4biteccload);
 439
 440        /* Take 10 bits from 0th and 1st bytes */
 441        __raw_writel((ecc16[0]) & 0x3FF,
 442                        &davinci_emif_regs->nand4biteccload);
 443
 444        /*
 445         * Perform a dummy read to the EMIF Revision Code and Status register.
 446         * This is required to ensure time for syndrome calculation after
 447         * writing the ECC values in previous step.
 448         */
 449
 450        val = __raw_readl(&davinci_emif_regs->nandfsr);
 451
 452        /*
 453         * Read the syndrome from the NAND Flash 4-Bit ECC 1-4 registers.
 454         * A syndrome value of 0 means no bit errors. If the syndrome is
 455         * non-zero then go further otherwise return.
 456         */
 457        nand_davinci_4bit_readecc(mtd, hw_4ecc);
 458
 459        if (!(hw_4ecc[0] | hw_4ecc[1] | hw_4ecc[2] | hw_4ecc[3]))
 460                return 0;
 461
 462        /*
 463         * Clear any previous address calculation by doing a dummy read of an
 464         * error address register.
 465         */
 466        val = __raw_readl(&davinci_emif_regs->nanderradd1);
 467
 468        /*
 469         * Set the addr_calc_st bit(bit no 13) in the NAND Flash Control
 470         * register to 1.
 471         */
 472        __raw_writel(DAVINCI_NANDFCR_4BIT_CALC_START,
 473                        &davinci_emif_regs->nandfcr);
 474
 475        /*
 476         * Wait for the corr_state field (bits 8 to 11) in the
 477         * NAND Flash Status register to be not equal to 0x0, 0x1, 0x2, or 0x3.
 478         * Otherwise ECC calculation has not even begun and the next loop might
 479         * fail because of a false positive!
 480         */
 481        i = NAND_TIMEOUT;
 482        do {
 483                val = __raw_readl(&davinci_emif_regs->nandfsr);
 484                val &= 0xc00;
 485                i--;
 486        } while ((i > 0) && !val);
 487
 488        /*
 489         * Wait for the corr_state field (bits 8 to 11) in the
 490         * NAND Flash Status register to be equal to 0x0, 0x1, 0x2, or 0x3.
 491         */
 492        i = NAND_TIMEOUT;
 493        do {
 494                val = __raw_readl(&davinci_emif_regs->nandfsr);
 495                val &= 0xc00;
 496                i--;
 497        } while ((i > 0) && val);
 498
 499        iserror = __raw_readl(&davinci_emif_regs->nandfsr);
 500        iserror &= EMIF_NANDFSR_ECC_STATE_MASK;
 501        iserror = iserror >> 8;
 502
 503        /*
 504         * ECC_STATE_TOO_MANY_ERRS (0x1) means errors cannot be
 505         * corrected (five or more errors).  The number of errors
 506         * calculated (err_num field) differs from the number of errors
 507         * searched.  ECC_STATE_ERR_CORR_COMP_P (0x2) means error
 508         * correction complete (errors on bit 8 or 9).
 509         * ECC_STATE_ERR_CORR_COMP_N (0x3) means error correction
 510         * complete (error exists).
 511         */
 512
 513        if (iserror == ECC_STATE_NO_ERR) {
 514                val = __raw_readl(&davinci_emif_regs->nanderrval1);
 515                return 0;
 516        } else if (iserror == ECC_STATE_TOO_MANY_ERRS) {
 517                val = __raw_readl(&davinci_emif_regs->nanderrval1);
 518                return -1;
 519        }
 520
 521        numerrors = ((__raw_readl(&davinci_emif_regs->nandfsr) >> 16)
 522                        & 0x3) + 1;
 523
 524        /* Read the error address, error value and correct */
 525        for (i = 0; i < numerrors; i++) {
 526                if (i > 1) {
 527                        erroraddress =
 528                            ((__raw_readl(&davinci_emif_regs->nanderradd2) >>
 529                              (16 * (i & 1))) & 0x3FF);
 530                        erroraddress = ((512 + 7) - erroraddress);
 531                        errorvalue =
 532                            ((__raw_readl(&davinci_emif_regs->nanderrval2) >>
 533                              (16 * (i & 1))) & 0xFF);
 534                } else {
 535                        erroraddress =
 536                            ((__raw_readl(&davinci_emif_regs->nanderradd1) >>
 537                              (16 * (i & 1))) & 0x3FF);
 538                        erroraddress = ((512 + 7) - erroraddress);
 539                        errorvalue =
 540                            ((__raw_readl(&davinci_emif_regs->nanderrval1) >>
 541                              (16 * (i & 1))) & 0xFF);
 542                }
 543                /* xor the corrupt data with error value */
 544                if (erroraddress < 512)
 545                        dat[erroraddress] ^= errorvalue;
 546        }
 547
 548        return numerrors;
 549}
 550#endif /* CONFIG_SYS_NAND_4BIT_HW_ECC_OOBFIRST */
 551
 552static int nand_davinci_dev_ready(struct mtd_info *mtd)
 553{
 554        return __raw_readl(&davinci_emif_regs->nandfsr) & 0x1;
 555}
 556
 557static void nand_flash_init(void)
 558{
 559        /* This is for DM6446 EVM and *very* similar.  DO NOT GROW THIS!
 560         * Instead, have your board_init() set EMIF timings, based on its
 561         * knowledge of the clocks and what devices are hooked up ... and
 562         * don't even do that unless no UBL handled it.
 563         */
 564#ifdef CONFIG_SOC_DM644X
 565        u_int32_t       acfg1 = 0x3ffffffc;
 566
 567        /*------------------------------------------------------------------*
 568         *  NAND FLASH CHIP TIMEOUT @ 459 MHz                               *
 569         *                                                                  *
 570         *  AEMIF.CLK freq   = PLL1/6 = 459/6 = 76.5 MHz                    *
 571         *  AEMIF.CLK period = 1/76.5 MHz = 13.1 ns                         *
 572         *                                                                  *
 573         *------------------------------------------------------------------*/
 574         acfg1 = 0
 575                | (0 << 31)     /* selectStrobe */
 576                | (0 << 30)     /* extWait */
 577                | (1 << 26)     /* writeSetup   10 ns */
 578                | (3 << 20)     /* writeStrobe  40 ns */
 579                | (1 << 17)     /* writeHold    10 ns */
 580                | (1 << 13)     /* readSetup    10 ns */
 581                | (5 << 7)      /* readStrobe   60 ns */
 582                | (1 << 4)      /* readHold     10 ns */
 583                | (3 << 2)      /* turnAround   ?? ns */
 584                | (0 << 0)      /* asyncSize    8-bit bus */
 585                ;
 586
 587        __raw_writel(acfg1, &davinci_emif_regs->ab1cr); /* CS2 */
 588
 589        /* NAND flash on CS2 */
 590        __raw_writel(0x00000101, &davinci_emif_regs->nandfcr);
 591#endif
 592}
 593
 594void davinci_nand_init(struct nand_chip *nand)
 595{
 596        nand->chip_delay  = 0;
 597#ifdef CONFIG_SYS_NAND_USE_FLASH_BBT
 598        nand->bbt_options         |= NAND_BBT_USE_FLASH;
 599#endif
 600#ifdef CONFIG_SYS_NAND_HW_ECC
 601        nand->ecc.mode = NAND_ECC_HW;
 602        nand->ecc.size = 512;
 603        nand->ecc.bytes = 3;
 604        nand->ecc.strength = 1;
 605        nand->ecc.calculate = nand_davinci_calculate_ecc;
 606        nand->ecc.correct  = nand_davinci_correct_data;
 607        nand->ecc.hwctl  = nand_davinci_enable_hwecc;
 608#else
 609        nand->ecc.mode = NAND_ECC_SOFT;
 610#endif /* CONFIG_SYS_NAND_HW_ECC */
 611#ifdef CONFIG_SYS_NAND_4BIT_HW_ECC_OOBFIRST
 612        nand->ecc.mode = NAND_ECC_HW_OOB_FIRST;
 613        nand->ecc.size = 512;
 614        nand->ecc.bytes = 10;
 615        nand->ecc.strength = 4;
 616        nand->ecc.calculate = nand_davinci_4bit_calculate_ecc;
 617        nand->ecc.correct = nand_davinci_4bit_correct_data;
 618        nand->ecc.hwctl = nand_davinci_4bit_enable_hwecc;
 619        nand->ecc.layout = &nand_davinci_4bit_layout_oobfirst;
 620#endif
 621        /* Set address of hardware control function */
 622        nand->cmd_ctrl = nand_davinci_hwcontrol;
 623
 624        nand->read_buf = nand_davinci_read_buf;
 625        nand->write_buf = nand_davinci_write_buf;
 626
 627        nand->dev_ready = nand_davinci_dev_ready;
 628
 629        nand_flash_init();
 630}
 631
 632int board_nand_init(struct nand_chip *chip) __attribute__((weak));
 633
 634int board_nand_init(struct nand_chip *chip)
 635{
 636        davinci_nand_init(chip);
 637        return 0;
 638}
 639