uboot/fs/ubifs/lprops.c
<<
>>
Prefs
   1/*
   2 * This file is part of UBIFS.
   3 *
   4 * Copyright (C) 2006-2008 Nokia Corporation.
   5 *
   6 * This program is free software; you can redistribute it and/or modify it
   7 * under the terms of the GNU General Public License version 2 as published by
   8 * the Free Software Foundation.
   9 *
  10 * This program is distributed in the hope that it will be useful, but WITHOUT
  11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  13 * more details.
  14 *
  15 * You should have received a copy of the GNU General Public License along with
  16 * this program; if not, write to the Free Software Foundation, Inc., 51
  17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
  18 *
  19 * Authors: Adrian Hunter
  20 *          Artem Bityutskiy (Битюцкий Артём)
  21 */
  22
  23/*
  24 * This file implements the functions that access LEB properties and their
  25 * categories. LEBs are categorized based on the needs of UBIFS, and the
  26 * categories are stored as either heaps or lists to provide a fast way of
  27 * finding a LEB in a particular category. For example, UBIFS may need to find
  28 * an empty LEB for the journal, or a very dirty LEB for garbage collection.
  29 */
  30
  31#include "ubifs.h"
  32
  33/**
  34 * get_heap_comp_val - get the LEB properties value for heap comparisons.
  35 * @lprops: LEB properties
  36 * @cat: LEB category
  37 */
  38static int get_heap_comp_val(struct ubifs_lprops *lprops, int cat)
  39{
  40        switch (cat) {
  41        case LPROPS_FREE:
  42                return lprops->free;
  43        case LPROPS_DIRTY_IDX:
  44                return lprops->free + lprops->dirty;
  45        default:
  46                return lprops->dirty;
  47        }
  48}
  49
  50/**
  51 * move_up_lpt_heap - move a new heap entry up as far as possible.
  52 * @c: UBIFS file-system description object
  53 * @heap: LEB category heap
  54 * @lprops: LEB properties to move
  55 * @cat: LEB category
  56 *
  57 * New entries to a heap are added at the bottom and then moved up until the
  58 * parent's value is greater.  In the case of LPT's category heaps, the value
  59 * is either the amount of free space or the amount of dirty space, depending
  60 * on the category.
  61 */
  62static void move_up_lpt_heap(struct ubifs_info *c, struct ubifs_lpt_heap *heap,
  63                             struct ubifs_lprops *lprops, int cat)
  64{
  65        int val1, val2, hpos;
  66
  67        hpos = lprops->hpos;
  68        if (!hpos)
  69                return; /* Already top of the heap */
  70        val1 = get_heap_comp_val(lprops, cat);
  71        /* Compare to parent and, if greater, move up the heap */
  72        do {
  73                int ppos = (hpos - 1) / 2;
  74
  75                val2 = get_heap_comp_val(heap->arr[ppos], cat);
  76                if (val2 >= val1)
  77                        return;
  78                /* Greater than parent so move up */
  79                heap->arr[ppos]->hpos = hpos;
  80                heap->arr[hpos] = heap->arr[ppos];
  81                heap->arr[ppos] = lprops;
  82                lprops->hpos = ppos;
  83                hpos = ppos;
  84        } while (hpos);
  85}
  86
  87/**
  88 * adjust_lpt_heap - move a changed heap entry up or down the heap.
  89 * @c: UBIFS file-system description object
  90 * @heap: LEB category heap
  91 * @lprops: LEB properties to move
  92 * @hpos: heap position of @lprops
  93 * @cat: LEB category
  94 *
  95 * Changed entries in a heap are moved up or down until the parent's value is
  96 * greater.  In the case of LPT's category heaps, the value is either the amount
  97 * of free space or the amount of dirty space, depending on the category.
  98 */
  99static void adjust_lpt_heap(struct ubifs_info *c, struct ubifs_lpt_heap *heap,
 100                            struct ubifs_lprops *lprops, int hpos, int cat)
 101{
 102        int val1, val2, val3, cpos;
 103
 104        val1 = get_heap_comp_val(lprops, cat);
 105        /* Compare to parent and, if greater than parent, move up the heap */
 106        if (hpos) {
 107                int ppos = (hpos - 1) / 2;
 108
 109                val2 = get_heap_comp_val(heap->arr[ppos], cat);
 110                if (val1 > val2) {
 111                        /* Greater than parent so move up */
 112                        while (1) {
 113                                heap->arr[ppos]->hpos = hpos;
 114                                heap->arr[hpos] = heap->arr[ppos];
 115                                heap->arr[ppos] = lprops;
 116                                lprops->hpos = ppos;
 117                                hpos = ppos;
 118                                if (!hpos)
 119                                        return;
 120                                ppos = (hpos - 1) / 2;
 121                                val2 = get_heap_comp_val(heap->arr[ppos], cat);
 122                                if (val1 <= val2)
 123                                        return;
 124                                /* Still greater than parent so keep going */
 125                        }
 126                }
 127        }
 128
 129        /* Not greater than parent, so compare to children */
 130        while (1) {
 131                /* Compare to left child */
 132                cpos = hpos * 2 + 1;
 133                if (cpos >= heap->cnt)
 134                        return;
 135                val2 = get_heap_comp_val(heap->arr[cpos], cat);
 136                if (val1 < val2) {
 137                        /* Less than left child, so promote biggest child */
 138                        if (cpos + 1 < heap->cnt) {
 139                                val3 = get_heap_comp_val(heap->arr[cpos + 1],
 140                                                         cat);
 141                                if (val3 > val2)
 142                                        cpos += 1; /* Right child is bigger */
 143                        }
 144                        heap->arr[cpos]->hpos = hpos;
 145                        heap->arr[hpos] = heap->arr[cpos];
 146                        heap->arr[cpos] = lprops;
 147                        lprops->hpos = cpos;
 148                        hpos = cpos;
 149                        continue;
 150                }
 151                /* Compare to right child */
 152                cpos += 1;
 153                if (cpos >= heap->cnt)
 154                        return;
 155                val3 = get_heap_comp_val(heap->arr[cpos], cat);
 156                if (val1 < val3) {
 157                        /* Less than right child, so promote right child */
 158                        heap->arr[cpos]->hpos = hpos;
 159                        heap->arr[hpos] = heap->arr[cpos];
 160                        heap->arr[cpos] = lprops;
 161                        lprops->hpos = cpos;
 162                        hpos = cpos;
 163                        continue;
 164                }
 165                return;
 166        }
 167}
 168
 169/**
 170 * add_to_lpt_heap - add LEB properties to a LEB category heap.
 171 * @c: UBIFS file-system description object
 172 * @lprops: LEB properties to add
 173 * @cat: LEB category
 174 *
 175 * This function returns %1 if @lprops is added to the heap for LEB category
 176 * @cat, otherwise %0 is returned because the heap is full.
 177 */
 178static int add_to_lpt_heap(struct ubifs_info *c, struct ubifs_lprops *lprops,
 179                           int cat)
 180{
 181        struct ubifs_lpt_heap *heap = &c->lpt_heap[cat - 1];
 182
 183        if (heap->cnt >= heap->max_cnt) {
 184                const int b = LPT_HEAP_SZ / 2 - 1;
 185                int cpos, val1, val2;
 186
 187                /* Compare to some other LEB on the bottom of heap */
 188                /* Pick a position kind of randomly */
 189                cpos = (((size_t)lprops >> 4) & b) + b;
 190                ubifs_assert(cpos >= b);
 191                ubifs_assert(cpos < LPT_HEAP_SZ);
 192                ubifs_assert(cpos < heap->cnt);
 193
 194                val1 = get_heap_comp_val(lprops, cat);
 195                val2 = get_heap_comp_val(heap->arr[cpos], cat);
 196                if (val1 > val2) {
 197                        struct ubifs_lprops *lp;
 198
 199                        lp = heap->arr[cpos];
 200                        lp->flags &= ~LPROPS_CAT_MASK;
 201                        lp->flags |= LPROPS_UNCAT;
 202                        list_add(&lp->list, &c->uncat_list);
 203                        lprops->hpos = cpos;
 204                        heap->arr[cpos] = lprops;
 205                        move_up_lpt_heap(c, heap, lprops, cat);
 206                        dbg_check_heap(c, heap, cat, lprops->hpos);
 207                        return 1; /* Added to heap */
 208                }
 209                dbg_check_heap(c, heap, cat, -1);
 210                return 0; /* Not added to heap */
 211        } else {
 212                lprops->hpos = heap->cnt++;
 213                heap->arr[lprops->hpos] = lprops;
 214                move_up_lpt_heap(c, heap, lprops, cat);
 215                dbg_check_heap(c, heap, cat, lprops->hpos);
 216                return 1; /* Added to heap */
 217        }
 218}
 219
 220/**
 221 * remove_from_lpt_heap - remove LEB properties from a LEB category heap.
 222 * @c: UBIFS file-system description object
 223 * @lprops: LEB properties to remove
 224 * @cat: LEB category
 225 */
 226static void remove_from_lpt_heap(struct ubifs_info *c,
 227                                 struct ubifs_lprops *lprops, int cat)
 228{
 229        struct ubifs_lpt_heap *heap;
 230        int hpos = lprops->hpos;
 231
 232        heap = &c->lpt_heap[cat - 1];
 233        ubifs_assert(hpos >= 0 && hpos < heap->cnt);
 234        ubifs_assert(heap->arr[hpos] == lprops);
 235        heap->cnt -= 1;
 236        if (hpos < heap->cnt) {
 237                heap->arr[hpos] = heap->arr[heap->cnt];
 238                heap->arr[hpos]->hpos = hpos;
 239                adjust_lpt_heap(c, heap, heap->arr[hpos], hpos, cat);
 240        }
 241        dbg_check_heap(c, heap, cat, -1);
 242}
 243
 244/**
 245 * lpt_heap_replace - replace lprops in a category heap.
 246 * @c: UBIFS file-system description object
 247 * @old_lprops: LEB properties to replace
 248 * @new_lprops: LEB properties with which to replace
 249 * @cat: LEB category
 250 *
 251 * During commit it is sometimes necessary to copy a pnode (see dirty_cow_pnode)
 252 * and the lprops that the pnode contains.  When that happens, references in
 253 * the category heaps to those lprops must be updated to point to the new
 254 * lprops.  This function does that.
 255 */
 256static void lpt_heap_replace(struct ubifs_info *c,
 257                             struct ubifs_lprops *old_lprops,
 258                             struct ubifs_lprops *new_lprops, int cat)
 259{
 260        struct ubifs_lpt_heap *heap;
 261        int hpos = new_lprops->hpos;
 262
 263        heap = &c->lpt_heap[cat - 1];
 264        heap->arr[hpos] = new_lprops;
 265}
 266
 267/**
 268 * ubifs_add_to_cat - add LEB properties to a category list or heap.
 269 * @c: UBIFS file-system description object
 270 * @lprops: LEB properties to add
 271 * @cat: LEB category to which to add
 272 *
 273 * LEB properties are categorized to enable fast find operations.
 274 */
 275void ubifs_add_to_cat(struct ubifs_info *c, struct ubifs_lprops *lprops,
 276                      int cat)
 277{
 278        switch (cat) {
 279        case LPROPS_DIRTY:
 280        case LPROPS_DIRTY_IDX:
 281        case LPROPS_FREE:
 282                if (add_to_lpt_heap(c, lprops, cat))
 283                        break;
 284                /* No more room on heap so make it uncategorized */
 285                cat = LPROPS_UNCAT;
 286                /* Fall through */
 287        case LPROPS_UNCAT:
 288                list_add(&lprops->list, &c->uncat_list);
 289                break;
 290        case LPROPS_EMPTY:
 291                list_add(&lprops->list, &c->empty_list);
 292                break;
 293        case LPROPS_FREEABLE:
 294                list_add(&lprops->list, &c->freeable_list);
 295                c->freeable_cnt += 1;
 296                break;
 297        case LPROPS_FRDI_IDX:
 298                list_add(&lprops->list, &c->frdi_idx_list);
 299                break;
 300        default:
 301                ubifs_assert(0);
 302        }
 303        lprops->flags &= ~LPROPS_CAT_MASK;
 304        lprops->flags |= cat;
 305}
 306
 307/**
 308 * ubifs_remove_from_cat - remove LEB properties from a category list or heap.
 309 * @c: UBIFS file-system description object
 310 * @lprops: LEB properties to remove
 311 * @cat: LEB category from which to remove
 312 *
 313 * LEB properties are categorized to enable fast find operations.
 314 */
 315static void ubifs_remove_from_cat(struct ubifs_info *c,
 316                                  struct ubifs_lprops *lprops, int cat)
 317{
 318        switch (cat) {
 319        case LPROPS_DIRTY:
 320        case LPROPS_DIRTY_IDX:
 321        case LPROPS_FREE:
 322                remove_from_lpt_heap(c, lprops, cat);
 323                break;
 324        case LPROPS_FREEABLE:
 325                c->freeable_cnt -= 1;
 326                ubifs_assert(c->freeable_cnt >= 0);
 327                /* Fall through */
 328        case LPROPS_UNCAT:
 329        case LPROPS_EMPTY:
 330        case LPROPS_FRDI_IDX:
 331                ubifs_assert(!list_empty(&lprops->list));
 332                list_del(&lprops->list);
 333                break;
 334        default:
 335                ubifs_assert(0);
 336        }
 337}
 338
 339/**
 340 * ubifs_replace_cat - replace lprops in a category list or heap.
 341 * @c: UBIFS file-system description object
 342 * @old_lprops: LEB properties to replace
 343 * @new_lprops: LEB properties with which to replace
 344 *
 345 * During commit it is sometimes necessary to copy a pnode (see dirty_cow_pnode)
 346 * and the lprops that the pnode contains. When that happens, references in
 347 * category lists and heaps must be replaced. This function does that.
 348 */
 349void ubifs_replace_cat(struct ubifs_info *c, struct ubifs_lprops *old_lprops,
 350                       struct ubifs_lprops *new_lprops)
 351{
 352        int cat;
 353
 354        cat = new_lprops->flags & LPROPS_CAT_MASK;
 355        switch (cat) {
 356        case LPROPS_DIRTY:
 357        case LPROPS_DIRTY_IDX:
 358        case LPROPS_FREE:
 359                lpt_heap_replace(c, old_lprops, new_lprops, cat);
 360                break;
 361        case LPROPS_UNCAT:
 362        case LPROPS_EMPTY:
 363        case LPROPS_FREEABLE:
 364        case LPROPS_FRDI_IDX:
 365                list_replace(&old_lprops->list, &new_lprops->list);
 366                break;
 367        default:
 368                ubifs_assert(0);
 369        }
 370}
 371
 372/**
 373 * ubifs_ensure_cat - ensure LEB properties are categorized.
 374 * @c: UBIFS file-system description object
 375 * @lprops: LEB properties
 376 *
 377 * A LEB may have fallen off of the bottom of a heap, and ended up as
 378 * uncategorized even though it has enough space for us now. If that is the case
 379 * this function will put the LEB back onto a heap.
 380 */
 381void ubifs_ensure_cat(struct ubifs_info *c, struct ubifs_lprops *lprops)
 382{
 383        int cat = lprops->flags & LPROPS_CAT_MASK;
 384
 385        if (cat != LPROPS_UNCAT)
 386                return;
 387        cat = ubifs_categorize_lprops(c, lprops);
 388        if (cat == LPROPS_UNCAT)
 389                return;
 390        ubifs_remove_from_cat(c, lprops, LPROPS_UNCAT);
 391        ubifs_add_to_cat(c, lprops, cat);
 392}
 393
 394/**
 395 * ubifs_categorize_lprops - categorize LEB properties.
 396 * @c: UBIFS file-system description object
 397 * @lprops: LEB properties to categorize
 398 *
 399 * LEB properties are categorized to enable fast find operations. This function
 400 * returns the LEB category to which the LEB properties belong. Note however
 401 * that if the LEB category is stored as a heap and the heap is full, the
 402 * LEB properties may have their category changed to %LPROPS_UNCAT.
 403 */
 404int ubifs_categorize_lprops(const struct ubifs_info *c,
 405                            const struct ubifs_lprops *lprops)
 406{
 407        if (lprops->flags & LPROPS_TAKEN)
 408                return LPROPS_UNCAT;
 409
 410        if (lprops->free == c->leb_size) {
 411                ubifs_assert(!(lprops->flags & LPROPS_INDEX));
 412                return LPROPS_EMPTY;
 413        }
 414
 415        if (lprops->free + lprops->dirty == c->leb_size) {
 416                if (lprops->flags & LPROPS_INDEX)
 417                        return LPROPS_FRDI_IDX;
 418                else
 419                        return LPROPS_FREEABLE;
 420        }
 421
 422        if (lprops->flags & LPROPS_INDEX) {
 423                if (lprops->dirty + lprops->free >= c->min_idx_node_sz)
 424                        return LPROPS_DIRTY_IDX;
 425        } else {
 426                if (lprops->dirty >= c->dead_wm &&
 427                    lprops->dirty > lprops->free)
 428                        return LPROPS_DIRTY;
 429                if (lprops->free > 0)
 430                        return LPROPS_FREE;
 431        }
 432
 433        return LPROPS_UNCAT;
 434}
 435
 436/**
 437 * change_category - change LEB properties category.
 438 * @c: UBIFS file-system description object
 439 * @lprops: LEB properties to recategorize
 440 *
 441 * LEB properties are categorized to enable fast find operations. When the LEB
 442 * properties change they must be recategorized.
 443 */
 444static void change_category(struct ubifs_info *c, struct ubifs_lprops *lprops)
 445{
 446        int old_cat = lprops->flags & LPROPS_CAT_MASK;
 447        int new_cat = ubifs_categorize_lprops(c, lprops);
 448
 449        if (old_cat == new_cat) {
 450                struct ubifs_lpt_heap *heap = &c->lpt_heap[new_cat - 1];
 451
 452                /* lprops on a heap now must be moved up or down */
 453                if (new_cat < 1 || new_cat > LPROPS_HEAP_CNT)
 454                        return; /* Not on a heap */
 455                heap = &c->lpt_heap[new_cat - 1];
 456                adjust_lpt_heap(c, heap, lprops, lprops->hpos, new_cat);
 457        } else {
 458                ubifs_remove_from_cat(c, lprops, old_cat);
 459                ubifs_add_to_cat(c, lprops, new_cat);
 460        }
 461}
 462
 463/**
 464 * calc_dark - calculate LEB dark space size.
 465 * @c: the UBIFS file-system description object
 466 * @spc: amount of free and dirty space in the LEB
 467 *
 468 * This function calculates amount of dark space in an LEB which has @spc bytes
 469 * of free and dirty space. Returns the calculations result.
 470 *
 471 * Dark space is the space which is not always usable - it depends on which
 472 * nodes are written in which order. E.g., if an LEB has only 512 free bytes,
 473 * it is dark space, because it cannot fit a large data node. So UBIFS cannot
 474 * count on this LEB and treat these 512 bytes as usable because it is not true
 475 * if, for example, only big chunks of uncompressible data will be written to
 476 * the FS.
 477 */
 478static int calc_dark(struct ubifs_info *c, int spc)
 479{
 480        ubifs_assert(!(spc & 7));
 481
 482        if (spc < c->dark_wm)
 483                return spc;
 484
 485        /*
 486         * If we have slightly more space then the dark space watermark, we can
 487         * anyway safely assume it we'll be able to write a node of the
 488         * smallest size there.
 489         */
 490        if (spc - c->dark_wm < MIN_WRITE_SZ)
 491                return spc - MIN_WRITE_SZ;
 492
 493        return c->dark_wm;
 494}
 495
 496/**
 497 * is_lprops_dirty - determine if LEB properties are dirty.
 498 * @c: the UBIFS file-system description object
 499 * @lprops: LEB properties to test
 500 */
 501static int is_lprops_dirty(struct ubifs_info *c, struct ubifs_lprops *lprops)
 502{
 503        struct ubifs_pnode *pnode;
 504        int pos;
 505
 506        pos = (lprops->lnum - c->main_first) & (UBIFS_LPT_FANOUT - 1);
 507        pnode = (struct ubifs_pnode *)container_of(lprops - pos,
 508                                                   struct ubifs_pnode,
 509                                                   lprops[0]);
 510        return !test_bit(COW_ZNODE, &pnode->flags) &&
 511               test_bit(DIRTY_CNODE, &pnode->flags);
 512}
 513
 514/**
 515 * ubifs_change_lp - change LEB properties.
 516 * @c: the UBIFS file-system description object
 517 * @lp: LEB properties to change
 518 * @free: new free space amount
 519 * @dirty: new dirty space amount
 520 * @flags: new flags
 521 * @idx_gc_cnt: change to the count of idx_gc list
 522 *
 523 * This function changes LEB properties (@free, @dirty or @flag). However, the
 524 * property which has the %LPROPS_NC value is not changed. Returns a pointer to
 525 * the updated LEB properties on success and a negative error code on failure.
 526 *
 527 * Note, the LEB properties may have had to be copied (due to COW) and
 528 * consequently the pointer returned may not be the same as the pointer
 529 * passed.
 530 */
 531const struct ubifs_lprops *ubifs_change_lp(struct ubifs_info *c,
 532                                           const struct ubifs_lprops *lp,
 533                                           int free, int dirty, int flags,
 534                                           int idx_gc_cnt)
 535{
 536        /*
 537         * This is the only function that is allowed to change lprops, so we
 538         * discard the const qualifier.
 539         */
 540        struct ubifs_lprops *lprops = (struct ubifs_lprops *)lp;
 541
 542        dbg_lp("LEB %d, free %d, dirty %d, flags %d",
 543               lprops->lnum, free, dirty, flags);
 544
 545        ubifs_assert(mutex_is_locked(&c->lp_mutex));
 546        ubifs_assert(c->lst.empty_lebs >= 0 &&
 547                     c->lst.empty_lebs <= c->main_lebs);
 548        ubifs_assert(c->freeable_cnt >= 0);
 549        ubifs_assert(c->freeable_cnt <= c->main_lebs);
 550        ubifs_assert(c->lst.taken_empty_lebs >= 0);
 551        ubifs_assert(c->lst.taken_empty_lebs <= c->lst.empty_lebs);
 552        ubifs_assert(!(c->lst.total_free & 7) && !(c->lst.total_dirty & 7));
 553        ubifs_assert(!(c->lst.total_dead & 7) && !(c->lst.total_dark & 7));
 554        ubifs_assert(!(c->lst.total_used & 7));
 555        ubifs_assert(free == LPROPS_NC || free >= 0);
 556        ubifs_assert(dirty == LPROPS_NC || dirty >= 0);
 557
 558        if (!is_lprops_dirty(c, lprops)) {
 559                lprops = ubifs_lpt_lookup_dirty(c, lprops->lnum);
 560                if (IS_ERR(lprops))
 561                        return lprops;
 562        } else
 563                ubifs_assert(lprops == ubifs_lpt_lookup_dirty(c, lprops->lnum));
 564
 565        ubifs_assert(!(lprops->free & 7) && !(lprops->dirty & 7));
 566
 567        spin_lock(&c->space_lock);
 568        if ((lprops->flags & LPROPS_TAKEN) && lprops->free == c->leb_size)
 569                c->lst.taken_empty_lebs -= 1;
 570
 571        if (!(lprops->flags & LPROPS_INDEX)) {
 572                int old_spc;
 573
 574                old_spc = lprops->free + lprops->dirty;
 575                if (old_spc < c->dead_wm)
 576                        c->lst.total_dead -= old_spc;
 577                else
 578                        c->lst.total_dark -= calc_dark(c, old_spc);
 579
 580                c->lst.total_used -= c->leb_size - old_spc;
 581        }
 582
 583        if (free != LPROPS_NC) {
 584                free = ALIGN(free, 8);
 585                c->lst.total_free += free - lprops->free;
 586
 587                /* Increase or decrease empty LEBs counter if needed */
 588                if (free == c->leb_size) {
 589                        if (lprops->free != c->leb_size)
 590                                c->lst.empty_lebs += 1;
 591                } else if (lprops->free == c->leb_size)
 592                        c->lst.empty_lebs -= 1;
 593                lprops->free = free;
 594        }
 595
 596        if (dirty != LPROPS_NC) {
 597                dirty = ALIGN(dirty, 8);
 598                c->lst.total_dirty += dirty - lprops->dirty;
 599                lprops->dirty = dirty;
 600        }
 601
 602        if (flags != LPROPS_NC) {
 603                /* Take care about indexing LEBs counter if needed */
 604                if ((lprops->flags & LPROPS_INDEX)) {
 605                        if (!(flags & LPROPS_INDEX))
 606                                c->lst.idx_lebs -= 1;
 607                } else if (flags & LPROPS_INDEX)
 608                        c->lst.idx_lebs += 1;
 609                lprops->flags = flags;
 610        }
 611
 612        if (!(lprops->flags & LPROPS_INDEX)) {
 613                int new_spc;
 614
 615                new_spc = lprops->free + lprops->dirty;
 616                if (new_spc < c->dead_wm)
 617                        c->lst.total_dead += new_spc;
 618                else
 619                        c->lst.total_dark += calc_dark(c, new_spc);
 620
 621                c->lst.total_used += c->leb_size - new_spc;
 622        }
 623
 624        if ((lprops->flags & LPROPS_TAKEN) && lprops->free == c->leb_size)
 625                c->lst.taken_empty_lebs += 1;
 626
 627        change_category(c, lprops);
 628        c->idx_gc_cnt += idx_gc_cnt;
 629        spin_unlock(&c->space_lock);
 630        return lprops;
 631}
 632
 633/**
 634 * ubifs_get_lp_stats - get lprops statistics.
 635 * @c: UBIFS file-system description object
 636 * @st: return statistics
 637 */
 638void ubifs_get_lp_stats(struct ubifs_info *c, struct ubifs_lp_stats *lst)
 639{
 640        spin_lock(&c->space_lock);
 641        memcpy(lst, &c->lst, sizeof(struct ubifs_lp_stats));
 642        spin_unlock(&c->space_lock);
 643}
 644
 645/**
 646 * ubifs_change_one_lp - change LEB properties.
 647 * @c: the UBIFS file-system description object
 648 * @lnum: LEB to change properties for
 649 * @free: amount of free space
 650 * @dirty: amount of dirty space
 651 * @flags_set: flags to set
 652 * @flags_clean: flags to clean
 653 * @idx_gc_cnt: change to the count of idx_gc list
 654 *
 655 * This function changes properties of LEB @lnum. It is a helper wrapper over
 656 * 'ubifs_change_lp()' which hides lprops get/release. The arguments are the
 657 * same as in case of 'ubifs_change_lp()'. Returns zero in case of success and
 658 * a negative error code in case of failure.
 659 */
 660int ubifs_change_one_lp(struct ubifs_info *c, int lnum, int free, int dirty,
 661                        int flags_set, int flags_clean, int idx_gc_cnt)
 662{
 663        int err = 0, flags;
 664        const struct ubifs_lprops *lp;
 665
 666        ubifs_get_lprops(c);
 667
 668        lp = ubifs_lpt_lookup_dirty(c, lnum);
 669        if (IS_ERR(lp)) {
 670                err = PTR_ERR(lp);
 671                goto out;
 672        }
 673
 674        flags = (lp->flags | flags_set) & ~flags_clean;
 675        lp = ubifs_change_lp(c, lp, free, dirty, flags, idx_gc_cnt);
 676        if (IS_ERR(lp))
 677                err = PTR_ERR(lp);
 678
 679out:
 680        ubifs_release_lprops(c);
 681        return err;
 682}
 683
 684/**
 685 * ubifs_update_one_lp - update LEB properties.
 686 * @c: the UBIFS file-system description object
 687 * @lnum: LEB to change properties for
 688 * @free: amount of free space
 689 * @dirty: amount of dirty space to add
 690 * @flags_set: flags to set
 691 * @flags_clean: flags to clean
 692 *
 693 * This function is the same as 'ubifs_change_one_lp()' but @dirty is added to
 694 * current dirty space, not substitutes it.
 695 */
 696int ubifs_update_one_lp(struct ubifs_info *c, int lnum, int free, int dirty,
 697                        int flags_set, int flags_clean)
 698{
 699        int err = 0, flags;
 700        const struct ubifs_lprops *lp;
 701
 702        ubifs_get_lprops(c);
 703
 704        lp = ubifs_lpt_lookup_dirty(c, lnum);
 705        if (IS_ERR(lp)) {
 706                err = PTR_ERR(lp);
 707                goto out;
 708        }
 709
 710        flags = (lp->flags | flags_set) & ~flags_clean;
 711        lp = ubifs_change_lp(c, lp, free, lp->dirty + dirty, flags, 0);
 712        if (IS_ERR(lp))
 713                err = PTR_ERR(lp);
 714
 715out:
 716        ubifs_release_lprops(c);
 717        return err;
 718}
 719
 720/**
 721 * ubifs_read_one_lp - read LEB properties.
 722 * @c: the UBIFS file-system description object
 723 * @lnum: LEB to read properties for
 724 * @lp: where to store read properties
 725 *
 726 * This helper function reads properties of a LEB @lnum and stores them in @lp.
 727 * Returns zero in case of success and a negative error code in case of
 728 * failure.
 729 */
 730int ubifs_read_one_lp(struct ubifs_info *c, int lnum, struct ubifs_lprops *lp)
 731{
 732        int err = 0;
 733        const struct ubifs_lprops *lpp;
 734
 735        ubifs_get_lprops(c);
 736
 737        lpp = ubifs_lpt_lookup(c, lnum);
 738        if (IS_ERR(lpp)) {
 739                err = PTR_ERR(lpp);
 740                goto out;
 741        }
 742
 743        memcpy(lp, lpp, sizeof(struct ubifs_lprops));
 744
 745out:
 746        ubifs_release_lprops(c);
 747        return err;
 748}
 749
 750/**
 751 * ubifs_fast_find_free - try to find a LEB with free space quickly.
 752 * @c: the UBIFS file-system description object
 753 *
 754 * This function returns LEB properties for a LEB with free space or %NULL if
 755 * the function is unable to find a LEB quickly.
 756 */
 757const struct ubifs_lprops *ubifs_fast_find_free(struct ubifs_info *c)
 758{
 759        struct ubifs_lprops *lprops;
 760        struct ubifs_lpt_heap *heap;
 761
 762        ubifs_assert(mutex_is_locked(&c->lp_mutex));
 763
 764        heap = &c->lpt_heap[LPROPS_FREE - 1];
 765        if (heap->cnt == 0)
 766                return NULL;
 767
 768        lprops = heap->arr[0];
 769        ubifs_assert(!(lprops->flags & LPROPS_TAKEN));
 770        ubifs_assert(!(lprops->flags & LPROPS_INDEX));
 771        return lprops;
 772}
 773
 774/**
 775 * ubifs_fast_find_empty - try to find an empty LEB quickly.
 776 * @c: the UBIFS file-system description object
 777 *
 778 * This function returns LEB properties for an empty LEB or %NULL if the
 779 * function is unable to find an empty LEB quickly.
 780 */
 781const struct ubifs_lprops *ubifs_fast_find_empty(struct ubifs_info *c)
 782{
 783        struct ubifs_lprops *lprops;
 784
 785        ubifs_assert(mutex_is_locked(&c->lp_mutex));
 786
 787        if (list_empty(&c->empty_list))
 788                return NULL;
 789
 790        lprops = list_entry(c->empty_list.next, struct ubifs_lprops, list);
 791        ubifs_assert(!(lprops->flags & LPROPS_TAKEN));
 792        ubifs_assert(!(lprops->flags & LPROPS_INDEX));
 793        ubifs_assert(lprops->free == c->leb_size);
 794        return lprops;
 795}
 796
 797/**
 798 * ubifs_fast_find_freeable - try to find a freeable LEB quickly.
 799 * @c: the UBIFS file-system description object
 800 *
 801 * This function returns LEB properties for a freeable LEB or %NULL if the
 802 * function is unable to find a freeable LEB quickly.
 803 */
 804const struct ubifs_lprops *ubifs_fast_find_freeable(struct ubifs_info *c)
 805{
 806        struct ubifs_lprops *lprops;
 807
 808        ubifs_assert(mutex_is_locked(&c->lp_mutex));
 809
 810        if (list_empty(&c->freeable_list))
 811                return NULL;
 812
 813        lprops = list_entry(c->freeable_list.next, struct ubifs_lprops, list);
 814        ubifs_assert(!(lprops->flags & LPROPS_TAKEN));
 815        ubifs_assert(!(lprops->flags & LPROPS_INDEX));
 816        ubifs_assert(lprops->free + lprops->dirty == c->leb_size);
 817        ubifs_assert(c->freeable_cnt > 0);
 818        return lprops;
 819}
 820
 821/**
 822 * ubifs_fast_find_frdi_idx - try to find a freeable index LEB quickly.
 823 * @c: the UBIFS file-system description object
 824 *
 825 * This function returns LEB properties for a freeable index LEB or %NULL if the
 826 * function is unable to find a freeable index LEB quickly.
 827 */
 828const struct ubifs_lprops *ubifs_fast_find_frdi_idx(struct ubifs_info *c)
 829{
 830        struct ubifs_lprops *lprops;
 831
 832        ubifs_assert(mutex_is_locked(&c->lp_mutex));
 833
 834        if (list_empty(&c->frdi_idx_list))
 835                return NULL;
 836
 837        lprops = list_entry(c->frdi_idx_list.next, struct ubifs_lprops, list);
 838        ubifs_assert(!(lprops->flags & LPROPS_TAKEN));
 839        ubifs_assert((lprops->flags & LPROPS_INDEX));
 840        ubifs_assert(lprops->free + lprops->dirty == c->leb_size);
 841        return lprops;
 842}
 843