uboot/drivers/mtd/ubi/attach.c
<<
>>
Prefs
   1/*
   2 * Copyright (c) International Business Machines Corp., 2006
   3 *
   4 * SPDX-License-Identifier:     GPL-2.0+
   5 *
   6 * Author: Artem Bityutskiy (Битюцкий Артём)
   7 */
   8
   9/*
  10 * UBI attaching sub-system.
  11 *
  12 * This sub-system is responsible for attaching MTD devices and it also
  13 * implements flash media scanning.
  14 *
  15 * The attaching information is represented by a &struct ubi_attach_info'
  16 * object. Information about volumes is represented by &struct ubi_ainf_volume
  17 * objects which are kept in volume RB-tree with root at the @volumes field.
  18 * The RB-tree is indexed by the volume ID.
  19 *
  20 * Logical eraseblocks are represented by &struct ubi_ainf_peb objects. These
  21 * objects are kept in per-volume RB-trees with the root at the corresponding
  22 * &struct ubi_ainf_volume object. To put it differently, we keep an RB-tree of
  23 * per-volume objects and each of these objects is the root of RB-tree of
  24 * per-LEB objects.
  25 *
  26 * Corrupted physical eraseblocks are put to the @corr list, free physical
  27 * eraseblocks are put to the @free list and the physical eraseblock to be
  28 * erased are put to the @erase list.
  29 *
  30 * About corruptions
  31 * ~~~~~~~~~~~~~~~~~
  32 *
  33 * UBI protects EC and VID headers with CRC-32 checksums, so it can detect
  34 * whether the headers are corrupted or not. Sometimes UBI also protects the
  35 * data with CRC-32, e.g., when it executes the atomic LEB change operation, or
  36 * when it moves the contents of a PEB for wear-leveling purposes.
  37 *
  38 * UBI tries to distinguish between 2 types of corruptions.
  39 *
  40 * 1. Corruptions caused by power cuts. These are expected corruptions and UBI
  41 * tries to handle them gracefully, without printing too many warnings and
  42 * error messages. The idea is that we do not lose important data in these
  43 * cases - we may lose only the data which were being written to the media just
  44 * before the power cut happened, and the upper layers (e.g., UBIFS) are
  45 * supposed to handle such data losses (e.g., by using the FS journal).
  46 *
  47 * When UBI detects a corruption (CRC-32 mismatch) in a PEB, and it looks like
  48 * the reason is a power cut, UBI puts this PEB to the @erase list, and all
  49 * PEBs in the @erase list are scheduled for erasure later.
  50 *
  51 * 2. Unexpected corruptions which are not caused by power cuts. During
  52 * attaching, such PEBs are put to the @corr list and UBI preserves them.
  53 * Obviously, this lessens the amount of available PEBs, and if at some  point
  54 * UBI runs out of free PEBs, it switches to R/O mode. UBI also loudly informs
  55 * about such PEBs every time the MTD device is attached.
  56 *
  57 * However, it is difficult to reliably distinguish between these types of
  58 * corruptions and UBI's strategy is as follows (in case of attaching by
  59 * scanning). UBI assumes corruption type 2 if the VID header is corrupted and
  60 * the data area does not contain all 0xFFs, and there were no bit-flips or
  61 * integrity errors (e.g., ECC errors in case of NAND) while reading the data
  62 * area.  Otherwise UBI assumes corruption type 1. So the decision criteria
  63 * are as follows.
  64 *   o If the data area contains only 0xFFs, there are no data, and it is safe
  65 *     to just erase this PEB - this is corruption type 1.
  66 *   o If the data area has bit-flips or data integrity errors (ECC errors on
  67 *     NAND), it is probably a PEB which was being erased when power cut
  68 *     happened, so this is corruption type 1. However, this is just a guess,
  69 *     which might be wrong.
  70 *   o Otherwise this is corruption type 2.
  71 */
  72
  73#ifndef __UBOOT__
  74#include <linux/err.h>
  75#include <linux/slab.h>
  76#include <linux/crc32.h>
  77#include <linux/random.h>
  78#else
  79#include <div64.h>
  80#include <linux/err.h>
  81#endif
  82
  83#include <linux/math64.h>
  84
  85#include <ubi_uboot.h>
  86#include "ubi.h"
  87
  88static int self_check_ai(struct ubi_device *ubi, struct ubi_attach_info *ai);
  89
  90/* Temporary variables used during scanning */
  91static struct ubi_ec_hdr *ech;
  92static struct ubi_vid_hdr *vidh;
  93
  94/**
  95 * add_to_list - add physical eraseblock to a list.
  96 * @ai: attaching information
  97 * @pnum: physical eraseblock number to add
  98 * @vol_id: the last used volume id for the PEB
  99 * @lnum: the last used LEB number for the PEB
 100 * @ec: erase counter of the physical eraseblock
 101 * @to_head: if not zero, add to the head of the list
 102 * @list: the list to add to
 103 *
 104 * This function allocates a 'struct ubi_ainf_peb' object for physical
 105 * eraseblock @pnum and adds it to the "free", "erase", or "alien" lists.
 106 * It stores the @lnum and @vol_id alongside, which can both be
 107 * %UBI_UNKNOWN if they are not available, not readable, or not assigned.
 108 * If @to_head is not zero, PEB will be added to the head of the list, which
 109 * basically means it will be processed first later. E.g., we add corrupted
 110 * PEBs (corrupted due to power cuts) to the head of the erase list to make
 111 * sure we erase them first and get rid of corruptions ASAP. This function
 112 * returns zero in case of success and a negative error code in case of
 113 * failure.
 114 */
 115static int add_to_list(struct ubi_attach_info *ai, int pnum, int vol_id,
 116                       int lnum, int ec, int to_head, struct list_head *list)
 117{
 118        struct ubi_ainf_peb *aeb;
 119
 120        if (list == &ai->free) {
 121                dbg_bld("add to free: PEB %d, EC %d", pnum, ec);
 122        } else if (list == &ai->erase) {
 123                dbg_bld("add to erase: PEB %d, EC %d", pnum, ec);
 124        } else if (list == &ai->alien) {
 125                dbg_bld("add to alien: PEB %d, EC %d", pnum, ec);
 126                ai->alien_peb_count += 1;
 127        } else
 128                BUG();
 129
 130        aeb = kmem_cache_alloc(ai->aeb_slab_cache, GFP_KERNEL);
 131        if (!aeb)
 132                return -ENOMEM;
 133
 134        aeb->pnum = pnum;
 135        aeb->vol_id = vol_id;
 136        aeb->lnum = lnum;
 137        aeb->ec = ec;
 138        if (to_head)
 139                list_add(&aeb->u.list, list);
 140        else
 141                list_add_tail(&aeb->u.list, list);
 142        return 0;
 143}
 144
 145/**
 146 * add_corrupted - add a corrupted physical eraseblock.
 147 * @ai: attaching information
 148 * @pnum: physical eraseblock number to add
 149 * @ec: erase counter of the physical eraseblock
 150 *
 151 * This function allocates a 'struct ubi_ainf_peb' object for a corrupted
 152 * physical eraseblock @pnum and adds it to the 'corr' list.  The corruption
 153 * was presumably not caused by a power cut. Returns zero in case of success
 154 * and a negative error code in case of failure.
 155 */
 156static int add_corrupted(struct ubi_attach_info *ai, int pnum, int ec)
 157{
 158        struct ubi_ainf_peb *aeb;
 159
 160        dbg_bld("add to corrupted: PEB %d, EC %d", pnum, ec);
 161
 162        aeb = kmem_cache_alloc(ai->aeb_slab_cache, GFP_KERNEL);
 163        if (!aeb)
 164                return -ENOMEM;
 165
 166        ai->corr_peb_count += 1;
 167        aeb->pnum = pnum;
 168        aeb->ec = ec;
 169        list_add(&aeb->u.list, &ai->corr);
 170        return 0;
 171}
 172
 173/**
 174 * validate_vid_hdr - check volume identifier header.
 175 * @vid_hdr: the volume identifier header to check
 176 * @av: information about the volume this logical eraseblock belongs to
 177 * @pnum: physical eraseblock number the VID header came from
 178 *
 179 * This function checks that data stored in @vid_hdr is consistent. Returns
 180 * non-zero if an inconsistency was found and zero if not.
 181 *
 182 * Note, UBI does sanity check of everything it reads from the flash media.
 183 * Most of the checks are done in the I/O sub-system. Here we check that the
 184 * information in the VID header is consistent to the information in other VID
 185 * headers of the same volume.
 186 */
 187static int validate_vid_hdr(const struct ubi_vid_hdr *vid_hdr,
 188                            const struct ubi_ainf_volume *av, int pnum)
 189{
 190        int vol_type = vid_hdr->vol_type;
 191        int vol_id = be32_to_cpu(vid_hdr->vol_id);
 192        int used_ebs = be32_to_cpu(vid_hdr->used_ebs);
 193        int data_pad = be32_to_cpu(vid_hdr->data_pad);
 194
 195        if (av->leb_count != 0) {
 196                int av_vol_type;
 197
 198                /*
 199                 * This is not the first logical eraseblock belonging to this
 200                 * volume. Ensure that the data in its VID header is consistent
 201                 * to the data in previous logical eraseblock headers.
 202                 */
 203
 204                if (vol_id != av->vol_id) {
 205                        ubi_err("inconsistent vol_id");
 206                        goto bad;
 207                }
 208
 209                if (av->vol_type == UBI_STATIC_VOLUME)
 210                        av_vol_type = UBI_VID_STATIC;
 211                else
 212                        av_vol_type = UBI_VID_DYNAMIC;
 213
 214                if (vol_type != av_vol_type) {
 215                        ubi_err("inconsistent vol_type");
 216                        goto bad;
 217                }
 218
 219                if (used_ebs != av->used_ebs) {
 220                        ubi_err("inconsistent used_ebs");
 221                        goto bad;
 222                }
 223
 224                if (data_pad != av->data_pad) {
 225                        ubi_err("inconsistent data_pad");
 226                        goto bad;
 227                }
 228        }
 229
 230        return 0;
 231
 232bad:
 233        ubi_err("inconsistent VID header at PEB %d", pnum);
 234        ubi_dump_vid_hdr(vid_hdr);
 235        ubi_dump_av(av);
 236        return -EINVAL;
 237}
 238
 239/**
 240 * add_volume - add volume to the attaching information.
 241 * @ai: attaching information
 242 * @vol_id: ID of the volume to add
 243 * @pnum: physical eraseblock number
 244 * @vid_hdr: volume identifier header
 245 *
 246 * If the volume corresponding to the @vid_hdr logical eraseblock is already
 247 * present in the attaching information, this function does nothing. Otherwise
 248 * it adds corresponding volume to the attaching information. Returns a pointer
 249 * to the allocated "av" object in case of success and a negative error code in
 250 * case of failure.
 251 */
 252static struct ubi_ainf_volume *add_volume(struct ubi_attach_info *ai,
 253                                          int vol_id, int pnum,
 254                                          const struct ubi_vid_hdr *vid_hdr)
 255{
 256        struct ubi_ainf_volume *av;
 257        struct rb_node **p = &ai->volumes.rb_node, *parent = NULL;
 258
 259        ubi_assert(vol_id == be32_to_cpu(vid_hdr->vol_id));
 260
 261        /* Walk the volume RB-tree to look if this volume is already present */
 262        while (*p) {
 263                parent = *p;
 264                av = rb_entry(parent, struct ubi_ainf_volume, rb);
 265
 266                if (vol_id == av->vol_id)
 267                        return av;
 268
 269                if (vol_id > av->vol_id)
 270                        p = &(*p)->rb_left;
 271                else
 272                        p = &(*p)->rb_right;
 273        }
 274
 275        /* The volume is absent - add it */
 276        av = kmalloc(sizeof(struct ubi_ainf_volume), GFP_KERNEL);
 277        if (!av)
 278                return ERR_PTR(-ENOMEM);
 279
 280        av->highest_lnum = av->leb_count = 0;
 281        av->vol_id = vol_id;
 282        av->root = RB_ROOT;
 283        av->used_ebs = be32_to_cpu(vid_hdr->used_ebs);
 284        av->data_pad = be32_to_cpu(vid_hdr->data_pad);
 285        av->compat = vid_hdr->compat;
 286        av->vol_type = vid_hdr->vol_type == UBI_VID_DYNAMIC ? UBI_DYNAMIC_VOLUME
 287                                                            : UBI_STATIC_VOLUME;
 288        if (vol_id > ai->highest_vol_id)
 289                ai->highest_vol_id = vol_id;
 290
 291        rb_link_node(&av->rb, parent, p);
 292        rb_insert_color(&av->rb, &ai->volumes);
 293        ai->vols_found += 1;
 294        dbg_bld("added volume %d", vol_id);
 295        return av;
 296}
 297
 298/**
 299 * ubi_compare_lebs - find out which logical eraseblock is newer.
 300 * @ubi: UBI device description object
 301 * @aeb: first logical eraseblock to compare
 302 * @pnum: physical eraseblock number of the second logical eraseblock to
 303 * compare
 304 * @vid_hdr: volume identifier header of the second logical eraseblock
 305 *
 306 * This function compares 2 copies of a LEB and informs which one is newer. In
 307 * case of success this function returns a positive value, in case of failure, a
 308 * negative error code is returned. The success return codes use the following
 309 * bits:
 310 *     o bit 0 is cleared: the first PEB (described by @aeb) is newer than the
 311 *       second PEB (described by @pnum and @vid_hdr);
 312 *     o bit 0 is set: the second PEB is newer;
 313 *     o bit 1 is cleared: no bit-flips were detected in the newer LEB;
 314 *     o bit 1 is set: bit-flips were detected in the newer LEB;
 315 *     o bit 2 is cleared: the older LEB is not corrupted;
 316 *     o bit 2 is set: the older LEB is corrupted.
 317 */
 318int ubi_compare_lebs(struct ubi_device *ubi, const struct ubi_ainf_peb *aeb,
 319                        int pnum, const struct ubi_vid_hdr *vid_hdr)
 320{
 321        int len, err, second_is_newer, bitflips = 0, corrupted = 0;
 322        uint32_t data_crc, crc;
 323        struct ubi_vid_hdr *vh = NULL;
 324        unsigned long long sqnum2 = be64_to_cpu(vid_hdr->sqnum);
 325
 326        if (sqnum2 == aeb->sqnum) {
 327                /*
 328                 * This must be a really ancient UBI image which has been
 329                 * created before sequence numbers support has been added. At
 330                 * that times we used 32-bit LEB versions stored in logical
 331                 * eraseblocks. That was before UBI got into mainline. We do not
 332                 * support these images anymore. Well, those images still work,
 333                 * but only if no unclean reboots happened.
 334                 */
 335                ubi_err("unsupported on-flash UBI format");
 336                return -EINVAL;
 337        }
 338
 339        /* Obviously the LEB with lower sequence counter is older */
 340        second_is_newer = (sqnum2 > aeb->sqnum);
 341
 342        /*
 343         * Now we know which copy is newer. If the copy flag of the PEB with
 344         * newer version is not set, then we just return, otherwise we have to
 345         * check data CRC. For the second PEB we already have the VID header,
 346         * for the first one - we'll need to re-read it from flash.
 347         *
 348         * Note: this may be optimized so that we wouldn't read twice.
 349         */
 350
 351        if (second_is_newer) {
 352                if (!vid_hdr->copy_flag) {
 353                        /* It is not a copy, so it is newer */
 354                        dbg_bld("second PEB %d is newer, copy_flag is unset",
 355                                pnum);
 356                        return 1;
 357                }
 358        } else {
 359                if (!aeb->copy_flag) {
 360                        /* It is not a copy, so it is newer */
 361                        dbg_bld("first PEB %d is newer, copy_flag is unset",
 362                                pnum);
 363                        return bitflips << 1;
 364                }
 365
 366                vh = ubi_zalloc_vid_hdr(ubi, GFP_KERNEL);
 367                if (!vh)
 368                        return -ENOMEM;
 369
 370                pnum = aeb->pnum;
 371                err = ubi_io_read_vid_hdr(ubi, pnum, vh, 0);
 372                if (err) {
 373                        if (err == UBI_IO_BITFLIPS)
 374                                bitflips = 1;
 375                        else {
 376                                ubi_err("VID of PEB %d header is bad, but it was OK earlier, err %d",
 377                                        pnum, err);
 378                                if (err > 0)
 379                                        err = -EIO;
 380
 381                                goto out_free_vidh;
 382                        }
 383                }
 384
 385                vid_hdr = vh;
 386        }
 387
 388        /* Read the data of the copy and check the CRC */
 389
 390        len = be32_to_cpu(vid_hdr->data_size);
 391
 392        mutex_lock(&ubi->buf_mutex);
 393        err = ubi_io_read_data(ubi, ubi->peb_buf, pnum, 0, len);
 394        if (err && err != UBI_IO_BITFLIPS && !mtd_is_eccerr(err))
 395                goto out_unlock;
 396
 397        data_crc = be32_to_cpu(vid_hdr->data_crc);
 398        crc = crc32(UBI_CRC32_INIT, ubi->peb_buf, len);
 399        if (crc != data_crc) {
 400                dbg_bld("PEB %d CRC error: calculated %#08x, must be %#08x",
 401                        pnum, crc, data_crc);
 402                corrupted = 1;
 403                bitflips = 0;
 404                second_is_newer = !second_is_newer;
 405        } else {
 406                dbg_bld("PEB %d CRC is OK", pnum);
 407                bitflips = !!err;
 408        }
 409        mutex_unlock(&ubi->buf_mutex);
 410
 411        ubi_free_vid_hdr(ubi, vh);
 412
 413        if (second_is_newer)
 414                dbg_bld("second PEB %d is newer, copy_flag is set", pnum);
 415        else
 416                dbg_bld("first PEB %d is newer, copy_flag is set", pnum);
 417
 418        return second_is_newer | (bitflips << 1) | (corrupted << 2);
 419
 420out_unlock:
 421        mutex_unlock(&ubi->buf_mutex);
 422out_free_vidh:
 423        ubi_free_vid_hdr(ubi, vh);
 424        return err;
 425}
 426
 427/**
 428 * ubi_add_to_av - add used physical eraseblock to the attaching information.
 429 * @ubi: UBI device description object
 430 * @ai: attaching information
 431 * @pnum: the physical eraseblock number
 432 * @ec: erase counter
 433 * @vid_hdr: the volume identifier header
 434 * @bitflips: if bit-flips were detected when this physical eraseblock was read
 435 *
 436 * This function adds information about a used physical eraseblock to the
 437 * 'used' tree of the corresponding volume. The function is rather complex
 438 * because it has to handle cases when this is not the first physical
 439 * eraseblock belonging to the same logical eraseblock, and the newer one has
 440 * to be picked, while the older one has to be dropped. This function returns
 441 * zero in case of success and a negative error code in case of failure.
 442 */
 443int ubi_add_to_av(struct ubi_device *ubi, struct ubi_attach_info *ai, int pnum,
 444                  int ec, const struct ubi_vid_hdr *vid_hdr, int bitflips)
 445{
 446        int err, vol_id, lnum;
 447        unsigned long long sqnum;
 448        struct ubi_ainf_volume *av;
 449        struct ubi_ainf_peb *aeb;
 450        struct rb_node **p, *parent = NULL;
 451
 452        vol_id = be32_to_cpu(vid_hdr->vol_id);
 453        lnum = be32_to_cpu(vid_hdr->lnum);
 454        sqnum = be64_to_cpu(vid_hdr->sqnum);
 455
 456        dbg_bld("PEB %d, LEB %d:%d, EC %d, sqnum %llu, bitflips %d",
 457                pnum, vol_id, lnum, ec, sqnum, bitflips);
 458
 459        av = add_volume(ai, vol_id, pnum, vid_hdr);
 460        if (IS_ERR(av))
 461                return PTR_ERR(av);
 462
 463        if (ai->max_sqnum < sqnum)
 464                ai->max_sqnum = sqnum;
 465
 466        /*
 467         * Walk the RB-tree of logical eraseblocks of volume @vol_id to look
 468         * if this is the first instance of this logical eraseblock or not.
 469         */
 470        p = &av->root.rb_node;
 471        while (*p) {
 472                int cmp_res;
 473
 474                parent = *p;
 475                aeb = rb_entry(parent, struct ubi_ainf_peb, u.rb);
 476                if (lnum != aeb->lnum) {
 477                        if (lnum < aeb->lnum)
 478                                p = &(*p)->rb_left;
 479                        else
 480                                p = &(*p)->rb_right;
 481                        continue;
 482                }
 483
 484                /*
 485                 * There is already a physical eraseblock describing the same
 486                 * logical eraseblock present.
 487                 */
 488
 489                dbg_bld("this LEB already exists: PEB %d, sqnum %llu, EC %d",
 490                        aeb->pnum, aeb->sqnum, aeb->ec);
 491
 492                /*
 493                 * Make sure that the logical eraseblocks have different
 494                 * sequence numbers. Otherwise the image is bad.
 495                 *
 496                 * However, if the sequence number is zero, we assume it must
 497                 * be an ancient UBI image from the era when UBI did not have
 498                 * sequence numbers. We still can attach these images, unless
 499                 * there is a need to distinguish between old and new
 500                 * eraseblocks, in which case we'll refuse the image in
 501                 * 'ubi_compare_lebs()'. In other words, we attach old clean
 502                 * images, but refuse attaching old images with duplicated
 503                 * logical eraseblocks because there was an unclean reboot.
 504                 */
 505                if (aeb->sqnum == sqnum && sqnum != 0) {
 506                        ubi_err("two LEBs with same sequence number %llu",
 507                                sqnum);
 508                        ubi_dump_aeb(aeb, 0);
 509                        ubi_dump_vid_hdr(vid_hdr);
 510                        return -EINVAL;
 511                }
 512
 513                /*
 514                 * Now we have to drop the older one and preserve the newer
 515                 * one.
 516                 */
 517                cmp_res = ubi_compare_lebs(ubi, aeb, pnum, vid_hdr);
 518                if (cmp_res < 0)
 519                        return cmp_res;
 520
 521                if (cmp_res & 1) {
 522                        /*
 523                         * This logical eraseblock is newer than the one
 524                         * found earlier.
 525                         */
 526                        err = validate_vid_hdr(vid_hdr, av, pnum);
 527                        if (err)
 528                                return err;
 529
 530                        err = add_to_list(ai, aeb->pnum, aeb->vol_id,
 531                                          aeb->lnum, aeb->ec, cmp_res & 4,
 532                                          &ai->erase);
 533                        if (err)
 534                                return err;
 535
 536                        aeb->ec = ec;
 537                        aeb->pnum = pnum;
 538                        aeb->vol_id = vol_id;
 539                        aeb->lnum = lnum;
 540                        aeb->scrub = ((cmp_res & 2) || bitflips);
 541                        aeb->copy_flag = vid_hdr->copy_flag;
 542                        aeb->sqnum = sqnum;
 543
 544                        if (av->highest_lnum == lnum)
 545                                av->last_data_size =
 546                                        be32_to_cpu(vid_hdr->data_size);
 547
 548                        return 0;
 549                } else {
 550                        /*
 551                         * This logical eraseblock is older than the one found
 552                         * previously.
 553                         */
 554                        return add_to_list(ai, pnum, vol_id, lnum, ec,
 555                                           cmp_res & 4, &ai->erase);
 556                }
 557        }
 558
 559        /*
 560         * We've met this logical eraseblock for the first time, add it to the
 561         * attaching information.
 562         */
 563
 564        err = validate_vid_hdr(vid_hdr, av, pnum);
 565        if (err)
 566                return err;
 567
 568        aeb = kmem_cache_alloc(ai->aeb_slab_cache, GFP_KERNEL);
 569        if (!aeb)
 570                return -ENOMEM;
 571
 572        aeb->ec = ec;
 573        aeb->pnum = pnum;
 574        aeb->vol_id = vol_id;
 575        aeb->lnum = lnum;
 576        aeb->scrub = bitflips;
 577        aeb->copy_flag = vid_hdr->copy_flag;
 578        aeb->sqnum = sqnum;
 579
 580        if (av->highest_lnum <= lnum) {
 581                av->highest_lnum = lnum;
 582                av->last_data_size = be32_to_cpu(vid_hdr->data_size);
 583        }
 584
 585        av->leb_count += 1;
 586        rb_link_node(&aeb->u.rb, parent, p);
 587        rb_insert_color(&aeb->u.rb, &av->root);
 588        return 0;
 589}
 590
 591/**
 592 * ubi_find_av - find volume in the attaching information.
 593 * @ai: attaching information
 594 * @vol_id: the requested volume ID
 595 *
 596 * This function returns a pointer to the volume description or %NULL if there
 597 * are no data about this volume in the attaching information.
 598 */
 599struct ubi_ainf_volume *ubi_find_av(const struct ubi_attach_info *ai,
 600                                    int vol_id)
 601{
 602        struct ubi_ainf_volume *av;
 603        struct rb_node *p = ai->volumes.rb_node;
 604
 605        while (p) {
 606                av = rb_entry(p, struct ubi_ainf_volume, rb);
 607
 608                if (vol_id == av->vol_id)
 609                        return av;
 610
 611                if (vol_id > av->vol_id)
 612                        p = p->rb_left;
 613                else
 614                        p = p->rb_right;
 615        }
 616
 617        return NULL;
 618}
 619
 620/**
 621 * ubi_remove_av - delete attaching information about a volume.
 622 * @ai: attaching information
 623 * @av: the volume attaching information to delete
 624 */
 625void ubi_remove_av(struct ubi_attach_info *ai, struct ubi_ainf_volume *av)
 626{
 627        struct rb_node *rb;
 628        struct ubi_ainf_peb *aeb;
 629
 630        dbg_bld("remove attaching information about volume %d", av->vol_id);
 631
 632        while ((rb = rb_first(&av->root))) {
 633                aeb = rb_entry(rb, struct ubi_ainf_peb, u.rb);
 634                rb_erase(&aeb->u.rb, &av->root);
 635                list_add_tail(&aeb->u.list, &ai->erase);
 636        }
 637
 638        rb_erase(&av->rb, &ai->volumes);
 639        kfree(av);
 640        ai->vols_found -= 1;
 641}
 642
 643/**
 644 * early_erase_peb - erase a physical eraseblock.
 645 * @ubi: UBI device description object
 646 * @ai: attaching information
 647 * @pnum: physical eraseblock number to erase;
 648 * @ec: erase counter value to write (%UBI_UNKNOWN if it is unknown)
 649 *
 650 * This function erases physical eraseblock 'pnum', and writes the erase
 651 * counter header to it. This function should only be used on UBI device
 652 * initialization stages, when the EBA sub-system had not been yet initialized.
 653 * This function returns zero in case of success and a negative error code in
 654 * case of failure.
 655 */
 656static int early_erase_peb(struct ubi_device *ubi,
 657                           const struct ubi_attach_info *ai, int pnum, int ec)
 658{
 659        int err;
 660        struct ubi_ec_hdr *ec_hdr;
 661
 662        if ((long long)ec >= UBI_MAX_ERASECOUNTER) {
 663                /*
 664                 * Erase counter overflow. Upgrade UBI and use 64-bit
 665                 * erase counters internally.
 666                 */
 667                ubi_err("erase counter overflow at PEB %d, EC %d", pnum, ec);
 668                return -EINVAL;
 669        }
 670
 671        ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_KERNEL);
 672        if (!ec_hdr)
 673                return -ENOMEM;
 674
 675        ec_hdr->ec = cpu_to_be64(ec);
 676
 677        err = ubi_io_sync_erase(ubi, pnum, 0);
 678        if (err < 0)
 679                goto out_free;
 680
 681        err = ubi_io_write_ec_hdr(ubi, pnum, ec_hdr);
 682
 683out_free:
 684        kfree(ec_hdr);
 685        return err;
 686}
 687
 688/**
 689 * ubi_early_get_peb - get a free physical eraseblock.
 690 * @ubi: UBI device description object
 691 * @ai: attaching information
 692 *
 693 * This function returns a free physical eraseblock. It is supposed to be
 694 * called on the UBI initialization stages when the wear-leveling sub-system is
 695 * not initialized yet. This function picks a physical eraseblocks from one of
 696 * the lists, writes the EC header if it is needed, and removes it from the
 697 * list.
 698 *
 699 * This function returns a pointer to the "aeb" of the found free PEB in case
 700 * of success and an error code in case of failure.
 701 */
 702struct ubi_ainf_peb *ubi_early_get_peb(struct ubi_device *ubi,
 703                                       struct ubi_attach_info *ai)
 704{
 705        int err = 0;
 706        struct ubi_ainf_peb *aeb, *tmp_aeb;
 707
 708        if (!list_empty(&ai->free)) {
 709                aeb = list_entry(ai->free.next, struct ubi_ainf_peb, u.list);
 710                list_del(&aeb->u.list);
 711                dbg_bld("return free PEB %d, EC %d", aeb->pnum, aeb->ec);
 712                return aeb;
 713        }
 714
 715        /*
 716         * We try to erase the first physical eraseblock from the erase list
 717         * and pick it if we succeed, or try to erase the next one if not. And
 718         * so forth. We don't want to take care about bad eraseblocks here -
 719         * they'll be handled later.
 720         */
 721        list_for_each_entry_safe(aeb, tmp_aeb, &ai->erase, u.list) {
 722                if (aeb->ec == UBI_UNKNOWN)
 723                        aeb->ec = ai->mean_ec;
 724
 725                err = early_erase_peb(ubi, ai, aeb->pnum, aeb->ec+1);
 726                if (err)
 727                        continue;
 728
 729                aeb->ec += 1;
 730                list_del(&aeb->u.list);
 731                dbg_bld("return PEB %d, EC %d", aeb->pnum, aeb->ec);
 732                return aeb;
 733        }
 734
 735        ubi_err("no free eraseblocks");
 736        return ERR_PTR(-ENOSPC);
 737}
 738
 739/**
 740 * check_corruption - check the data area of PEB.
 741 * @ubi: UBI device description object
 742 * @vid_hdr: the (corrupted) VID header of this PEB
 743 * @pnum: the physical eraseblock number to check
 744 *
 745 * This is a helper function which is used to distinguish between VID header
 746 * corruptions caused by power cuts and other reasons. If the PEB contains only
 747 * 0xFF bytes in the data area, the VID header is most probably corrupted
 748 * because of a power cut (%0 is returned in this case). Otherwise, it was
 749 * probably corrupted for some other reasons (%1 is returned in this case). A
 750 * negative error code is returned if a read error occurred.
 751 *
 752 * If the corruption reason was a power cut, UBI can safely erase this PEB.
 753 * Otherwise, it should preserve it to avoid possibly destroying important
 754 * information.
 755 */
 756static int check_corruption(struct ubi_device *ubi, struct ubi_vid_hdr *vid_hdr,
 757                            int pnum)
 758{
 759        int err;
 760
 761        mutex_lock(&ubi->buf_mutex);
 762        memset(ubi->peb_buf, 0x00, ubi->leb_size);
 763
 764        err = ubi_io_read(ubi, ubi->peb_buf, pnum, ubi->leb_start,
 765                          ubi->leb_size);
 766        if (err == UBI_IO_BITFLIPS || mtd_is_eccerr(err)) {
 767                /*
 768                 * Bit-flips or integrity errors while reading the data area.
 769                 * It is difficult to say for sure what type of corruption is
 770                 * this, but presumably a power cut happened while this PEB was
 771                 * erased, so it became unstable and corrupted, and should be
 772                 * erased.
 773                 */
 774                err = 0;
 775                goto out_unlock;
 776        }
 777
 778        if (err)
 779                goto out_unlock;
 780
 781        if (ubi_check_pattern(ubi->peb_buf, 0xFF, ubi->leb_size))
 782                goto out_unlock;
 783
 784        ubi_err("PEB %d contains corrupted VID header, and the data does not contain all 0xFF",
 785                pnum);
 786        ubi_err("this may be a non-UBI PEB or a severe VID header corruption which requires manual inspection");
 787        ubi_dump_vid_hdr(vid_hdr);
 788        pr_err("hexdump of PEB %d offset %d, length %d",
 789               pnum, ubi->leb_start, ubi->leb_size);
 790        ubi_dbg_print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1,
 791                               ubi->peb_buf, ubi->leb_size, 1);
 792        err = 1;
 793
 794out_unlock:
 795        mutex_unlock(&ubi->buf_mutex);
 796        return err;
 797}
 798
 799/**
 800 * scan_peb - scan and process UBI headers of a PEB.
 801 * @ubi: UBI device description object
 802 * @ai: attaching information
 803 * @pnum: the physical eraseblock number
 804 * @vid: The volume ID of the found volume will be stored in this pointer
 805 * @sqnum: The sqnum of the found volume will be stored in this pointer
 806 *
 807 * This function reads UBI headers of PEB @pnum, checks them, and adds
 808 * information about this PEB to the corresponding list or RB-tree in the
 809 * "attaching info" structure. Returns zero if the physical eraseblock was
 810 * successfully handled and a negative error code in case of failure.
 811 */
 812static int scan_peb(struct ubi_device *ubi, struct ubi_attach_info *ai,
 813                    int pnum, int *vid, unsigned long long *sqnum)
 814{
 815        long long uninitialized_var(ec);
 816        int err, bitflips = 0, vol_id = -1, ec_err = 0;
 817
 818        dbg_bld("scan PEB %d", pnum);
 819
 820        /* Skip bad physical eraseblocks */
 821        err = ubi_io_is_bad(ubi, pnum);
 822        if (err < 0)
 823                return err;
 824        else if (err) {
 825                ai->bad_peb_count += 1;
 826                return 0;
 827        }
 828
 829        err = ubi_io_read_ec_hdr(ubi, pnum, ech, 0);
 830        if (err < 0)
 831                return err;
 832        switch (err) {
 833        case 0:
 834                break;
 835        case UBI_IO_BITFLIPS:
 836                bitflips = 1;
 837                break;
 838        case UBI_IO_FF:
 839                ai->empty_peb_count += 1;
 840                return add_to_list(ai, pnum, UBI_UNKNOWN, UBI_UNKNOWN,
 841                                   UBI_UNKNOWN, 0, &ai->erase);
 842        case UBI_IO_FF_BITFLIPS:
 843                ai->empty_peb_count += 1;
 844                return add_to_list(ai, pnum, UBI_UNKNOWN, UBI_UNKNOWN,
 845                                   UBI_UNKNOWN, 1, &ai->erase);
 846        case UBI_IO_BAD_HDR_EBADMSG:
 847        case UBI_IO_BAD_HDR:
 848                /*
 849                 * We have to also look at the VID header, possibly it is not
 850                 * corrupted. Set %bitflips flag in order to make this PEB be
 851                 * moved and EC be re-created.
 852                 */
 853                ec_err = err;
 854                ec = UBI_UNKNOWN;
 855                bitflips = 1;
 856                break;
 857        default:
 858                ubi_err("'ubi_io_read_ec_hdr()' returned unknown code %d", err);
 859                return -EINVAL;
 860        }
 861
 862        if (!ec_err) {
 863                int image_seq;
 864
 865                /* Make sure UBI version is OK */
 866                if (ech->version != UBI_VERSION) {
 867                        ubi_err("this UBI version is %d, image version is %d",
 868                                UBI_VERSION, (int)ech->version);
 869                        return -EINVAL;
 870                }
 871
 872                ec = be64_to_cpu(ech->ec);
 873                if (ec > UBI_MAX_ERASECOUNTER) {
 874                        /*
 875                         * Erase counter overflow. The EC headers have 64 bits
 876                         * reserved, but we anyway make use of only 31 bit
 877                         * values, as this seems to be enough for any existing
 878                         * flash. Upgrade UBI and use 64-bit erase counters
 879                         * internally.
 880                         */
 881                        ubi_err("erase counter overflow, max is %d",
 882                                UBI_MAX_ERASECOUNTER);
 883                        ubi_dump_ec_hdr(ech);
 884                        return -EINVAL;
 885                }
 886
 887                /*
 888                 * Make sure that all PEBs have the same image sequence number.
 889                 * This allows us to detect situations when users flash UBI
 890                 * images incorrectly, so that the flash has the new UBI image
 891                 * and leftovers from the old one. This feature was added
 892                 * relatively recently, and the sequence number was always
 893                 * zero, because old UBI implementations always set it to zero.
 894                 * For this reasons, we do not panic if some PEBs have zero
 895                 * sequence number, while other PEBs have non-zero sequence
 896                 * number.
 897                 */
 898                image_seq = be32_to_cpu(ech->image_seq);
 899                if (!ubi->image_seq)
 900                        ubi->image_seq = image_seq;
 901                if (image_seq && ubi->image_seq != image_seq) {
 902                        ubi_err("bad image sequence number %d in PEB %d, expected %d",
 903                                image_seq, pnum, ubi->image_seq);
 904                        ubi_dump_ec_hdr(ech);
 905                        return -EINVAL;
 906                }
 907        }
 908
 909        /* OK, we've done with the EC header, let's look at the VID header */
 910
 911        err = ubi_io_read_vid_hdr(ubi, pnum, vidh, 0);
 912        if (err < 0)
 913                return err;
 914        switch (err) {
 915        case 0:
 916                break;
 917        case UBI_IO_BITFLIPS:
 918                bitflips = 1;
 919                break;
 920        case UBI_IO_BAD_HDR_EBADMSG:
 921                if (ec_err == UBI_IO_BAD_HDR_EBADMSG)
 922                        /*
 923                         * Both EC and VID headers are corrupted and were read
 924                         * with data integrity error, probably this is a bad
 925                         * PEB, bit it is not marked as bad yet. This may also
 926                         * be a result of power cut during erasure.
 927                         */
 928                        ai->maybe_bad_peb_count += 1;
 929        case UBI_IO_BAD_HDR:
 930                if (ec_err)
 931                        /*
 932                         * Both headers are corrupted. There is a possibility
 933                         * that this a valid UBI PEB which has corresponding
 934                         * LEB, but the headers are corrupted. However, it is
 935                         * impossible to distinguish it from a PEB which just
 936                         * contains garbage because of a power cut during erase
 937                         * operation. So we just schedule this PEB for erasure.
 938                         *
 939                         * Besides, in case of NOR flash, we deliberately
 940                         * corrupt both headers because NOR flash erasure is
 941                         * slow and can start from the end.
 942                         */
 943                        err = 0;
 944                else
 945                        /*
 946                         * The EC was OK, but the VID header is corrupted. We
 947                         * have to check what is in the data area.
 948                         */
 949                        err = check_corruption(ubi, vidh, pnum);
 950
 951                if (err < 0)
 952                        return err;
 953                else if (!err)
 954                        /* This corruption is caused by a power cut */
 955                        err = add_to_list(ai, pnum, UBI_UNKNOWN,
 956                                          UBI_UNKNOWN, ec, 1, &ai->erase);
 957                else
 958                        /* This is an unexpected corruption */
 959                        err = add_corrupted(ai, pnum, ec);
 960                if (err)
 961                        return err;
 962                goto adjust_mean_ec;
 963        case UBI_IO_FF_BITFLIPS:
 964                err = add_to_list(ai, pnum, UBI_UNKNOWN, UBI_UNKNOWN,
 965                                  ec, 1, &ai->erase);
 966                if (err)
 967                        return err;
 968                goto adjust_mean_ec;
 969        case UBI_IO_FF:
 970                if (ec_err || bitflips)
 971                        err = add_to_list(ai, pnum, UBI_UNKNOWN,
 972                                          UBI_UNKNOWN, ec, 1, &ai->erase);
 973                else
 974                        err = add_to_list(ai, pnum, UBI_UNKNOWN,
 975                                          UBI_UNKNOWN, ec, 0, &ai->free);
 976                if (err)
 977                        return err;
 978                goto adjust_mean_ec;
 979        default:
 980                ubi_err("'ubi_io_read_vid_hdr()' returned unknown code %d",
 981                        err);
 982                return -EINVAL;
 983        }
 984
 985        vol_id = be32_to_cpu(vidh->vol_id);
 986        if (vid)
 987                *vid = vol_id;
 988        if (sqnum)
 989                *sqnum = be64_to_cpu(vidh->sqnum);
 990        if (vol_id > UBI_MAX_VOLUMES && vol_id != UBI_LAYOUT_VOLUME_ID) {
 991                int lnum = be32_to_cpu(vidh->lnum);
 992
 993                /* Unsupported internal volume */
 994                switch (vidh->compat) {
 995                case UBI_COMPAT_DELETE:
 996                        if (vol_id != UBI_FM_SB_VOLUME_ID
 997                            && vol_id != UBI_FM_DATA_VOLUME_ID) {
 998                                ubi_msg("\"delete\" compatible internal volume %d:%d found, will remove it",
 999                                        vol_id, lnum);
1000                        }
1001                        err = add_to_list(ai, pnum, vol_id, lnum,
1002                                          ec, 1, &ai->erase);
1003                        if (err)
1004                                return err;
1005                        return 0;
1006
1007                case UBI_COMPAT_RO:
1008                        ubi_msg("read-only compatible internal volume %d:%d found, switch to read-only mode",
1009                                vol_id, lnum);
1010                        ubi->ro_mode = 1;
1011                        break;
1012
1013                case UBI_COMPAT_PRESERVE:
1014                        ubi_msg("\"preserve\" compatible internal volume %d:%d found",
1015                                vol_id, lnum);
1016                        err = add_to_list(ai, pnum, vol_id, lnum,
1017                                          ec, 0, &ai->alien);
1018                        if (err)
1019                                return err;
1020                        return 0;
1021
1022                case UBI_COMPAT_REJECT:
1023                        ubi_err("incompatible internal volume %d:%d found",
1024                                vol_id, lnum);
1025                        return -EINVAL;
1026                }
1027        }
1028
1029        if (ec_err)
1030                ubi_warn("valid VID header but corrupted EC header at PEB %d",
1031                         pnum);
1032        err = ubi_add_to_av(ubi, ai, pnum, ec, vidh, bitflips);
1033        if (err)
1034                return err;
1035
1036adjust_mean_ec:
1037        if (!ec_err) {
1038                ai->ec_sum += ec;
1039                ai->ec_count += 1;
1040                if (ec > ai->max_ec)
1041                        ai->max_ec = ec;
1042                if (ec < ai->min_ec)
1043                        ai->min_ec = ec;
1044        }
1045
1046        return 0;
1047}
1048
1049/**
1050 * late_analysis - analyze the overall situation with PEB.
1051 * @ubi: UBI device description object
1052 * @ai: attaching information
1053 *
1054 * This is a helper function which takes a look what PEBs we have after we
1055 * gather information about all of them ("ai" is compete). It decides whether
1056 * the flash is empty and should be formatted of whether there are too many
1057 * corrupted PEBs and we should not attach this MTD device. Returns zero if we
1058 * should proceed with attaching the MTD device, and %-EINVAL if we should not.
1059 */
1060static int late_analysis(struct ubi_device *ubi, struct ubi_attach_info *ai)
1061{
1062        struct ubi_ainf_peb *aeb;
1063        int max_corr, peb_count;
1064
1065        peb_count = ubi->peb_count - ai->bad_peb_count - ai->alien_peb_count;
1066        max_corr = peb_count / 20 ?: 8;
1067
1068        /*
1069         * Few corrupted PEBs is not a problem and may be just a result of
1070         * unclean reboots. However, many of them may indicate some problems
1071         * with the flash HW or driver.
1072         */
1073        if (ai->corr_peb_count) {
1074                ubi_err("%d PEBs are corrupted and preserved",
1075                        ai->corr_peb_count);
1076                pr_err("Corrupted PEBs are:");
1077                list_for_each_entry(aeb, &ai->corr, u.list)
1078                        pr_cont(" %d", aeb->pnum);
1079                pr_cont("\n");
1080
1081                /*
1082                 * If too many PEBs are corrupted, we refuse attaching,
1083                 * otherwise, only print a warning.
1084                 */
1085                if (ai->corr_peb_count >= max_corr) {
1086                        ubi_err("too many corrupted PEBs, refusing");
1087                        return -EINVAL;
1088                }
1089        }
1090
1091        if (ai->empty_peb_count + ai->maybe_bad_peb_count == peb_count) {
1092                /*
1093                 * All PEBs are empty, or almost all - a couple PEBs look like
1094                 * they may be bad PEBs which were not marked as bad yet.
1095                 *
1096                 * This piece of code basically tries to distinguish between
1097                 * the following situations:
1098                 *
1099                 * 1. Flash is empty, but there are few bad PEBs, which are not
1100                 *    marked as bad so far, and which were read with error. We
1101                 *    want to go ahead and format this flash. While formatting,
1102                 *    the faulty PEBs will probably be marked as bad.
1103                 *
1104                 * 2. Flash contains non-UBI data and we do not want to format
1105                 *    it and destroy possibly important information.
1106                 */
1107                if (ai->maybe_bad_peb_count <= 2) {
1108                        ai->is_empty = 1;
1109                        ubi_msg("empty MTD device detected");
1110                        get_random_bytes(&ubi->image_seq,
1111                                         sizeof(ubi->image_seq));
1112                } else {
1113                        ubi_err("MTD device is not UBI-formatted and possibly contains non-UBI data - refusing it");
1114                        return -EINVAL;
1115                }
1116
1117        }
1118
1119        return 0;
1120}
1121
1122/**
1123 * destroy_av - free volume attaching information.
1124 * @av: volume attaching information
1125 * @ai: attaching information
1126 *
1127 * This function destroys the volume attaching information.
1128 */
1129static void destroy_av(struct ubi_attach_info *ai, struct ubi_ainf_volume *av)
1130{
1131        struct ubi_ainf_peb *aeb;
1132        struct rb_node *this = av->root.rb_node;
1133
1134        while (this) {
1135                if (this->rb_left)
1136                        this = this->rb_left;
1137                else if (this->rb_right)
1138                        this = this->rb_right;
1139                else {
1140                        aeb = rb_entry(this, struct ubi_ainf_peb, u.rb);
1141                        this = rb_parent(this);
1142                        if (this) {
1143                                if (this->rb_left == &aeb->u.rb)
1144                                        this->rb_left = NULL;
1145                                else
1146                                        this->rb_right = NULL;
1147                        }
1148
1149                        kmem_cache_free(ai->aeb_slab_cache, aeb);
1150                }
1151        }
1152        kfree(av);
1153}
1154
1155/**
1156 * destroy_ai - destroy attaching information.
1157 * @ai: attaching information
1158 */
1159static void destroy_ai(struct ubi_attach_info *ai)
1160{
1161        struct ubi_ainf_peb *aeb, *aeb_tmp;
1162        struct ubi_ainf_volume *av;
1163        struct rb_node *rb;
1164
1165        list_for_each_entry_safe(aeb, aeb_tmp, &ai->alien, u.list) {
1166                list_del(&aeb->u.list);
1167                kmem_cache_free(ai->aeb_slab_cache, aeb);
1168        }
1169        list_for_each_entry_safe(aeb, aeb_tmp, &ai->erase, u.list) {
1170                list_del(&aeb->u.list);
1171                kmem_cache_free(ai->aeb_slab_cache, aeb);
1172        }
1173        list_for_each_entry_safe(aeb, aeb_tmp, &ai->corr, u.list) {
1174                list_del(&aeb->u.list);
1175                kmem_cache_free(ai->aeb_slab_cache, aeb);
1176        }
1177        list_for_each_entry_safe(aeb, aeb_tmp, &ai->free, u.list) {
1178                list_del(&aeb->u.list);
1179                kmem_cache_free(ai->aeb_slab_cache, aeb);
1180        }
1181
1182        /* Destroy the volume RB-tree */
1183        rb = ai->volumes.rb_node;
1184        while (rb) {
1185                if (rb->rb_left)
1186                        rb = rb->rb_left;
1187                else if (rb->rb_right)
1188                        rb = rb->rb_right;
1189                else {
1190                        av = rb_entry(rb, struct ubi_ainf_volume, rb);
1191
1192                        rb = rb_parent(rb);
1193                        if (rb) {
1194                                if (rb->rb_left == &av->rb)
1195                                        rb->rb_left = NULL;
1196                                else
1197                                        rb->rb_right = NULL;
1198                        }
1199
1200                        destroy_av(ai, av);
1201                }
1202        }
1203
1204        if (ai->aeb_slab_cache)
1205                kmem_cache_destroy(ai->aeb_slab_cache);
1206
1207        kfree(ai);
1208}
1209
1210/**
1211 * scan_all - scan entire MTD device.
1212 * @ubi: UBI device description object
1213 * @ai: attach info object
1214 * @start: start scanning at this PEB
1215 *
1216 * This function does full scanning of an MTD device and returns complete
1217 * information about it in form of a "struct ubi_attach_info" object. In case
1218 * of failure, an error code is returned.
1219 */
1220static int scan_all(struct ubi_device *ubi, struct ubi_attach_info *ai,
1221                    int start)
1222{
1223        int err, pnum;
1224        struct rb_node *rb1, *rb2;
1225        struct ubi_ainf_volume *av;
1226        struct ubi_ainf_peb *aeb;
1227
1228        err = -ENOMEM;
1229
1230        ech = kzalloc(ubi->ec_hdr_alsize, GFP_KERNEL);
1231        if (!ech)
1232                return err;
1233
1234        vidh = ubi_zalloc_vid_hdr(ubi, GFP_KERNEL);
1235        if (!vidh)
1236                goto out_ech;
1237
1238        for (pnum = start; pnum < ubi->peb_count; pnum++) {
1239                cond_resched();
1240
1241                dbg_gen("process PEB %d", pnum);
1242                err = scan_peb(ubi, ai, pnum, NULL, NULL);
1243                if (err < 0)
1244                        goto out_vidh;
1245        }
1246
1247        ubi_msg("scanning is finished");
1248
1249        /* Calculate mean erase counter */
1250        if (ai->ec_count)
1251                ai->mean_ec = div_u64(ai->ec_sum, ai->ec_count);
1252
1253        err = late_analysis(ubi, ai);
1254        if (err)
1255                goto out_vidh;
1256
1257        /*
1258         * In case of unknown erase counter we use the mean erase counter
1259         * value.
1260         */
1261        ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb) {
1262                ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb)
1263                        if (aeb->ec == UBI_UNKNOWN)
1264                                aeb->ec = ai->mean_ec;
1265        }
1266
1267        list_for_each_entry(aeb, &ai->free, u.list) {
1268                if (aeb->ec == UBI_UNKNOWN)
1269                        aeb->ec = ai->mean_ec;
1270        }
1271
1272        list_for_each_entry(aeb, &ai->corr, u.list)
1273                if (aeb->ec == UBI_UNKNOWN)
1274                        aeb->ec = ai->mean_ec;
1275
1276        list_for_each_entry(aeb, &ai->erase, u.list)
1277                if (aeb->ec == UBI_UNKNOWN)
1278                        aeb->ec = ai->mean_ec;
1279
1280        err = self_check_ai(ubi, ai);
1281        if (err)
1282                goto out_vidh;
1283
1284        ubi_free_vid_hdr(ubi, vidh);
1285        kfree(ech);
1286
1287        return 0;
1288
1289out_vidh:
1290        ubi_free_vid_hdr(ubi, vidh);
1291out_ech:
1292        kfree(ech);
1293        return err;
1294}
1295
1296#ifdef CONFIG_MTD_UBI_FASTMAP
1297
1298/**
1299 * scan_fastmap - try to find a fastmap and attach from it.
1300 * @ubi: UBI device description object
1301 * @ai: attach info object
1302 *
1303 * Returns 0 on success, negative return values indicate an internal
1304 * error.
1305 * UBI_NO_FASTMAP denotes that no fastmap was found.
1306 * UBI_BAD_FASTMAP denotes that the found fastmap was invalid.
1307 */
1308static int scan_fast(struct ubi_device *ubi, struct ubi_attach_info *ai)
1309{
1310        int err, pnum, fm_anchor = -1;
1311        unsigned long long max_sqnum = 0;
1312
1313        err = -ENOMEM;
1314
1315        ech = kzalloc(ubi->ec_hdr_alsize, GFP_KERNEL);
1316        if (!ech)
1317                goto out;
1318
1319        vidh = ubi_zalloc_vid_hdr(ubi, GFP_KERNEL);
1320        if (!vidh)
1321                goto out_ech;
1322
1323        for (pnum = 0; pnum < UBI_FM_MAX_START; pnum++) {
1324                int vol_id = -1;
1325                unsigned long long sqnum = -1;
1326                cond_resched();
1327
1328                dbg_gen("process PEB %d", pnum);
1329                err = scan_peb(ubi, ai, pnum, &vol_id, &sqnum);
1330                if (err < 0)
1331                        goto out_vidh;
1332
1333                if (vol_id == UBI_FM_SB_VOLUME_ID && sqnum > max_sqnum) {
1334                        max_sqnum = sqnum;
1335                        fm_anchor = pnum;
1336                }
1337        }
1338
1339        ubi_free_vid_hdr(ubi, vidh);
1340        kfree(ech);
1341
1342        if (fm_anchor < 0)
1343                return UBI_NO_FASTMAP;
1344
1345        return ubi_scan_fastmap(ubi, ai, fm_anchor);
1346
1347out_vidh:
1348        ubi_free_vid_hdr(ubi, vidh);
1349out_ech:
1350        kfree(ech);
1351out:
1352        return err;
1353}
1354
1355#endif
1356
1357static struct ubi_attach_info *alloc_ai(const char *slab_name)
1358{
1359        struct ubi_attach_info *ai;
1360
1361        ai = kzalloc(sizeof(struct ubi_attach_info), GFP_KERNEL);
1362        if (!ai)
1363                return ai;
1364
1365        INIT_LIST_HEAD(&ai->corr);
1366        INIT_LIST_HEAD(&ai->free);
1367        INIT_LIST_HEAD(&ai->erase);
1368        INIT_LIST_HEAD(&ai->alien);
1369        ai->volumes = RB_ROOT;
1370        ai->aeb_slab_cache = kmem_cache_create(slab_name,
1371                                               sizeof(struct ubi_ainf_peb),
1372                                               0, 0, NULL);
1373        if (!ai->aeb_slab_cache) {
1374                kfree(ai);
1375                ai = NULL;
1376        }
1377
1378        return ai;
1379}
1380
1381/**
1382 * ubi_attach - attach an MTD device.
1383 * @ubi: UBI device descriptor
1384 * @force_scan: if set to non-zero attach by scanning
1385 *
1386 * This function returns zero in case of success and a negative error code in
1387 * case of failure.
1388 */
1389int ubi_attach(struct ubi_device *ubi, int force_scan)
1390{
1391        int err;
1392        struct ubi_attach_info *ai;
1393
1394        ai = alloc_ai("ubi_aeb_slab_cache");
1395        if (!ai)
1396                return -ENOMEM;
1397
1398#ifdef CONFIG_MTD_UBI_FASTMAP
1399        /* On small flash devices we disable fastmap in any case. */
1400        if ((int)mtd_div_by_eb(ubi->mtd->size, ubi->mtd) <= UBI_FM_MAX_START) {
1401                ubi->fm_disabled = 1;
1402                force_scan = 1;
1403        }
1404
1405        if (force_scan)
1406                err = scan_all(ubi, ai, 0);
1407        else {
1408                err = scan_fast(ubi, ai);
1409                if (err > 0) {
1410                        if (err != UBI_NO_FASTMAP) {
1411                                destroy_ai(ai);
1412                                ai = alloc_ai("ubi_aeb_slab_cache2");
1413                                if (!ai)
1414                                        return -ENOMEM;
1415
1416                                err = scan_all(ubi, ai, 0);
1417                        } else {
1418                                err = scan_all(ubi, ai, UBI_FM_MAX_START);
1419                        }
1420                }
1421        }
1422#else
1423        err = scan_all(ubi, ai, 0);
1424#endif
1425        if (err)
1426                goto out_ai;
1427
1428        ubi->bad_peb_count = ai->bad_peb_count;
1429        ubi->good_peb_count = ubi->peb_count - ubi->bad_peb_count;
1430        ubi->corr_peb_count = ai->corr_peb_count;
1431        ubi->max_ec = ai->max_ec;
1432        ubi->mean_ec = ai->mean_ec;
1433        dbg_gen("max. sequence number:       %llu", ai->max_sqnum);
1434
1435        err = ubi_read_volume_table(ubi, ai);
1436        if (err)
1437                goto out_ai;
1438
1439        err = ubi_wl_init(ubi, ai);
1440        if (err)
1441                goto out_vtbl;
1442
1443        err = ubi_eba_init(ubi, ai);
1444        if (err)
1445                goto out_wl;
1446
1447#ifdef CONFIG_MTD_UBI_FASTMAP
1448        if (ubi->fm && ubi_dbg_chk_gen(ubi)) {
1449                struct ubi_attach_info *scan_ai;
1450
1451                scan_ai = alloc_ai("ubi_ckh_aeb_slab_cache");
1452                if (!scan_ai) {
1453                        err = -ENOMEM;
1454                        goto out_wl;
1455                }
1456
1457                err = scan_all(ubi, scan_ai, 0);
1458                if (err) {
1459                        destroy_ai(scan_ai);
1460                        goto out_wl;
1461                }
1462
1463                err = self_check_eba(ubi, ai, scan_ai);
1464                destroy_ai(scan_ai);
1465
1466                if (err)
1467                        goto out_wl;
1468        }
1469#endif
1470
1471        destroy_ai(ai);
1472        return 0;
1473
1474out_wl:
1475        ubi_wl_close(ubi);
1476out_vtbl:
1477        ubi_free_internal_volumes(ubi);
1478        vfree(ubi->vtbl);
1479out_ai:
1480        destroy_ai(ai);
1481        return err;
1482}
1483
1484/**
1485 * self_check_ai - check the attaching information.
1486 * @ubi: UBI device description object
1487 * @ai: attaching information
1488 *
1489 * This function returns zero if the attaching information is all right, and a
1490 * negative error code if not or if an error occurred.
1491 */
1492static int self_check_ai(struct ubi_device *ubi, struct ubi_attach_info *ai)
1493{
1494        int pnum, err, vols_found = 0;
1495        struct rb_node *rb1, *rb2;
1496        struct ubi_ainf_volume *av;
1497        struct ubi_ainf_peb *aeb, *last_aeb;
1498        uint8_t *buf;
1499
1500        if (!ubi_dbg_chk_gen(ubi))
1501                return 0;
1502
1503        /*
1504         * At first, check that attaching information is OK.
1505         */
1506        ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb) {
1507                int leb_count = 0;
1508
1509                cond_resched();
1510
1511                vols_found += 1;
1512
1513                if (ai->is_empty) {
1514                        ubi_err("bad is_empty flag");
1515                        goto bad_av;
1516                }
1517
1518                if (av->vol_id < 0 || av->highest_lnum < 0 ||
1519                    av->leb_count < 0 || av->vol_type < 0 || av->used_ebs < 0 ||
1520                    av->data_pad < 0 || av->last_data_size < 0) {
1521                        ubi_err("negative values");
1522                        goto bad_av;
1523                }
1524
1525                if (av->vol_id >= UBI_MAX_VOLUMES &&
1526                    av->vol_id < UBI_INTERNAL_VOL_START) {
1527                        ubi_err("bad vol_id");
1528                        goto bad_av;
1529                }
1530
1531                if (av->vol_id > ai->highest_vol_id) {
1532                        ubi_err("highest_vol_id is %d, but vol_id %d is there",
1533                                ai->highest_vol_id, av->vol_id);
1534                        goto out;
1535                }
1536
1537                if (av->vol_type != UBI_DYNAMIC_VOLUME &&
1538                    av->vol_type != UBI_STATIC_VOLUME) {
1539                        ubi_err("bad vol_type");
1540                        goto bad_av;
1541                }
1542
1543                if (av->data_pad > ubi->leb_size / 2) {
1544                        ubi_err("bad data_pad");
1545                        goto bad_av;
1546                }
1547
1548                last_aeb = NULL;
1549                ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb) {
1550                        cond_resched();
1551
1552                        last_aeb = aeb;
1553                        leb_count += 1;
1554
1555                        if (aeb->pnum < 0 || aeb->ec < 0) {
1556                                ubi_err("negative values");
1557                                goto bad_aeb;
1558                        }
1559
1560                        if (aeb->ec < ai->min_ec) {
1561                                ubi_err("bad ai->min_ec (%d), %d found",
1562                                        ai->min_ec, aeb->ec);
1563                                goto bad_aeb;
1564                        }
1565
1566                        if (aeb->ec > ai->max_ec) {
1567                                ubi_err("bad ai->max_ec (%d), %d found",
1568                                        ai->max_ec, aeb->ec);
1569                                goto bad_aeb;
1570                        }
1571
1572                        if (aeb->pnum >= ubi->peb_count) {
1573                                ubi_err("too high PEB number %d, total PEBs %d",
1574                                        aeb->pnum, ubi->peb_count);
1575                                goto bad_aeb;
1576                        }
1577
1578                        if (av->vol_type == UBI_STATIC_VOLUME) {
1579                                if (aeb->lnum >= av->used_ebs) {
1580                                        ubi_err("bad lnum or used_ebs");
1581                                        goto bad_aeb;
1582                                }
1583                        } else {
1584                                if (av->used_ebs != 0) {
1585                                        ubi_err("non-zero used_ebs");
1586                                        goto bad_aeb;
1587                                }
1588                        }
1589
1590                        if (aeb->lnum > av->highest_lnum) {
1591                                ubi_err("incorrect highest_lnum or lnum");
1592                                goto bad_aeb;
1593                        }
1594                }
1595
1596                if (av->leb_count != leb_count) {
1597                        ubi_err("bad leb_count, %d objects in the tree",
1598                                leb_count);
1599                        goto bad_av;
1600                }
1601
1602                if (!last_aeb)
1603                        continue;
1604
1605                aeb = last_aeb;
1606
1607                if (aeb->lnum != av->highest_lnum) {
1608                        ubi_err("bad highest_lnum");
1609                        goto bad_aeb;
1610                }
1611        }
1612
1613        if (vols_found != ai->vols_found) {
1614                ubi_err("bad ai->vols_found %d, should be %d",
1615                        ai->vols_found, vols_found);
1616                goto out;
1617        }
1618
1619        /* Check that attaching information is correct */
1620        ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb) {
1621                last_aeb = NULL;
1622                ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb) {
1623                        int vol_type;
1624
1625                        cond_resched();
1626
1627                        last_aeb = aeb;
1628
1629                        err = ubi_io_read_vid_hdr(ubi, aeb->pnum, vidh, 1);
1630                        if (err && err != UBI_IO_BITFLIPS) {
1631                                ubi_err("VID header is not OK (%d)", err);
1632                                if (err > 0)
1633                                        err = -EIO;
1634                                return err;
1635                        }
1636
1637                        vol_type = vidh->vol_type == UBI_VID_DYNAMIC ?
1638                                   UBI_DYNAMIC_VOLUME : UBI_STATIC_VOLUME;
1639                        if (av->vol_type != vol_type) {
1640                                ubi_err("bad vol_type");
1641                                goto bad_vid_hdr;
1642                        }
1643
1644                        if (aeb->sqnum != be64_to_cpu(vidh->sqnum)) {
1645                                ubi_err("bad sqnum %llu", aeb->sqnum);
1646                                goto bad_vid_hdr;
1647                        }
1648
1649                        if (av->vol_id != be32_to_cpu(vidh->vol_id)) {
1650                                ubi_err("bad vol_id %d", av->vol_id);
1651                                goto bad_vid_hdr;
1652                        }
1653
1654                        if (av->compat != vidh->compat) {
1655                                ubi_err("bad compat %d", vidh->compat);
1656                                goto bad_vid_hdr;
1657                        }
1658
1659                        if (aeb->lnum != be32_to_cpu(vidh->lnum)) {
1660                                ubi_err("bad lnum %d", aeb->lnum);
1661                                goto bad_vid_hdr;
1662                        }
1663
1664                        if (av->used_ebs != be32_to_cpu(vidh->used_ebs)) {
1665                                ubi_err("bad used_ebs %d", av->used_ebs);
1666                                goto bad_vid_hdr;
1667                        }
1668
1669                        if (av->data_pad != be32_to_cpu(vidh->data_pad)) {
1670                                ubi_err("bad data_pad %d", av->data_pad);
1671                                goto bad_vid_hdr;
1672                        }
1673                }
1674
1675                if (!last_aeb)
1676                        continue;
1677
1678                if (av->highest_lnum != be32_to_cpu(vidh->lnum)) {
1679                        ubi_err("bad highest_lnum %d", av->highest_lnum);
1680                        goto bad_vid_hdr;
1681                }
1682
1683                if (av->last_data_size != be32_to_cpu(vidh->data_size)) {
1684                        ubi_err("bad last_data_size %d", av->last_data_size);
1685                        goto bad_vid_hdr;
1686                }
1687        }
1688
1689        /*
1690         * Make sure that all the physical eraseblocks are in one of the lists
1691         * or trees.
1692         */
1693        buf = kzalloc(ubi->peb_count, GFP_KERNEL);
1694        if (!buf)
1695                return -ENOMEM;
1696
1697        for (pnum = 0; pnum < ubi->peb_count; pnum++) {
1698                err = ubi_io_is_bad(ubi, pnum);
1699                if (err < 0) {
1700                        kfree(buf);
1701                        return err;
1702                } else if (err)
1703                        buf[pnum] = 1;
1704        }
1705
1706        ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb)
1707                ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb)
1708                        buf[aeb->pnum] = 1;
1709
1710        list_for_each_entry(aeb, &ai->free, u.list)
1711                buf[aeb->pnum] = 1;
1712
1713        list_for_each_entry(aeb, &ai->corr, u.list)
1714                buf[aeb->pnum] = 1;
1715
1716        list_for_each_entry(aeb, &ai->erase, u.list)
1717                buf[aeb->pnum] = 1;
1718
1719        list_for_each_entry(aeb, &ai->alien, u.list)
1720                buf[aeb->pnum] = 1;
1721
1722        err = 0;
1723        for (pnum = 0; pnum < ubi->peb_count; pnum++)
1724                if (!buf[pnum]) {
1725                        ubi_err("PEB %d is not referred", pnum);
1726                        err = 1;
1727                }
1728
1729        kfree(buf);
1730        if (err)
1731                goto out;
1732        return 0;
1733
1734bad_aeb:
1735        ubi_err("bad attaching information about LEB %d", aeb->lnum);
1736        ubi_dump_aeb(aeb, 0);
1737        ubi_dump_av(av);
1738        goto out;
1739
1740bad_av:
1741        ubi_err("bad attaching information about volume %d", av->vol_id);
1742        ubi_dump_av(av);
1743        goto out;
1744
1745bad_vid_hdr:
1746        ubi_err("bad attaching information about volume %d", av->vol_id);
1747        ubi_dump_av(av);
1748        ubi_dump_vid_hdr(vidh);
1749
1750out:
1751        dump_stack();
1752        return -EINVAL;
1753}
1754