uboot/drivers/net/dc2114x.c
<<
>>
Prefs
   1/*
   2 * SPDX-License-Identifier:     GPL-2.0+
   3 */
   4
   5#include <common.h>
   6#include <malloc.h>
   7#include <net.h>
   8#include <netdev.h>
   9#include <pci.h>
  10
  11#undef DEBUG_SROM
  12#undef DEBUG_SROM2
  13
  14#undef UPDATE_SROM
  15
  16/* PCI Registers.
  17 */
  18#define PCI_CFDA_PSM            0x43
  19
  20#define CFRV_RN         0x000000f0      /* Revision Number */
  21
  22#define WAKEUP          0x00            /* Power Saving Wakeup */
  23#define SLEEP           0x80            /* Power Saving Sleep Mode */
  24
  25#define DC2114x_BRK     0x0020          /* CFRV break between DC21142 & DC21143 */
  26
  27/* Ethernet chip registers.
  28 */
  29#define DE4X5_BMR       0x000           /* Bus Mode Register */
  30#define DE4X5_TPD       0x008           /* Transmit Poll Demand Reg */
  31#define DE4X5_RRBA      0x018           /* RX Ring Base Address Reg */
  32#define DE4X5_TRBA      0x020           /* TX Ring Base Address Reg */
  33#define DE4X5_STS       0x028           /* Status Register */
  34#define DE4X5_OMR       0x030           /* Operation Mode Register */
  35#define DE4X5_SICR      0x068           /* SIA Connectivity Register */
  36#define DE4X5_APROM     0x048           /* Ethernet Address PROM */
  37
  38/* Register bits.
  39 */
  40#define BMR_SWR         0x00000001      /* Software Reset */
  41#define STS_TS          0x00700000      /* Transmit Process State */
  42#define STS_RS          0x000e0000      /* Receive Process State */
  43#define OMR_ST          0x00002000      /* Start/Stop Transmission Command */
  44#define OMR_SR          0x00000002      /* Start/Stop Receive */
  45#define OMR_PS          0x00040000      /* Port Select */
  46#define OMR_SDP         0x02000000      /* SD Polarity - MUST BE ASSERTED */
  47#define OMR_PM          0x00000080      /* Pass All Multicast */
  48
  49/* Descriptor bits.
  50 */
  51#define R_OWN           0x80000000      /* Own Bit */
  52#define RD_RER          0x02000000      /* Receive End Of Ring */
  53#define RD_LS           0x00000100      /* Last Descriptor */
  54#define RD_ES           0x00008000      /* Error Summary */
  55#define TD_TER          0x02000000      /* Transmit End Of Ring */
  56#define T_OWN           0x80000000      /* Own Bit */
  57#define TD_LS           0x40000000      /* Last Segment */
  58#define TD_FS           0x20000000      /* First Segment */
  59#define TD_ES           0x00008000      /* Error Summary */
  60#define TD_SET          0x08000000      /* Setup Packet */
  61
  62/* The EEPROM commands include the alway-set leading bit. */
  63#define SROM_WRITE_CMD  5
  64#define SROM_READ_CMD   6
  65#define SROM_ERASE_CMD  7
  66
  67#define SROM_HWADD          0x0014      /* Hardware Address offset in SROM */
  68#define SROM_RD         0x00004000      /* Read from Boot ROM */
  69#define EE_DATA_WRITE         0x04      /* EEPROM chip data in. */
  70#define EE_WRITE_0          0x4801
  71#define EE_WRITE_1          0x4805
  72#define EE_DATA_READ          0x08      /* EEPROM chip data out. */
  73#define SROM_SR         0x00000800      /* Select Serial ROM when set */
  74
  75#define DT_IN           0x00000004      /* Serial Data In */
  76#define DT_CLK          0x00000002      /* Serial ROM Clock */
  77#define DT_CS           0x00000001      /* Serial ROM Chip Select */
  78
  79#define POLL_DEMAND     1
  80
  81#ifdef CONFIG_TULIP_FIX_DAVICOM
  82#define RESET_DM9102(dev) {\
  83    unsigned long i;\
  84    i=INL(dev, 0x0);\
  85    udelay(1000);\
  86    OUTL(dev, i | BMR_SWR, DE4X5_BMR);\
  87    udelay(1000);\
  88}
  89#else
  90#define RESET_DE4X5(dev) {\
  91    int i;\
  92    i=INL(dev, DE4X5_BMR);\
  93    udelay(1000);\
  94    OUTL(dev, i | BMR_SWR, DE4X5_BMR);\
  95    udelay(1000);\
  96    OUTL(dev, i, DE4X5_BMR);\
  97    udelay(1000);\
  98    for (i=0;i<5;i++) {INL(dev, DE4X5_BMR); udelay(10000);}\
  99    udelay(1000);\
 100}
 101#endif
 102
 103#define START_DE4X5(dev) {\
 104    s32 omr; \
 105    omr = INL(dev, DE4X5_OMR);\
 106    omr |= OMR_ST | OMR_SR;\
 107    OUTL(dev, omr, DE4X5_OMR);          /* Enable the TX and/or RX */\
 108}
 109
 110#define STOP_DE4X5(dev) {\
 111    s32 omr; \
 112    omr = INL(dev, DE4X5_OMR);\
 113    omr &= ~(OMR_ST|OMR_SR);\
 114    OUTL(dev, omr, DE4X5_OMR);          /* Disable the TX and/or RX */ \
 115}
 116
 117#define NUM_RX_DESC PKTBUFSRX
 118#ifndef CONFIG_TULIP_FIX_DAVICOM
 119        #define NUM_TX_DESC 1                   /* Number of TX descriptors   */
 120#else
 121        #define NUM_TX_DESC 4
 122#endif
 123#define RX_BUFF_SZ  PKTSIZE_ALIGN
 124
 125#define TOUT_LOOP   1000000
 126
 127#define SETUP_FRAME_LEN 192
 128#define ETH_ALEN        6
 129
 130struct de4x5_desc {
 131        volatile s32 status;
 132        u32 des1;
 133        u32 buf;
 134        u32 next;
 135};
 136
 137static struct de4x5_desc rx_ring[NUM_RX_DESC] __attribute__ ((aligned(32))); /* RX descriptor ring         */
 138static struct de4x5_desc tx_ring[NUM_TX_DESC] __attribute__ ((aligned(32))); /* TX descriptor ring         */
 139static int rx_new;                             /* RX descriptor ring pointer */
 140static int tx_new;                             /* TX descriptor ring pointer */
 141
 142static char rxRingSize;
 143static char txRingSize;
 144
 145#if defined(UPDATE_SROM) || !defined(CONFIG_TULIP_FIX_DAVICOM)
 146static void  sendto_srom(struct eth_device* dev, u_int command, u_long addr);
 147static int   getfrom_srom(struct eth_device* dev, u_long addr);
 148static int   do_eeprom_cmd(struct eth_device *dev, u_long ioaddr,int cmd,int cmd_len);
 149static int   do_read_eeprom(struct eth_device *dev,u_long ioaddr,int location,int addr_len);
 150#endif  /* UPDATE_SROM || !CONFIG_TULIP_FIX_DAVICOM */
 151#ifdef UPDATE_SROM
 152static int   write_srom(struct eth_device *dev, u_long ioaddr, int index, int new_value);
 153static void  update_srom(struct eth_device *dev, bd_t *bis);
 154#endif
 155#ifndef CONFIG_TULIP_FIX_DAVICOM
 156static int   read_srom(struct eth_device *dev, u_long ioaddr, int index);
 157static void  read_hw_addr(struct eth_device* dev, bd_t * bis);
 158#endif  /* CONFIG_TULIP_FIX_DAVICOM */
 159static void  send_setup_frame(struct eth_device* dev, bd_t * bis);
 160
 161static int   dc21x4x_init(struct eth_device* dev, bd_t* bis);
 162static int   dc21x4x_send(struct eth_device *dev, void *packet, int length);
 163static int   dc21x4x_recv(struct eth_device* dev);
 164static void  dc21x4x_halt(struct eth_device* dev);
 165#ifdef CONFIG_TULIP_SELECT_MEDIA
 166extern void  dc21x4x_select_media(struct eth_device* dev);
 167#endif
 168
 169#if defined(CONFIG_E500)
 170#define phys_to_bus(a) (a)
 171#else
 172#define phys_to_bus(a)  pci_phys_to_mem((pci_dev_t)dev->priv, a)
 173#endif
 174
 175static int INL(struct eth_device* dev, u_long addr)
 176{
 177        return le32_to_cpu(*(volatile u_long *)(addr + dev->iobase));
 178}
 179
 180static void OUTL(struct eth_device* dev, int command, u_long addr)
 181{
 182        *(volatile u_long *)(addr + dev->iobase) = cpu_to_le32(command);
 183}
 184
 185static struct pci_device_id supported[] = {
 186        { PCI_VENDOR_ID_DEC, PCI_DEVICE_ID_DEC_TULIP_FAST },
 187        { PCI_VENDOR_ID_DEC, PCI_DEVICE_ID_DEC_21142 },
 188#ifdef CONFIG_TULIP_FIX_DAVICOM
 189        { PCI_VENDOR_ID_DAVICOM, PCI_DEVICE_ID_DAVICOM_DM9102A },
 190#endif
 191        { }
 192};
 193
 194int dc21x4x_initialize(bd_t *bis)
 195{
 196        int                     idx=0;
 197        int                     card_number = 0;
 198        unsigned int            cfrv;
 199        unsigned char           timer;
 200        pci_dev_t               devbusfn;
 201        unsigned int            iobase;
 202        unsigned short          status;
 203        struct eth_device*      dev;
 204
 205        while(1) {
 206                devbusfn =  pci_find_devices(supported, idx++);
 207                if (devbusfn == -1) {
 208                        break;
 209                }
 210
 211                /* Get the chip configuration revision register. */
 212                pci_read_config_dword(devbusfn, PCI_REVISION_ID, &cfrv);
 213
 214#ifndef CONFIG_TULIP_FIX_DAVICOM
 215                if ((cfrv & CFRV_RN) < DC2114x_BRK ) {
 216                        printf("Error: The chip is not DC21143.\n");
 217                        continue;
 218                }
 219#endif
 220
 221                pci_read_config_word(devbusfn, PCI_COMMAND, &status);
 222                status |=
 223#ifdef CONFIG_TULIP_USE_IO
 224                  PCI_COMMAND_IO |
 225#else
 226                  PCI_COMMAND_MEMORY |
 227#endif
 228                  PCI_COMMAND_MASTER;
 229                pci_write_config_word(devbusfn, PCI_COMMAND, status);
 230
 231                pci_read_config_word(devbusfn, PCI_COMMAND, &status);
 232#ifdef CONFIG_TULIP_USE_IO
 233                if (!(status & PCI_COMMAND_IO)) {
 234                        printf("Error: Can not enable I/O access.\n");
 235                        continue;
 236                }
 237#else
 238                if (!(status & PCI_COMMAND_MEMORY)) {
 239                        printf("Error: Can not enable MEMORY access.\n");
 240                        continue;
 241                }
 242#endif
 243
 244                if (!(status & PCI_COMMAND_MASTER)) {
 245                        printf("Error: Can not enable Bus Mastering.\n");
 246                        continue;
 247                }
 248
 249                /* Check the latency timer for values >= 0x60. */
 250                pci_read_config_byte(devbusfn, PCI_LATENCY_TIMER, &timer);
 251
 252                if (timer < 0x60) {
 253                        pci_write_config_byte(devbusfn, PCI_LATENCY_TIMER, 0x60);
 254                }
 255
 256#ifdef CONFIG_TULIP_USE_IO
 257                /* read BAR for memory space access */
 258                pci_read_config_dword(devbusfn, PCI_BASE_ADDRESS_0, &iobase);
 259                iobase &= PCI_BASE_ADDRESS_IO_MASK;
 260#else
 261                /* read BAR for memory space access */
 262                pci_read_config_dword(devbusfn, PCI_BASE_ADDRESS_1, &iobase);
 263                iobase &= PCI_BASE_ADDRESS_MEM_MASK;
 264#endif
 265                debug ("dc21x4x: DEC 21142 PCI Device @0x%x\n", iobase);
 266
 267                dev = (struct eth_device*) malloc(sizeof *dev);
 268
 269                if (!dev) {
 270                        printf("Can not allocalte memory of dc21x4x\n");
 271                        break;
 272                }
 273                memset(dev, 0, sizeof(*dev));
 274
 275#ifdef CONFIG_TULIP_FIX_DAVICOM
 276                sprintf(dev->name, "Davicom#%d", card_number);
 277#else
 278                sprintf(dev->name, "dc21x4x#%d", card_number);
 279#endif
 280
 281#ifdef CONFIG_TULIP_USE_IO
 282                dev->iobase = pci_io_to_phys(devbusfn, iobase);
 283#else
 284                dev->iobase = pci_mem_to_phys(devbusfn, iobase);
 285#endif
 286                dev->priv   = (void*) devbusfn;
 287                dev->init   = dc21x4x_init;
 288                dev->halt   = dc21x4x_halt;
 289                dev->send   = dc21x4x_send;
 290                dev->recv   = dc21x4x_recv;
 291
 292                /* Ensure we're not sleeping. */
 293                pci_write_config_byte(devbusfn, PCI_CFDA_PSM, WAKEUP);
 294
 295                udelay(10 * 1000);
 296
 297#ifndef CONFIG_TULIP_FIX_DAVICOM
 298                read_hw_addr(dev, bis);
 299#endif
 300                eth_register(dev);
 301
 302                card_number++;
 303        }
 304
 305        return card_number;
 306}
 307
 308static int dc21x4x_init(struct eth_device* dev, bd_t* bis)
 309{
 310        int             i;
 311        int             devbusfn = (int) dev->priv;
 312
 313        /* Ensure we're not sleeping. */
 314        pci_write_config_byte(devbusfn, PCI_CFDA_PSM, WAKEUP);
 315
 316#ifdef CONFIG_TULIP_FIX_DAVICOM
 317        RESET_DM9102(dev);
 318#else
 319        RESET_DE4X5(dev);
 320#endif
 321
 322        if ((INL(dev, DE4X5_STS) & (STS_TS | STS_RS)) != 0) {
 323                printf("Error: Cannot reset ethernet controller.\n");
 324                return -1;
 325        }
 326
 327#ifdef CONFIG_TULIP_SELECT_MEDIA
 328        dc21x4x_select_media(dev);
 329#else
 330        OUTL(dev, OMR_SDP | OMR_PS | OMR_PM, DE4X5_OMR);
 331#endif
 332
 333        for (i = 0; i < NUM_RX_DESC; i++) {
 334                rx_ring[i].status = cpu_to_le32(R_OWN);
 335                rx_ring[i].des1 = cpu_to_le32(RX_BUFF_SZ);
 336                rx_ring[i].buf = cpu_to_le32(phys_to_bus((u32) NetRxPackets[i]));
 337#ifdef CONFIG_TULIP_FIX_DAVICOM
 338                rx_ring[i].next = cpu_to_le32(phys_to_bus((u32) &rx_ring[(i+1) % NUM_RX_DESC]));
 339#else
 340                rx_ring[i].next = 0;
 341#endif
 342        }
 343
 344        for (i=0; i < NUM_TX_DESC; i++) {
 345                tx_ring[i].status = 0;
 346                tx_ring[i].des1 = 0;
 347                tx_ring[i].buf = 0;
 348
 349#ifdef CONFIG_TULIP_FIX_DAVICOM
 350        tx_ring[i].next = cpu_to_le32(phys_to_bus((u32) &tx_ring[(i+1) % NUM_TX_DESC]));
 351#else
 352                tx_ring[i].next = 0;
 353#endif
 354        }
 355
 356        rxRingSize = NUM_RX_DESC;
 357        txRingSize = NUM_TX_DESC;
 358
 359        /* Write the end of list marker to the descriptor lists. */
 360        rx_ring[rxRingSize - 1].des1 |= cpu_to_le32(RD_RER);
 361        tx_ring[txRingSize - 1].des1 |= cpu_to_le32(TD_TER);
 362
 363        /* Tell the adapter where the TX/RX rings are located. */
 364        OUTL(dev, phys_to_bus((u32) &rx_ring), DE4X5_RRBA);
 365        OUTL(dev, phys_to_bus((u32) &tx_ring), DE4X5_TRBA);
 366
 367        START_DE4X5(dev);
 368
 369        tx_new = 0;
 370        rx_new = 0;
 371
 372        send_setup_frame(dev, bis);
 373
 374        return 0;
 375}
 376
 377static int dc21x4x_send(struct eth_device *dev, void *packet, int length)
 378{
 379        int             status = -1;
 380        int             i;
 381
 382        if (length <= 0) {
 383                printf("%s: bad packet size: %d\n", dev->name, length);
 384                goto Done;
 385        }
 386
 387        for(i = 0; tx_ring[tx_new].status & cpu_to_le32(T_OWN); i++) {
 388                if (i >= TOUT_LOOP) {
 389                        printf("%s: tx error buffer not ready\n", dev->name);
 390                        goto Done;
 391                }
 392        }
 393
 394        tx_ring[tx_new].buf    = cpu_to_le32(phys_to_bus((u32) packet));
 395        tx_ring[tx_new].des1   = cpu_to_le32(TD_TER | TD_LS | TD_FS | length);
 396        tx_ring[tx_new].status = cpu_to_le32(T_OWN);
 397
 398        OUTL(dev, POLL_DEMAND, DE4X5_TPD);
 399
 400        for(i = 0; tx_ring[tx_new].status & cpu_to_le32(T_OWN); i++) {
 401                if (i >= TOUT_LOOP) {
 402                        printf(".%s: tx buffer not ready\n", dev->name);
 403                        goto Done;
 404                }
 405        }
 406
 407        if (le32_to_cpu(tx_ring[tx_new].status) & TD_ES) {
 408#if 0 /* test-only */
 409                printf("TX error status = 0x%08X\n",
 410                        le32_to_cpu(tx_ring[tx_new].status));
 411#endif
 412                tx_ring[tx_new].status = 0x0;
 413                goto Done;
 414        }
 415
 416        status = length;
 417
 418 Done:
 419    tx_new = (tx_new+1) % NUM_TX_DESC;
 420        return status;
 421}
 422
 423static int dc21x4x_recv(struct eth_device* dev)
 424{
 425        s32             status;
 426        int             length    = 0;
 427
 428        for ( ; ; ) {
 429                status = (s32)le32_to_cpu(rx_ring[rx_new].status);
 430
 431                if (status & R_OWN) {
 432                        break;
 433                }
 434
 435                if (status & RD_LS) {
 436                        /* Valid frame status.
 437                         */
 438                        if (status & RD_ES) {
 439
 440                                /* There was an error.
 441                                 */
 442                                printf("RX error status = 0x%08X\n", status);
 443                        } else {
 444                                /* A valid frame received.
 445                                 */
 446                                length = (le32_to_cpu(rx_ring[rx_new].status) >> 16);
 447
 448                                /* Pass the packet up to the protocol
 449                                 * layers.
 450                                 */
 451                                NetReceive(NetRxPackets[rx_new], length - 4);
 452                        }
 453
 454                        /* Change buffer ownership for this frame, back
 455                         * to the adapter.
 456                         */
 457                        rx_ring[rx_new].status = cpu_to_le32(R_OWN);
 458                }
 459
 460                /* Update entry information.
 461                 */
 462                rx_new = (rx_new + 1) % rxRingSize;
 463        }
 464
 465        return length;
 466}
 467
 468static void dc21x4x_halt(struct eth_device* dev)
 469{
 470        int             devbusfn = (int) dev->priv;
 471
 472        STOP_DE4X5(dev);
 473        OUTL(dev, 0, DE4X5_SICR);
 474
 475        pci_write_config_byte(devbusfn, PCI_CFDA_PSM, SLEEP);
 476}
 477
 478static void send_setup_frame(struct eth_device* dev, bd_t *bis)
 479{
 480        int             i;
 481        char    setup_frame[SETUP_FRAME_LEN];
 482        char    *pa = &setup_frame[0];
 483
 484        memset(pa, 0xff, SETUP_FRAME_LEN);
 485
 486        for (i = 0; i < ETH_ALEN; i++) {
 487                *(pa + (i & 1)) = dev->enetaddr[i];
 488                if (i & 0x01) {
 489                        pa += 4;
 490                }
 491        }
 492
 493        for(i = 0; tx_ring[tx_new].status & cpu_to_le32(T_OWN); i++) {
 494                if (i >= TOUT_LOOP) {
 495                        printf("%s: tx error buffer not ready\n", dev->name);
 496                        goto Done;
 497                }
 498        }
 499
 500        tx_ring[tx_new].buf = cpu_to_le32(phys_to_bus((u32) &setup_frame[0]));
 501        tx_ring[tx_new].des1 = cpu_to_le32(TD_TER | TD_SET| SETUP_FRAME_LEN);
 502        tx_ring[tx_new].status = cpu_to_le32(T_OWN);
 503
 504        OUTL(dev, POLL_DEMAND, DE4X5_TPD);
 505
 506        for(i = 0; tx_ring[tx_new].status & cpu_to_le32(T_OWN); i++) {
 507                if (i >= TOUT_LOOP) {
 508                        printf("%s: tx buffer not ready\n", dev->name);
 509                        goto Done;
 510                }
 511        }
 512
 513        if (le32_to_cpu(tx_ring[tx_new].status) != 0x7FFFFFFF) {
 514                printf("TX error status2 = 0x%08X\n", le32_to_cpu(tx_ring[tx_new].status));
 515        }
 516        tx_new = (tx_new+1) % NUM_TX_DESC;
 517
 518Done:
 519        return;
 520}
 521
 522#if defined(UPDATE_SROM) || !defined(CONFIG_TULIP_FIX_DAVICOM)
 523/* SROM Read and write routines.
 524 */
 525static void
 526sendto_srom(struct eth_device* dev, u_int command, u_long addr)
 527{
 528        OUTL(dev, command, addr);
 529        udelay(1);
 530}
 531
 532static int
 533getfrom_srom(struct eth_device* dev, u_long addr)
 534{
 535        s32 tmp;
 536
 537        tmp = INL(dev, addr);
 538        udelay(1);
 539
 540        return tmp;
 541}
 542
 543/* Note: this routine returns extra data bits for size detection. */
 544static int do_read_eeprom(struct eth_device *dev, u_long ioaddr, int location, int addr_len)
 545{
 546        int i;
 547        unsigned retval = 0;
 548        int read_cmd = location | (SROM_READ_CMD << addr_len);
 549
 550        sendto_srom(dev, SROM_RD | SROM_SR, ioaddr);
 551        sendto_srom(dev, SROM_RD | SROM_SR | DT_CS, ioaddr);
 552
 553#ifdef DEBUG_SROM
 554        printf(" EEPROM read at %d ", location);
 555#endif
 556
 557        /* Shift the read command bits out. */
 558        for (i = 4 + addr_len; i >= 0; i--) {
 559                short dataval = (read_cmd & (1 << i)) ? EE_DATA_WRITE : 0;
 560                sendto_srom(dev, SROM_RD | SROM_SR | DT_CS | dataval, ioaddr);
 561                udelay(10);
 562                sendto_srom(dev, SROM_RD | SROM_SR | DT_CS | dataval | DT_CLK, ioaddr);
 563                udelay(10);
 564#ifdef DEBUG_SROM2
 565                printf("%X", getfrom_srom(dev, ioaddr) & 15);
 566#endif
 567                retval = (retval << 1) | ((getfrom_srom(dev, ioaddr) & EE_DATA_READ) ? 1 : 0);
 568        }
 569
 570        sendto_srom(dev, SROM_RD | SROM_SR | DT_CS, ioaddr);
 571
 572#ifdef DEBUG_SROM2
 573        printf(" :%X:", getfrom_srom(dev, ioaddr) & 15);
 574#endif
 575
 576        for (i = 16; i > 0; i--) {
 577                sendto_srom(dev, SROM_RD | SROM_SR | DT_CS | DT_CLK, ioaddr);
 578                udelay(10);
 579#ifdef DEBUG_SROM2
 580                printf("%X", getfrom_srom(dev, ioaddr) & 15);
 581#endif
 582                retval = (retval << 1) | ((getfrom_srom(dev, ioaddr) & EE_DATA_READ) ? 1 : 0);
 583                sendto_srom(dev, SROM_RD | SROM_SR | DT_CS, ioaddr);
 584                udelay(10);
 585        }
 586
 587        /* Terminate the EEPROM access. */
 588        sendto_srom(dev, SROM_RD | SROM_SR, ioaddr);
 589
 590#ifdef DEBUG_SROM2
 591        printf(" EEPROM value at %d is %5.5x.\n", location, retval);
 592#endif
 593
 594        return retval;
 595}
 596#endif  /* UPDATE_SROM || !CONFIG_TULIP_FIX_DAVICOM */
 597
 598/* This executes a generic EEPROM command, typically a write or write
 599 * enable. It returns the data output from the EEPROM, and thus may
 600 * also be used for reads.
 601 */
 602#if defined(UPDATE_SROM) || !defined(CONFIG_TULIP_FIX_DAVICOM)
 603static int do_eeprom_cmd(struct eth_device *dev, u_long ioaddr, int cmd, int cmd_len)
 604{
 605        unsigned retval = 0;
 606
 607#ifdef DEBUG_SROM
 608        printf(" EEPROM op 0x%x: ", cmd);
 609#endif
 610
 611        sendto_srom(dev,SROM_RD | SROM_SR | DT_CS | DT_CLK, ioaddr);
 612
 613        /* Shift the command bits out. */
 614        do {
 615                short dataval = (cmd & (1 << cmd_len)) ? EE_WRITE_1 : EE_WRITE_0;
 616                sendto_srom(dev,dataval, ioaddr);
 617                udelay(10);
 618
 619#ifdef DEBUG_SROM2
 620                printf("%X", getfrom_srom(dev,ioaddr) & 15);
 621#endif
 622
 623                sendto_srom(dev,dataval | DT_CLK, ioaddr);
 624                udelay(10);
 625                retval = (retval << 1) | ((getfrom_srom(dev,ioaddr) & EE_DATA_READ) ? 1 : 0);
 626        } while (--cmd_len >= 0);
 627        sendto_srom(dev,SROM_RD | SROM_SR | DT_CS, ioaddr);
 628
 629        /* Terminate the EEPROM access. */
 630        sendto_srom(dev,SROM_RD | SROM_SR, ioaddr);
 631
 632#ifdef DEBUG_SROM
 633        printf(" EEPROM result is 0x%5.5x.\n", retval);
 634#endif
 635
 636        return retval;
 637}
 638#endif  /* UPDATE_SROM || !CONFIG_TULIP_FIX_DAVICOM */
 639
 640#ifndef CONFIG_TULIP_FIX_DAVICOM
 641static int read_srom(struct eth_device *dev, u_long ioaddr, int index)
 642{
 643        int ee_addr_size = do_read_eeprom(dev, ioaddr, 0xff, 8) & 0x40000 ? 8 : 6;
 644
 645        return do_eeprom_cmd(dev, ioaddr,
 646                             (((SROM_READ_CMD << ee_addr_size) | index) << 16)
 647                             | 0xffff, 3 + ee_addr_size + 16);
 648}
 649#endif  /* CONFIG_TULIP_FIX_DAVICOM */
 650
 651#ifdef UPDATE_SROM
 652static int write_srom(struct eth_device *dev, u_long ioaddr, int index, int new_value)
 653{
 654        int ee_addr_size = do_read_eeprom(dev, ioaddr, 0xff, 8) & 0x40000 ? 8 : 6;
 655        int i;
 656        unsigned short newval;
 657
 658        udelay(10*1000); /* test-only */
 659
 660#ifdef DEBUG_SROM
 661        printf("ee_addr_size=%d.\n", ee_addr_size);
 662        printf("Writing new entry 0x%4.4x to offset %d.\n", new_value, index);
 663#endif
 664
 665        /* Enable programming modes. */
 666        do_eeprom_cmd(dev, ioaddr, (0x4f << (ee_addr_size-4)), 3+ee_addr_size);
 667
 668        /* Do the actual write. */
 669        do_eeprom_cmd(dev, ioaddr,
 670                      (((SROM_WRITE_CMD<<ee_addr_size)|index) << 16) | new_value,
 671                      3 + ee_addr_size + 16);
 672
 673        /* Poll for write finished. */
 674        sendto_srom(dev, SROM_RD | SROM_SR | DT_CS, ioaddr);
 675        for (i = 0; i < 10000; i++)                     /* Typical 2000 ticks */
 676                if (getfrom_srom(dev, ioaddr) & EE_DATA_READ)
 677                        break;
 678
 679#ifdef DEBUG_SROM
 680        printf(" Write finished after %d ticks.\n", i);
 681#endif
 682
 683        /* Disable programming. */
 684        do_eeprom_cmd(dev, ioaddr, (0x40 << (ee_addr_size-4)), 3 + ee_addr_size);
 685
 686        /* And read the result. */
 687        newval = do_eeprom_cmd(dev, ioaddr,
 688                               (((SROM_READ_CMD<<ee_addr_size)|index) << 16)
 689                               | 0xffff, 3 + ee_addr_size + 16);
 690#ifdef DEBUG_SROM
 691        printf("  New value at offset %d is %4.4x.\n", index, newval);
 692#endif
 693        return 1;
 694}
 695#endif
 696
 697#ifndef CONFIG_TULIP_FIX_DAVICOM
 698static void read_hw_addr(struct eth_device *dev, bd_t *bis)
 699{
 700        u_short tmp, *p = (u_short *)(&dev->enetaddr[0]);
 701        int i, j = 0;
 702
 703        for (i = 0; i < (ETH_ALEN >> 1); i++) {
 704                tmp = read_srom(dev, DE4X5_APROM, ((SROM_HWADD >> 1) + i));
 705                *p = le16_to_cpu(tmp);
 706                j += *p++;
 707        }
 708
 709        if ((j == 0) || (j == 0x2fffd)) {
 710                memset (dev->enetaddr, 0, ETH_ALEN);
 711                debug ("Warning: can't read HW address from SROM.\n");
 712                goto Done;
 713        }
 714
 715        return;
 716
 717Done:
 718#ifdef UPDATE_SROM
 719        update_srom(dev, bis);
 720#endif
 721        return;
 722}
 723#endif  /* CONFIG_TULIP_FIX_DAVICOM */
 724
 725#ifdef UPDATE_SROM
 726static void update_srom(struct eth_device *dev, bd_t *bis)
 727{
 728        int i;
 729        static unsigned short eeprom[0x40] = {
 730                0x140b, 0x6610, 0x0000, 0x0000, /* 00 */
 731                0x0000, 0x0000, 0x0000, 0x0000, /* 04 */
 732                0x00a3, 0x0103, 0x0000, 0x0000, /* 08 */
 733                0x0000, 0x1f00, 0x0000, 0x0000, /* 0c */
 734                0x0108, 0x038d, 0x0000, 0x0000, /* 10 */
 735                0xe078, 0x0001, 0x0040, 0x0018, /* 14 */
 736                0x0000, 0x0000, 0x0000, 0x0000, /* 18 */
 737                0x0000, 0x0000, 0x0000, 0x0000, /* 1c */
 738                0x0000, 0x0000, 0x0000, 0x0000, /* 20 */
 739                0x0000, 0x0000, 0x0000, 0x0000, /* 24 */
 740                0x0000, 0x0000, 0x0000, 0x0000, /* 28 */
 741                0x0000, 0x0000, 0x0000, 0x0000, /* 2c */
 742                0x0000, 0x0000, 0x0000, 0x0000, /* 30 */
 743                0x0000, 0x0000, 0x0000, 0x0000, /* 34 */
 744                0x0000, 0x0000, 0x0000, 0x0000, /* 38 */
 745                0x0000, 0x0000, 0x0000, 0x4e07, /* 3c */
 746        };
 747        uchar enetaddr[6];
 748
 749        /* Ethernet Addr... */
 750        if (!eth_getenv_enetaddr("ethaddr", enetaddr))
 751                return;
 752        eeprom[0x0a] = (enetaddr[1] << 8) | enetaddr[0];
 753        eeprom[0x0b] = (enetaddr[3] << 8) | enetaddr[2];
 754        eeprom[0x0c] = (enetaddr[5] << 8) | enetaddr[4];
 755
 756        for (i=0; i<0x40; i++) {
 757                write_srom(dev, DE4X5_APROM, i, eeprom[i]);
 758        }
 759}
 760#endif  /* UPDATE_SROM */
 761