uboot/drivers/mtd/mtdpart.c
<<
>>
Prefs
   1/*
   2 * Simple MTD partitioning layer
   3 *
   4 * Copyright © 2000 Nicolas Pitre <nico@fluxnic.net>
   5 * Copyright © 2002 Thomas Gleixner <gleixner@linutronix.de>
   6 * Copyright © 2000-2010 David Woodhouse <dwmw2@infradead.org>
   7 *
   8 * SPDX-License-Identifier:     GPL-2.0+
   9 *
  10 */
  11
  12#ifndef __UBOOT__
  13#include <linux/module.h>
  14#include <linux/types.h>
  15#include <linux/kernel.h>
  16#include <linux/slab.h>
  17#include <linux/list.h>
  18#include <linux/kmod.h>
  19#endif
  20
  21#include <common.h>
  22#include <malloc.h>
  23#include <asm/errno.h>
  24#include <linux/compat.h>
  25#include <ubi_uboot.h>
  26
  27#include <linux/mtd/mtd.h>
  28#include <linux/mtd/partitions.h>
  29#include <linux/err.h>
  30
  31#include "mtdcore.h"
  32
  33/* Our partition linked list */
  34static LIST_HEAD(mtd_partitions);
  35#ifndef __UBOOT__
  36static DEFINE_MUTEX(mtd_partitions_mutex);
  37#else
  38DEFINE_MUTEX(mtd_partitions_mutex);
  39#endif
  40
  41/* Our partition node structure */
  42struct mtd_part {
  43        struct mtd_info mtd;
  44        struct mtd_info *master;
  45        uint64_t offset;
  46        struct list_head list;
  47};
  48
  49/*
  50 * Given a pointer to the MTD object in the mtd_part structure, we can retrieve
  51 * the pointer to that structure with this macro.
  52 */
  53#define PART(x)  ((struct mtd_part *)(x))
  54
  55
  56#ifdef __UBOOT__
  57/* from mm/util.c */
  58
  59/**
  60 * kstrdup - allocate space for and copy an existing string
  61 * @s: the string to duplicate
  62 * @gfp: the GFP mask used in the kmalloc() call when allocating memory
  63 */
  64char *kstrdup(const char *s, gfp_t gfp)
  65{
  66        size_t len;
  67        char *buf;
  68
  69        if (!s)
  70                return NULL;
  71
  72        len = strlen(s) + 1;
  73        buf = kmalloc(len, gfp);
  74        if (buf)
  75                memcpy(buf, s, len);
  76        return buf;
  77}
  78#endif
  79
  80/*
  81 * MTD methods which simply translate the effective address and pass through
  82 * to the _real_ device.
  83 */
  84
  85static int part_read(struct mtd_info *mtd, loff_t from, size_t len,
  86                size_t *retlen, u_char *buf)
  87{
  88        struct mtd_part *part = PART(mtd);
  89        struct mtd_ecc_stats stats;
  90        int res;
  91
  92        stats = part->master->ecc_stats;
  93        res = part->master->_read(part->master, from + part->offset, len,
  94                                  retlen, buf);
  95        if (unlikely(mtd_is_eccerr(res)))
  96                mtd->ecc_stats.failed +=
  97                        part->master->ecc_stats.failed - stats.failed;
  98        else
  99                mtd->ecc_stats.corrected +=
 100                        part->master->ecc_stats.corrected - stats.corrected;
 101        return res;
 102}
 103
 104#ifndef __UBOOT__
 105static int part_point(struct mtd_info *mtd, loff_t from, size_t len,
 106                size_t *retlen, void **virt, resource_size_t *phys)
 107{
 108        struct mtd_part *part = PART(mtd);
 109
 110        return part->master->_point(part->master, from + part->offset, len,
 111                                    retlen, virt, phys);
 112}
 113
 114static int part_unpoint(struct mtd_info *mtd, loff_t from, size_t len)
 115{
 116        struct mtd_part *part = PART(mtd);
 117
 118        return part->master->_unpoint(part->master, from + part->offset, len);
 119}
 120#endif
 121
 122static unsigned long part_get_unmapped_area(struct mtd_info *mtd,
 123                                            unsigned long len,
 124                                            unsigned long offset,
 125                                            unsigned long flags)
 126{
 127        struct mtd_part *part = PART(mtd);
 128
 129        offset += part->offset;
 130        return part->master->_get_unmapped_area(part->master, len, offset,
 131                                                flags);
 132}
 133
 134static int part_read_oob(struct mtd_info *mtd, loff_t from,
 135                struct mtd_oob_ops *ops)
 136{
 137        struct mtd_part *part = PART(mtd);
 138        int res;
 139
 140        if (from >= mtd->size)
 141                return -EINVAL;
 142        if (ops->datbuf && from + ops->len > mtd->size)
 143                return -EINVAL;
 144
 145        /*
 146         * If OOB is also requested, make sure that we do not read past the end
 147         * of this partition.
 148         */
 149        if (ops->oobbuf) {
 150                size_t len, pages;
 151
 152                if (ops->mode == MTD_OPS_AUTO_OOB)
 153                        len = mtd->oobavail;
 154                else
 155                        len = mtd->oobsize;
 156                pages = mtd_div_by_ws(mtd->size, mtd);
 157                pages -= mtd_div_by_ws(from, mtd);
 158                if (ops->ooboffs + ops->ooblen > pages * len)
 159                        return -EINVAL;
 160        }
 161
 162        res = part->master->_read_oob(part->master, from + part->offset, ops);
 163        if (unlikely(res)) {
 164                if (mtd_is_bitflip(res))
 165                        mtd->ecc_stats.corrected++;
 166                if (mtd_is_eccerr(res))
 167                        mtd->ecc_stats.failed++;
 168        }
 169        return res;
 170}
 171
 172static int part_read_user_prot_reg(struct mtd_info *mtd, loff_t from,
 173                size_t len, size_t *retlen, u_char *buf)
 174{
 175        struct mtd_part *part = PART(mtd);
 176        return part->master->_read_user_prot_reg(part->master, from, len,
 177                                                 retlen, buf);
 178}
 179
 180static int part_get_user_prot_info(struct mtd_info *mtd, size_t len,
 181                                   size_t *retlen, struct otp_info *buf)
 182{
 183        struct mtd_part *part = PART(mtd);
 184        return part->master->_get_user_prot_info(part->master, len, retlen,
 185                                                 buf);
 186}
 187
 188static int part_read_fact_prot_reg(struct mtd_info *mtd, loff_t from,
 189                size_t len, size_t *retlen, u_char *buf)
 190{
 191        struct mtd_part *part = PART(mtd);
 192        return part->master->_read_fact_prot_reg(part->master, from, len,
 193                                                 retlen, buf);
 194}
 195
 196static int part_get_fact_prot_info(struct mtd_info *mtd, size_t len,
 197                                   size_t *retlen, struct otp_info *buf)
 198{
 199        struct mtd_part *part = PART(mtd);
 200        return part->master->_get_fact_prot_info(part->master, len, retlen,
 201                                                 buf);
 202}
 203
 204static int part_write(struct mtd_info *mtd, loff_t to, size_t len,
 205                size_t *retlen, const u_char *buf)
 206{
 207        struct mtd_part *part = PART(mtd);
 208        return part->master->_write(part->master, to + part->offset, len,
 209                                    retlen, buf);
 210}
 211
 212static int part_panic_write(struct mtd_info *mtd, loff_t to, size_t len,
 213                size_t *retlen, const u_char *buf)
 214{
 215        struct mtd_part *part = PART(mtd);
 216        return part->master->_panic_write(part->master, to + part->offset, len,
 217                                          retlen, buf);
 218}
 219
 220static int part_write_oob(struct mtd_info *mtd, loff_t to,
 221                struct mtd_oob_ops *ops)
 222{
 223        struct mtd_part *part = PART(mtd);
 224
 225        if (to >= mtd->size)
 226                return -EINVAL;
 227        if (ops->datbuf && to + ops->len > mtd->size)
 228                return -EINVAL;
 229        return part->master->_write_oob(part->master, to + part->offset, ops);
 230}
 231
 232static int part_write_user_prot_reg(struct mtd_info *mtd, loff_t from,
 233                size_t len, size_t *retlen, u_char *buf)
 234{
 235        struct mtd_part *part = PART(mtd);
 236        return part->master->_write_user_prot_reg(part->master, from, len,
 237                                                  retlen, buf);
 238}
 239
 240static int part_lock_user_prot_reg(struct mtd_info *mtd, loff_t from,
 241                size_t len)
 242{
 243        struct mtd_part *part = PART(mtd);
 244        return part->master->_lock_user_prot_reg(part->master, from, len);
 245}
 246
 247#ifndef __UBOOT__
 248static int part_writev(struct mtd_info *mtd, const struct kvec *vecs,
 249                unsigned long count, loff_t to, size_t *retlen)
 250{
 251        struct mtd_part *part = PART(mtd);
 252        return part->master->_writev(part->master, vecs, count,
 253                                     to + part->offset, retlen);
 254}
 255#endif
 256
 257static int part_erase(struct mtd_info *mtd, struct erase_info *instr)
 258{
 259        struct mtd_part *part = PART(mtd);
 260        int ret;
 261
 262        instr->addr += part->offset;
 263        ret = part->master->_erase(part->master, instr);
 264        if (ret) {
 265                if (instr->fail_addr != MTD_FAIL_ADDR_UNKNOWN)
 266                        instr->fail_addr -= part->offset;
 267                instr->addr -= part->offset;
 268        }
 269        return ret;
 270}
 271
 272void mtd_erase_callback(struct erase_info *instr)
 273{
 274        if (instr->mtd->_erase == part_erase) {
 275                struct mtd_part *part = PART(instr->mtd);
 276
 277                if (instr->fail_addr != MTD_FAIL_ADDR_UNKNOWN)
 278                        instr->fail_addr -= part->offset;
 279                instr->addr -= part->offset;
 280        }
 281        if (instr->callback)
 282                instr->callback(instr);
 283}
 284EXPORT_SYMBOL_GPL(mtd_erase_callback);
 285
 286static int part_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
 287{
 288        struct mtd_part *part = PART(mtd);
 289        return part->master->_lock(part->master, ofs + part->offset, len);
 290}
 291
 292static int part_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
 293{
 294        struct mtd_part *part = PART(mtd);
 295        return part->master->_unlock(part->master, ofs + part->offset, len);
 296}
 297
 298static int part_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len)
 299{
 300        struct mtd_part *part = PART(mtd);
 301        return part->master->_is_locked(part->master, ofs + part->offset, len);
 302}
 303
 304static void part_sync(struct mtd_info *mtd)
 305{
 306        struct mtd_part *part = PART(mtd);
 307        part->master->_sync(part->master);
 308}
 309
 310#ifndef __UBOOT__
 311static int part_suspend(struct mtd_info *mtd)
 312{
 313        struct mtd_part *part = PART(mtd);
 314        return part->master->_suspend(part->master);
 315}
 316
 317static void part_resume(struct mtd_info *mtd)
 318{
 319        struct mtd_part *part = PART(mtd);
 320        part->master->_resume(part->master);
 321}
 322#endif
 323
 324static int part_block_isbad(struct mtd_info *mtd, loff_t ofs)
 325{
 326        struct mtd_part *part = PART(mtd);
 327        ofs += part->offset;
 328        return part->master->_block_isbad(part->master, ofs);
 329}
 330
 331static int part_block_markbad(struct mtd_info *mtd, loff_t ofs)
 332{
 333        struct mtd_part *part = PART(mtd);
 334        int res;
 335
 336        ofs += part->offset;
 337        res = part->master->_block_markbad(part->master, ofs);
 338        if (!res)
 339                mtd->ecc_stats.badblocks++;
 340        return res;
 341}
 342
 343static inline void free_partition(struct mtd_part *p)
 344{
 345        kfree(p->mtd.name);
 346        kfree(p);
 347}
 348
 349/*
 350 * This function unregisters and destroy all slave MTD objects which are
 351 * attached to the given master MTD object.
 352 */
 353
 354int del_mtd_partitions(struct mtd_info *master)
 355{
 356        struct mtd_part *slave, *next;
 357        int ret, err = 0;
 358
 359        mutex_lock(&mtd_partitions_mutex);
 360        list_for_each_entry_safe(slave, next, &mtd_partitions, list)
 361                if (slave->master == master) {
 362                        ret = del_mtd_device(&slave->mtd);
 363                        if (ret < 0) {
 364                                err = ret;
 365                                continue;
 366                        }
 367                        list_del(&slave->list);
 368                        free_partition(slave);
 369                }
 370        mutex_unlock(&mtd_partitions_mutex);
 371
 372        return err;
 373}
 374
 375static struct mtd_part *allocate_partition(struct mtd_info *master,
 376                        const struct mtd_partition *part, int partno,
 377                        uint64_t cur_offset)
 378{
 379        struct mtd_part *slave;
 380        char *name;
 381
 382        /* allocate the partition structure */
 383        slave = kzalloc(sizeof(*slave), GFP_KERNEL);
 384        name = kstrdup(part->name, GFP_KERNEL);
 385        if (!name || !slave) {
 386                printk(KERN_ERR"memory allocation error while creating partitions for \"%s\"\n",
 387                       master->name);
 388                kfree(name);
 389                kfree(slave);
 390                return ERR_PTR(-ENOMEM);
 391        }
 392
 393        /* set up the MTD object for this partition */
 394        slave->mtd.type = master->type;
 395        slave->mtd.flags = master->flags & ~part->mask_flags;
 396        slave->mtd.size = part->size;
 397        slave->mtd.writesize = master->writesize;
 398        slave->mtd.writebufsize = master->writebufsize;
 399        slave->mtd.oobsize = master->oobsize;
 400        slave->mtd.oobavail = master->oobavail;
 401        slave->mtd.subpage_sft = master->subpage_sft;
 402
 403        slave->mtd.name = name;
 404        slave->mtd.owner = master->owner;
 405#ifndef __UBOOT__
 406        slave->mtd.backing_dev_info = master->backing_dev_info;
 407
 408        /* NOTE:  we don't arrange MTDs as a tree; it'd be error-prone
 409         * to have the same data be in two different partitions.
 410         */
 411        slave->mtd.dev.parent = master->dev.parent;
 412#endif
 413
 414        slave->mtd._read = part_read;
 415        slave->mtd._write = part_write;
 416
 417        if (master->_panic_write)
 418                slave->mtd._panic_write = part_panic_write;
 419
 420#ifndef __UBOOT__
 421        if (master->_point && master->_unpoint) {
 422                slave->mtd._point = part_point;
 423                slave->mtd._unpoint = part_unpoint;
 424        }
 425#endif
 426
 427        if (master->_get_unmapped_area)
 428                slave->mtd._get_unmapped_area = part_get_unmapped_area;
 429        if (master->_read_oob)
 430                slave->mtd._read_oob = part_read_oob;
 431        if (master->_write_oob)
 432                slave->mtd._write_oob = part_write_oob;
 433        if (master->_read_user_prot_reg)
 434                slave->mtd._read_user_prot_reg = part_read_user_prot_reg;
 435        if (master->_read_fact_prot_reg)
 436                slave->mtd._read_fact_prot_reg = part_read_fact_prot_reg;
 437        if (master->_write_user_prot_reg)
 438                slave->mtd._write_user_prot_reg = part_write_user_prot_reg;
 439        if (master->_lock_user_prot_reg)
 440                slave->mtd._lock_user_prot_reg = part_lock_user_prot_reg;
 441        if (master->_get_user_prot_info)
 442                slave->mtd._get_user_prot_info = part_get_user_prot_info;
 443        if (master->_get_fact_prot_info)
 444                slave->mtd._get_fact_prot_info = part_get_fact_prot_info;
 445        if (master->_sync)
 446                slave->mtd._sync = part_sync;
 447#ifndef __UBOOT__
 448        if (!partno && !master->dev.class && master->_suspend &&
 449            master->_resume) {
 450                        slave->mtd._suspend = part_suspend;
 451                        slave->mtd._resume = part_resume;
 452        }
 453        if (master->_writev)
 454                slave->mtd._writev = part_writev;
 455#endif
 456        if (master->_lock)
 457                slave->mtd._lock = part_lock;
 458        if (master->_unlock)
 459                slave->mtd._unlock = part_unlock;
 460        if (master->_is_locked)
 461                slave->mtd._is_locked = part_is_locked;
 462        if (master->_block_isbad)
 463                slave->mtd._block_isbad = part_block_isbad;
 464        if (master->_block_markbad)
 465                slave->mtd._block_markbad = part_block_markbad;
 466        slave->mtd._erase = part_erase;
 467        slave->master = master;
 468        slave->offset = part->offset;
 469
 470        if (slave->offset == MTDPART_OFS_APPEND)
 471                slave->offset = cur_offset;
 472        if (slave->offset == MTDPART_OFS_NXTBLK) {
 473                slave->offset = cur_offset;
 474                if (mtd_mod_by_eb(cur_offset, master) != 0) {
 475                        /* Round up to next erasesize */
 476                        slave->offset = (mtd_div_by_eb(cur_offset, master) + 1) * master->erasesize;
 477                        debug("Moving partition %d: "
 478                               "0x%012llx -> 0x%012llx\n", partno,
 479                               (unsigned long long)cur_offset, (unsigned long long)slave->offset);
 480                }
 481        }
 482        if (slave->offset == MTDPART_OFS_RETAIN) {
 483                slave->offset = cur_offset;
 484                if (master->size - slave->offset >= slave->mtd.size) {
 485                        slave->mtd.size = master->size - slave->offset
 486                                                        - slave->mtd.size;
 487                } else {
 488                        debug("mtd partition \"%s\" doesn't have enough space: %#llx < %#llx, disabled\n",
 489                                part->name, master->size - slave->offset,
 490                                slave->mtd.size);
 491                        /* register to preserve ordering */
 492                        goto out_register;
 493                }
 494        }
 495        if (slave->mtd.size == MTDPART_SIZ_FULL)
 496                slave->mtd.size = master->size - slave->offset;
 497
 498        debug("0x%012llx-0x%012llx : \"%s\"\n", (unsigned long long)slave->offset,
 499                (unsigned long long)(slave->offset + slave->mtd.size), slave->mtd.name);
 500
 501        /* let's do some sanity checks */
 502        if (slave->offset >= master->size) {
 503                /* let's register it anyway to preserve ordering */
 504                slave->offset = 0;
 505                slave->mtd.size = 0;
 506                printk(KERN_ERR"mtd: partition \"%s\" is out of reach -- disabled\n",
 507                        part->name);
 508                goto out_register;
 509        }
 510        if (slave->offset + slave->mtd.size > master->size) {
 511                slave->mtd.size = master->size - slave->offset;
 512                printk(KERN_WARNING"mtd: partition \"%s\" extends beyond the end of device \"%s\" -- size truncated to %#llx\n",
 513                        part->name, master->name, (unsigned long long)slave->mtd.size);
 514        }
 515        if (master->numeraseregions > 1) {
 516                /* Deal with variable erase size stuff */
 517                int i, max = master->numeraseregions;
 518                u64 end = slave->offset + slave->mtd.size;
 519                struct mtd_erase_region_info *regions = master->eraseregions;
 520
 521                /* Find the first erase regions which is part of this
 522                 * partition. */
 523                for (i = 0; i < max && regions[i].offset <= slave->offset; i++)
 524                        ;
 525                /* The loop searched for the region _behind_ the first one */
 526                if (i > 0)
 527                        i--;
 528
 529                /* Pick biggest erasesize */
 530                for (; i < max && regions[i].offset < end; i++) {
 531                        if (slave->mtd.erasesize < regions[i].erasesize) {
 532                                slave->mtd.erasesize = regions[i].erasesize;
 533                        }
 534                }
 535                BUG_ON(slave->mtd.erasesize == 0);
 536        } else {
 537                /* Single erase size */
 538                slave->mtd.erasesize = master->erasesize;
 539        }
 540
 541        if ((slave->mtd.flags & MTD_WRITEABLE) &&
 542            mtd_mod_by_eb(slave->offset, &slave->mtd)) {
 543                /* Doesn't start on a boundary of major erase size */
 544                /* FIXME: Let it be writable if it is on a boundary of
 545                 * _minor_ erase size though */
 546                slave->mtd.flags &= ~MTD_WRITEABLE;
 547                printk(KERN_WARNING"mtd: partition \"%s\" doesn't start on an erase block boundary -- force read-only\n",
 548                        part->name);
 549        }
 550        if ((slave->mtd.flags & MTD_WRITEABLE) &&
 551            mtd_mod_by_eb(slave->mtd.size, &slave->mtd)) {
 552                slave->mtd.flags &= ~MTD_WRITEABLE;
 553                printk(KERN_WARNING"mtd: partition \"%s\" doesn't end on an erase block -- force read-only\n",
 554                        part->name);
 555        }
 556
 557        slave->mtd.ecclayout = master->ecclayout;
 558        slave->mtd.ecc_step_size = master->ecc_step_size;
 559        slave->mtd.ecc_strength = master->ecc_strength;
 560        slave->mtd.bitflip_threshold = master->bitflip_threshold;
 561
 562        if (master->_block_isbad) {
 563                uint64_t offs = 0;
 564
 565                while (offs < slave->mtd.size) {
 566                        if (mtd_block_isbad(master, offs + slave->offset))
 567                                slave->mtd.ecc_stats.badblocks++;
 568                        offs += slave->mtd.erasesize;
 569                }
 570        }
 571
 572out_register:
 573        return slave;
 574}
 575
 576#ifndef __UBOOT__
 577int mtd_add_partition(struct mtd_info *master, const char *name,
 578                      long long offset, long long length)
 579{
 580        struct mtd_partition part;
 581        struct mtd_part *p, *new;
 582        uint64_t start, end;
 583        int ret = 0;
 584
 585        /* the direct offset is expected */
 586        if (offset == MTDPART_OFS_APPEND ||
 587            offset == MTDPART_OFS_NXTBLK)
 588                return -EINVAL;
 589
 590        if (length == MTDPART_SIZ_FULL)
 591                length = master->size - offset;
 592
 593        if (length <= 0)
 594                return -EINVAL;
 595
 596        part.name = name;
 597        part.size = length;
 598        part.offset = offset;
 599        part.mask_flags = 0;
 600        part.ecclayout = NULL;
 601
 602        new = allocate_partition(master, &part, -1, offset);
 603        if (IS_ERR(new))
 604                return PTR_ERR(new);
 605
 606        start = offset;
 607        end = offset + length;
 608
 609        mutex_lock(&mtd_partitions_mutex);
 610        list_for_each_entry(p, &mtd_partitions, list)
 611                if (p->master == master) {
 612                        if ((start >= p->offset) &&
 613                            (start < (p->offset + p->mtd.size)))
 614                                goto err_inv;
 615
 616                        if ((end >= p->offset) &&
 617                            (end < (p->offset + p->mtd.size)))
 618                                goto err_inv;
 619                }
 620
 621        list_add(&new->list, &mtd_partitions);
 622        mutex_unlock(&mtd_partitions_mutex);
 623
 624        add_mtd_device(&new->mtd);
 625
 626        return ret;
 627err_inv:
 628        mutex_unlock(&mtd_partitions_mutex);
 629        free_partition(new);
 630        return -EINVAL;
 631}
 632EXPORT_SYMBOL_GPL(mtd_add_partition);
 633
 634int mtd_del_partition(struct mtd_info *master, int partno)
 635{
 636        struct mtd_part *slave, *next;
 637        int ret = -EINVAL;
 638
 639        mutex_lock(&mtd_partitions_mutex);
 640        list_for_each_entry_safe(slave, next, &mtd_partitions, list)
 641                if ((slave->master == master) &&
 642                    (slave->mtd.index == partno)) {
 643                        ret = del_mtd_device(&slave->mtd);
 644                        if (ret < 0)
 645                                break;
 646
 647                        list_del(&slave->list);
 648                        free_partition(slave);
 649                        break;
 650                }
 651        mutex_unlock(&mtd_partitions_mutex);
 652
 653        return ret;
 654}
 655EXPORT_SYMBOL_GPL(mtd_del_partition);
 656#endif
 657
 658/*
 659 * This function, given a master MTD object and a partition table, creates
 660 * and registers slave MTD objects which are bound to the master according to
 661 * the partition definitions.
 662 *
 663 * We don't register the master, or expect the caller to have done so,
 664 * for reasons of data integrity.
 665 */
 666
 667int add_mtd_partitions(struct mtd_info *master,
 668                       const struct mtd_partition *parts,
 669                       int nbparts)
 670{
 671        struct mtd_part *slave;
 672        uint64_t cur_offset = 0;
 673        int i;
 674
 675#ifdef __UBOOT__
 676        /*
 677         * Need to init the list here, since LIST_INIT() does not
 678         * work on platforms where relocation has problems (like MIPS
 679         * & PPC).
 680         */
 681        if (mtd_partitions.next == NULL)
 682                INIT_LIST_HEAD(&mtd_partitions);
 683#endif
 684
 685        debug("Creating %d MTD partitions on \"%s\":\n", nbparts, master->name);
 686
 687        for (i = 0; i < nbparts; i++) {
 688                slave = allocate_partition(master, parts + i, i, cur_offset);
 689                if (IS_ERR(slave))
 690                        return PTR_ERR(slave);
 691
 692                mutex_lock(&mtd_partitions_mutex);
 693                list_add(&slave->list, &mtd_partitions);
 694                mutex_unlock(&mtd_partitions_mutex);
 695
 696                add_mtd_device(&slave->mtd);
 697
 698                cur_offset = slave->offset + slave->mtd.size;
 699        }
 700
 701        return 0;
 702}
 703
 704#ifndef __UBOOT__
 705static DEFINE_SPINLOCK(part_parser_lock);
 706static LIST_HEAD(part_parsers);
 707
 708static struct mtd_part_parser *get_partition_parser(const char *name)
 709{
 710        struct mtd_part_parser *p, *ret = NULL;
 711
 712        spin_lock(&part_parser_lock);
 713
 714        list_for_each_entry(p, &part_parsers, list)
 715                if (!strcmp(p->name, name) && try_module_get(p->owner)) {
 716                        ret = p;
 717                        break;
 718                }
 719
 720        spin_unlock(&part_parser_lock);
 721
 722        return ret;
 723}
 724
 725#define put_partition_parser(p) do { module_put((p)->owner); } while (0)
 726
 727void register_mtd_parser(struct mtd_part_parser *p)
 728{
 729        spin_lock(&part_parser_lock);
 730        list_add(&p->list, &part_parsers);
 731        spin_unlock(&part_parser_lock);
 732}
 733EXPORT_SYMBOL_GPL(register_mtd_parser);
 734
 735void deregister_mtd_parser(struct mtd_part_parser *p)
 736{
 737        spin_lock(&part_parser_lock);
 738        list_del(&p->list);
 739        spin_unlock(&part_parser_lock);
 740}
 741EXPORT_SYMBOL_GPL(deregister_mtd_parser);
 742
 743/*
 744 * Do not forget to update 'parse_mtd_partitions()' kerneldoc comment if you
 745 * are changing this array!
 746 */
 747static const char * const default_mtd_part_types[] = {
 748        "cmdlinepart",
 749        "ofpart",
 750        NULL
 751};
 752
 753/**
 754 * parse_mtd_partitions - parse MTD partitions
 755 * @master: the master partition (describes whole MTD device)
 756 * @types: names of partition parsers to try or %NULL
 757 * @pparts: array of partitions found is returned here
 758 * @data: MTD partition parser-specific data
 759 *
 760 * This function tries to find partition on MTD device @master. It uses MTD
 761 * partition parsers, specified in @types. However, if @types is %NULL, then
 762 * the default list of parsers is used. The default list contains only the
 763 * "cmdlinepart" and "ofpart" parsers ATM.
 764 * Note: If there are more then one parser in @types, the kernel only takes the
 765 * partitions parsed out by the first parser.
 766 *
 767 * This function may return:
 768 * o a negative error code in case of failure
 769 * o zero if no partitions were found
 770 * o a positive number of found partitions, in which case on exit @pparts will
 771 *   point to an array containing this number of &struct mtd_info objects.
 772 */
 773int parse_mtd_partitions(struct mtd_info *master, const char *const *types,
 774                         struct mtd_partition **pparts,
 775                         struct mtd_part_parser_data *data)
 776{
 777        struct mtd_part_parser *parser;
 778        int ret = 0;
 779
 780        if (!types)
 781                types = default_mtd_part_types;
 782
 783        for ( ; ret <= 0 && *types; types++) {
 784                parser = get_partition_parser(*types);
 785                if (!parser && !request_module("%s", *types))
 786                        parser = get_partition_parser(*types);
 787                if (!parser)
 788                        continue;
 789                ret = (*parser->parse_fn)(master, pparts, data);
 790                put_partition_parser(parser);
 791                if (ret > 0) {
 792                        printk(KERN_NOTICE "%d %s partitions found on MTD device %s\n",
 793                               ret, parser->name, master->name);
 794                        break;
 795                }
 796        }
 797        return ret;
 798}
 799#endif
 800
 801int mtd_is_partition(const struct mtd_info *mtd)
 802{
 803        struct mtd_part *part;
 804        int ispart = 0;
 805
 806        mutex_lock(&mtd_partitions_mutex);
 807        list_for_each_entry(part, &mtd_partitions, list)
 808                if (&part->mtd == mtd) {
 809                        ispart = 1;
 810                        break;
 811                }
 812        mutex_unlock(&mtd_partitions_mutex);
 813
 814        return ispart;
 815}
 816EXPORT_SYMBOL_GPL(mtd_is_partition);
 817
 818/* Returns the size of the entire flash chip */
 819uint64_t mtd_get_device_size(const struct mtd_info *mtd)
 820{
 821        if (!mtd_is_partition(mtd))
 822                return mtd->size;
 823
 824        return PART(mtd)->master->size;
 825}
 826EXPORT_SYMBOL_GPL(mtd_get_device_size);
 827